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STATISTICAL SIGNAL PROCESSING, HIGHER
ORDER TOOLS

Statistical (or stochastic) signal processing deals with random
signals, their transformation by system operators, and their
characterization using time- or frequency-domain statistical
descriptors computed from measured data records. Signals
are treated as random when no exact expression describes
their evolution and the engineer has incomplete knowledge
about their description or origin. Random signals are tempo-
ral or spatial and originate from sources that are man-made
(e.g., binary communication signals) or natural (e.g., thermal
or ambient noise). They may be continuous or discrete in their
amplitude or index, but their processing is usually performed
in the discrete-index (sampled if originally continuous)
domain.

Statistical descriptors are deterministic quantities and re-
flect one’s degree of knowledge or ignorance about ran-
domness. Complete statistical description of random signals
is provided by probability density and distribution functions.
Gaussianity, for example, refers to a specific distribution that
is characterized completely by its first- and second-order sta-
tistics (mean and variance). It is often encountered in practice
because, thanks to the central limit theorem, averaging a suf-
ficient number of random signal values (an operation often
performed by, e.g., narrowband filtering) yields outputs that
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are (at least approximately) distributed according to the cesses. The PSD describes how average power (or signal vari-
ance) is distributed over frequencies, but for non-GaussianGaussian probability law. However, non-Gaussian signals are

also encountered in sciences and engineering applications: ex- processes, higher-order spectral densities (or polyspectra) are
useful as well, because they capture distributions of higher-ploration seismology, communications, sonar, radar, speech

and image processing, fluid mechanics, atmospheric sciences, order signal moments across frequencies.
Statistical descriptors are also important when stationaryeconometrics and medicine, to name only a few. The following

example deals with real seismic reflectivity data and moti- input signals pass through linear time-invariant (LTI) sys-
tems to yield random outputs. If we denote the input byvates characterization of non-Gaussian signals with higher-

than second-order statistics. w(n), system impulse response (IR) by h(n), and output by
x(n), then we can express x(n) as a linear convolution of h(n)
and w(n):Example 1. Statistical analysis of non-Gaussian data (seismic

reflectivity). Figure 1(a) shows a sampled waveform, �x(n)�N�1
n�0 ,

received by a hydrophone in a marine oil exploration experi- x(n) =
∑

l

h(l)w(n − l) =
∑

l

w(l)h(n − l) (1)
ment. It is the output of an airgun’s input signature fired in
the ocean (the so called seismic wavelet) convolved with the

The FT of h(n) is called the frequency response,earth’s impulse response, which is known as the reflectivity
sequence. The histogram in Fig. 1(b) reveals that x(n) has
mean ĉ1x � N�1 �N�1

n�0 x(n) � 0 and variance ĉ2x � N�1 �N�1
n�0

H(ω) =
∑

n

h(n)e− jωn (2)

x2(n) � 1.0033 � 103. If we normalize x(n) by its standard
deviation (std) to obtain x̃(n) � x(n)/�ĉ2x, which has zero and they both characterize the LTI system uniquely. The
mean and unit variance, then x̃(n) is seen to have small third- magnitude response �H(�)� or phase response �H(�) alone
order moment (skewness) ĉ3x̃ � N�1 �N�1

n�0 x̃3(n) � 0.1275, but does not offer a complete description of the system in general.
relatively large fourth-order cumulant (kurtosis) ĉ4x̃ � N�1 The input–output auto- and cross-correlations and spectra
�N�1

n�0 x̃4(n) �3ĉ2
2x̃ � 2.0883. Since the distribution is fairly sym- characterize not only the random signals themselves but also

metric, third-order statistics do not convey significant infor- the transformation induced by the underlying system. For ex-
mation about the system, and hence we favor the use of ample, when w(n) is white, the output PSD can be shown to
fourth-order statistics for seismic data processing. be S2x(�) � �2

w�H(�)�2, where �2
w is the variance of the input in

(1). Therefore, the output PSD contains the magnitude but
not the phase information of the system.

MOTIVATION AND OVERVIEW For parsimony, LTI systems are often modeled in the z-
domain using finite-order parametric rational functions:

A histogram and its moments provide only marginal average
information about a random process. Relationship among
samples at different index points is conveyed by the notions
of correlation and (in)dependence, which, together with the
notion of stationarity, provide information about the signal’s
dynamical behavior and memory as it evolves in time or

H(z) =
∞∑

n=0

h(n)z−n (3)

= B(z)

A(z)
=

∑q
n=0 bnz−n∑p
n=0 anz−n

(4)

space. Stationary random signals have invariant probabilistic
structure relative to the index (e.g., time) of reference. The The roots of A(z) and B(z) are called the poles and zeros, re-

spectively. If a system is causal and stable, then its polesautocorrelation sequence (ACS) of a stationary signal is time-
invariant and—together with its Fourier transform (FT), must lie inside the unit circle. If in addition, the zeros are

also positioned inside the unit circle, then the system is calledknown as the power spectral density (PSD)—offers sufficient
time- and frequency-domain description for Gaussian pro- minimum-phase. It is known that second-order statistics

Figure 1. (a) Samples of a seismic wave-
form. (b) Histogram showing that the seis-
mic signal has a symmetric but non-
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(SOS) of the output are sufficient to identify uniquely (modulo
scale constants) minimum-phase, causal, and stable LTI sys-
tems (see Refs. 1 and 2). In order to assure system stability,
we do not allow poles on the unit circle. Besides that, mixed-
phase (or non-minimum-phase) and noncausal LTI systems
can have poles and zeros that lie anywhere on the complex
plane. Higher-order statistics (HOS) of the output convey
complementary phase information and can be used to identify
uniquely the underlying system (see Refs. 3–6). Nonmini-
mum-phase and noncausal LTI system models appear with
frequency-selective communication channels, optical point-
spread and image-blurring functions, and seismic wavelets,
and we shall elaborate on the latter in the ensuing example.

Example 2. Nonminimum-phase and noncausality properties
of linear time-invariant systems (seismic wavelets). Figure 2(a)
depicts the impulse response �h(n)� of a minimum-phase
wavelet with transfer function having five poles at 0.7466,
0.7996e�0.9995j, 0.7553e�0.7844j and five zeros at 0.9973,
0.8762e�1.2515j, 0.2600e�1.9626j, where j � ��1. The correlation
of the wavelet, h2(�) :� �n h(n)h(n � �), is shown in Fig. 2(b).
It can be shown that the FT of h2(�) is H2(�) :� �H(�)�2, which
contains magnitude information of the system only. A non-
minimum-phase wavelet obtained by replacing the poles at
0.7553e�0.7844j and the zeros at 0.2600e�1.9626j by their complex
conjugate reciprocals has very different impulse response, as
shown in Fig. 2(c); but its correlation, plotted in Fig. 2(d),
(and hence its magnitude response) is identical with that of
the minimum phase wavelet [cf. Fig. 2(b)]. Such wavelets are
called spectrally equivalent, and their difference lies only in
the transfer-function phase �H(�) [compare Fig. 2(e,g)].

Second-order correlations are symmetric, which implies
that the corresponding power spectra have zero phase; that
is, they are phase-blind when it comes to discerning pole–zero
transfer functions that differ in their phase characteristics.
We are thus motivated to plot in Fig. 2(f,h) the third-order
correlations,

h3(τ1, τ2) :=
∑

n

h(n)h(n + τ1)h(n + τ2) (5)

corresponding to the wavelets in Fig. 2(a,c), respectively.
The 2-D FT of h3(�1, �2),

H3(ω1, ω2) :=
∑
τ1

∑
τ2

h3(τ1, τ2)e− jω1 τ1 e− jω2 τ2 (6)

can be shown to satisfy

H3(ω1, ω2) = H(ω1)H(ω2)H∗(ω1 + ω2) (7)

Comparing H3(�1, �2) with H2(�), we see that the former con-
tains phase information whereas the latter does not. This is
attributed to the fact that h3(�1, �2) � h3(��1, ��2) in general,
although h2(�) � h2(��) ��. It is this phase information that

Figure 2. Two linear systems can have the same second-order statis-allows for the differentiation of the causal minimum-phase
tics but different third-order statistics. (a) and (c) are two distinctwavelet from its spectrally equivalent noncausal and non-
impulse responses, and (b) and (d) are their autocorrelation functions.minimum-phase counterpart [cf. Fig. 2(f) with Fig. 2(h)].
Except for a scale factor, the second-order statistics are identical,
which implies that the two systems have identical magnitude re-

HOS play a significant role not only in characterizing LTI sponses. However, their phase responses are different as shown in (e)
systems, but also in nonlinear transformation of random sig- and (g). The triple correlation functions in (f) and (h) can characterize
nals. Consider for example the second-order sample moment, their difference in the phase.
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m̂2x :� N�1 �N�1
n�0 x2(n), of a square-law device x(n) � w2(n). our goal is to offer basic background material, and then to

delineate advantages and limitations of HOS in discerningClearly, m̂2x of the output corresponds to the fourth-order
sample moment m̂4w of the input w(n). In addition, x(n) is non- non-Gaussian from Gaussian signals, recovering phase infor-

mation, checking for and identifying nonlinearities, and sepa-Gaussian even if w(n) is Gaussian. Nonlinearities appear in
diverse signal-processing problems ranging from high-power rating sources in multichannel processing. Critical concluding

remarks, topics not covered, and suggestions for future re-amplifiers operating in their saturation region, magnetic re-
cording channels, ocean wave interactions, and ambient ship- search directions are given in the final section. Recent tutori-

als in HOS-based statistical signal processing include Refs.ping noise, to physiological models of the auditory and ner-
vous systems. HOS provide useful cues for determining the 7–10, while nonrandom signals are treated in Ref. 11 (see

also Ref. 12 for an updated and comprehensive bibliography).order and degree of nonlinear effects, for identifying nonlin-
ear models of the Volterra type, and for detecting and charac-
terizing harmonic coupling effects such as those described in
the next example. BASIC BACKGROUND

Example 3. Coupling effects in signals undergoing nonlinear In this section we generalize notions of ensemble correlations
transformations. A signal consisting of two harmonics, w(n)
� exp[j(�1n � 	1)] � 1.5 exp[j(�2n � 	2)] with (normalized) m2x(τ ) := E{x(n)x(n + τ )} (8)
frequencies �1 � 0.5 and �2 � 1.5, undergoes linear x(n) �
�lh(l)w(n � l) � v(n) and nonlinear x(n) � �lh(l)w(n � l) � (E denotes expectation) and the correlation spectrum [PSD if
0.8 w2(n) � v(n) transformations. Additive Gaussian noise x(n) has zero mean],
v(n) is present in x(n), and the PSD estimates are obtained
as �X(�)�2/N, where X(�) is the FT of x(n) and N is the data
length. The PSD estimate of the linear output is shown in M2x(ω) :=

∑
τ

m2x(τ )e− jωτ (9)

Fig. 3(a) and is seen to peak only at the original input fre-
quencies �1 and �2. The PSD estimate of the nonlinear output

to higher-order correlations, cumulants, and their Fourieris plotted in Fig. 3(b). It exhibits spectral lines not only at
transforms known as polyspectra, and we summarize certain�1, �2 due to the linear effect, but also at 2�1, 2�2 arising from
properties of interest to statistical signal processing. Subse-the quadratic part, as well as at the coupled frequency �1 �
quently, we describe how to estimate such lag- and frequency-�2. By inspecting the PSD only, it is not possible to determine
domain quantities from finite data samples, and highlight es-quadratic coupling effects, simply because a frequency at (or
timation accuracy issues. Finally, we focus on HOS of noisyclose to) �1 � �2 may happen to be present in w(n). However,
linear non-Gaussian processes modeled as the outputas we shall see later, HOS are capable of discerning not only

coupled frequencies but also coupled phases (presence of
phase 	1 � 	2 for the �1 � �2 frequency component) in x(n). x(n) =

∑
l

h(l)w(n − 1) + v(n) (10)
Phase plus frequency couplings provide strong indication of
nonlinear (in this example quadratic) interactions.

of an LTI system. We assume that the impulse response h(n)
is absolutely summable, �n�h(n)� 
 �; the input w(n) is zero-In a nutshell, HOS augment the traditional notion of corre-

lations and spectra, and are well motivated for signals and mean independent identically distributed (i.i.d.) non-
Gaussian and has finite moments E�wk(n)� 
 �; and the addi-systems topics dealing with non-Gaussianity, nonminimum-

phase character, noncausality, and nonlinearity. In this arti- tive noise v(n) is zero-mean, stationary, and independent of
w(n).cle we focus on discrete-index stationary time series, and

Figure 3. (a) When two harmonics pass
through a linear system, the same fre-
quencies emerge in the output. (b) When
the system is nonlinear, additional fre-
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Definitions and Properties Suppose that we wish to estimate the parameter vector �
from data x(n) � s(n; �) � v(n), where the SOI s(n; �) is non-

The kth-order moment of a real-valued discrete-time station-
Gaussian and the additive noise v(n) is Gaussian. If s(n) is

ary random process x(n) at the set of lags � :� (�1, . . ., �k�1) independent of v(n), then thanks to (P2), ckx(�) � cks(�) �
is defined as

ckv(�), and thanks to (P1), ckv(�) � 0 �k � 3. Thus, ckx(�) �
cks(�), and recovery of � based on ckx(�) gains tolerance to AGN.mkx(τττ := E{x(n)x(n + τ1) · · · x(n + τk−1)} (11)
Interestingly, mkx(�) � mks(�) � mkv(�); that is, additivity does
not hold for moments in general. Therefore, cumulants (butThe mean m1x :� E�x(n)� and the ACS m2x(�) in Eq. (8) are
not moments) separate signals on the basis of their distribu-obtained as special cases of Eq. (11) with k � 1, 2. The kth-
tions and their symmetries. For example, if v(n) is symmetri-order cumulant ckx(�) is expressed in terms of mkx(�) and com-
cally distributed (hence nonskewed) while s(n) is skewed,binations of lower-order moments mlx with l 
 k (see Ref. 13,
then ckx(�) � cks(�) for k � 3.p. 19). For k � 1, we have c1x � m1x, and the second-order

What order of cumulant one should use depends on thecumulant is by definition the autocovariance,
application, but considerations of computational load and es-
timation accuracy, to be discussed later, suggest k � 3 or 4c2x(τ ) := m2x(τ ) − m2

1x
for most practical scenarios. Clearly, one should also prefer

For zero-mean processes the third- and fourth-order cumu- the cumulant order for which the non-Gaussianity of the sig-
lants are defined as nal appears to be stronger. For example, for the symmetri-

cally distributed seismic reflectivity histogram of Example 1,
c3x(τ1, τ2) = m3x(τ1, τ2) (12) one should favor the use of fourth- over third-order cumu-

lants.
Cumulants also measure statistical independence, which

explains why absolute cumulant summability conditions ap-

c4x(τ1, τ2, τ3) = m4x(τ1, τ2, τ3) − m2x(τ1)m2x(τ2 − τ3)

− m2x(τ2)m2x(τ3 − τ1) − m2x(τ3)m2x(τ1 − τ2)

(13)
pear in the laws of large numbers and the central limit theo-
rem for correlated data (see Ref. 13). This feature stems fromIn general, the kth-order cumulant
the third cumulant property:

ckx(τττ ) := cumk{x(n),x(n + τ1), . . ., x(n + τk−1)}
(P3). If �x1(n), . . ., xk(n)� are independent of �y1(n), . . .,

is defined as the coefficient of the (�j)k u0 . . . uk�1 term in yl(n)�, then
the Taylor series expansion of the log characteristic function,
ln [E�exp( j[u0x(n) � u1x(n � �1) � . . . � uk�1x(n � �k�1)])�]. cumk+l{x1(n), . . ., xk(n);y1(n), . . ., yl (n)} ≡ 0
Because moments can also be defined via Taylor series expan-
sion of the characteristic function, general relations express- If x(n) is i.i.d., then m4x(�1, �2, �3) � �(�1, �2, �3), but thanks
ing moments of any order k in terms of cumulants of orders to (P3) we have
� k (and vice versa) are available and can be found in Refs.
13 and 14. The log characteristic function of Gaussian pro- c4x(τ1, τ2, τ3) = γ4xδ(τ1, τ2, τ3), γ4x := c4x(0,0, 0)

cesses is a quadratic polynomial, which implies that a
If ckx(�) is absolutely summable, that is,Gaussian distribution is completely characterized by its first-

and second-order statistics. This leads to the first basic prop-
erty of cumulants:

∑
τττ

|ckx(τττ )| < ∞ for k = 1,2, . . . (14)

(P1). If xl(n), l � 1, 2, . . ., are Gaussian, then
then cumulants at large lags must decay to zero; that is,
lim��� ckx(�) � 0, which amounts to approximate independencecumk[xa0

(n),xa1
(n + τ1), . . ., xak−1

(n + τk−1)] ≡ 0, k ≥ 3
of the x(n) samples that are well separated in time (see Ref.
13). Except for harmonic signals, which give rise to line spec-for all � and �al�k�1

l�0 � �1, 2, . . .�.
tra and infinite memory, most random signals in engineering
applications have asymptotically vanishing memory and sat-This property is important even for a single random signal,
isfy the so-called mixing condition expressed by the absolutebecause undesired noise or interference v(n) is often modeled
cumulant summability stated in Eq. (14).as Gaussian, and its cumulant ckv � 0 for k � 3. Hence, with

In addition to quantifying mixing conditions, Eq. (14) guar-algorithms based on (ensemble) high-order cumulants, one
antees that kth-order moment and cumulant Fourier spectraworks in a high-SNR domain when additive Gaussian noise
(or polyspectra) exist. They are defined as the (k � 1)-dimen-(AGN) v(n) with unknown color is superimposed to the signal
sional FT of mkx(�) and ckx(�) respectively:of interest (SOI) s(n) to yield x(n) � s(n) � v(n). Non-Gaussia-

nity of x(n) implies that ckx(�) � 0 for some � and k � 3.
Note that (P1) and the AGN suppression property hold for

cumulants but not for moments. Separation of a non-
Mkx(ωωω) :=

∞∑
τττ=−∞

mkx(τττ )e− jωτωτωτ ′
(15)

Gaussian SOI from the AGN relies also on the second inter-
esting property of cumulants: Skx(ωωω) :=

∞∑
τττ=−∞

ckx(τττ )e− jωτωτωτ ′
(16)

(P2). If x(n) � s(n) � v(n) with s(n) independent of v(n), then
In the above equations, � :� (�1 . . . �k�1), prime stands for
transpose, and �� is a shorthand notation for ��1


 
 
 ��k�1.ckx(τττ ) = cks(τττ ) + ckv(τττ )



STATISTICAL SIGNAL PROCESSING, HIGHER ORDER TOOLS 497

tion �x(n)�N�1
n�0 of a stationary random process is available. We

have already seen in the preceeding section the third-order
moment h3(�1, �2) of the deterministic impulse response h(n).
Generalizations to orders k � 3 are straightforward to con-
struct. Moments and moment spectra are more appropriate
than cumulants for deterministic signals in view of the follow-
ing property:

(P4). If d(n) is deterministic, its cumulant ckd(�) � 0 for k �
1. Thus, if d(n) is observed in the presence of stationary noise

ωπ 10

(b)(a)

0 τ1

1 +   2 =ω ω π

1 =   2
ω ω

2  1 +   2 =ω ω π
=   2τ τ

ω2τ2

v(n) [i.e., x(n) � d(n) � v(n)], then ckx(�) � ckv(�) for k � 1 andFigure 4. (a) The nonredundant region for the third-order cumulant
information about d(n) is lost in ckx(�).is given by the wedge �1 � �2 � 0. (b) The nonredundant region for

the bispectrum is given by the triangular region with ending points
In view of (P4), cumulant-based deterministic signal recon-(0, 0), (�/2, 0), and (�/3, �/3). They are obtained by intersecting the

struction in stationary noise is impossible from a single datalines defined by �2 � 0, �1 � �2, and 2�1 � �2 � �.
record. In the noise-free case, however, it is possible to recon-
struct a finite-support �d(n)�Q

n�0 uniquely (up to a scale) from
An alternative definition to Eq. (15) is its kth-order moment, for any k � 3. We illustrate this fact

with the three signal copies d(l), d(l � Q), and d(l � n) shown
in Fig. 5. By having at least three signal copies (as in correla-
tions of order greater than 2), one can utilize at least two

Mkx(ωωω) := lim
N→∞

1
N

E

{
XN (ω1) · · · XN (ωk−1)X

∗
N

�
k−1∑
i=1

ωi

�}
(17)

copies in order to create a Kronecker delta as follows: fix the
where * denotes complex conjugation, and XN(�) is the FT of first copy, and shift the second copy to the left by Q positions
the length-N data, so only d(0) from the first sequence and d(Q) from the second

sequence overlap. The product is thus d(l)d(l � Q) �
d(0)d(Q)�(l), where �(l) is the Kronecker delta function. Slide
now the third copy over so the delta function selects, within

XN (ω) :=
N−1∑
n=0

x(n)e− jωn (18)

a scale constant d(0)d(Q), the signal values d(n). Using Eq.
Cumulant spectra for k � 3 and 4 are called bispectra and (5) with (�1, �2) � (Q, n) and (�1, �2) � (Q, 0), we find
trispectra, respectively, and generalize the ordinary PSD that
is obtained when k � 2. It turns out that moment and cumu-
lant spectra coincide except for the proper submanifold �1 �

 
 
 � �k�1 � 0 (mod 2�) (Ref. 15)—a feature that will be
useful when computing polyspectral estimates using the fast

d3(Q, n) =
Q∑

l=0

d(l)d(l + Q) d(l + n) = d(0)d(Q)d(n)

0 ≤ n ≤ Q

fourier transform (FFT).
Cumulants and polyspectra need not be known in their en-

tire region of support, because symmetries (implied by sta-
tionarity) are present, and can be utilized if one knows their
values over the so-called nonredundant support region. Sym-
metry in c2x(�) � c2x(��) implies that the nonredundant region
of c2x(�) is � � 0. Similarly, for real processes it suffices to
know ckx(�) over the nonredundant region 0 � �k�1 � 
 
 
 �
�1. In contrast to c2x(�), we generally have ckx(�) � ckx(��) for
k � 3, and as a result, polyspectra are complex-valued. The
shaded region in Fig. 4(a) depicts the �1 � �2 � 0 nonredun-
dant region for the third-order cumulant c3x(�1, �2). As for the
bispectrum S3x(�1, �), we find the nonredundant region as the
common intersection of the areas defined by 0 � �2 � �1 � �,
�1 � �2 � �, and 2�1 � �2 � �. The result is shown as the
shaded triangle in Fig. 4(b).

For complex processes, many definitions of cumulants and
polyspectra arise depending on the number of (un)conjugated
lagged signal copies, and additional symmetries may appear
in the corresponding support regions. HOS of complex pro-
cesses have been studied in the context of retrieving constant-
amplitude complex harmonics in Ref. 16, and when dealing
with (cyclo)stationary processes with mixed spectra in Refs. d(n), n = 1

d(l)

d(l + Q)

d(l + n)

3 = Q210

d(0)

d(Q)

l

l

l

17 and 18.
Figure 5. A simple example that illustrates �Q

l�0 d(l)d(l � Q)d(l �

n) � d(0)d(Q)d(n). Since d(l) has length Q, it overlaps with d(l � Q)Sample Estimation
by only one sample. The product of the two is a Kronecker delta func-

We now turn our attention to deterministic signals d(n) and tion with amplitude d(0)d(Q), and it has the ability to ‘‘single out’’
the d(n) value as the third copy d(l � n) slides through.sample estimates of moments and cumulants when a realiza-
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Hence, in closed form, we obtain (Ref. 19) Ikx(�) is often obtained using computationally efficient FFT al-
gorithms.

Both types of polyspectral estimates in Eqs. (21)–(24) par-
allel classical spectral estimation approaches and correspond

d(n) = d(0)
d3(Q, n)

d3(Q, 0)
(19)

to what one would call smoothed polycorrelogram and polyp-
eriodogram estimates. The lag- and frequency-domain win-The one-to-one mapping here requires knowledge of Q and
dows are designed to obey the symmetries present in the en-triple or higher-order correlations having at least two lags.
semble cumulants and polyspectra. Their choice is criticalGiven N samples of a stationary random signal x(n), kth-
because windowing controls the bias–variance tradeoff en-order moments are estimated from time averages as
countered with sample polyspectral estimates. Without it, the
variance of M̂kx(�), Ŝkx(�), and M̂˜

kx(�) would not decrease to
zero as N � � (see Refs. 13, 14, and 20) for rigorous state-m̂kx(τττ ) = 1

N

N−1∑
n=0

x(n)x(n + τ1) · · · x(n + τk−1) (20)

ments and guidelines on the choice of windows). Consistent
polyspectral estimates are obtained only with appropriateSimilarly to ensemble cumulants, kth-order sample cumu-
windowing, but similarly to cumulants’ estimates, their vari-lants ĉkx(�) are computed in terms of m̂lx with l � k (Ref. 13,
ance increases with the order k. For example, it is well knownp. 19). For example, using Eq. (20) with k � 2 and 4, we first
that using a window with bandwidth M�1 and energy E w, PSDfind m̂2x and m̂4x. Subsequent substitution into Eq. (13) yields
estimates [k � 2 in Eqs. (21)–(24)] have var�Ŝ2x(�)� �ĉ4x.
E wMN�1S2

2x(�) (see Ref. 13), whereas sample bispectra [k � 3Under the condition (14), sample cumulants are mean-
in Eqs. (21)–(24)] have for �1 � �2 � 0 (mod 2�) (see Ref. 15)square-sense consistent with computable variance (see, e.g.,

Ref. 17); that is, the mean squared error (m.s.e.) between the
sample and ensemble moments and cumulants can be made var{Ŝ3x(ω1, ω2)} ≈ Ew

M2

N
S2x(ω1)S2x(ω2)S2x(ω1 + ω2) (25)

arbitrarily small by increasing the data length. However, the
price paid for going higher is twofold: additional computations

This implies that due to the factor M2 (as opposed to M in thedue to increased dimensionality, and larger variance for a
PSD estimate), an order of magnitude more data are requiredgiven data length. Interestingly, the variance (and hence ac-
for bispectral estimates to achieve comparable accuracy.curacy) of kth-order sample moments and cumulants depends

No windowing is required if the process has line spectra.upon ensemble moments and cumulants of up to order 2k. For
However, when the mixing condition [Eq. (14)] is satisfied,example, it turns out that the variance of ĉ2x is given by
unsmoothed (or raw) polyperiodograms Ikx(�) are inconsistent
and exhibit erratic variations although they are asymptoti-
cally unbiased. In fact, Ikx(�) values at distinct frequencies offvar{ĉ2x(τ )} = 1

N2

N−1∑
n1=0

N−1∑
n2=0

cum2{x(n1)x(n1 + τ ), x(n2)x(n2 + τ )}
the proper submanifold �1 � 
 
 
 � �k�1 � 0 (mod 2�) are
asymptotically independent and Gaussian-distributed (Ref.

which clearly entails c2x and c4x. 15)—a property assuring that polyspectra offer asymptoti-
In the frequency domain, estimates of moment and cumu- cally efficient feature vectors for estimation and classification.

lant spectra are formed by Fourier-transforming windowed The following question arises with polyperiodogram exten-
(smoothed and truncated) versions of m̂kx(�) and ĉkx(�): sions: Do we lose ‘‘lower-order information’’ by going higher?

Consider Eq. (23) with k � 3 and �1 � �, �2 � 0 to verify that
M̂kx(ωωω) =

M∑
τττ=−M

wk(τττ )m̂kx(τττ )e− jωτωτωτ ′
(21)

I3x(ω, 0) ∝ I2x(ω) = N−1|X (ω)|2 (26)

Therefore, higher- (than second-) order statistics generalizeŜkx(ωωω) =
M∑

τττ=−M

wk(τττ )ĉkx(τττ )e− jωτωτωτ ′
(22)

the notion of second-order statistics and their additional prop-
erties make them useful in signal analysis applications.where wk(�) is a lag-domain window sequence with nonzero
Thanks to the next (so-called multilinearity) property, HOSsupport over [�M, M], and M is chosen to approximate the
play a major role in LTI system analysis as well.‘‘effective memory’’ of the process beyond which ckx(�) is practi-

cally negligible. Alternatively, we can also smooth the sample
(P5). If �x1, . . ., xk� and y are random variables and �1, . . .,version of Eq. (17) obtained after dropping the limit and the
�k are deterministic constants, then homogeneity and super-expectation operator:
position hold with cumulants:

Ikx(ωωω) = 1
N

X (ω1) · · · X (ωk−1)X ∗(ω1 + · · · + ωk−1) (23)
cumk{ρ1x1, . . ., ρkxk} = ρ1 · · ·ρk cumk{x1, . . ., xk}

cumk{x1 + y, x2, . . ., xk} = cumk{x1, x2, . . ., xk}
+ cumk{y, x2, . . ., xk}

ˆ̃Mkx

�2π

N
iii
�

= 1
N

N−1∑
lll=0

Wk

�2π

N
(iii − lll)

�
Ikx

�2π

N
lll
�

(24)

where Wk((2�/N)i), i :� (i1, . . ., ik�1), is a (k � 1)-dimensional As we shall see next, (P5) will allow us to express the kth-
order cumulant ckx(�) of the output x(n) in Eq. (10) in terms offrequency-domain window with bandwidth � 1/M. Its role is

to smooth the polyperiodogram Ikx(�) over the discrete-fre- the kth-order moment hk(�) and the input kth-order cumulant
ckw(�).quency grid 2�i/N. The latter approach is adopted because
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If we view the impulse response coefficients in Eq. (10) as the
constants in (P5), we arrive at

ckx(τττ ) = γkw

∑
i

h(l)h(l + τ1) · · · h(l + τk−1), γkw := ckw(0)

(27)

where we also assume that v(n) has vanishing kth-order cu-
mulant, which is true, for example, when v(n) is AGN and
k � 3 is used. Note that Eq. (27) generalizes the well-known
output correlation expression c2x(�) � �2

w �lh(l)h(l � �), if we
recall that �2

w :� c2w(0). The corresponding ‘‘amplitude-only’’
spectrum S2x(�) � �2

w �H(�)�2 becomes a special case of the
kth-order output polyspectrum

Skx(ωωω) = γkwH(ω1) · · · H(ωk−1)H∗(ω1 + · · · + ωk−1) (28)

If 	kx(�) denotes the phase of Skx(�) and 	h(�) that of the
transfer function, then generally,

φkx(ωωω) = φh(ω1) + · · · + φh(ωk−1) − φh(ω1 + · · · + ωk−1) (29)

This shows that for some k � 3, 	kx(�) � 0, and thus—
contrary to the phase-blind SOS, which has 	2x(�) � 	h(�) �
	h(�) � 0—HOS convey phase information that is necessary
for the recovery of �H(�).
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Since no lower-order information is lost by going higher, Figure 6. The received data model is x(n) � s(n) � v(n), where s(n)
the combination of amplitude and phase information allows is the non-Gaussian signal with asymmetric distribution and v(n) is
for one-to-one correspondence between Skx(�) [or ckx(�)] and the additive Gaussian noise. The true covariance function of s(n) is
H(�) [or h(n)], which we have established already for high- plotted as solid lines in (a) and (c), and the true third-order cumulant
order correlations of deterministic signals in Eq. (19). We will function is plotted as solid lines in (b) and (d). The sample covariance

[(a) and (c)] and third-order cumulant functions [(b) and (d)] of x(n)elaborate further in the section ‘‘Recovering Phase Informa-
are calculated and averaged over 100 independent realizations to gen-tion,’’ in the context of blind identification of pole–zero LTI
erate the mean (dashed) and mean � std (dotted) curves. The datasystems, or equivalently, autoregressive moving-average
length used was 256 for (a) and (b) and 4096 for (c) and (d). We ob-(ARMA) modeling of non-Gaussian linear processes. We wrap
serve that (i) the variance in the sample estimates decreases as theup this section with an example illustrating the tradeoffs in-
data length increases; (ii) the sample third-order cumulant ĉ3x(�1, �2)volved in SOS versus HOS estimation of a non-Gaussian lin- is unbiased for c3s(�1, �2), whereas the sample covariance ĉ2x(�) is biased

ear moving-average (MA) process observed in AGN. for c2s(�). The tradeoff is that ĉ3x(�1, �2) has higher variance than
ĉ2x(�).

Example 4. Estimation of cumulant statistics of a non-
Gaussian information-bearing signal s(n) in the presence of

subsection. Nevertheless, they remain consistent, and as Fig.additive colored Gaussian noise v(n). We simulated i.i.d. expo-
6(c,d) show, the SOS bias remains but the HOS variance de-nentially distributed deviates w(n) and passed them through
creases as the data length is increased to N � 4096.a finite impulse response (FIR) system with impulse response

h � [1, �1.3487, 1.0766, �0.6089, �0.0631, �0.0517]. We su-
Of course, caution must be exercised, because a significantperimposed on the resulting non-Gaussian MA(5) output pro-

increase in N may render the stationarity assumption invalidcess s(n) the colored AGN v(n), and obtained N noisy samples
in real-life applications. Keeping the HOS order to no higherx(n). Figure 6(a) depicts the mean (dashed line) � standard
than four is a safe guideline. With sufficient data, the use ofdeviation (std) bounds (dotted lines) of the sample correlation
HOS in signal processing applications may be well justified,ĉ2x(�) estimated as in Eq. (20) with k � 2, N � 256, and by
some of which will be elaborated further in the following sec-averaging 100 independent realizations. Compared to the en-
tions.semble SOI correlation c2s(�) (solid line), the sample estimate

exhibits noticeable bias due to the presence of the noise corre-
lation c2v(�). On the other hand, thanks to the ability of HOS DISCERNING NON-GAUSSIANITY
to suppress AGN, the bias between the third-order sample
cumulant ĉ3x(�1, �2) and the ensemble SOI cumulant c3s(�1, �2) In view of properties (P1) and (P2), HOS quantify distance

from Gaussianity and have thus been used for estimating, de-is negligible, although the standard deviation bounds (dotted
lines) are noticeably wider than those in Fig. 6(a). Hence, tecting, and classifying non-Gaussian signals in Gaussian

noise, or vice versa (see Refs. 21 and 22).HOS improve AGN-induced bias, and from this viewpoint
they provide a high-SNR domain in the presence of AGN, but Consider first a data model x(n) � s(n) � v(n), where the

SOI s(n) is zero-mean Gaussian and the additive noise v(n) isthey exhibit more variability, as we argued in the previous
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zero-mean non-Gaussian with unknown color and is indepen- when dealing with the classification of deterministic signals
or non-Gaussian linear processes, the one-to-one correspon-dent of s(n). Such models appear when sonar and radar infor-

mation-bearing signals are observed in impulsive noise or dence between the IR h(n) and its high-order correlations
hk(�) mentioned earlier assures uniqueness even when spec-clutter. Our goal is to detect, model, or classify s(n) according

to its statistics. Since s(n) is Gaussian, its only nonvanishing trally equivalent signals are to be classified. Furthermore, the
asymptotic (as N � �) normality of the sample HOS esti-statistic is c2s(�) � c2x(�) � c2v(�) which is biased by the un-

known noise color. Interestingly, we will show in the sequel mates holds even for non-Gaussian data, and leads to asymp-
totic optimality of HOS-based classifiers. Specifically, supposethat c2v(�) can be estimated free from the influence of s(n) (at

least theoretically) by going into the HOS domain. We shall that we collect L lags of ĉkx, or m̂kx, or Ŝkx, in a vector ĝN. If
x(n) satisfies Eq. (14), then ĝN is approximately normal (formodel v(n) as a linear process with input w(n). According to

Eq. (27), we find large N) with asymptotic covariance matrix �g. If class i is
characterized by the vector �i, i � [1, I], with template HOS
feature vector g(�i), then the following rule offers an asymp-c(k+1)v(τττ , τk) = γ(k+1)w

∑
n

h(n)h(n + τ1) . . . h(n + τk−1)h(n + τk)

totically maximum-likelihood classifier in the HOS domain
(22):

By summing c(k�1)v(�, �k) over �k and again recalling Eq. (27),
we obtain

θ̂θθ 0 = θθθ l iff JN (θθθ0, θθθ l ) ≤ JN (θθθ0, θθθ i) (31)∑
τk

c(k+1)v(τττ, τk) = γ(k+1)w

γkw
H(0) ckv(τττ ) JN (θθθ0, θθθ i) := [ ĝggN (θθθ0) − gggN (θθθ i )]			

−1
g (θθθ i)[ ĝggN (θθθ0) − gggN (θθθ i)]

∀i �= l (32)

Therefore, we arrive at the following order-recursive relation If �g � I, which is asymptotically the case when FFT-based
between c(k�1)v and ckv by projecting c(k�1)v(�, �k) over the �k axis frequency domain sample estimates are used, the classifier in
(Ref. 23): Eq. (31) assigns labels on the basis of minimum HOS-error

energies. In other words, one forms the HOS templates for
each class during training and then uses the minimum-dis-
tance criterion to classify a candidate HOS vector as belong-

ckv(τττ ) = γkw

H(0)γ(k+1)w

Q∑
τk=−Q

c(k+1)v(τττ, τk) (30)

ing to the ‘‘closest’’ HOS template.
With linear non-Gaussian ARMA processes, SOS featureswhere Q denotes the effective memory of the process. In deriv-

do not guarantee uniqueness in classification, since two dis-ing Eq. (30), we have assumed that both �(k�1)w and H(0) are
tinct time series can have identical autocorrelations (see Ex-nonzero. We point out that modified versions of Eq. (30) are
ample 2). As we shall see in Section 4, finite HOS lags guar-available by using H(�) � 0 for some � (see Ref. 24).
antee identifiability of ARMA models and are thus capableRecall the frequency-domain relationship [Eq. (26)], which
of classifying even spectrally equivalent non-Gaussian signalsexplains the notion that lower-order information is not lost by
observed in low SNR Gaussian noise with perhaps unknowngoing higher. Interestingly, Eq. (30) makes the same state-
color. In Ref. 25, HOS features have been employed for objectment in the time domain, and its practical use is exemplified
recognition and classification of textured images (see also Ref.next. Thanks to (P1) and (P2), we have that ckx(�) � ckv(�) for
26). Other possible applications include speech and radar sig-k � 3. Therefore, unbiased higher-order cumulant estimates
nal detection and classification. HOS-based detectors of linearof v(n) can be obtained directly from the data, and their suc-
non-Gaussian processes s(n) in AGN v(n) convert the binarycessive projections as in Eq. (30) give rise to an unbiased esti-
hypothesis-testing problemmate for c2v(�). With c2v(�) available, the SOI correlation can

then be computed as c2s(�) � c2x(�) � c2v(�). This is an interest-
ing example that illustrates how one can benefit from a ‘‘de- H0 : x(n) = v(n) versus H1 : x(n) = s(n) + v(n)

tour’’ to the HOS domain in order to find lower-order informa-
into a HOS-based one that involves nonvanishing SOI cumu-tion. Related ideas have been adopted for identification of LTI
lants or polyspectra. For example, with skewed SOI andsystems using input–output data, both of which are observed
e3x(�) :� ĉ3x(�) � c3x(�) denoting the error between sample andin colored AGN. Such errors-in-variables models find applica-
ensemble third-order cumulants, the binary hypotheses be-tions in time-delay estimation of sonar and radar signals (see
comeRef. 24).

Conversely, if v(n) is the SOI, then the above unbiased es-
H0 : ĉ3x(τττ ) = e3x(τττ ) versus H1 : ĉ3x(τττ ) = c3s(τττ ) + e3x(τττ )timate of c2v(�) constructed from c3v(�) or c4v(�) shows how one

finds the SOS of interest without suffering from the AGN
and the distribution-independent HOS-based detection statis-(Ref. 23). In practice, however, the presence of s(n) is evi-
tic is �Q

���Q �e3x(�)�2, where � :� (�1, �2), and Q denotes the effec-denced in the variance of ĉ2v(�), which nevertheless diminishes
tive memory of s(n). Omitting irrelevant terms, the HOS-as the data length grows larger. HOS are also useful for de-
based detection test statistic becomestection and estimation problems entailing linear non-

Gaussian (especially heavy-tailed distributed) noise. Results
in this direction have been reported in Ref. 56.

When the probabilistic distribution of the data x(n) is un-
Dk =

Q∑
τττ=−Q

ĉ3x(τττ )c3s(τττ ) − 1
2

Q∑
τττ=−Q

|c3s(τττ )|2
H1
��
H0

T (33)

known, HOS are attractive features for pattern recognition
and classification purposes, because they contain condensed The threshold T depends on the variance of the sample cumu-

lant, and the false-alarm rate in a Neyman–Pearson test (seebut complete statistical information (Ref. 25). Especially
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Ref. 21 for details). Interestingly, the first sum in Eq. (33) can 4, 5, . . ., in order to infer Gaussianity and time-reversibility.
From this viewpoint, such statistical tests should be calledbe implemented with a filter matched to h(n), since the out-

put y(n) can be expressed as the convolution between x(n) non-Gaussianity and time-irreversibility tests instead of
Gaussianity and time-reversibility tests, because they areand h(Q � n) and has third-order sample cumulant at lag

� � 0 given by (Ref. 22) conclusive only when nonzero. However, for most processes,
tests based on third- and fourth-order HOS are sufficiently
descriptive of the distribution shape.

In general, Gaussianity and time-reversibility are two fun-ĉ3y(0) = γ3w

Q∑
τττ=−Q

ĉ3x(τττ )c3s(τττ ) = 1
N + Q

N+Q−1∑
n=0

y3(n)

damental properties of random signals that must be validated
prior to applying statistical signal-processing algorithms that

Therefore, if s(n) is modeled well as a linear process with make such assumptions. Based on these tests, textured image
known h(n) but unknown non-Gaussian driving noise distri- models have been validated as non-Gaussian (Ref. 26), and
bution, then HOS-based detection of s(n) can be accomplished real seismic data have been classified as non-Gaussian and
by matched filtering of the data, followed by a kth-order non- nonskewed (Ref. 29).
linear transformation (that depends on the HOS-order used),
and appropriate thresholding as indicated in Eq. (33).

If linear non-Gaussian SOI modeling with known tem- RECOVERING PHASE INFORMATION
plates h(n) is impossible, binary HOS-based detectors reduce
to (non-)Gaussianity tests (see Refs. 27–29). For third-order In this section, we focus on two related problems, namely (i)
cumulants the latter address the binary hypotheses testing reconstructing deterministic signals h(n) from their higher-
problem order correlations or spectra, defined as in Eqs. (5) and (7),

and (ii) recovering LTI models h(n) from stationary and non-
Gaussian time series x(n) in Eq. (10) using lag- or frequency-H0 : ĉ3x(τττ ) = 0 versus H1 : ĉ3x(τττ ) �= 0
domain HOS quantities computed via the sample estimates

and declare non-Gaussianity when the null is rejected. in Eq. (20) or in Eqs. (21)–(24). Because the magnitude re-
For HOS with multiple lags, we have under H0 that Dg :� sponse can be retrieved (at least in the noise-free case) from

ĝ�N ��1
g ĝN � 0, while under H1, Dg � 0 (29). In other words, PSD estimates, our emphasis will be on recovering the phase

nonzeroness of the detection statistic implies non-Gaussianity �H(�). Depending on whether reconstruction targets H(�) at
[cf. (P1)]. If the entries of ĝN contain smoothed polyperiodo- finite frequencies (e.g., the FFT grid �2�i/N�N�1

i�0 ) or the param-
grams, then we test DG � ����̂kx(�)�2, where �̂kx(�) denotes the eters that describe the pole–zero model of H(�), the resulting
sample kth-order coherence (Ref. 27): algorithms are classified as nonparametric (see the following

subsection) or parametric (see the subsection after). Both ap-
proaches have found diverse applications, which include re-
construction of astronomical objects from photon-limited
frames and imaging through turbulence, as well as solving

β̂kx(ω1, . . ., ωk−1) = Ŝkx(ω1, . . ., ωk−1)�
Ŝ2x(ω1) . . . Ŝ2x(ωk−1)Ŝ2x(ω1 + · · · + ωk−1)

(34)
inverse problems such as those encountered in blind deconvo-
lution of seismic traces and self-recovering equalization of fre-With k � 3, for example, the denominator in Eq. (34) is the
quency-selective communication channels (see the last sub-standard deviation of the sample bispectrum of the numera-
section of this section).tor for frequencies off the proper submanifold [see also Eq.

(25)]. Such a standardization procedure facilitates statistical
Nonparametric Approachestesting in the sample bispectral (as opposed to the sample

cumulant) domain, because the matrix �g becomes diagonal Nonparametric algorithms rely on frequency-domain HOS,
when frequency-domain sample statistics are used. and their starting point is Eq. (29) for phase recovery and Eq.

With k � 3, the imaginary part of the bicoherence can also (28) for AGN-resistant magnitude reconstruction of signals
be used to test for symmetry in the distribution of a station- and LTI systems. The last two differ only in the constant
ary stochastic process. Indeed, asymmetric cumulants in the �kw, so we will concentrate on identifying LTI models H(�)
lag domain give rise to polyspectra with nonzero imaginary from the non-Gaussian x(n). For notational simplicity, we will
parts. This property of HOS suggests a cumulant-based defi- assume that �3w � 0 and use the log bispectrum, ln S3x(�1,
nition of time-reversibility (Ref. 15). The use of HOS for test- �2), whose amplitude and phase at frequencies ��i �
ing symmetry in the probabilistic structure of time series is 2�i/N�N�1

i�0 are given by
well motivated, since temporal symmetry cannot be judged
from the ACS, which is a symmetric quantity itself. Note that µ3x(ω1, ω2) = ln |γ3w| + µh(ω1) + µh(ω2) + µh(ω1 + ω2) (35)
time-irreversible processes are non-Gaussian, but the con-

φ3x(ω1, ω2) = φh(ω1) + φh(ω2) − φh(ω1 + ω2) (36)verse is not necessarily true. Outputs of symmetric noncausal
pole–zero LTI systems are time-reversible, and SOS are suf-

withficient for their identification even if the driving input is non-
Gaussian. On the other hand, evidence of time-irreversibility
in the data favors HOS-based analysis. A specific chi-square
time-reversibility test can be developed by testing for the sta-

µ3x(ω1, ω2) := ln |S3x(ω1, ω2)|, φ3x(ω1, ω2) := �S3x(ω1, ω2)

µh(ω) := ln |H(ω)|, φh(ω) := �H(ω)

tistical nonzeroness of DTR :� ĉkx(�) � ĉkx(��) (see Ref. 29).
Note that if the test statistics DG and DTR are declared to The nonredundant equations at bifrequencies (�1, �2) �

�2�i/N�N�1
i�0 can be inferred from the nonredundant support re-be zero with k � 3, then one needs to test them also for k �
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gions discussed in the ‘‘Basic Background’’ section. Because tion of the smoothing windows in Eqs. (22)–(24) to control the
bias–variance tradeoffs mentioned in the ‘‘Basic Background’’for a nonzero constant � and a shift �, pairs �h(n), w(n)� and

��h(n � �), w(n � �)/�� give rise to the same x(n) in Eq. (10), section. On the other hand, parametric approaches impose
finite parametrization on the LTI model. But if their degreesit is well known that output-only (i.e., blind) reconstruction

algorithms can recover the system up to a scale and/or shift of freedom (numbers of parameters or poles and zeros in the
rational transfer function) and parameters are estimated ju-ambiguity. To fix the scale, one can assume without loss of

generality that �3w � 1 and omit the corresponding term in diciously, parsimonious description of the data leads to more
accurate model estimates when the required number of pa-Eq. (35). Concatenating equations that result from Eqs. (35)

and (36) at distinct bifrequencies, we arrive at two systems of rameters is considerably smaller than the data length. HOS
of x(n) are capable of identifying uniquely (up to scale andlinear equations with unknown vectors �h :� [�h(�0) 
 
 


�h(�N�1)]�, and �h :� [	h(�0) 
 
 
 	h(�N�1)]�, respectively (Ref. shift ambiguities inherent in blind identification algorithms)
all-pole AR(p) (autoregressive of order p) models, all-zero38):
MA(q) (moving-average of order q) models, and general pole–
zero ARMA(p, q) models without restricting the system to beAµµµµh = µµµ3x, Aφφφφh = φφφ3x (37)
minimum- or maximum-phase. Thus, contrary to SOS, HOS
guarantee identifiability of (non-)minimum-phase and non-where the matrices A� and A	 can be made full-rank (with
causal models (see Refs. 3–6 and 22).appropriate selection of equations) and are sparse with en-

If x(n) is described by the ARMA(p, q) modeltries �1, 0, 1, 2, and 3.
Given the �x(n)�N�1

n�0 samples, we first estimate the bispec-
trum as in Eqs. (21)–(24), extract its log-magnitude and
phase, use them in the right-hand side (r.h.s.) of the matrix

p∑
i=0

a(i)x(n − i) =
q∑

i=0

b(i)w(n − i) (38)

equations in Eq. (37), and then solve for the log-magnitude
and phase responses of the system. Afterward, the complete then the AR parameters of a non-Gaussian causal ARMA(p,
frequency response H(�) and the corresponding IR h(n) can q) process are obtained by solving the following equations:
be obtained.

Note that we do not impose minimum- or maximum-phase
assumptions, and hence the zeros of H(�) are allowed to lie

p∑
i=0

a(i)ckx(τ1 − i, τ2, 0, . . ., 0) = 0, a(0) = 1 (39)

inside or outside the unit circle. If H(�) has zeros on the unit
circle, then ln �H(�)� is not well defined at certain frequencies. for �1 � q � 1, . . ., q � p, �2 � q � p, . . ., q. Normalization
However, this can be circumvented, because the zeros are iso- with a(0) � 1 is used, without loss of generality, to fix the
lated and zero padding [prior to FFT in Eq. (24)] creates scale ambiguity. Equation (39) can be used with k � 2 as well,
enough additional bifrequencies (and thus enough equations) but k � 3 in Eq. (39) offers suppression of AGN and can also
to avoid the system nulls while assuring identifiability of ln be modified for noncausal ARMA models as reported in Ref.
�H(�)�. One more issue complicating the phase recovery is the 6. Note also that pure (non)causal AR(p) models can be han-
fact that Eq. (36) holds for the unwrapped phases while HOS dled as a special case of ARMA(p, q), with q � 0.
phase estimates are wrapped and thus an additive (but un- Having estimated the AR parameters, we can inverse fil-
known) factor 2�k is needed in the sample version of Eq. (36). ter x(n) to obtain
Phase-unwrapping issues, performance analysis, and
weighted least-squares solutions of the nonparametric identi-
fication approach can be found in Ref. 30. Additional nonpara- x̃(n) :=

p∑
i=0

a(i)x(n − i) (40)
metric schemes include those in Ref. 3 and the polycepstral
approaches of Nikias et al. (see Ref. 9). The latter are of inter-

which is an AR-compensated MA(q) process. The MA parame-est because sample (poly)cepstra are known to be variance-
ters �b(i)�q

i�0 can be found from the following linear equationsstabilized versions of polyspectra whose estimation variance
(see Ref. 5):is (poly)frequency-independent (see also Ref. 13). But espe-

cially in the presence of AGN, they have problems when the
underlying system has zeros on (or close to) the unit circle.

Bispectrum-based reconstruction of deterministic signals
in AGN requires averaging over multiple records in order to
estimate the bispectrum. Recall that due to (P5), the signal

σ 2
w

γkw

q∑
i=0

b(i)ckx̃(τ1, . . ., τk−2; l + i)

=
q∑

i=0

b(i) . . . b(i + τk−2)c2x̃(i + l) (41)
vanishes with single-record sample averages. Even with ap-
proximate knowledge of the signal support, say [0, Q], one can

which relate second- with higher-order cumulants of linearapply a 2-D window to the noisy sample cumulant over the
processes for k � 3. Note that with x(n) replacing x̃(n) Eq. (41)support 0 � �1 � �2 � Q prior to estimating the sample bicor-
applies also to pure MA(q) models.relogram as in Eq. (22), and then apply the reconstruction

Determining the ARMA orders p and q is crucial, andalgorithm of Eq. (37).
HOS-based model order selection methods are available to
complement the computationally simpler linear parameter es-

Parametric Approaches
timation methods of Eqs. (39) and (41) (see Refs. 6 and 57).
Especially for MA parameter estimation, accurate order de-Nonparametric HOS-based algorithms are advantageous

when no parametric models are clearly evident. But comput- termination is instrumental in implementing the closed-form
solution [Eq. (19)]—an even simpler alternative to Eq. (41)ing the required frequency-domain HOS entails delicate selec-
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from a computational point of view. If, on the other hand, cient vector [normalized to assure that g0(0) � 1], one method
of enforcing the delta-like structure is to suppress the cumu-statistical estimation accuracy and efficiency are one’s con-

cern, computationally more intensive nonlinear methods can lant energy away from the zero lags using the criterion
improve upon the linear equation ARMA parameter esti-
mates � :� [a(1), . . ., a(p); b(0), . . ., b(q)].

Such methods require nonlinear optimization programs
ĝgg0 = arg min

ggg0

∑
τττ �=0

|ckŵ(τττ )|2

that are initialized by the linear estimates and optimize lag-
The constraint g0(0) � 1 prevents the convergence to the triv-or frequency-domain quadratic HOS-matching criteria such
ial solution ĝ0 � 0. Potential convergence to local minima be-as (Refs. 3, 4, 22)
comes less likely when the nonlinear search (steepest-descent
or Gauss–Newton) is initialized with estimates obtained from
the linear inverse modeling methods.

θ̂θθ = arg min
θθθ

∑
τττ

[ĉkx(τττ ) − ckx(τττ ;θθθ )]2 (42)

Instead of fixing g0(0) � 1, an alternative constraint is to
Asymptotically optimal (minimum variance) modifications of fix the norm of g, or optimize cumulant ratios such as the one
Eq. (42) are possible using weighted inverse covariance of cu- proposed for blind equalization of communication channels in
mulant estimators (see Refs. 1 and 22 for a unifying treat- Ref. 33:
ment). Asymptotic efficiency in Eq. (42) is traded for the com-
putational complexity relative to that involved in Eqs. (39),
(41), and in the presence of local minima in the nonconvex

ĝgg = arg min
ggg

|c4ŵ(0)|
c2

2ŵ
(0)

(43)

objective function in Eq. (42). Sufficient lags to guarantee
identifiability and thus consistency are discussed in Refs. 6 With f (n) � �lh(l)g(n � l) denoting the convolver–deconvolver
and 22, and references therein. cascade, the ratio in Eq. (43) is proportional to �n �f (n)�4/[�n

�f (n)�2]2, which is maximized when f (n) � 	 �(n). Thus, the
Inverse Modeling coefficient vector ĝ that solves Eq. (43) must also equalize the

channel h(n).In several applications such as seismic deconvolution and
In all inverse methods described so far, it is assumed thatchannel equalization, the inverse model is sought in order to

H(�) has no zeros on the unit circle. To alleviate this assump-undo the effects of h(n), which is often assumed to obey an
tion, one usually starts with the linear m.m.s.e. inverse men-all-zero (i.e., FIR) model. The inverse model g(n) allows decon-
tioned earlier (see Refs. 1 and 31), before switching to a non-volution of x(n) in Eq. (10) and thus recovery of the unob-
linear approach. In both cases, where one centers theserved information-bearing input w(n)—the ultimate goal in
deconvolver (i.e., the delay d0) affects the deconvolution per-the aforementioned applications. For computational effi-
formance, and common practice suggests the choice d0 �ciency, g(n) is designed to be FIR in practice. One deconvolu-
�[K/2].tion approach is to simply invert the ‘‘direct model’’ H(�)

If w(n) satisfies additional properties such as finite alpha-found using the (non)parametric methods of the previous sub-
bet or constant modulus, then approaches that capitalize onsections [i.e., G(�) � 1/H(�)] and then truncate the resulting
such a priori knowledge often lead to more reliable HOS-IIR g(n) to obtain the deconvolver. When the signal-to-noise
based algorithms, because the exploitation of extra informa-ratio (SNR) is known and is sufficiently low, one can also reg-
tion can help reduce the high variance associated with theularize the inverse by incorporating the SNR in the design of
HOS-based methods. It turns out that the criterion [Eq. (43)]the so-called minimum-mean-squared-error (m.m.s.e., or Wie-
leads to the well-known constant-modulus algorithm (CMA)ner) inverse model (see Refs. 1, 2, 31).
for QPSK sources w(n); see references in Ref. 33. CMA forcesAn alternative to the linear two-step (direct first, inverse
the CM constraint on the equalized ŵ(n) by selecting thenext) approaches is to seek the inverse system directly using,
equalizer that minimizes E��ŵ(n)�2 � ��2, where � :�for example, the polycepstral methods of Ref. 9 (see also Ref.
�m4w(0)�/�m2w(0)�.32) or adopt the parametric methods of the first subsection of

Both direct and inverse deconvolution methods can be ap-this section applied to the inverse cumulants cI
kx(�). The latter

plied in a block-by-block fashion. If real-time processing is de-are estimated by inverse Fourier transformation of 1/Ŝkx(�)
sired, they can be recast in an adaptive format as well. Adap-as
tive deconvolution updates the inverse model coefficients as
each new datum becomes available, and is well motivated not
only from a computational perspective [matrix inversions in-
volved in Eqs. (39) and (41) are replaced by scalar divisions],

ĉI
kx(τττ ) =

N−1∑
iii=0

1

Ŝkx(2πiii/N)
e j(2π/N )iτiτiτ ′

but also when the underlying convolver is slowly time-varying
and should be tracked. A major tradeoff is between parameterNote that ‘‘inverse cumulants’’ of the direct MA model are

‘‘direct cumulants’’ of the inverse (AR) model, and thus the estimation accuracy, which favors longer data records, and
tracking capability, which calls for smaller data windows (seelinear equations [Eq. (39)] can be applied directly to ĉI

kx(�) in
order to estimate the deconvolver coefficients. Refs. 1, 9, and 34 for further reading on HOS-based adaptive

algorithms).Nonlinear HOS-based criteria have also been developed for
estimating directly the inverse model �g(i)�K�d0i�d0

(see, e.g., Ref. If w(n) comes from a finite-alphabet source, a nonlinear
inverse method that bypasses the no-unit-circle-zeros con-33). They rely upon the idea that the input w(n), and thus the

deconvolved sequence ŵ(n) � �K�d0
i�d0

g(i)x(n � i), must be i.i.d. straint and exhibits excellent performance when initialized
properly is the decision-feedback equalization (DFE) ap-as well, and according to property (P3), its cumulants should

be delta sequences. With g0 denoting the deconvolver coeffi- proach. HOS-based DFEs quantize (or project) the linear
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Figure 7. A non-causal and non-minimum-phase model was found Figure 8. I.i.d. information symbols w(n) � �1, �1� pass through a
for the seismic wavelet and was used to deconvolve the received data non-minimum-phase FIR channel, and additive Gaussian noise is
to yield the reflectivity sequence. Success of deconvolution is revealed also present in the received data as shown in (a). The FIR channel is
by the more spiky appearance of the estimated reflectivity sequence. estimated using fourth-order statistics of the data, and deconvolution

is performed to generate the symbol estimates as shown in (b).

equalizer output onto the finite-alphabet set and use it to gen- Therefore, checking for constancy in the kth-order coherence
with respect to � amounts to testing for linearity (see Ref.erate an updated channel/equalizer estimate for the next iter-

ation using input–output correlations. Convergence of DFEs 27). Hence, if a stationary non-Gaussian process x(n) has
is a current research topic and goes beyond the scope of this
section. The following two examples illustrate the main points
in the context of HOS-based seismic and communications

DL :=
∑
α,β

[β̂kx(ωωωα ) − β̂kx(ωωωβ )]2 �= 0

data processing.
then x(n) is nonlinear. Statistical nonlinearity tests are re-
ported in Ref. 28 and have been applied for characterizationExample 5. Deconvolution of seismic data. Using fourth-or-
of local shipping (ambient) noise using the bicoherence (k �der statistics calculated from multiple seismic traces [see Fig.
3) in Ref. 35. The following example shows how the bicoher-1(a) for one of the traces], we obtained ARMA(5,5) parameter
ence can be used as an exploratory tool to discern nonlinearityestimates a � [1, �4.0784, 7.6817, �8.0893, 4.7562, �1.5012]
in a random process.and b � [1, 1.2239, 11.7788, �20.7298, 26.0287, �19.2216]

for the seismic wavelet, which renders the model both non-
Example 8. Bicoherence of linear and nonlinear processes.causal and non-minimum-phase. An FIR Wiener inverse was
Consider an input process w(n) that is zero-mean, i.i.d., andcalculated and used to deconvolve the received data to pro-
exponentially distributed. It passes through an LTI system toduce an estimate of the reflectivity sequence shown in Fig. 7.
yield output x1(n). A second process is formed as x2(n) � x1(n)Success of the algorithm is revealed by the spikier appearance
� w2(n) � 0.5 w(n)w(n � 2) and is thus nonlinear. Availableof the after-deconvolution result [compare with Fig. 1(a)].
are 16,384 samples for both processes, and bicoherence esti-
mates are obtained according to Eq. (34) with k � 3. The re-Example 6. Equalization of a non-minimum-phase communi-
sulting ��̂3x(�1, �2)�2 plots are shown as Fig. 9(a,b). Althoughcation channel. Consider a channel h � [1, 0.3768, �1.2499,

�0.9379], which is non-minimum-phase. The input symbols
w(n) are i.i.d., and take on �1 values with equal probability.
AGN v(n) with SNR � 20 dB is also present. Figure 8(a)
shows N � 2000 received data samples, from which the distri-
bution of w(n) cannot be readily recognized. We first used
fourth-order statistics of x(n) to find the channel estimate
ĥ � [1, 0.4487, �1.2378, �0.8664]. Afterwards, we obtained
symbol estimates ŵ(n) as shown in Fig. 8(b). The correct sym-
bol pattern was revealed.

CHECKING AND IDENTIFYING NONLINEARITIES

If x(n) is a linear process obeying the model in Eq. (10), then
it follows that the theoretical kth-order coherence �kx(�) [en-
semble counterpart of Eq. (34)] satisfies (a) (b)

Bicoherence estimate
of a linear process

Bicoherence estimate
of a nonlinear process
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Figure 9. The bicoherence estimate is seen to be fairly constant in
(a) for a linear process, but not so constant in (b) for a nonlinear
process.

|βkx(ωωω)|2 = γ 2
kw

σ 2k
w

∀ωωω (44)
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the theory predicts that the bicoherence of the linear process To avoid the increase in dimensionality and thus computa-
tions when dealing with nonlinearities of increasing orders,x1(n) should be flat, its sample estimate shown in Fig. 9(a) is

only approximately constant. The bicoherence for x2(n), how- one may test for the presence of self-coupling, which amounts
to frequency and phase pairs of the form (�0, k�0) and (	0,ever, is by no means constant. Statistical tests can be em-

ployed to check on the constancy of �̂kx(�) (see Ref. 28). k	0), respectively. Such pairs give rise to peaks at � � �0 in
the 1-D slice (Ref. 39)

As we saw in the introductory section, if the harmonic pro-
cess w(n) � exp[j(�1n � 	1)] � exp[j(�2n � 	2)] goes through M(k+1)x(λ, . . ., λ) := lim

N→∞
1

Nk+1
X k(λ)X ∗(kλ) (47)

a memoryless linear–quadratic transformation x(n) � w(n) �
	w2(n), then harmonics with frequencies 2�1, 2�2, and �1 �

The following example explains the points we have made so
�2 with corresponding phases 2	1, 2	2, and 	1 � 	2 appear in

far in this section.x(n) besides those already present in w(n). In general, pres-
ence of the sum frequency �k

i�1�i and the sum phase �k
i�1	i is

Example 7. Polyspectra and coupled harmonics. Supposereferred to as kth-order coupling and is a strong indication
that we have available a noisy harmonic (cosinusoidal) signalthat a nonlinear transformation may have taken place. Detec-

tion and estimation of nonlinearly interacting harmonic com-
ponents using polyspectra have found diverse applications in
areas such as EEG analysis (Ref. 26) and fluid dynamics

x(n) =
4∑

i=1

cos(ωin + φi) + v(n)

(Ref. 27).
where v(n), is zero-mean white Gaussian with variance �2

v �To clarify the role of polyspectra in checking for nonlineari-
0.1. Figure 10(a) shows the bispectral estimate of x(n) ob-ties, consider x(n) � �L

l�1Al exp[j(�ln � 	l)] � v(n), and define
tained from the (scaled) biperiodogram [sample version of Eq.the scaled moment polyspectrum as
(45) with k � 2], and Fig. 10(b) is its contour plot. From the
peak positions (0.5, 0.5) and (1.2, 1.2) that occur along the
diagonal, we infer that frequencies 0.5 and 1.2 and their re-
spective doubles 1 and 2.4 must be present in x(n). The diago-

Mk+1(λλλ) := lim
N→∞

1
Nk+1

E{X (λ1) . . . X (λk)X ∗(λ1 + · · · + λk)}
(45)

nal slice statistic M3x(�) plotted in Fig. 10(c) reveals the same
information. The above assessment agrees with the truewhere � :� (�1, . . ., �k), and X(�) is the FT of x(n). If the 	l’s

obey the so-called phase randomization assumption [i.e., they
are i.i.d., uniformly distributed, and independent of v(n)],
then it turns out that (Ref. 18)

M(k+1)x(λλλ) =
L∑

l1 ...lk+1=1

�
k+1∏
i=1

Ali

�
E{e j(−φk+1+∑k

i=1 φli
)}

× δ(λ1 − ωl1
) . . . δ(λk − ωlk

)δ(ωl1
+ · · ·

+ ωlk
− ωlk+1

) (46)

where �(�) � 1 for � � 0 mod 2� and zero elsewhere. Both
frequency coupling, �lk�1 � �k

i�1�li
, and phase coupling,

	lk�1 � �k
i�1	li

, are needed for M(k�1)x in Eq. (46) to be nonzero
and peak at (�l1

, . . ., �lk
). However, if the 	l’s are assumed

deterministic (which is the case when only a single record is
available), frequency coupling alone suffices for M(k�1)x(�) to
peak (Ref. 18). Phase randomization causes lack of ergodicity,
but it is possible to detect frequency and phase coupling
from a single data record under the deterministic assump-
tion (Ref. 18). Estimation of quadratically coupled frequencies
is reported in Ref. 38, and asymptotics of M̂(k�1)x for uncoupled
harmonics with constant or random amplitudes can be found
in Ref. 18.

Harmonic processes do not satisfy the mixing condition Eq.
(14), and their (poly)spectral estimation should also be con-
ceptually different. It is explained in Ref. 18 that when it
comes to (poly)spectral estimation of harmonic processes, no
windowing is necessary and the raw (poly)periodograms are
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themselves consistent. However, proper scaling by the data Figure 10. The signal consists of four cosinusoids with frequencies
length, similar to the one used in Eq. (45), is often necessary 0.5, 1, 1.2, and 2.4 and additive Gaussian noise is also present. The
to ensure that the quantities have finite values. Sample esti- bispectrum estimate (a) and its contour plot (b) show peaks along the
mates of M(k�1)x(�) are obtained by simply dropping the limit diagonal axis at (�1, �2) � (0.5, 0.5) and (1.2, 1.2). The diagonal slice

statistic (c) reveals the same information but is easier to compute.and the expected-value operators in Eq. (45).
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model parameters that were used in generating x(n): �1 � 42 and 43). Despite the high variance associated with the
0.5, 	1 � 0.4, �2 � 1, 	2 � �0.5, �3 � 1.2, 	3 � 0.5, �4 � 2.4, HOS estimators, it is possible to achieve processing gains at
	3 � 1. low SNRs for strongly non-Gaussian wideband signals ob-

served in correlated Gaussian noise. For harmonic signals,
In addition to checking for nonlinearities, (cross)polyspec- however, the mixing condition [Eq. (14)] is not met. It is

tra play an important role in identifying nonlinear (e.g., Vol- pointed out in Refs. 18 and 44 that HOS may not offer advan-
terra) models (see Refs. 28, 40 and 41). As an example, con- tage over SOS when uncoupled harmonics are retrieved in the
sider the linear–quadratic system presence of stationary and mixing noise, regardless of its color

and distribution.
In sensor array processing, HOS have played a major role

in identifying the mixing matrix A and separating the
x(n) =

∑
τ

h1(τ )w(n − τ ) +
∑
τ1 ,τ2

h2(τ1, τ2)w(n − τ1)w(n − τ2)

(48) sources s(n) in the vector model

Define 1-D and 2-D transfer functions as
xxx(n) = A(θθθ)sss(n) + vvv(n)

where the Nx � 1 vectors �x(n)�N�1
n�0 are the N snapshots col-

lected at Nx sensors, and the ith entry of the Ns � 1 vector

H1(ω) =
∑

τ

h1(τ )e− jωτ

H2(ω1, ω2) =
∑
τ1

∑
τ2

h2(τ1, τ2)e− jω1 τ1 e− jω2 τ2

s(n) is the ith source signal si(n). When any of the plane wave,
narrowband, far-field, and whiteness assumptions about the

Next consider the second- and third-order cross cumulants sources does not hold true, the matrix A is not of the Vander-
monde type and SOS-based direction of arrival (DOA) algo-
rithms are not applicable. Relying upon the independence

cxw(τ ) = cum{x(n),w(n − τ )}
cxww(τ1, τ2) = cum{x(n),w(n − τ1), w(n − τ2)}

among non-Gaussian sources but allowing for temporal
source correlation, HOS-based eigenapproaches have been de-and their FTs,
veloped for blind identification of A, source separation, and
deconvolution (see Refs. 45–47, and references therein).

HOS-based DOA algorithms have been motivated by the
need to suppress additive (perhaps correlated and colored)
Gaussian noise, but, as we explained earlier, such a gain may

Sxw(ω) =
∑

τ

cxw(τ )e− jωτ

Sxww(ω1, ω2) =
∑
τ1

∑
τ2

cxww(τ1, τ2)e− jω1 τ1 e− jω2 τ2

not always be feasible. A strong motivation, however, is the
overdeterminacy offered by HOS, which allows for estimationWhen w(n) is Gaussian, then using (P1), we can prove that
of more sources with less sensors (Ref. 48), or equivalentlythe kernels can be decoupled and identified via (see Ref. 40)
creates ‘‘virtual’’ sensors for a given number of sources (Ref.
49). Taking advantage of this overdeterminacy, HOS-based
nonlinear (Ref. 48) and ESPRIT-type methods have been de-

H1(ω) = Sxw(ω)

S2w(ω)
and H2(ω1, ω2) = Sxww(−ω1,−ω2)

S2w(ω1)S2w(ω2)
(49)

veloped [the latter obviate the need for a full copy of the array
(Ref. 49)]. More recent advances include applications toIf in addition, w(n) is white, then we obtain directly in the
speaker separation and multiple wideband signal separationtime domain
(Ref. 50). A simple yet motivating example on HOS-based
source separation is given next.h1(τ ) = cxw(τ )

σ 2
w

, h2(τ1, τ2) = cxww(τ1, τ2)

σ 4
w

(50)

Example 9. Blind source separation. Consider a two-input,In general, (k � 1)st-order cross-spectra are required to
two-output systemidentify kth-order kernels. Nonlinear distortions appear when

high-power amplifiers operate in their saturation region, and
Volterra kernel estimation is an important step in con- x1(n) = w1(n) + αw2(n) + v1(n) (51)
structing pre- or postcompensators (approximate inverses) of
nonlinear channels. Nonlinear compensators linearize ampli- x2(n) = βw1(n) + w2(n) + v2(n) (52)

fier characteristics and are very useful, especially for high-
efficiency low-power satellite communication systems. where w1(n) � �1, �1� and w2(n) � �1, �1, 3, �3� are the i.i.d.

and mutually independent inputs. The crosstalk coefficients
are 	 � �0.2 and � � 0.4, and v1(n) and v2(n) are additiveSEPARATING MULTIPLE SOURCES
Gaussian noise processes that are independent of each other
and independent of w1(n) and w2(n). The signal-to-interfer-Following the HOS-based harmonic retrieval ideas of Ref. 16,
ence-and-noise ratio (SINR) is 5 dB for x1(n) and 14 dB fora number of frequency estimation and narrowband array-pro-
x2(n). Given N � 1000 samples of x1(n) and x2(n) as shown incessing algorithms have been developed with the sole motiva-
Fig. 11(a,b), we would like to estimate the inputs w1(n) andtion of suppressing additive Gaussian noise of unknown color
w2(n).and correlation from sensor to sensor. The same motivation

Capitalizing on the independence between w1(n) and w2(n)in the wideband case prompted HOS-based time-delay and
differential delay–Doppler estimation algorithms (see Refs. and using (P3), one can verify that the output processes sat-
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isfy the following cumulant-based equations:

cum{x1(n),x1(n),x1(n),x1(n)} = γ4w1
+ α4 + γ4w2

cum{x2(n),x2(n),x2(n),x2(n)} = β4 + γ4w1
+ γ4w2

cum{x1(n),x1(n),x2(n),x2(n)} = β2γ4w1
+ α2 + γ4w2

cum{x1(n),x2(n),x2(n),x2(n)} = β3γ4w1
+ αγ4w2

Therefore, one can solve the four equations for the four un-
knowns 	, �, �4w1

, and �4w2
. If prior knowledge about the inputs

is available, then �4w1
and �4w2

are known and 	 and � can be
solved for in a straightforward manner using only the first
two equations. Once 	 and � are found, the ŵ1(n), ŵ2(n) esti-
mates are obtained as shown in Fig. 11(c,d), and the original
symbol patterns are revealed. A final decoding stage will fol-
low to quantize these symbol estimates. To examine the per-
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formance of the above fourth-order cumulant-based algo-
Figure 12. At a given signal-to-interference-and-noise ratio (SINR),rithm, we varied the data length from 100 to 4000 in
the mean squared error in the symbol estimates, prior to decoding, is

increments of 200 and calculated the m.s.e., N�1 �N�1
n�0 [ŵi(n) � seen to improve as the data length is increased.

wi(n)]2. The resulting m.s.e. based on 500 independent realiza-
tions is shown in Fig. 12. We observe that for both channels,
the performance of the algorithm improves as the data length

modelN increases.

The memoryless mixture A(�)s(n) often encountered in
array processing is a special case of a multichannel ARMA

p∑
i=0

A(i)xxx(n − i) =
q∑

i=0

B(i)sss(n − i)

provided that the components of s(n) are assumed spatially
(but not necessarily temporally) independent. If the input is
i.i.d. in both time and space, it is shown in Refs. 51 and 52
that up to multiplication by a diagonal and a permutation
matrix (which amounts to shuffling the inputs), it is possible
to identify the ARMA matrix coefficients using output HOS
only—a significant improvement over SOS-based methods
that assume minimum-phase matrix transfer functions and
entail ambiguity corresponding to multiplication by a unitary
matrix (see Ref. 46).

CONCLUSION AND FUTURE DIRECTIONS

Drawbacks of the HOS methods include increased dimension-
ality, heavier computational load, and increase in the vari-
ance of their sample estimates. The higher variance associ-
ated with higher orders can be understood from an
information-theoretic viewpoint because quantities that vary
have the potential of offering a variety of information. Also,
from a numerical viewpoint, errors associated with triple or
quadruple products of quantized numbers are often larger
than those present in double products.

As a rule of thumb, (k � 1)st-order sample estimates re-
quire approximately an order of magnitude more data, in or-
der to achieve comparable accuracy, than kth-order sample
estimates. Such comparison clearly depends on the applica-
tion as well. For example, a HOS-based detector requires less
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data than a HOS-based parameter estimation algorithm deal-
Figure 11. Two sensors receive symbols from two independent ing with a number of parameters. Especially with noise sup-
sources in the presence of additive Gaussian noise. Source 1 trans-

pression claims, one has to be particularly careful because themits i.i.d. symbols w1(n) � �1, �1�, whereas source 2 sends w2(n) �
gain in the mean offered by HOS may not be enough to offset�1, �1, 3, �3�. (a) and (b) show that data received by sensors 1 and
the deterioration in the variance. The success of HOS-based2, respectively. Fourth-order statistics are utilized to yield source
methods also depends on the degree of non-Gaussianity andsymbol estimates as shown in (c) and (d) and correct symbol patterns

are revealed. nonlinearity involved, and in this context, Gaussianity and
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