
VLSI SIGNAL PROCESSING 325

VLSI SIGNAL PROCESSING

The field of very-large-scale integrated (VLSI) circuit signal
processing concerns the design and implementation of signal-
processing algorithms using application-specific hardware, in-
cluding programmable digital signal processors and dedicated
signal processors implemented with VLSI technology. In this
article, we will survey important developments in this field,
including algorithm design, architecture development, and
design methodology.

Implementation of Digital Signal-Processing Algorithms

Signal processing concerns the acquisition, filtering, transfor-
mation, estimation, detection, compression, and recognition of
signals represented in multiple media and multiple modal-
ities, including sound, speech, image, video, and others. In
digital signal processing, a natural signal is first sampled and
quantized using an analog-to-digital converter. The result is
a stream of numbers that will be processed using a digital
computer. The results will be converted back to continuous
form using digital-to-analog converter.

An implementation of a digital signal-processing algorithm
consists of the computer program of that algorithm and the
hardware on which the program is executed. In many signal-
processing applications, real-time processing is an essential
requirement. Real time implies that the results of a signal-
processing algorithm must be computed by a predefined dead-
line after the inputs are sampled. For example, in a cellular
phone, the speech coding signal-processing algorithm must be
executed to match the speed of normal conversation. An im-
plementation of a real-time signal processing application has
three special characteristics:

1. Input signal samples are made available while the pro-
gram is being executed. The computation cannot be
started early until the input signal samples are re-
ceived.

2. Results must be computed before the prespecified dead-
line. When real-time constraint is not met, the quality
of services will be dramatically compromised.

3. A vast amount of operations must be computed. In Ta-
ble 1, raw sampling rates, sometimes known as the
throughput rate, of several different signals are listed.
On average, each signal sample will require several

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

326 VLSI SIGNAL PROCESSING

This situation changed in mid-1970s. Quantum leaps in in-
tegrated-circuit (IC) manufacturing technology led to the era
of VLSI systems. By 1980, hundreds of thousands of transis-
tors could be reliably, economically fabricated on a single sili-
con chip. With the transistor count per chip growing exponen-
tially, it became quite clear that to manage the design

Table 1. Typical Sampling Rates of Signals

Type of Signal Sampling Rate

Speech 22 kHz (22,000 samples per second)
CD Audio 44 kHz
Video phone (320 � 240 � 3 3.456 MHz (3,456,000 samples per

pixels/frame, 15 frame/s) second)
complexity of VLSI circuits, IC design methodologies must be
revolutionized. In 1980, Mead and Conway championed the
notion of structured VLSI design. In their seminal book Intro-
duction to VLSI Systems (1), it is argued that a hierarchicalfixed-point or floating-point arithmetic operations to
design style that exhibits regularity and locality must beprocess. Hence signal-processing algorithms are often
adopted in order to design millions of transistors on a singlecomputation-intensive.
chip. A novel architecture called a systolic array was used as
an example that satisfies all these requirements.An efficient implementation of a real-time signal-processing

This idea of structured VLSI design further inspired thealgorithm must be able to perform extremely large amounts
concept of a silicon compiler, which, in analogy with the soft-of arithmetic operations within a short duration. In other
ware compiler, would automatically generate a silicon imple-words, it must sustain high throughput rate.
mentation starting from a high-level description. These pion-Signal processing is often found in embedded systems such
eering ideas stimulated many important developments in theas electric appliances where the user interacts with the sys-
IC industry, such as the proliferation of electronic design au-tem’s main function instead of specific signal-processing algo-
tomation (EDA) tools, the popularity of semicustom designrithms. For example, speech coding is regularly performed in
styles, including gate array and standard cell layout, and thea cellular phone while the user may never be aware of its ex-
availability of silicon foundry services. By the mid-1980s, aistence.
new industry known as application specific IC (ASIC) designA signal-processing algorithm can be implemented on a
was thriving. Numerous chip sets for video coding, three-di-general-purpose computer, a special-purpose programmable
mensional audio processing, and graphic rendering have beendigital signal processor, or even dedicated hardware. The
available on the market at appealing cost.tasks of implementation involve algorithm design, code gener-

ation (programming), and architecture synthesis. With the
VLSI and Signal Processingsame integrated-circuit technology, a specialized hardware

platform may offer better performance than a general-pur- The VLSI revolution affected signal-processing system archi-
pose hardware by eliminating redundant operations and com- tecture in a number of important ways:
ponents. However, the design and manufacturing cost will
be higher. 1. High Speed. As the IC manufacturing technology

Digital signal-processing algorithms distinguish them- evolves, the feature dimensions of transistors continue
selves from general programs in a number of ways: to shrink. Smaller transistors mean faster switching

speeds, and hence higher clock rates. Faster processing
1. Numerical Computation Intensive. These programs of- speed means that more demanding signal-processing al-

ten contain nested loops of numerical computations, in- gorithms can now be implemented for real-time pro-
cluding multiplication, division, and elementary func- cessing.
tion evaluations.

2. Parallelism. Higher device density and larger chip area
2. Deterministic Control Flow. Signal-processing algo- promised to pack millions of transistors on a single chip.

rithms, unlike general computer programs, often have This makes it feasible to exploit parallel processing in
predictable control flow. Data-dependent conditional order to achieve an even higher throughput rate by pro-
branches are less likely to occur. cessing multiple data streams concurrently. To exploit

3. Input/Output Intensive. Signals are often processed as the benefit of parallel processing fully, however, the for-
a stream of data samples. They are less likely to be re- mulation of signal-processing algorithms must be reex-
ferred to ones processed. However, they require sus- amined. Algorithm transformation techniques are also
tained input and output operations at high speed in or- developed to exploit maximum parallelism from a given
der to meet the required throughput rate demand. digital signal-processing algorithm formulation.

3. Local Communication. As device dimensions continue
VLSI Application-Specific Processors to decrease and chip area continues to increase, the cost

of intercommunication becomes significant in terms ofIn the early 1960s, most digital signal-processing algorithms,
both chip real estate and transmission delay. Hence,such as the fast Fourier transform (FFT), were implemented
pipelined operation with a local bus is preferred toin Fortran programs, running on a general-purpose main-
broadcasting using global interconnection links. Com-frame. It could take hours to process a short 30 second speech.
piler and code-generation methods need to be updatedObviously, general-purpose computing systems are insuffi-
to maximize the efficiency of pipelining.cient to meet the high throughput rate demanded by a real-

time signal-processing algorithm. However, dedicated appli- 4. Low-Power Architecture. Smaller transistor feature size
makes it possible to reduce the operating voltage andcation-specific computing systems are too expensive to be a

realistic solution for most commercial signal-processing appli- thereby significantly reduces the power consumption of
an IC chip. This trend makes it possible to develop digi-cations.

VLSI SIGNAL PROCESSING 327

tal signal-processing systems on portable or hand-held
mobile computers. 0

x(n)

On the other hand, the stringent performance requirement Figure 1. Convolution systolic array.
and regular, deterministic formulation of signal processing
applications also profoundly influenced VLSI design method-

It can be implemented using a systolic array as depicted inology.
Fig. 1, in which each square box represents a processing ele-
ment as shown in Fig. 2. The narrow rectangular box repre-

1. High-Level Synthesis Design Methodology. The quest to sents delay.
streamline the process of translating a complex algo- The previous implementation corresponds to the following
rithm into a functional piece of silicon that meets strin- algorithm formulation:
gent performance and cost constraints has led to sig-

s(n, 0) = x(n); g(n, 0) = 0; n = 0, 1, 2, . . .nificant progress in the area of high-level synthesis,
g(n, k + 1) = g(n, k) + h(k) � s(n, k); n = 0,system compilation, and optimal code generation. Ideas
1, 2, . . .; k = 0, . . ., M � 1,such as data-flow modeling, loop unrolling, and soft-

s(n, k + 1) = s(n, k); n = 0, 1, 2, . . .; k =ware pipelining, which were originally developed for
0, . . ., M � 1general-purpose computing systems, have enjoyed great

g(n + 1, k + 1) = g(n, k + 1); n = 0, 1, 2,success when applied to aid the synthesis of an applica-
. . .; k = 0, M � 1tion-specific signal-processing system from high-level

s(n + 2, k + 1) = s(n, k + 1); n = 0, 1, 2,behavioral description.
. . .; k = 0, . . ., M � 1

2. Multimedia Processing Architecture. With the maturity y(n) = g(n + M, M); n = 0, 1, 2, . . .
and popularity of multimedia signal-processing applica-

In this formulation, n is the time index and k is the pro-tions, general-purpose microprocessors have incorpo-
cessing element index. It can be verified manually that suchrated special-purpose architecture such as the multime-
a systolic architecture yields correct convolution results at thedia extension instruction set (e.g., MMX). Signal
sampling rate of x(n). M processing elements (PEs) are used.processors also led the wave of novel architectural con-
Moreover, every PE is identical and performs its computationcepts such as very long instruction word architecture.
in a pipelined fashion.In fact, it is argued that incorporating multimedia fea-

tures is the only way to sustain the exponential growth
Systolic-Array Design Methodology

in processing performance through the next decade.
Given an algorithm represented as a nested do loop, a sys-
tolic-array structure can be obtained by the following.

SYSTOLIC ARRAY 1. Deduce a localized dependence graph of the computa-
tion algorithm. Each node of the dependence graph rep-

A systolic array (2,3) is an unconventional computer architec- resents a computation of the innermost loop body of an
ture proposed by H. T. Kung. It features a regular array of algorithm represented in a regular nested loop format.
identical, simple processing elements operated in a pipelined Each arc represents an interiteration dependence rela-
fashion. This architecture is so named because data samples tion. A more detailed introduction to the dependence
and intermediate results are processed in a systolic array in graph will be given later in this article.
a manner analogous to the way blood is pumped by the 2. Project each node and each arc of the dependence graph
heart—a phenomena called systole circulation. along the direction of a projection vector. The resulting

A systolic array exhibits characteristics of parallelism geometry gives the configuration of the systolic array.
(pipelining), regularity, and local communication. A large

3. Assign each node of the dependence graph to a schedulenumber of signal-processing algorithms and numerical linear
by projecting them along a scheduling vector.algebra algorithms can be implemented using systolic arrays.

For example, consider a convolution algorithm To illustrate this idea, let us consider the convolution exam-
ple. The dependence graph of the convolution algorithm is

y(n) =
min(n,M−1)∑

k=0

h(k)x(n − k), n = 0,1, . . .

This algorithm is usually implemented with a two-level
nested do loop:

For n = 0, 1, 2, . . .
For k = 0 to min(n, M�1)
y(n) = y(n) + h(k) � x(n � k)

y(n, k)

s(n, k)

h(k)

y(n, k + 1) y(n + 1, k + 1)

s(n + 2, k + 1)

+

*

end
end Figure 2. A processing element of the convolution systolic array.

328 VLSI SIGNAL PROCESSING

pliers. Many DSP algorithms contain multiple nested loops.
A number of PDSPs contain a special REPEAT instruction to
support efficient execution of loop nests using dedicated
counters to keep track of loop indices.

Another key feature of PDSPs is the adoption of a Harvard
memory architecture, which contains separate program mem-
ory and data memory so as to reduce delay in fetching in-
struction and data samples. This is different from the conven-
tional Von Neuman architecture in which program and data

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

y(1) y(1) y(2) y(3) y(4) y(5) y(6) y(7)

h(3)

k

n D 2D

2D

2D

D

D

h(2)

h(1)

h(0)

are stored in the same physical memory.
To emphasize the intensive input and output demands ofFigure 3. Dependence graph (DG) of the convolution example (left)

and the systolic array after projecting the DG to a processor array most signal-processing applications, several PDSPs have
(right). built-in direct memory access (DMA) channels and a dedi-

cated DMA bus to handle data input/output. To maximize
shown in Fig. 3 The input x(n) is from the bottom. It will data input/output efficiency, some new PDSPs even contain a
propagate its value (unaltered) along the northeast direction. dedicated video port or high-speed telecommunication port.
Each of the coefficients �h(k)� will propagate toward the east. Some PDSPs, such as the TMS32040 and INMOS T800,
The partial sum of y(n) is computed at each node and propa- provide multiple point-to-point serial input/output links to
gated toward the north direction. facilitate distributed memory parallel processing. In the

If we project this dependence graph along the [1 0] direc- TMS3208x series, a single-chip parallel computer contains a
tion, with a schedule vector [1 1], we obtain the systolic-array floating-point general-purpose core processor, four 16-bit DSP
structure shown to the right. To be more specific, each node processors, a cross-bar switch, and four separate data mem-
at coordinate (n,k) in the dependent graph is mapped to pro- ory modules. Now we will first give some historical notes on
cessing element k in the systolic array. The coefficient h(k) is the evolution of PDSP architecture. Then we will briefly sur-
stored in each PE. The projection of the dependence vector [1 vey several representative PDSPs.
1] associated with the propagation of x(n) is mapped to a
physical communication link with two delay elements (labeled

Evolution of PDSP Architectureby 2D in the figure to the right). The dependence vector [0 1]
is mapped to the upward communication link in the systolic Fully stand-alone programmable digital signal processors ap-
array with one delay. Figure 1 is identical to the right side of peared in the early 1980s. The first commercially available
Fig. 3 except more details are given. DSP processor, the NEC 7720, had a hardware multiplier and

The systolic design methodology by mapping a dependence a Harvard architecture, which supported concurrent memory
graph into a lower-dimensional systolic array is intimately access to data memory and program memory, but the instruc-
related to the loop transformation methods developed in the tion set did not support saturation arithmetic. Intel intro-
parallel processing community. A detailed description of the duced the 2920 processor in 1980. A unique feature is that it
loop transform can be found in the corresponding section enti- includes analog-to-digital and digital-to-analog converters on-
tled ‘‘Loop Transformation.’’ chip. But its performance for computationally intensive tasks

was not impressive because it had no hardware multiplier. In
addition, it was hard to get parameters into the chip becausePROGRAMMABLE DIGITAL SIGNAL PROCESSORS
it lacked a digital interface. Texas Instruments (TI) intro-
duced the TMS32010 processor in 1982. The 32010 processorProgrammable digital signal processors (PDSPs) are micro-
had a hardware multiplier and Harvard architecture withprocessors designed specifically for digital signal-processing
separate on-chip buses for data memory and program mem-applications. They contain special instructions and special ar-
ory. This was the first programmable DSP to support execut-chitecture supports that will execute computation-intensive
ing instructions from off-chip program random access memoryDSP algorithms more efficiently.
(RAM) without any performance penalty. This featureNotably, all PDSPs have a multiply-and-accumulate
brought programmable DSPs closer to the microprocessor–(MAC) instruction, which can perform fixed-point multiply
microcontroller programming model. In addition, TI’s empha-and add operations
sis on development tools and libraries led to widespread use. At

R4 � R1 + R2 � R3 about the same time, there were many vendors with competing
products. Some of their architectural and performance charac-in a single clock cycle. To support this operation, almost all
teristics are summarized in Table 2.PDSPs have a hardware parallel multiplier. For DSP applica-

In these early PDSPs, DSP-tailored instructions such astions, PDSPs often contain instructional support of saturation
MAC, delay elements (DELAY), loop control (REPEAT), andarithmetics. With a conventional binary adder, the result of
other flow-control instructions were added to improve the pro-addition is subject to a modulo 2N operation. Hence if N � 4,
grammability of the processors. Moreover, a special addressthe result of 9 � 9 becomes 2 (1001 � 1001 � 10010 modulo
generator unit with bit-reversal addressing support has been10000 � 0010). Here we assume unsigned number represen-
incorporated to support DSP algorithms such as the fast Fou-tation. In saturated arithmetics, if the result of computation
rier transform (FFT). We note that the internal data and pro-exceeds the dynamic range, it is clamped to the maximum.
gram memories are relatively small. A significant performanceThat is, 9 � 9 � 15 (1001 � 1001 � 1111) when N � 4. While
penalty will be paid if the program does not fit the on-chipthe majority DSP applications use fixed-point arithmetic,

later generations of PDSPs also include floating-point multi- memory.

VLSI SIGNAL PROCESSING 329

Table 2. Early (before 1990) Implementations Programmable Digital Signal Processors

Digital Internal Internal Internal Multiply 1024 Point
Signal Data Data Program Multiply and Clock FFT Time
Processor Manufacturer Yeara Package RAM ROM RAM Format Cycle (Fixed Pt.)

TMS32010 TI 1982 40 DIP 144 � 16 1.5K � 16 16 � 16 � 32 200 ns 42 ms
TMS320C25 TI 1986 40 DIP 288 � 16 4K � 16 16 � 16 � 32 100 ns 7.1 ms
TMS320C30 TI 1988 176 PGAc 2K � 32 4K � 32 32 � 32 � 32 � 108 60 ns
DSP56000 Motorola 1986 88 PGSd 512 � 24 512 � 24 512 � 24 24 � 24 � 56 97.5 ns 4.99 ms
DSP96001 Motorola 1988 163 PGA 1K � 32 1K � 32 544 � 32 32 � 32 � 96 75 ns �2 ms
DSP16 AT&T 84 PLCC 512 � 16 2K � 16 16 � 16 � 32 55 ns
DSP32 AT&T 1984 100 PGA f 1K � 32 512 � 32 32 � 32 � 40 244 ns 20 ms
DSP32C AT&T 1988 133 PGA f 1K � 32 2K � 32 32 � 32 � 40 80 ns
MPD 7720 NEC 1981 128 � 16 512 � 13 512 � 23 16 � 16 � 31 250 ns 77 ms
NEC 77230 NEC 1986 68 PGA 1K � 32 1K � 32 2K � 32 24 � 108 � 47 � 108 150 ns 12.3 ms
Intel 2920 Intel 1979 40 � 25 192 � 24 NA
IBM RSP IBM 1983 171 pins 2 bit per cyc.
ADSP2100 Analog Device 1986 100 PGA 16 � 16 � 32 125 ns 7.2 ms
DSSP-VLSI NTT 1986 512 � 18 4K � 18 18-bit 12 � 106

MSM 6992 OKI 1986 132 PGA 256 � 32 1K � 32 22-bit 16 � 106 100 ns
MSP32 Mitsubishi 124 PGA f 256 � 16 1K � 16 32 � 16 � 32 150 or 450 ns
MB8764 Fujitsu 88 PGAh 256 � 16 1K � 24
TS689309 Thomson 48 DIP 256 � 16 512 � 16 1K � 32 16 � 16 � 32 160 ns
NS LM32900 National 172 PGA f 16 � 16 � 32 100 ns 13.4 ms
ZR34161 VSP Zoran 48 DIP 128 � 32 1K � 16 16 bit vector eng. 100 ns 2.4 or 3.3 ms
A100 Inmos 84 PGA 4, 8, 12, 16 bit

a Year of publication sometime used.
b Peak performance is used unless noted.
c Also in an 100 QFP package.
d Also in an 88 surface-mount package.
e 13.33 MIPS sustained.
f Also in a 40 DIP package.
g Gate count was listed.
h Also in an 84 PLCC package.

Later, several floating-point PDSPs, such as TMS32030 dem function. To further enhance the processing power of the
native host microprocessor to handle video data streams, newand Motorola DSP96001, appeared in the market. A key ad-

vantage of a floating-point arithmetic unit is its large dy- generations of general-purpose microprocessors incorporated
new instructions. For Intel’s Pentium processor, it is callednamic range. With fixed-point arithmetic, the dynamic range

of the intermediate results must be carefully monitored. MMX, which stands for multimedia extension.
Sometimes as much as one-quarter of the instruction cycles A key feature of these multimedia extension instructions
are wasted on checking the overflow condition of intermediate is the use of subword parallelism. Most multimedia (espe-
results. Design rule specifications of near 1 �m allowed most cially video) data streams use an 8 bit data sample, while
of these processors to integrate a large number of peripherals the latest general-purpose microprocessors use a 64 bit word
into the chip, as well as implementing extensive input/output length. Thus a 64 bit data path should be able to perform as
(I/O) facilities in addition to extended basic services such as many as eight 8 bit arithmetic or logic operations in parallel,
registers and word lengths. To provide more efficient I/O with the potential to increase speed by a factor of 8 for these
facilities, some PDSPs also provide on-chip DMA controllers, multimedia operations. Subword parallelism basically is an
as well as dedicated DMA buses that allow the true concur- application of the single-instruction, multiple-data (SIMD)
rent operation of both DMA and CPU. Although DSP hard- parallel programming model. While it promises significant
ware has advanced dramatically, DSP software and produc- performance enhancement for general-purpose microproces-
tivity tools lag far behind. PDSPs lack effective programming sors to process real-time signal-processing tasks, programs
environments. Engineers still have to hand-code the time- using MMX instructions are just as difficult to optimize com-
and space-critical segments of the DSP algorithms, leaving pared with PDSPs if not worse. Programmers must handle
only rudimentary tasks to the high-level language compiler. issues such as data alignment and instruction pipelining with

great care.
Recent Developments in Programmable
Digital Signal Processors Custom DSP Core Processors. A new trend in designing new

processors without redevelopment of new programs is to de-Native Signal Processing: Subword Parallelism via Multimedia
sign a new chip with an existing processor as a building block.Extension. Native signal processing refers to the processing
This is possible because the advances of VLSI technologyof a multimedia data stream using the host general-purpose
allow more transistors to be put on the same chip. An advan-microprocessor rather than application-specific PDSPs. Na-
tage of this approach is that the software development costtive signal processing become possible because the increase of
can be greatly reduced, while the hardware performance canraw processing power of general-purpose microprocessors in
be significantly improved due to smaller feature size, higherthe late 1990s is sufficient to handle certain real-time signal-

processing functions such as speech coding or telephone mo- clock frequency, and the larger scale of integration.

330 VLSI SIGNAL PROCESSING

Table 3. Features of Modern Programmable Digital Signal Processors

Name TMS320C82 Mpact 2 TMS320C6201 Trimedia TM1 MSP

Architecture Multiproc. VLIW VLIW VLIW Multiproc.
CMOSa technology (�m) 0.5 0.35 0.25 0.35 0.35
Vcc (V) operating voltage 3.3 3.3 2.5 3.3 3.3
Power (W) 3 (at 50 MHz) 4.45 0.75 4 4
Clock frequency (MHz) 50,60 125 200 100 100
Performance (BOPSb 8-bit integer) 1.5 6 1.6 (32 bit) 4 64
Manufacturer TIc Chromatic res. TIc Philips Samsung

a CMOS stands for complementary metal-oxide semiconductor.
b Billions of operations per second.
c Texas Instruments.

Low-Power DSPs. Battery-powered products, such as multi- performance by carefully matching the signal-processing algo-
rithm and the underlying architecture. A few mature designmedia notebook personal computers (PCs) and digital cellular

phones, are driving the demand for lower-power DSP pro- methodologies that explore both inter- and intraiteration par-
allelism will be surveyed in this section.cessors. Power reduction in DSPs is achieved using three de-

sign techniques: low voltage, gated clocks, and sleep modes.
Low voltage is a result of reducing transistor feature size and Silicon Compiler and System Compiler
is closely tied to the IC manufacturing process used. Many

A direct impact of the Mead–Conway structured design stylemodern DSP processors now have low-power versions. The
is accelerated research and development in EDA tools, in par-gated clock is a logic-level design methodology to block the
ticular, design synthesis tools. The objective is to generate aclock signal from reaching portions of the function unit on
layout of subsystems automatically without performing actualchip, thereby partially shutting down the hardware that is
layout. In the mid-1980s, a number of module generators hadnot needed. An example is the TMS320C54 PDSP, which is
been developed that were capable of synthesizing high-qualitytargeting speech coder applications. A related approach is to
subsystems, such as memory, register files, ALU (arithmeticoffer multiple sleep modes to provide better power manage-
logic unit), and random logic blocks by choosing appropriatement at the system level. A balance must be sought between
parameters on a form-based interface. The notion of modulelow-power consumption and delay incurred to resume nor-
generation was subsequently generalized to a silicon compiler.mal operations.
A silicon compiler, on the other hand, is analogous to a high-
level language compiler that promises to translate high-levelVery Long Instruction Word. Very long instruction word
behavioral or structural level descriptions of the system into(VLIW) architectures have become widely adopted by a new
low-level chip layout. In 1981, the FIRST silicon compilerset of media processors. Examples include the Philips Semi-
from the University of Edinburgh was developed that couldconductor’s Trimedia chip, Chromatic’s MPACT 3000, as well
generate customized IC chip layout of a given DSP algorithmas Texas Instruments’ TMS320C6201. In a VLIW architec-
using bit-serial architecture. Direct synthesis of a general-ture, a very long instruction word is used to control multiple
purpose microprocessor using a silicon compiler was still notfunction units to operate on different data streams concur-
practical until now. Most successful examples of silicon com-rently. In view of the fact that many DSP algorithms have a
pilers have focused on application-specific digital signal-pro-high degree of inherent parallelism that can be exploited,
cessing applications. It was not until the early 1990s that de-VLIW architectures are well suited to DSP applications. Some
signers realized that in addition to layout generation, thecharacteristics of these processors are summarized in Table 3.
design of a digital signal-processing system requires concur-The VLIW architecture is similar to the superscalar archi-
rent hardware and software design. Hence a new notion oftectures, which is the state of the art in general-purpose mi-
system compiler emerged which attempts to guide the de-croprocessor architecture, as both use multiple function units
signer through the entire design process, starting from behav-to exploit instruction level parallelism. However, in a VLIW
ioral specification, system partitioning, hardware and soft-architecture, the parallelism is explored statically during
ware trade-off analysis, all the way to chip layout generation.compile time while in a superscalar architecture, the parallel-

ism is exploited dynamically during run time. For DSP appli-
cations, VLIW is a good match. Exploring Interiteration Parallelism via Loop Transformation

Many digital signal-processing algorithms contain the formu-
lation of nested do-loops, which are time-consuming to exe-DESIGN TOOLS AND DESIGN METHODOLOGIES
cute. Parallel execution of several loops simultaneously can
often be realized via proper transformation of nested do-loopIn order to implement a given digital signal-processing algo-

rithm efficiently, it is important to have powerful design tools programs. In this subsection, loop transformation techniques
that exploit interiteration parallelism will be surveyed. Theand a suite of proven design methodologies. Among numerous

EDA tools, the silicon compiler is closely related to synthesiz- inner loop body will be treated as an atomic task and exe-
cuted in a single processing element. The derivation and nota-ing digital signal-processing applications. One specific focus

of the field of VLSI signal processing is to achieve the highest tion follows roughly the content of Ref. 4.

VLSI SIGNAL PROCESSING 331

Regular Iterative Nested Loop Algorithms. A general m-level loop can be replaced by a do-all loop to have all iterations
executed concurrently.nested loop has the following format:

Given a dependence vector d � (d1, d2, . . ., dm)T. For a
L1: DO i1 = p1, q1 positive integer l � m, if
L2: DO i2 = p2, q2

� � d1 = · · · = dl−1 = 0
Lm: DO im = pm, qm

H(i1, i2, . . ., im)
we say the level of this dependence vector is l. Moreover, weEnddo
say that loop Ll carries a dependence. For example, consider�
the following dependence matrixEnddo

Enddo

The loop indices �ik; 1 � k � m� form an m � 1 index vector
i � (i1, i2, . . ., im]T, which corresponds to a lattice point in the
m-dimensional space. All lattice points that may occur be-

DDD = [ddd1 ddd2 ddd3] =

0 0 1
1 0 0
1 1 −1

tween the loop bounds form an index space R of this nest
loop. The integers �pk, qk; 1 � k � m� are loop bounds. H(i1, the levels of dependence vectors d1, d2, and d3 are, respec-
i2, . . ., im) is called the loop body. In the loop transformation, tively, 2, 3, and 1. Each of the three loops carries a depen-
we assume that the entire loop body, which may contain more dence relation. However, if we interchange loop L2 and loop
than one statement, is to be executed in a single processor. L3 by interchanging the second and the third rows of the D
We will study methods to reformulate the loop indices and matrix, we have a new dependence matrix
their bounds so that more than one iteration in the loop nest
can be executed in parallel using multiple processors.

If the loop bounds are all constant, the index space forms
a rectangular parallelepiped. A more general situation is that
the loop bounds are a linear (affine) function with integer co-

D̃DD =

0 0 1
1 1 −1
1 0 0

efficients of the outer loop indices. In this case, the loop
bounds can be formulated as two inequalities: where the innermost loop carries no dependence because the

levels of dependence of the transformed dependence vectors
ppp0 ≤ PiPiPi and PiPiPi ≤ qqq0 are respectively, 2, 2, and 1. As such the innermost loop can

be executed in parallel (replaced by a do-all loop).
where p0 and q0 are constant integer-valued vectors, and P
and Q respectively, are integer-valued upper triangular coef-

OBSERVATION. Exploiting Inner-Loop Parallelism: If theficient matrices. If P � Q, then the corresponding loop nest
first nonzero element in each dependence vector is above loopcan be transformed in the index space such that the trans-
level k, then all inner-loop nests, starting from level k, can beformed algorithm has constant iteration bounds. Such a
executed in parallel.nested loop is called a regular nested loop.

OBSERVATION. Exploiting Outer-Loop parallelism: To exe-Dependence Vector and Dependence Matrix. A schedule S :
cute an outer loop in parallel (where each inner-loop nest isi � t(i) is a mapping from each index point i in the index
executed sequentially), the corresponding dependence matrixspace R to a positive integer t(i) that dictates when this iter-
must have at least a row containing only zero entries.ation is to be executed.

An iteration H(i) will be executed before H(j) if its index
vector i lexicographically proceeds index vector j. That is, i If the objective is to exploit maximum parallelism, one would
� j. This implies there exists an integer r, 1 � r � m, such then want to transform the loop formulation so that there are
that ik � jk for k � r, and ir � jr. For example, [1 3 4] � [2 1 1]. as many loops as possible carrying no dependence.
An iteration H(j) is dependent on iteration H(i) if (a) i � j
and (b) H(j) will read from a memory location (including regis- Unimodular Loop Transformation. A square matrix con-
ters) whose value is last written during execution of iteration taining integer entries with its determinant equal to 1 or �1
H(i). The corresponding dependence vector d is defined as is called a unimodular matrix. A unimodular transformation

of a loop nest is a linear affine transformation of each itera-DDD = jjj − iii � 0
tion index vector

A matrix D consisting of all dependence vectors of an algo-
iii �→ UiUiUi = kkkrithm is called a dependence matrix.

Such a transformation facilitates origin shift and rotation ofOBSERVATION. If H(j) is dependent on H(I), then t(i) �
the index space axis. If used properly, a unimodular transfor-t(j).
mation enables more loops to be executed in parallel.

A loop transformation matrix U is valid if for each d inHence the dependence relation imposes a partial ordering on
the execution of the iterative loop nest. If the last row of the D, Ud � 0. The dependence matrix of the transformed loop

is UD.dependence matrix contains all zero entries, the innermost

332 VLSI SIGNAL PROCESSING

For example, consider the nested loop: unspecified configuration so as to achieve the desired
throughput rate. Two types of transformations are essential

for i = 0,3
in this case: (1) look-ahead transformation and (2) loop unroll-

for j = 0,3
ing. The purpose of a look-ahead transformation is to reduce

A(i, j) = B(i, j � 1) + C(i � 1, j)
the theoretical minimum initiation interval—the minimum

end
duration between the execution of two successive iterations,

end
regardless of the number of available processing elements.
The loop unrolling enables one to devise an efficient periodicThe dependence matrix is
schedule to implement the given recurrent algorithm on a
fine-grained parallel processor array. The information pre-
sented in this section partially follows that given in Ref. 5.DDD =

[
1 0
0 1

]

Iterative Computation Dependence Graph and Minimum Initia-Now consider a unimodular matrix
tion Interval. Let us consider a simple infinite impulse re-
sponse (IIR) digital filter:

UUU =
[

1 1
0 1

]
y(n) = ay(n − 1) + bu(n) (1)

The index vector i can be transformed into
This algorithm can be represented by a data flow graph as
given in Fig. 3.

There are three computation tasks: task A is the multipli-UiUiUi =
[

i + j
j

]
=

[
k1

k2

]
cation of a and y(n � 1), task C is the multiplication of b and
u(n), and task B is the summation of these two products. Let

The indices of the variable B are transformed to: us use tA, tB, and tC, respectively, to denote the time taken to
execute each of these three tasks. In general, the time taken
to execute different tasks need not be the same.

The dependency arcs from A to B and from C to B indicate
UUU

{[
i
j

]
−

[
1
0

]}
=

[
k1

k2

]
−

[
1
0

]
=

[
k1 − 1

k2

]

that in order to execute task B, tasks A and C must be per-
formed first. The arc from task B to task A with label 1 indi-and indices of the variable C become
cates that the result of task B will be used by task A during
the next iteration. Thus, the label 1 indicates that one buffer
is required to store y(n) temporarily. Clearly, according to Eq.UUU

{[
i
j

]
−

[
0
1

]}
=

[
k1

k2

]
−

[
1
1

]
=

[
k1 − 1
k2 − 1

]
(1), the computation of y(n) cannot be initiated until y(n � 1)
is computed. Even if one has more than two processing ele-

The loop bounds can also be transformed with the U matrix. ments to compute the two multiplications in parallel, it would
This leads to a transformed loop nest as follows: still take tA � tB units of time to compute y(n). Hence the

minimum time interval between successive iterations of thisfor k1 = 1,6
IIR filter that can be initiated is bounded by tA � tB. Note thatfor k2 = max{0, k13}, min{3, k1}
this is equal to the sum of the computing time of all tasks inA(k1, k2) = B(k1 � 1, k2) + C(k1 � 1,
the loop divided by the number of buffers in that loop.k2 � 1)

Based on this simple example, we can define some impor-end
tant terms. An iterative computation dependence graphend
(ICDG) is a directed graph consisting of a set of nodes, each

From the preceding discussion, in order to exploit inner- indicating a computation task, and a set of arcs, each indicat-
loop parallelism, we need to apply unimodular transformation ing a data-dependence relation between the source and desti-
to the dependence matrix so that each dependence vector has nation tasks. A dependence arc labeled with a positive integer
a nonzero element as high as possible. Specifically, the objec- number indicates the number of delays inserted due to inter-
tive is to rotate the coordinate so that after transformation, iteration dependence.
each transformed dependence vector has a nonzero projection An ICDG is computable if every loop of it contains at least
to the index axis corresponding to the outermost loop. On the one delay. The minimum initiation interval of an ICDG G,
other hand, in order to exploit maximum outer-loop parallel-

denoted by Imin(G), is defined as
ism, we should use unimodular transformation to create as
many zero rows in the transformed dependence matrix.

Recurrent Algorithm Transformation
Imin(G) = max

C∈G

TC

�C

Recurrent algorithms are DSP algorithms that have both
where C is a loop in G, TC is the sum of computing time of allstrong inter- and intraiteration dependence relations. Unlike
tasks in C, and �C is the sum of all delays on arcs of C.loop transformation, here the granularity of each task is a

basic arithmetic operation such as addition and multiplica-
Periodic Schedule and Static Task Assignment. Let us assumetion of two numbers. The objective here is to implement a

given recurrent algorithm on a parallel processor array of an that tA � 20 �s, tB � 10 �s, and tC � 25 �s. A schedule of a

VLSI SIGNAL PROCESSING 333

In other words, the initiation interval is halved. After substi-
tuting N times, one has

y(n) = aN+1y(n − N) + b
K∑

m=0

amu(n − m) (3)

Thus, the new Imin is 1/N of the original one. The second term

A

C C

B A B

PE#2:

PE#1:

Present iteration

Next iteration

Time

in Eq. (3) is a convolution operation and hence can be realized
Figure 4. A schedule of a two-processor implementation of the IIR at any given rate as long as there are a sufficient number of
filter. PEs and the data �u(n)� can be distributed into those PEs

fast enough.

two-processor implementation of the IIR filter is given in Loop Unfolding Transformation—Block Implementation. Loop
Fig. 4. unfolding is an algorithm transformation technique that ex-

In this schedule, tasks A and B are both assigned to (pro- ploits parallelism between successive loops. Let us consider
cessing element) PE1, and task C is assigned to PE2. These the following recurrent equation: Given y(�2), y(�1), for n �
assignments are static in that once a task is assigned to a PE, 0, 1, . . .
it will always be executed in that PE in every iteration.

The horizontal axis is time. The shaded boxes indicate the y(n) = y(n − 2) + u(n) (4)
schedule of the next iteration. Since the schedule for every
iteration will be the same, often one needs only to schedule

Define y1(m) � y(2m), y2(m) � y(2m � 1) and u1(m) � u(2m),one iteration of these periodic tasks. Thus, in a periodic sched-
u2(m) � u(2m � 1) for m � 0, 1, . . ., one may convert thisule, only tasks within one iteration of the recurrent algorithm
single input, single-output linear system into a two-input,are scheduled.
two-output system:Note also that the execution of task C overlaps with the

execution of task B in the previous iteration. This is possible
because these two tasks are assigned to two different PEs. A
schedule that allows the execution of tasks in different itera-

[
y1(m)

y2(m)

]
=

[
y1(m − 1)

y2(m − 1)

]
+

[
u1(m)

u2(m)

]
(5)

tions to occur simultaneously at different PEs is called an
overlapping schedule.

Such a conversion is called loop unfolding. The purpose of
loop unfolding is to exploit interiteration parallelism. In thisLook-Ahead Transformation: Unwinding Loops. Due to the
example, since the even-number iterations are independent oflimitation of the minimum initiation interval, no matter how
odd-number iterations, they can be computed in parallel. Inmany processing elements one may have, it would be impossi-
some works, Eq. (5) is called block processing because bothble to realize the IIR filter in Eq. (1) so that the successive
the input and output of the original system are processed initerations can be initiated with an interval d � Imin. When
blocks of two samples.this happens, one may perform a look-ahead transformation

Loop unfolding does not alter the minimum initiation in-to reformulate the recurrent algorithm. A look-ahead trans-
terval of a recurrent algorithm. In Eq. (4) the minimum initia-formation is accomplished by substituting the iteration equa-
tion interval is Imin � tadd/2, where tadd is the time taken totion for y(n � 1) into that of y(n). As such,
perform the addition operation. Thus to implement it in real
time, the sampling period of u(n), d, must satisfy d 	 tadd/2.
On the other hand, the sampling periods of both u1(m) and

y(n) = a[ay(n − 2) + bu(n − 1)] + bu(n)

= a2y(n − 2) + abu(n − 1) + bu(n) (2) u2(m) are now 2d. The minimum initiation interval is the
same for both: I1 � I2 � tadd/1.

The new coefficients a2 and ab can be computed in advance. Therefore, we must have 2d 	 tadd. Hence from the overall
Eq. (2) corresponds to a new ICDG depicted in Fig. 5. input/output point of view, the initiation interval remains the

Although two new tasks are added, the minimum initia- same. This is illustrated in Fig. 6.
tion interval of this transformed algorithm becomes On the left of this figure is a realization of the system in

Eq. (4). On the right is a realization of the unfolded systemImin(G′) = (tA + tB)/2 = 1/2Imin(G)
described in Eq. (5). Note that in the original system, the
adder is to perform an addition for each u(n). Hence the addi-
tion must be performed within d units of time. On the other
hand, with the unfolded system, each adder receives a new
input every D� � 2d units of time. Hence additions can take
twice as long to perform. In other words, slower hardware can
be used to achieve the same throughput rate, taking advan-
tage of the parallelism exploited via loop unfolding.

A perfect rate graph (PRG) is an ICDG such that every loop

A

2

C D

B E

Task A: a2 × y(n – 2)

Task C: b × u(n)

Task D: ab × u(n – 1)

Task B: Add results of tasks A and E

Task E: Add results of tasks C and D consists of one and only one delay. The significance of a per-
fect rate graph is that no further interiteration parallelismFigure 5. Modified iCDG of the IIR filter after look-ahead trans-

formation. can be exploited by unfolding a PRG.

334 VOICE MAIL

=

3D

D D

2D

2D

D

Figure 8. Illustration of delay transfer through a node during re-
timing.

Using cut-set retiming, one may enforce at least one delay
element on each edge of the SFG, making it a systolic array.
Node retiming is a special case of cut-set retiming where the
cut set consists of all edges to and from a particular node in
the graph.

+
u(n)

2D

y(n)

y(n – 2)

+

u(n) y(n)
D'

+

D'

D' = 2Dy2(m)u2(m)

y2(m – 1)

y1(m – 1)

y1(m)u1(m)

Figure 6. Original ICDG corresponding to Eq. (4) (left) and the BIBLIOGRAPHYequivalent ICDG after loop unfolding once (right). The clock cycle
time of the right side circuit is twice as long as that of the left figure.

1. C. Mead and L. Conway, Introduction to VLSI Design, Reading,
MA: Addison-Wesley, 1980.

2. H. T. Kung, Why systolic architectures, IEEE Comput., 15 (1): 37–
Retiming. Let us consider the substitute of variable z(n) � 46, 1982.

y(n � 1). Then Eq. (1) can be rewritten as z(n) � az(n � 1) � 3. S. Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ: Prentice-
bu(n � 1), which has a corresponding ICDG shown in Fig. 7. Hall, 1988.
This ICDG can also be obtained from the ICDG corresponding 4. U. Banerjee, Loop parallelization, Boston: Kluwer, 1994.
to Eq. (1) via a procedure called node retiming. If the outgoing 5. K. K. Parhi, Algorithm transformation techniques for concurrent
arcs from a node in an ICDG all have at least one delay on it, processors, Proc. IEEE, 77: 1879–1895, 1989.
then one may remove the same number of delays from all the
outgoing arcs, and add the same number of delays to all the YU HEN HU

in-coming arcs of the same node, without changing the behav- University of Wisconsin–Madison
ior of the algorithm. This is illustrated in Fig. 8. What may
be affected by retiming is the initial condition and perhaps
the latency. The minimum initiation interval will remain the VOICE CODING. See SPEECH CODING.same as illustrated in preceding example.

VOICE COMMUNICATION, NOISE. See SPEECH EN-

HANCEMENT.Cut-Set Retiming and Node Retiming. A signal flow graph
VOICE COMMUNICATIONS. See TELEPHONE NET-(SFG) can be made fully pipelined using retiming. The basic

WORKS.technique is called cut-set retiming.

Cut-Set Retiming Procedure.

1. Identify a retimable cut set, which consists of a set of
edges in the ICDG such that (a) the graph G will be
separated into two parts if these edges are removed; (b)
there are no zero-delay edges of opposing directions
across the cut set.

2. If necessary, scaling the delay by multiplying the delay
by an integral factor, say �.

3. Transfer delays by subtracting one delay from edges of
the same direction in the cut set and add it to edges of
the opposing direction in the same cut set. Note that all
the inputs (outputs) should remain at the same side of
the cut set to ensure proper timing.

A
1 1

C

B

Task A: × a and z(n)

Task C: × b and u(n)

Task B: Add results of tasks A and C

Figure 7. Modified ICDG of the IIR filter in Eq. (1) after retiming.

