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then its Fourier transform exists and is given by

X (ω) =
∞∑

n=−∞
x(n)e− jωn (2)

SPECTRAL ANALYSIS

Using Parseval’s theorem, we haveThis article is concerned with the spectral analysis problem:
that of determining the distribution in frequency of the power
of a time series from a finite set of measurements. Spectral
analysis has found wide applications in diverse fields, such as

E =
∞∑

n=−∞
|x(n)|2 = 1

2π

∫ π

−π

|X (ω)|2 dω (3)

radar, sonar, speech, biomedicine, economics, geophysics, and
Let us defineothers in which the spectral contents of signals are of interest.

For example, in radar and sonar systems, the locations of the
sources or targets can be estimated by measuring the spectral S(ω) = |X (ω)|2 (4)
contents of the received signals. In biomedicine, the spectral
analysis of the signals from a patient provides doctors useful then the quantity S(�) can be interpreted as the distribution
information for diagnosis. of the signal energy as a function of frequency � and, hence,

In practice, the observed data are often of finite duration; it is called the energy spectral density of the signal. Here, the
hence, the quality of the spectral estimation is usually limited frequency � is measured in radians per sampling interval,
by the shortness of the data record available. As a general which corresponds to the physical frequency �/2�Fs in hertz.
rule, for stationary random signals, the longer the data re- Note that the total energy of the signal is the integral of
cord, the better the spectral estimates that can be obtained. S(�) over the interval (��, �) (within a constant scale 1/2�).
For deterministic signals, although the spectral characteris- If we define the autocorrelation function of the determinis-
tics are described by an arbitrary length of data, our goal is tic signal x(n) as
to select a data record as short as possible so that we can
resolve different signal components.

There are two broad classes of spectral analysis ap- r(k) =
∞∑

n=−∞
x∗(n)x(n + k) (5)

proaches: nonparametric methods and parametric (model-
based) methods. The nonparametric methods, such as peri-

we haveodogram, Blackman-Tukey, and minimum variance spectral
estimators do not impose any model assumption on the data
other than wide-sense stationarity. The parametric spectral
estimation approaches, on the other hand, assume that the
measurement data satisfy a generating model by which the
spectral estimation problem is usually converted to that of
determining the parameters of the assumed model. Two kinds
of models are widely assumed and used within the parametric

∞∑
k=−∞

r(k)e− jωk =
∞∑

k=−∞

∞∑
n=−∞

x∗(n)x(n + k)e jωne− jω(n+k)

=
[ ∞∑

n=−∞
x(n)e− jωn

]∗ [ ∞∑
m=−∞

x(m)e− jωm

]

= S(ω)

(6)

methods according to different spectral characteristics of the
signals: the rational transfer function (RTF) model and the Eq. (6) means that the energy spectral density S(�) may also
sinusoidal signal model. The RTF models, including autocor- be viewed as the Fourier transform of the autocorrelation
relation (AR), moving average (MA), and autocorrelation mov- function of the signal x(n).
ing average (ARMA) types are usually used to analyze the The above relations provide us two ways for computing the
signals with continuous spectra, while the sinusoidal signal energy spectral density of a deterministic signal from its sam-
model is a good approximation to signals with discrete ples x(n), n � 0, 1, . . ., N � 1.
spectra.

Our discussion is divided into two parts: stationary spec- 1. Direct Method [based on Eqs. (2) and (4)]. The direct
tral analysis and nonstationary spectral analysis. In the first method involves computing the Fourier transform of
part, we introduce the nonparametric spectral estimation x(n) then calculating the energy spectral density via Eq.
methods and discuss the parametric methods for rational (4).
spectral analysis and sinusoidal spectral analysis. In the sec-

2. Indirect Method [based on Eqs. (5) and (6)]. The autocor-ond part, we study two nonstationary spectral analysis exam-
relation function r(k) is estimated first; then the energyples: damped sinusoidal parameter estimation and instanta-
spectral density is computed by performing Fourierneous frequency measurement.
transform on r(k).

Energy Spectral Density of Deterministic Signals
Power Spectral Density of Random SignalsSuppose that xC(t) represents a continuous-time signal of in-

terest; x(n) denotes the sequence obtained by sampling xC(t) In practical applications, most of the signals encountered can
at some uniform sampling rate FS; that is, x(n) � xc(n/FS). be characterized as stationary random processes, which do

If x(n) has finite energy, not have finite energy, and, hence, do not possess a Fourier
transform counterpart. However, such signals have finite av-
erage power and, hence, can be characterized by power spec-
tral density functions.

E =
∞∑

n=−∞
|x(n)|2 < ∞ (1)
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Let x(n) be a zero-mean stationary random process with 3. If x(n) is a real-valued signal, R(��) � R(�), for �� �
� � �; if x(n) is a complex-valued signal, in general,autocorrelation function (ACF) given by
R(��) � R(�), for �� � � � �.

r(k) = E [x∗(n)x(n + k)] (7) 4. Let y(n) be generated by driving a stationary random
process x(n) through a linear time-invariant system

Hereafter, E[ � ] denotes the expectation operator. From the with transfer function
Wiener-Khinchin theorem, the power spectral density R(�)
and the autocorrelation function r(k) of the stationary random
process x(n) form a Fourier transform pair which is described H(ω) =

∞∑
k=−∞

h(k)e− jωk (14)
by

where h(k) is the unit impulse response of the system.
Then, the relation between the input PSD RX(�) and theR(ω) =

∞∑
k=−∞

r(k)e− jωk (8)

output PSD Ry(�) is given by

and
Ry(ω) = |H(ω)|2Rx(ω) (15)

Eq. (15) will be used in developing the parametric methodsr(k) = 1
2π

∫ π

−π

R(ω)e jωk dω (9)

for rational spectral estimation.

Eq. (8), which is similar to Eq. (6) for the deterministic sig-
nals, is the definition of power spectral density (PSD) for ran- NONPARAMETRIC METHODS FOR SPECTRAL ESTIMATION
dom signals.

If the ACF r(k) decays sufficiently rapidly, so that In this section, we shall discuss the nonparametric spectral
estimation methods. We first introduce the periodogram esti-
mator and analyze its statistical properties in terms of the
bias and the variance of the PSD estimate. Since the periodo-

lim
N→∞

1
N

N∑
k=−N

|k‖r(k)| = 0 (10)

gram estimator has high variance even for large sample
then the PSD defined by Eq. (8) is equivalent to the following length, several modified methods such as Bartlett (1), Welch
expression (2), and Blackman–Tukey (3) methods are then discussed.

Finally, the minimum variance spectral estimator is given.

Periodogram MethodR(ω) = lim
N→∞

E


 1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e− jωn

∣∣∣∣∣
2

 (11)

Based upon Eq. (11), the periodogram spectral estimator is
defined asIn fact,

R̂P(ω) = 1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e− jωn

∣∣∣∣∣
2

= 1
N

|X (ω)|2 (16)

where X(�) is the Fourier transform of the sample sequence
x(n). Note that the implementation of the periodogram esti-
mator involves performing discrete Fourier transform (DFT)
on x(n), followed by calculating the PSD directly. Specifically,
given N data points x(0), x(1), . . ., x(N � 1), we compute the
N-point DFT at frequency

lim
N→∞

E


 1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e− jωn

∣∣∣∣∣
2



= lim
N→∞

1
N

N−1∑
l=0

N−1∑
m=0

E [x∗(l)x(m)]e− jω(m−l)

= lim
N→∞

1
N

N−1∑
k=−(N−1)

(N − |k|)r(k)e− jωk

= R(ω)

(12)

where we have used the definition r(m � l) � E[x*(l)x(m)] and ω = 2π

N
k, k = 0, 1, . . ., N − 1 (17)

the double summation formula, for any arbitrary function
f ( � ),

that yields the samples of the periodogram
N−1∑
l=0

N−1∑
m=0

f (l − m) =
N−1∑

k=−(N−1)

(N − |k|) f (k) (13)
R̂1

(
2π

N
k
)

= 1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e− j2πn k
N

∣∣∣∣∣
2

, k = 0, 1, . . ., N − 1 (18)

The objective of spectral analysis is to estimate the PSD of
x(n) from a finite-duration of observed samples x(0), x(1), In practice, however,when the data length N is small, the es-
. . ., x(N � 1). Before we turn our attention to the spectral timated PSD computed by Eq. (18) does not provide a good
estimation methods, let us present some useful properties of representation of the continuous spectrum estimate due to
the ACF and PSD of a stationary random process. the small number of samples. In order to get a more complete

description about the estimated PSD, it is necessary to evalu-
1. r(�k) � r*(k), and r(0) � �r(k)�, for all k. ate R̂P(�) at more dense frequencies. This can be achieved by

increasing the sequence length via zero padding. Specifically,2. R(�) is a real-valued and nonnegative function.
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if the data length is increased to L (L � N), evaluating L- When N � �, W(N)
B (�) tends to be an ideal Dirac function;

thus,point DFT yields

lim
N→∞

E [R̂P(ω)] = R(ω) (28)
R̂2

(
2π

L
k
)

= 1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e− j2πn k
L

∣∣∣∣∣
2

, k = 0, 1, . . ., L − 1 (19)

However, in general, the variance of R̂P(�) does not decay to
zero as N � �. Especially when the data sequence isWe now turn our attention to the statistical properties of the
Gaussian random process, the variance is given byperiodogram estimator. It is easy to verify that the periodo-

gram estimator defined in Eq. (16) is equivalent to

var[R̂P(ω)] = R2(ω)

[
1 +

(
sinωN
N sinω

)2
]

(29)
R̂P(ω) =

N−1∑
k=−N+1

r̂(k)e− jωk (20)

and when N � �, it becomes
where r̂(k) takes the standard biased ACF estimate, which is
given by lim

N→∞
var[R̂P(ω)] = R2(ω) (30)

Hence, the periodogram is an asymptotically unbiased esti-r̂(k) = 1
N

N−|k|+1∑
n=0

x∗(n)x(n + k), k ≥ 0 (21)
mate of the PSD, but it is not a consistent estimate in the
sense that the variance does not decrease to zero, no matterand r̂(�k) � r̂*(k). Equation (20) provides us a way by which
how large the data length is.the statistical performance expressions for the periodogram

Although the periodogram is an asymptotically unbiasedestimator can be obtained. In doing so, let us first consider
estimator of the PSD, as we can see from Eq. (25), this esti-the statistical properties of the biased ACF estimators.
mator is problematic when N is small. Specifically, in orderThe expected value of r̂(k) is given by
to make E[R̂P(�)] as close as R(�), W(N)

B (�) should be a close
approximation to a Dirac impulse. However, W(N)

B (�) is differ-
ent from an ideal Dirac impulse in two respects. First,
W(N)

B (�) has a main lobe with half-power (3 dB) width about
1/N in frequency. The effect of the main lobe is to smooth the
estimated spectrum. In fact, when R(�) has two peaks sepa-

E[ r̂(k)] = 1
N

N−|k|+1∑
n=0

E [x∗(n)x(n + k)]

=
(

1 − |k|
N

)
r(k)

(22)

rated in frequency by less than 1/N, these two peaks appear
where r(k) � E[x*(n)x(n � k)] denotes the true ACF of x(n). as a single broader peak in E[R̂P(�)] due to the filtering effect
The variance of r̂(k) is shown to be of W(N)

B (�), as seen in Eq. (25). For this reason, 1/N is referred
to as the spectral resolution limit of the periodogram method.
Secondly, W(N)

B (�) has a large number of sidelobes whose ener-
gies are leaked from the main lobe, which may obscure and

var[r̂(k)] ≈ 1
N

∞∑
n=−∞

[|r(n)|2 + r∗(n − k)r(n + k)] (23)

distort other spectral responses that are present. In this case,
Since weak signal spectral response can be masked by higher side-

lobes from stronger spectral response.
We point out that while zero padding provides us a methodlim

N→∞
E [r̂(k)] = r(k) and lim

N→∞
var[r̂(k)] = 0 (24)

for interpolating the values of the measured spectrum at
the biased ACF estimate r̂(k) is a consistent estimate of r(k). more frequencies, it cannot improve the spectral resolution

We now evaluate the statistical properties of the periodo- of the periodogram estimator since the continuous spectral
gram estimator. The expected value of R̂P(�) is given by estimate, R̂P(�), is the same for both the original data se-

quence and the sequence padded with zeros.
Due to the performance limitations of the periodogram,

several modified methods, such as the Bartlett and Welch
methods, are proposed to reduce either the bias or the vari-
ance of the spectral estimates.

E [R̂P(ω)] =
N−1∑

k=−N+1

(
1 − |k|

N

)
r(k)e− jωk

= 1
2π

∫ π

−π

R(α)W (N )

B (ω − α) dα

(25)

Modified Periodogram Methodwhere R(�) is the true PSD of x(n), and
The Bartlett method (1) and the Welch method (2) are two
modified periodogram methods. These methods aim at reduc-
ing the variance of the periodogram estimate by splitting up

W (N )

B (ω) = 1
N

[
sin(ωN/2)

sin(ω/2)

]2

(26)

the N available observations into K segments, and then aver-
is the Fourier transform of the so-called Bartlett window with aging the periodograms computed from each segments for
length N, which is described as each value of �.

Let

xi(n) = x(n + iD), i = 0, 1, . . ., K − 1; n = 0,1, . . ., M − 1
(31)

w(N )

B (k) =

1 − |k|

N
, if |k| ≤ N − 1

0, otherwise
(27)
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denote the observations of the ith segment, where iD is the Eq. (38) shows that the variance of the Bartlett estimator has
been reduced approximately by a factor L, as compared tostarting point of the ith segment. The Bartlett method takes

D � M, and N � LM; thus, data samples in successive seg- that of the original periodogram method.
To evaluate the statistical properties of the Welch estima-ments are not overlapped. In the Welch method, one chooses

D � M and obtains overlapped data samples in successive tor, we first derive the expected value of the windowed peri-
odogram. Taking expectation of R̂(i)

M(�) in Eq. (35) yieldssegments. For example, if D � M/2, there is 50% overlapping
between successive data segments, and K � 2L segments
are obtained.

Let

R̂(i) (ω) = 1
M

∣∣∣∣∣
M−1∑
n=0

xi(n)e− jωn

∣∣∣∣∣
2

(32)

represent the periodogram of the ith segment. The Bartlett

E [R̂(i)
M (ω)] = 1

MP

M−1∑
n=0

M−1∑
m=0

w(n)w(m)E [xi(n)x∗
i (m)]e− jω(n−m)

= 1
MP

M−1∑
n=0

M−1∑
m=0

w(n)w(m)r(n − m)e− jω(n−m)

= 1
MP

M−1∑
τ=−M+1

wl(τ )r(τ )e− jωτ (39)

spectral estimator is defined as

where
R̂B(ω) = 1

L

L−1∑
i=0

R̂(i)(ω) (33)

The Welch spectral estimator is defined as
wl(τ ) = 1

MP

min{M−1,M−1+τ }∑
n=max{0,τ }

w(n)w(n + τ ) (40)

is called the lag window. Let Wl(�) be the Fourier transform
of wl(n); we can rewrite Eq. (39) asR̂W(ω) = 1

K

K−1∑
i=0

R̂(i)
M (ω) (34)

where R̂(i)
M(�) is the windowed periodogram, given by E[R̂(i)

M (ω)] = 1
2π

∫ π

−π

R(α)W1(ω − α)dα (41)

Comparing Eq. (41) with Eq. (25), we observe that the win-
dowed periodogram is simplified to the original periodogram

R̂(i)
M (ω) = 1

MP

∣∣∣∣∣
M−1∑
n=0

xi(n)w(n)e− jωn

∣∣∣∣∣
2

(35)

when w(n) is chosen to be 1 for 0 � n � M � 1, and the same
with P the ‘‘power’’ of the time window w(n), data record is used. However, since different windows yield

different lag windows which may have different main lobes
and sidelobes, we may control the resolution and leakage
properties of the estimated PSD by choosing different win-

P = 1
M

M−1∑
n=0

w2(n) (36)

dows. We shall, in the next subsection, further discuss the lag
windows in terms of their time and frequency domain charac-It is noted that in the Welch method, the data samples in
teristics.each segment are windowed before they are performed via

The expected value of the Welch spectral estimator is givenFourier transform.
byThe statistical properties of the Bartlett estimator are eas-

ily obtained. First, the expected value of R̂B(�) is given by

E [R̂B(ω)] = 1
L

L−1∑
i=0

E [R̂(i) (ω)]

= 1
2π

∫ π

−π

R(α)W (M)

B (ω − α) dα

(37)

E[R̂W(ω)] = 1
K

K−1∑
i=0

E[R̂(i)
M (ω)]

= E[R̂(i)
M (ω)]

= 1
2π

∫ π

−π

R(α)Wl(ω − α) dα

(42)

where W(M)
B (�) is the Fourier transform of the Bartlett window

The variance of the Welch estimator iswith length M. Compared with Eq. (25), the 3-dB spectral
width of W(M)

B (�) is now increased by a factor L since the win-
dow length is decreased by a factor L, which results in the
reduction of frequency resolution by a factor L.

Secondly, the variance of the Bartlett spectral estimator

var[R̂W(ω)] = 1
K2

K−1∑
i=0

K−1∑
j=0

E[R̂(i)
M (ω)R̂( j)

M (ω)] − {E[R̂W(ω)]}2

(43)
is given by, when the data sequence is a Gaussian random
process, In the case of 50% overlapping between the successive data

segments (K � 2L), the variance of the Welch estimator with
the Bartlett time window is given by (2), for the Gaussian
process,

var[R̂W(ω)] ≈ 9
8K

R2(ω) (44)

var[R̂B(ω)] = 1
L2

L−1∑
i=0

var[R̂(i)(ω)]

= 1
L

R2(ω)

[
1 +

(
sinωM
M sinω

)2
] (38)
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From Eqs. (42) and (44), we have the following observations. Let Wl(�) be the Fourier transform of wl(n),
First, data overlapping between the successive data segments
yields more periodograms which can be used for averaging;
hence, the variance of the Welch spectral estimator is further W (ω) =

∞∑
k=−∞

w(k)e− jωk =
M∑

k=−M

w(k)e− jωk (46)

decreased as compared with that of the Bartlett estimator.
Secondly, one may control the resolution and leakage proper- we have, from Eq. (45),
ties of the estimated PSD by choosing different time windows.

Blackman–Tukey Method R̂T(ω) = 1
2π

∫ π

−π

R̂P(α)Wl(ω − α) dα (47)

As we have seen, the main problem with the periodogram
method is the high variance (statistical variability) of the where R̂P(�) is the periodogram spectral estimate defined by
spectral estimator. This performance limitation may be at- Eq. (16).
tributed to the poor performance of the sample ACF esti- We now analyze the statistical properties of the Blackman-
mates, from the equivalent definition of the periodogram Tukey spectral estimator. From Eq. (47), we have
given by Eqs. (20) and (21). In fact, the estimates of ACFs
with larger lags will have poorer performances since they in-
volve fewer data samples. In order to reduce the statistical E[R̂T(ω)] = 1

2π

∫ π

−π

E[R̂P(α)]Wl(ω − α) dα (48)

variance of the periodogram estimator, Blackman and Tukey
(3) suggested to window the sample ACF estimates and give Substituting E[R̂P(�)] from Eq. (25) into Eq. (48), we obtain
less weight to the ACFs with larger lags before the Fourier
transform is performed; that is, E[R̂T(ω)] = 1

4π2

∫ π

−π

∫ π

−π

R(θ )W (N )

B (α − θ )Wl(ω − α) dα dθ

(49)R̂T(ω) =
M−1∑

k=−M+1

wl(k)r̂(k)e− jωk (45)

If the window length of w(n) is chosen such that M 	 N, Eq.
(49) becomeswhere the lag window w(k) has the following properties: (1)

0 � wl(k) � w(0) � 1, (2) wl(�k) � wl(k), and (3) wl(k) � 0 for
�k� � M, and M � N � 1. Some of the popular lag windows
are listed in Table 1.

E[R̂T(ω)] ≈ 1
2π

∫ π

−π

R(α)Wl(ω − α) dα (50)

The variance of the Blackman-Tukey spectral estimator may
be shown to be

var[R̂T(ω)] ≈ 1
2πN

R2(ω)

∫ π

−π

W2
l (α)dα (51)

when R(�) is smooth over the main lobe of the spectral win-
dow (� 4�/M, M 	 N), and the random process is Gaussian.
By Parseval’s theorem, we may rewrite Eq. (51) as

var[R̂T(ω)] ≈ 1
N

R2(ω)

M∑
k=−M

w2
l (k) (52)

If wl(n) is chosen to be Bartlett window with length M, we
have

var[R̂T(ω)] ≈ 2M
3N

R2(ω) (53)

Eq. (54) shows that the effect of windowing the autocorrela-
tion is to smooth the periodogram estimate, thus to decrease
the variance of the spectral estimates. On the other hand,
from Eq. (50), the windowing also results in the reduction of
spectral resolution since the lag window length is now de-
creased to M. Note that the smaller the M, the larger the
reduction in variance and the lower the resolution.

Minimum-Variance Spectral Estimation

Capon (4) proposed a minimum variance spectral estimator
(MVSE) for estimating the PSD of a random process by mea-
suring the power of the output of a set of narrowband filters.

Table 1. Lag Windows

Name Definition wl(k), Wl(�)

Rectangular wl(k) � 1, �k� � M

Wl(�) � WR(�) �
sin[�(2M � 1)/2]

sin(�/2)

wl(k) � 1 �
�k�
M

, �k� � MBartlett

Wl(�) � WB(�) �
1
M �sin M�/2

sin(�/2) �2

wl(k) � 0.5 � 0.5 cos
�k
M

, �k� � MHanning

Wl(�) � 0.25WB�� �
�
M�� 0.5WB(�) � 0.25WB�� �

�
M�

wl(k) � 0.54 � 0.46 cos
�k
M

, �k� � MHamming

Wl(�) � 0.23WB �� �
�
M�� 0.54WB(�)

� 0.23WB �� �
�
M�

Parzen wl(k) ��2 �1 �
�k�
M�3

� �1 � 2
�k�
M�3

, �k� �
M
2

2 �1 �
�k�
M�3

,
M
2

� �k� � M

Wl(�) �
8

M 3 �3 sin4 M�/4
2 sin4 �/2

�
sin4 M�/4
sin2 �/2 �
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Let us consider an FIR filter with coefficients val in seconds over which sampled data is available; thus,
these methods are troublesome when analyzing short data re-
cords. Second, they suffer from spectral leakage effects due toa = [a(0),a(1), . . . , a(p)]T (54)
windowing that is inherent in finite-length data records. In

Suppose the observed data x(n), n � 0, 1, . . ., N � 1 are fact, weak signal spectral response can be masked by higher
passed through the filter; we obtain the response sidelobes from stronger spectral responses.

In order to alleviate the inherent limitations of the nonpar-
ametric methods, many spectral estimation procedures have
been proposed. These methods assume that the signal of in-

y(n) =
p∑

k=0

a(k)x(n − k) = xT (n)a (55)

terest satisfies a generating model with known functional
form and, hence, are referred to as model-based or parametricwhere
methods. Two broad classes of models are widely used and
studied: the rational spectral model and the sinusoidal spec-x(n) = [x(n),x(n − 1), . . . , x(n − p)]T (56)
tral model. The former is employed to analyze the signals
with continuous spectra, while the latter is a candidate forThe coefficients are chosen so that the frequency response of
describing signals with discrete spectra. In both models, thethe filter is unity at the frequency under consideration �0, and
signal’s spectra can be represented in terms of the model pa-the variance of the output process is minimized. Thus, the
rameters; thus, the spectral estimation problem is usuallyfilter should adjust itself to reject components of the spectrum
converted to the model parameter estimation problem.not near �0 so that the output power is due mainly to the

In this section, we focus on the parametric methods forfrequency components close to �0. If the process x(n) is zero
rational spectral estimation. We assume that the signal ismean, the filter coefficients are estimated by minimizing the
generated by passing a zero-mean white noise process u(n)variance:
through a linear time invariant system; that is,

σ 2 = E [|y(n)|2] = aHRa (57)

subject to the unity frequency constraint:
x(n) = −

p∑
k=1

a(k)x(n − k) +
q∑

k=0

b(k)u(n − k) (63)

where u(n) is called driving noise, and without loss of general-eH (ω0)a = 1 (58)
ity, b(0) � 1. The corresponding system transfer function is

where R � E[x(n)xH(n)] is the autocorrelation matrix of the
sequence x(n), and e(�0) is the vector H(z) = B(z)

A(z)
(64)

e(ω0) = [1, e jω0 , . . . , e jpωo ]T (59)
where

The solution for the filter coefficients can be shown to be (5)

A(z) = 1 +
p∑

k=1

a(k)z−k (65)
â = R−1e(ω0)

eH (ω0)R−1e(ω0)
(60)

and
and the minimum output variance is

B(z) =
q∑

k=0

b(k)z−k (66)
σ 2

m = 1
eH (ω0)R−1e(ω0)

(61)

From Eq. (63), three types of rational models are readily de-
Given finite duration of data x(n), n � 0, 1, . . ., N � 1, we rived:
may first compute the autocorrelation matrix of x(n), denoted
as R̂. Then, the MVSE is obtained by 1. Autoregressive Moving–Average (ARMA) Model. The

pole-zero model in Eq. (63) is said to be an ARMA model
of orders p and q and is denoted as ARMA(p, q). a(k)’sR(ω) = 1

eH (ω)R̂−1e(ω)
(62)

and b(k)’s (p and q) are referred to as AR and MA coef-
ficients (orders, respectively.

2. Autoregressive (AR) Model. If q � 0, the model in Eq.PARAMETRIC METHODS FOR
(63) is simplified to an all-pole model with order p andRATIONAL SPECTRAL ESTIMATION
is referred to as an AR(p) model.

3. Moving-Average (MA) Model. If p � 0, the model in Eq.In the preceding section, we have studied the nonparametric
(63) is reduced to an all-zero model with order q, and isspectral estimation methods which are usually implemented
called an MA(q) model.by the FFT technique. These methods are computationally ef-

ficient and yield reasonable spectral estimates when long data
records are available. However, there are two main perfor- In power spectral estimation, the input sequence u(n) is not

available. However, u(n) is often assumed to be a zero-meanmance limitations involved with them. First, the frequency
resolution in hertz is roughly the reciprocal of the time inter- white noise process with variance 
2. From Eq. (15), the PSD
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of the observed data is related to the model parameters by Since the filter is causal, that is, h(i) � 0 for i � 0, Eq. (68)
becomes

R(ω) = σ 2|H(e jω )|2

= σ 2

∣∣∣∣∣
∑q

k=0 b(k)e− jωk

1 +∑p
k=1 a(k)e− jωk

∣∣∣∣∣
2 (67)

r(m) =




−∑p
k=1 a(k)r(m − k) + σ 2 ∑q−m

k=0 h(k)b(k + m),

m = 0,1, . . ., q

−∑p
k=1 a(k)r(m − k), m ≥ q + 1

(72)
To estimate the PSD, we need only estimate the parameters
�a(1), . . ., a(p), b(1), . . ., b(q), 
2� and substitute the esti- The above relation is referred to as the Yule–Walker equa-
mated values into Eq. (67). tions, which are the basis for determining the AR coefficients

Given a finite-duration of data samples, the first step to- of AR or ARMA processes.
ward spectral estimation is to select an appropriate model to
fit the observed data. According to Wold decomposition and AR Spectral Estimation
the Kolmogorov theorem, any ARMA or MA process may be

For an AR model, the observed data satisfy the following dif-represented uniquely by an AR model of possibly infinite or-
ference equation:der; likewise, any ARMA or AR process may be represented

by an MA model of possible infinite order. However, using
higher order appropriate models may not only result in spuri-
ous spectral peaks but also require more complex computa-

x(n) = −
p∑

k=1

a(k)x(n − k) + u(n) (73)

tions. Thus, our objective is to select the model that requires
the smallest number of parameters which are also easily esti- where u(n) is a zero-mean white noise process with vari-
mated. In view of the spectral characteristics of the signal, AR ance 
2.
models are usually used to describe the signals with narrow Let q � 0 in Eq. (72); we obtain
spectral peaks, MA models are suitable for representing sig-
nals with broad spectral peaks and sharp nulls, while ARMA
models are employed for representing signals with both sharp r(m) = −

p∑
k=1

a(k)r(m − k), m = 1, 2, . . . (74)

spectral peaks and deep nulls with relatively small orders.
Once a model is selected, the spectral estimation problem Eq. (74) is referred to as the Yule–Walker equation for the

is converted to a model parameter estimation problem. In this AR process. Choosing m � 1, 2, . . ., p, we have the following
section, we shall discuss this problem in terms of AR, MA, normal equation:
and ARMA models. Before describing the methods for esti-
mating the parameters of AR(p), MA(q), and ARMA(p, q) mod-
els, let us first establish an important relation between the
ACFs of the observed data and the model parameters.

Multiplying both sides of Eq. (63) by x*(n � m) and taking
expectations yield




r(0) r(−1) · · · r(−p + 1)

r(1) r(0) · · · r(−p + 2)

...
...

...
...

r( p − 1) r(p − 2) · · · r(0)







a(1)

a(2)

...
a( p)


 = −




r(1)

r(2)

...
r( p)




(75)

On the other hand, setting q � 0 and m � 0 in Eq. (75) yields
r(m) = −

p∑
k=1

a(k)r(m − k) +
q∑

k=0

b(k)E[u(n − k)x∗(n − m)]

(68)

where r(i) � E[x*(n)x(n � i)]. Suppose that the filter H(z) is
σ 2 = r(0) +

p∑
k=1

a(k)r(−k) (76)

asymptotically stable and causal; that is,

Eqs. (75) and (76) are the basis for estimating the AR coeffi-
cients and the noise variance. Given finite-duration of data
x(n), n � 0, 1, . . ., N � 1, the sample ACF estimates

H(z) =
∞∑

k=0

h(k)z−k (69)

�r̂(k)� p
k�0 are first computed by using the standard biased ACF

estimator, which is defined in Eq. (21). Then, the AR coeffi-or
cients â(k)’s are estimated via Eq. (75), and the noise vari-
ance 
̂2 via Eq. (79). Finally, the AR spectra are computed by

x(n) =
∞∑

i=0

h(k)u(n − i) (70)

R̂(ω) = σ̂ 2

|1 +∑p
k=1 â(k)e− jωk|2 (77)

Then, the term E[u(n � k)x*(n � m)] becomes
Since the autocorrelation matrix in Eq. (75) is positive defi-
nite for any p, the solution for the AR parameters is unique
by solving Eq. (75). When the standard biased ACF estimates
are inserted into Eq. (75) in place of the true ACFs, the ma-
trix is still positive definite; thus, the Yule–Walker method
yields a unique solution to the AR parameter estimation.

E[u(n − k)x∗(n − m)] = E

[
u(n − k) ·

∞∑
i=0

h∗(i)u∗(n − m − i)

]

= σ 2h∗(k − m)

(71)
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Levinson-Durbin Algorithm. Although the above procedure AR Order Determination. In practice, the AR order p is usu-
ally unknown a priori; it is necessary to determine this pa-yields the desired parameter estimates, the computation of

matrix inversion requires the order of p3 multiplication if the rameter when AR modeling is used. Following are four objec-
tive criteria for AR model order determination.standard procedures are used. Computationally efficient algo-

rithms can be derived by taking advantage of the structure
1. Final prediction criterion (FPE). The FPE is based onproperties of the autocorrelation matrix. In fact, if Eqs. (75)

selecting the order that minimizes the performance in-and (76) are combined, we may obtain a single matrix equa-
dextion of the form

FPE( p) = σ̂ 2
W( p)

(
N + p + 1
N − p − 1

)
(87)

where 
̂2
W(p) is the estimated variance of the linear pre-

diction error, and N is the number of data samples.




r(0) r(−1) · · · r(−p)

r(1) r(0) · · · r(−p + 1)

...
...

...
...

r( p) r( p − 2) · · · r(0)







1
a(1)

...
a( p)


 =




σ 2

0
...
0


 (78)

2. Akaike Information Criterion (AIC). The AIC method
Since the autocorrelation matrices in Eqs. (75) and (78) are determines the model order by minimizing an informa-
both complex conjugate symmetric and Toepliz, Eq. (78) can tion theoretical function, which is defined as
be solved efficiently via order-recursive technique, which re-
quires only the order of p2 multiplication. This algorithm is
referred to as the Levinson–Durbin algorithm (LDA) (6,7). AIC( p) = ln σ̂ 2

W( p) + 2p
N

(88)

The basic idea of the LDA is to recursively compute the
3. Minimum Description Length (MDL) Method. The MDLparameter sets �a(k, 1), a(k, 2), . . ., a(k, k), 
2(k), k � 1, 2,

method is another information criterion which selects. . ., p�. Here, we add an additional variable k to denote the
the order by minimizing the description length (MDL):order. The final set at order k � p determines the desired

solution. Especially, the recursive algorithm is initialized by
MDL( p) = N ln σ̂ 2

W( p) + p ln N (89)
a(1,1) = −r(1)/r(0) (79)

4. Criterion Autoregressive Transfer (CAT) Function
σ 2(1) = (1 − |a(1,1)|2)r(0) (80)

Method. The CAT chooses the order by minimizing the
functionand updated by, for k � 2, . . ., p,

CAT( p) = 1
N

p∑
j=1

1
σ 2

W( j)
− 1

σ̂ 2
W( p)

(90)
a(k,k) = −

[
r(k) +

k−1∑
l=1

a(k − 1, l)r(k − l)

]/
σ 2(k − 1) (81)

where 
 2
W( j) � [N/(N � j)]
̂2

W(p).a(k, i) = a(k − 1, i) + a(k,k)a∗(k − 1,k − i) (82)

σ 2(k) = (1 − |a(k,k)|2)σ 2(k − 1) (83) MA Spectral Estimation

An MA(q) signal is obtained by filtering a white noise processLS Algorithm. For AR models, the Yule–Walker equations
through an all-zero system; that is,in Eq. (74) are satisfied for any m � 1. However, the above

approaches adopt only the first p linear equations (i.e., m �
1, 2, . . ., p). Note when finite data is available, the standard
biased ACF estimates are used in order to guarantee the posi-

x(n) =
q∑

k=0

b(k)u(n − k) (91)

tive definite property of the autocorrelation matrix. The er-
where u(n) is the aforementioned noise process with variancerors in the ACF estimates result in the errors of the AR esti-

2. MA models are usually used to characterize the processesmates. To obtain better AR parameter estimates, one may
with broad peaks and sharp nulls.increase m in Eq. (74) to obtain an overdetermined system of

For MA(q) processes, we have h(k) � b(k) for 0 � k � q,linear equations. Specifically, letting m � 1, 2, . . ., t, t � p
and h(k) � b(k) � 0 for k � 0 and k � q; thus, the MA coeffi-in Eq. (74) yields
cients are related to the ACFs of the process by

r(m) =
{

σ 2 ∑q−|m|
k=0 b(k)b(k + m), |m| ≤ q

0 |m| > q
(92)

As contrasted to the AR signal case, there does not exist a




r(0) r(−1) · · · r(−p + 1)

r(1) r(0) · · · r(−p + 2)

...
...

...
...

r(t − 1) r(t − 2) · · · r(t − p)







a(1)

a(2)

...
a( p)


 = −




r(1)

r(2)

...
r(t)



(84) system of linear equations which link the MA parameters and

the ACFs of the observed data. If the ACFs �r(0), r(1), . . .,or
r(q)� are known or estimated, the parameters of the MA(q)
process can be determined by solving the set of nonlinearRa = −b (85)
equations from Eq. (92). This is implemented via iterative op-
timization techniques which are usually computationally ex-the LS solution to Eq. (85) is given by
pensive and are not guaranteed to converge to the optimal so-
lution.a = −(RT R)−1RT b (86)
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If only a spectral estimate is desired, however, there is no As we have seen in Eq. (72), the ARMA parameters appear
in a nonlinear fashion through the unknown impulse re-need to solve for the MA parameters, but only to determine

the PSD by sponse h(n). If the optimum modeling is required, it is neces-
sary to solve the least mean square solution of the highly non-
linear Yule-Walker equations. To obtain such a solution,
nonlinear iterative techniques are employed, which not only

R̂(ω) =
q∑

m=−q

r̂(m)e− jωm (93)

are computationally expensive but also suffer from the local
convergence.where r̂(m) is the sample ACF estimate obtained from the

A considerable simplicity in computation may be achievedfinite-duration of observation data. Compared with Eq. (45),
via the suboptimal techniques in which the AR and MA partthe MA spectral estimator is with the form of the Blackman–
coefficients are estimated separately. With that, it is possibleTukey estimator. More precisely, Eq. (93) coincides with the
to estimate the AR parameters via a linear procedure. AfterBlackman–Tukey estimator using a rectangular window of
the AR parameters are obtained, we may use the AR polyno-length 2q � 1. We point out that the Blackman–Tukey esti-
mial to filter the observed data and obtain a pure MA(q) pro-mator is applicable to any random process, while the MA
cess, whose parameters can be estimated via the approachesspectral estimator is not.
developed in the preceding subsection.Finally, if we have to estimate the MA parameters, an al-

ternative linear method (Durbin’s method) can be used, which
AR Parameter Estimation. Choosing m � q � 1 in Eq. (72),is based upon a higher order AR model approximation to the

we obtainMA process. Let the MA(q) process be modeled by an AR(p)
model with parameters �a(1), a(2), . . ., a(p)�, where p � q.
Then, we have

p∑
k=0

a(k)r(m − k) = 0, m = q + 1, q + 2, . . . (98)

Eq. (98) establishes a linear relation between the AR parame-
q∑

k=0

b(k)z−k = 1
1 +∑p

k=1 a(k)z−k
(94)

ters and the ACFs of the observed signals.
To determine the AR parameters, one may adopt the first

or p linear equations (i.e., q � 1 � m � q � p) and then solve
the resultant system of equations. When the ACFs are truly
known, this set of equations is enough to yield a unique and
accurate solution to the AR parameter estimates. In practice,

a(n) +
q∑

k=1

b(k)a(n − k) =
{

1, n = 0

0, n �= 0
(95)

since the sample ACF estimates are used, the AR parameter
The fitted AR(p) model parameters can be estimated via a estimates obtained by this method may be poor due to the
linear method discussed earlier, while the MA parameters estimation errors of the sample ACF estimates. This defi-
b(k)’s are linearly related to the estimated AR parameters. ciency may also be interpreted by the fact that only subset

Durbin’s method is summarized as follows. lags of ACFs are used. In fact, Eq. (98) is satisfied for any
m � q � 1. To obtain better AR parameter estimates, one

Step 1. Use a high-order AR(p) model (p � q) to fit the reasonable choice is to employ more than the minimal num-
observed data, and obtain the AR parameters â(k), k � ber (i.e., p) of the extended Yule–Walker equations. This re-
1, 2, . . ., p, and the noise variance 
̂2. sults in an overdetermined set of linear equations which can

be solved via least square (LS) or total least square (TLS)Step 2. Solve Eq. (95) using least-squares error criterion,
techniques.and obtain the MA parameter estimates b̂(k), k � 1, 2,

Suppose that the ACFs can be estimated up to lag q � t,. . ., q.
where t � p. Then, we may write the following matrix equa-
tion from Eq. (98)Since the MA order is not generally known a priori, it is usu-

ally necessary to determine the MA order when the above ap-
proaches are used. From Eq. (92), one may determine the MA
order by testing (8)

r(q) �= 0, and r(q + m) ≡ 0, for m = 1, 2, . . . (96)

Given a finite-duration of data, r(k) is replaced by the stan-
dard unbiased ACF estimate r̂(k) in this test, which is defined
as




r(q) r(q − 1) · · · r(q − p + 1)

r(q + 1) r(q) · · · r(q − p + 2)

...
...

...
...

r(q + t − 1) r(q + t − 2) · · · r(q + t − p)







a(1)

a(2)

...
a( p)




= −




r(q + 1)

r(q + 2)

...
r(q + t)




(99)

r̂(k) = 1
N − k

N−k−1∑
n=0

x∗(n)x(n + k), k = 0, 1, . . . (97)

or equivalently,
ARMA Spectral Estimation

Ra = −b (100)
According to the definition in Eq. (63), an ARMA signal is
obtained by filtering a white noise process through a pole- Since R is of dimension t � p where t � p, the LS solution for
zero system. ARMA models are suitable for describing signals the AR parameter estimates is given by
whose spectra have both sharp peaks and deep nulls by rela-

a = −(RT R)−1RT b (101)tively lower orders.
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The LS technique yields the AR parameter estimates by min- Calculate the normalized ratio �(k), which is given by
imizing the errors in the vector b. In fact, both the matrix R
and the vector b in Eq. (100) are with errors when their ele-
ments are replaced by the sample ACF estimates. The TLS β(k) =

[
λ2(1) + λ2(2) + · · · + λ2(k)

λ2(1) + λ2(2) + · · · + λ2( p1 + 1)

]1/2

(106)

algorithm minimizes these errors simultaneously and is usu-
ally implemented by numerically robust techniques, such as The effective rank of R̂1, denoted as p, is set to be equal
singular value decomposition (SVD), and hence, has better es- to the smallest value of k for which �(k) is deemed ‘‘ade-
timation performance than the LS algorithm. Another advan- quately’’ close to one.
tage of the TLS algorithm is that it can estimate the AR order

Step 3. Compute the (p � 1) � (p � 1) truncated matrix:using effective rank determination when the model orders are
not known a priori.

In order to develop the TLS method for AR parameter esti-
mation, we first rewrite Eq. (99) as follows:

S(p) =
p∑

n=1

p1−p+1∑
k=1

λ2(n)vk
n(vk

n)H (107)

where vk
n denotes the (p � 1) � 1 vector as specified by

vk
n = [vn(k),vn(k + 1), . . ., vn(k + p)]T

1 ≤ k ≤ p1 − p + 1, 1 ≤ n ≤ p
(108)




r(q + 1) r(q) · · · r(q − p + 1)

r(q + 2) r(q + 1) · · · r(q − p + 2)

...
...

...
...

r(q + t) r(q + t − 1) · · · r(q + t − p)







1
a(1)

...
a( p)


 =




0
0
...
0




(102)
The AR coefficients are obtained by computing

In practice, although the ARMA model orders are not known
â(i) = s1(i + 1)/s1(1), i = 1,2, . . ., p (109)a priori, it will not be difficult to select the initial model or-

ders such that p1 � p and q1 � q. Let us consider the extended
where s1(k) is the kth element of the first column vectororder ARMA(p1, q1) model. In accordance with Eq. (102), the
s1 of the inverse of S(p).t � (p1 � 1) extended-order autocorrelation matrix associated

with this ARMA(p1, q1) model may be expressed as
MA Parameter Estimation. In order to complete the ARMA

modeling, it is necessary to determine the model’s MA param-
eters. Using the AR polynomial

Â(z) = 1 +
p∑

k=1

â(k)z−k (110)

R1 =




r(q1 + 1) r(q1) · · · r(q1 − p1 + 1)

r(q1 + 2) r(q1 + 1) · · · r(q1 − p1 + 2)

...
...

...
...

r(q1 + t) r(q1 + t − 1) · · · r(q1 + t − p1)


 (103)

By Cadzow (9), if the autocorrelation lag entries used in the to filter the observed data x(n), we obtain
t � (p1 � 1) matrix correspond to an ARMA(p1, q1) process for
which q1 � p1 � q � p, then the rank of R1 equals to p, and
the effective rank of R̂1 will be p, where R̂1 is R1 with r(l) v(n) = x(n) +

p∑
k=1

â(k)x(n − k), n = 0,1, . . ., N − 1 (111)

replaced by its sample estimate r̂(l). Thus, when sample ACF
estimates are used, the order estimation problem is equiva- If â(k) � a(k), the filtered output w(n) is an MA(q) process
lent to matrix effective rank determination problem, which with parameters b(k)’s. In fact, â(k) is an estimate of a(k);
can be implemented by SVD technique. Once the order is de- thus, w(n) is an approximate MA(q) process. With the meth-
termined, a truncated matrix is constructed, by which the AR ods developed for pure MA spectral estimation, the MA pa-
parameter estimates with significant improvements can be rameters of the ARMA model can be estimated by using a
obtained. nonlinear programming technique or Durbin’s method. If only

The TLS algorithm for AR parameter estimation and order the spectral estimate is desirable, we may calculate the MA
determination is now summarized as follows. spectral estimate from the filtered output process v(n); that

is,
Step 1. Compute the biased ACF estimates from the given

data samples x(n), n � 0, 1, . . ., N � 1, and take t �
p, p1 � p, q1 � q, q1 � p1 � q � p to construct the sample R̂v(ω) =

q∑
m=−q

r̂v(m)e− jωm (112)
autocorrelation matrix R̂1 using Eq. (103).

Step 2. Compute the SVD of R̂1: where r̂v(m) is the sample ACF estimate of w(n). Then, the
estimated ARMA power spectrum of x(n) is given by

R̂1 =
p1+1∑
k=1

λ(k)ukvH
k = U			VH (104)

R̂(ω) = R̂v(ω)

|1 +∑p
k=1 â(k)e− jωk|2 (113)

where uk and vk are the kth column vectors of the uni-
tary matrices U and V, respectively; and the singular
values 
(k) are ordered such that ARMA Order Selection. As we have seen, the AR order esti-

mation can be implemented by determining the effective rank
λ(1) ≥ λ(2) ≥ · · · ≥ λ( p1 + 1) ≥ 0 (105) of an extended-order autocorrelation matrix. With that,
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Zhang and Zhang (10) proposed an SVD-based algorithm for for complex-valued sinusoids. The observed process y(n) is
given byMA order determination.

Considering the matrix
y(n) = x(n) + w(n) (120)

where w(n) is a zero-mean, additive white noise process,
which is statistically independent of the signal x(n).

We focus on the estimation of the frequency parameters

R2 =




r(q1 − p) r(q1 − p + 1) · · · r(q1)

r(q1 − p + 1) r(q1 − p + 2) · · · r(q1 + 1)

. . . . . . . . . . . .

r(q1) r(q1 + 1) · · · r(q1 + p)


 (114)

from the observed data y(n), n � 0, 1, . . ., N � 1. Once the
frequencies have been determined, the estimation of other pa-

It can be shown that rank(R2) � p when q1 � q, and rameters, the associated amplitudes, and noise variance be-
rank(R2) � p � 1 only when q1 � q. Based on this fact, the comes a simple linear regression problem.
MA order q may be determined as follows: starting with Q �
q1 � q and successively reducing Q by one, the SVD is used

ARMA Modeling Approachin order to determine the rank of R2; the first transition from
rank p to p � 1 occurs at Q � q which is the lag of sam- For the clarity of statement, we shall only consider the real-
ple ACF appearing in the antidiagonal elements of the ma- valued signals in developing the ARMA modeling approach
trix R2. for sinusoidal frequency estimation. We first prove that sinu-

Another method (11) for ARMA order determination is to soids in additive white noise satisfy a special ARMA model by
choose the orders by minimizing the following index which an ARMA modeling approach is developed for estimat-

ing the sinusoidal parameters.
To motivate the selection of an ARMA process as the ap-AIC( p,q) = ln σ̂ 2

W( p,q) + 2( p + q)

N
(115)

propriate model for sinusoids in white noise, let us consider
the following trigonometric identity:

where 
̂2
W(p, q) is an estimate of the variance of the linear

predict error, and N is the data length. cos(
n) = −2 cos 
 cos[
(n − 1)] − cos[
(n − 2)] (121)

for �� � � � �. Let x(n) � cos �n, a(1) � 2 cos(�), andPARAMETRIC METHODS FOR SINUSOIDAL
a(2) � 1; the single real sinusoidal component x(n) can beSPECTRAL ESTIMATION
generated via the second order difference equation

The principal difference between spectral estimation methods
x(n) = −a(1)x(n − 1) − a(2)x(n − 2) (122)of the preceding section and those in this section is that in

the preceding section we assume that the signal of interest
with the initial values to be x(�1) � �1, x(�2) � 0. Thishas rational (or continuous) spectra, while in this section, we
difference equation has the characteristics polynomialfocus our attention on the signal consisting of sinusoidal com-

ponents whose spectrum is discrete in frequency. 1 + a(1)z−1 + a(2)z−2 (123)
Suppose that the signal consists of p sinusoids with the

form whose roots are z1 � ej� and z2 � z*1 � e�j�. The sinusoidal
frequency is determined from the roots as follows:

x(n) =
p∑

k=1

αk cos(ωkn + φk) (116)

 = tan−1(Im{z1}/Re{z1) (124)

for the real-valued case, or Eq. (122) is the limiting case of an AR(2) process in which the
driving noise variance tends to be zero, and the poles tend to
lie on the unit circle. Also, with only two coefficients and two
successive samples, we may use Eq. (122) to perfectly predict

x(n) =
p∑

k=1

αke j(ωk n+φk ) (117)

the sinusoidal values at all time.
In general, a signal consisting of p real sinusoidal compo-for the complex-valued case, where �k, �k, and �k are the am-

nents satisfies the following 2pth-order difference equationplitude, normalized frequency, and the initial phase of the
kth sinusoidal component. We assume that �ks are statisti-
cally independent random variables uniformly distributed on
[��, �), which implies that the signal is zero-mean wide-sense

2p∑
k=0

a(k)x(n − k) = 0 (125)

stationary with autocorrelation function

where a(0) � 1. The associated characteristics polynomial is
given byrx(m) = 1

2

p∑
k=1

α2
k cos(2ωkm) (118)

for real-valued sinusoids, and A(z) =
2p∑

k=0

a(k)z−k (126)

Note the roots of the above equation have unit modulus and
occur in complex conjugate pairs whose phases are related to

rx(m) =
p∑

k=1

|αk|2e jωk m (119)
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the p sinusoidal frequencies. Specifically, let zi, i � 1, 2, . . ., The LS solution to Eq. (132) is given by
2p be the roots of A(z); the frequencies are determined by

a = −(RT R)−1RT b (133)

i = tan−1(Im{zi}/Re{zi), i = 1, 2, . . ., p (127)

The TLS algorithm can also be used for estimating the AR
coefficients of the special ARMA(2p, 2p) process. The TLS al-For sinusoids in additive white noise, substituting x(n) �
gorithm considers both errors in R and b; in addition, it yieldsy(n) � w(n) into Eq. (125) yields
not only the AR parameter estimates but also the AR order
determination. Thus, the TLS algorithm has better perfor-
mance than the LS algorithm. The detailed steps of the TLS

2p∑
k=0

a(k)y(n − k) =
2p∑

k=0

a(k)w(n − k) (128)
algorithm can be referred to as those for general ARMA mod-
eling.

Eq. (128) is a special ARMA(2p, 2p) model in which both the ARMA modeling approach is summarized as follows.
AR and MA parameters are identical, and all the poles and
zeros are located exactly on the unit circle. Note that the fre- Step 1. Compute the sample ACF estimates �r̂y(m), m � 1,
quency information of the signal is completely contained in 2, . . ., t� where t � 4p, from the observations y(n), n �
the characteristics polynomial constructed via the AR coeffi- 0, 1, . . ., N � 1.
cients of Eq. (128). Step 2. Estimate the AR coefficients using LS or TLS algo-

To establish the relation between the AR coefficients and rithms.
the ACFs of the observed process y(n), we multiply Eq. (128)

Step 3. Compute the roots of Eq. (126), and obtain the fre-by y(n � l) and take the expection; it follows that
quency estimates as the angular positions of these
roots.

Once the frequency parameters have been determined, the as-

2p∑
k=0

a(k)ry(l − k) =
2p∑

k=0

a(k)rw(l − k) = σ 2a(l) (129)

sociated amplitude parameters and the noise variance can be
where we have used the assumption that x(n) and w(n) are estimated as follows. For p real-valued sinusoids in additive
zero-mean and statistically independent, and that E[w(n) white noise, the ACFs of the observed process y(n) are
� w(n � k)] � 
2�(k). Since a(l) � 0 for l � 0 and l � 2p, we
have ry(0) = σ 2 +

p∑
k=1

Pk (134)
2p∑

k=0

a(k)ry(l − k) = 0, l > 2p (130)
ry(m) =

p∑
k=1

Pk cos(ωkm), for m �= 0 (135)

We refer to Eq. (130) as the Higher-Order Yule–Walker
where Pk � �2

k / 2 is the average power of the kth sinusoid.(HOYW) equation, which is the basis of the ARMA modeling
Evaluating the above equation at m � 1, 2, . . ., t (t � p), weapproach for sinusoidal parameter estimation.
may obtain the LS estimates of the powers of the sinusoidsOne algorithm for AR parameter estimation is to adopt the
with �k replaced by �̂k and ry(m) by r̂y(m). Once the powersfirst 2p equations by setting l � 2p � 1, 2p � 2, . . ., 4p in
are known, the noise variance can be estimated byEq. (130). In practice, the sample ACF estimates are em-

ployed in place of the true ACFs, which result in some errors
in estimating the AR parameters. Similar to the general
ARMA modeling case, we may construct an overdetermined

σ̂ 2 = r̂y(0) −
p∑

k=1

P̂k (136)

system of equations and then use the LS or TLS techniques
Pisarenko Methodto estimate the AR parameters.

Setting l � 2p � 1, 2p � 2, . . ., t (t � 4p) in Eq. (130), we In Eq. (129), if we choose l � 0, 1, . . ., 2p, it follows that
have the following matrix equation:

Ra = σ 2a (137)

where

R =




ry(0) ry(1) . . . ry(−2p)

ry(1) ry(0) . . . ry(−2p + 1)

...
...

...
...

ry(2p) ry(2p − 1) . . . ry(0)


 (138)

and




ry(2p) ry(2p − 1) · · · ry(1)

ry(2p + 1) ry(2p) · · · ry(2)

...
...

...
...

ry(t − 1) ry(t − 1) · · · ry(t − 2p)







a(1)

a(2)

...
a( p)




= −




ry(2p + 1)

ry(2p + 2)

...
ry(t)




(131)

a = [a(0),a(1), . . ., a(2p)]T (139)
or

Eq. (139) is an eigenequation in which the noise variance 
2

is an eigenvvalue of the autocorrelation matrix R; while ARRa = −b (132)
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parameter vector a is the eigenvector associated with the ei- autocorrelation matrix yields
genvalue 
2, scaled so that the first element is unity. It may
be shown (12) that for a process consisting of p real-value
sinusoids in additive white noise, the variance 
2 corresponds
to the minimum eigenvalue of R when its dimension is (2p �
1) � (2p � 1).

Pisarenko harmonic decomposition method (12) is based

R =




ry(0) ry(1) · · · ry(m − 1)

r∗
y(1) ry(0) · · · ry(m − 2)

...
...

...
...

r∗
y(m − 1) r∗

y(m − 2) · · · ry(0)


 (147)

upon the above eigenanalysis. It can be summarized as
follows. Let 
(1) � 
(2) � . . . � 
(m) denote the eigenvalues of R,

and let the corresponding eigenvectors be denoted as �v(i),
i � 1, 2, . . ., m�. SinceStep 1. Compute the sample ACF estimates �r̂y(m), m � 0,

1, . . ., 2p�, and construct the autocorrelation matrix
rank(APAH

) = p (148)R̂ using Eq. (138) where ry(m) is replaced by r̂y(m).

Step 2. Find the minimum eigenvalue and the correspond- it follows that APAH has p strictly positive eigenvalues
ing eigenvector, thus the AR coefficients of Eq. (128).


̃(1) � 
̃(2) � . . . � 
̃(p) � 0, and (m � p) zero eigenvalues.
Step 3. Compute the roots of the AR polynomial and obtain Hence, performing eigendecomposition on R yields

the frequence estimates.

MUSIC Method
R =

p∑
i=1

[λ̃(i) + σ 2]v(i)vH(i) +
m∑

j=p+1

σ 2v( j)vH( j) (149)

The Pisarenko method is an eigendecomposition technique
We may split the eigenvalues of R into two subsets.which employs the eigenstructure of the autocorrelation ma-

trix R with dimension (2p � 1) � (2p � 1). When the signal
λ(i) = λ̃(i) + σ 2 > σ 2, for i = 1, 2, . . ., p (150)

consists of p complex-valued sinusoids, the matrix dimension
is (p � 1) � (p � 1). In the sequel, we shall explore the eigen-

and
structure properties of the general autocorrelation matrix
with higher dimension by which the multiple signal classifi-

λ(i) = σ 2, for i = p + 1, p + 2, . . ., m (151)
cation (MUSIC) method (13) is developed for sinusoidal pa-
rameter estimation. Similarly, the corresponding eigenvectors can be separated

For mathematical convenience, we now consider the com- into two subsets:
plex-valued sinusoids as assumed in Eq. (117). Take m � p,
and let S = [v(1),v(2), . . ., v( p)] (152)

andA = [a(ω1), a(ω2), . . ., a(ωp)] (140)

G = [v( p + 1), v( p + 2), . . ., v(m)] (153)with

From the definition of eigendecomposition, it follows that
a(ωi) = [1, e jωi , . . ., e j(m−1)ωi ]T , for i = 1, 2, . . ., p (141)

SHG = 0 (154)
and denote

and
y(n) = [y(n), y(n + 1), . . ., y(n + m − 1)]T (142)

RG = σ 2G (155)
x(n) = [α1e j(ω1 n+φ1 ), α2e j(ω2 n+φ2 ), . . ., αpe j(ωp n+φp )]T (143)

On the other hand, from Eq. (146), we have
w(n) = [w(n),w(n + 1), . . ., w(n + m − 1)]T (144)

RG = APAHG + σ 2G (156)
Then, along with Eqs. (117) and (120), y(n) can be expressed
as Combination of Eq. (155) and Eq. (156) yields

AHG = 0 (157)y(n) = Ax(n) + w(n) (145)

where we have used the fact that the matrix AP has full col-Note A is a Vandermonde matrix which has the property
umn rank. Eq. (157) shows that the columns �v(i), i � p � 1,rank(A) � p if m � p, and �i � �j for i � j.
p � 2, . . ., m� of G belong to the null space of AH, or calledThe autocorrelation matrix of y(n) is
noise subspace; while the combination of Eq. (154) and Eq.
(157) implies that the columns �v(i), i � 1, 2, . . ., p� of S,
which are the principle eigenvectors, span the signal sub-R = E [y(n)yH(n)] = APAH + σ 2I (146)

space.
The multiple signal classification (MUSIC) method em-where P � diag(��1�2, ��2�2, . . ., ��p�2), and I is the m � m

identity matrix. On the other hand, direct calculation of the ploys the noise subspace information to estimate the fre-
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quency parameters. Specifically, along with Eqs. (140), (141), The cross-correlation matrix of the data vectors y(n) and
z(n) isand (157), we obtain

R1 = E [y(n)zH(n)] = AP���HAH + σ 2Q (164)aH (ωi)GGHa(ωi) = 0, i = 1, 2, . . ., p (158)

wherewhich means that the true frequency values �k, k � 1, 2, . . .,
p are the solutions of the equation

P(ω) = aH (ω)GGHa(ω) = 0, for any m > p (159)

On the other hand, it has been proved that �k, k � 1, 2, . . .,
p are the only solutions to Eq. (158). Hence, the reciprocal of
P(�) has sharp peaks at the true frequencies �ks.

Q =




0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
. . .

. . .
. . . · · · . . .

. . .

0 0 0 · · · 1 0




(165)

The MUSIC method is summarized as follows.

On the other hand, direct calculation of R1 yields
Step 1. From the observed data y(n), n � 0, 1, . . ., N �

1, compute the sample ACF estimates r̂y(m), m � 0, 1,
. . ., m � 1, and form the autocorrelation matrix R̂.

Step 2. Perform eigendecomposition on matrix R̂, and ob-
tain the estimates of S and G, denoted as Ŝ and Ĝ, re-
spectively.

R1 =




ry(1) ry(0) · · · ry(m)

ry(0) ry(1) · · · ry(m − 1)

...
...

...
...

r∗
y(m − 2) r∗

y(m − 3) · · · ry(1)


 (166)

Step 3. Determine frequency estimates by locating the p
highest peaks of the function Let us construct the following two matrices:

C1

= R − σ 2I = APAH (167)1

aH (ω)ĜĜHa(ω)
, −π ≤ ω ≤ π (160)

C2

= R1 − σ 2Q = AP���HAAAH (168)

The MUSIC method is an extension of the Pisarenko eigende-
composition method. Specifically, when m � p � 1, the MU- and consider the matrix (C1 � 
C2); that is,
SIC method is reduced to the Pisarenko method (here, we con-
sider the p complex-valued sinusoids). For the Pisarenko C2 − λC1 = AP(I − λ���H )AH (169)
method, the involved matrix produces only one noise eigen-
vector which can be used for estimating the sinusoidal fre- Paularj, Roy, and Kailath (14) have shown that matrix pair
quencies. However, the MUSIC method forms an m � m (C1, C2) has p generized eigenvalues at 
(i) � ej�i, i � 1, 2,
(m � p � 1) matrix which contains more information about . . ., p, and (m � p) generized eigenvalues being zero.
the ACFs of the observed data and yields (m � p) noise eigen- Using the above results, we may summarize the ESPRIT
vectors which are all useful for estimating the sinusoidal fre- algorithm as follows.
quencies. Hence, the MUSIC method yields more accurate fre-
quency estimates than Pisarenko does, especially when m � Step 1. Calculate the sample ACFs r̂y(m), m � 0, 1, . . .,
p � 1 is chosen. m using a standard biased formula, and construct the

matrices R and R1 using Eqs. (147) and (166).
ESPRIT Method Step 2. Compute the eigenvalues of R, and obtain the esti-

mate of noise variance 
̂2.ESPRIT (Estimation of Signal Parameters via Rotational In-
variance Techniques) (14,15) is another eigendecomposition Step 3. Compute Ĉ1 � R � 
̂2I and Ĉ2 � R1 � 
̂2Q
method for estimating sinusoidal frequency parameters. It Step 4. Compute the generized eigenvalues of the matrix
yields the sinusoidal frequency estimates by computing the pair (Ĉ1, Ĉ2). The p generized eigenvalues which lie on
generized eigenvalues of two well-constructed matrices. (or near) the unit circle determine the digonal elements

We again consider the complex-valued case. Using the no- of �, and hence, the sinusoidal frequencies. The re-
tations defined in the MUSIC method, and denoting maining (m � p) eigenvalues will lie at (or near) the

origin.
z(n) = [y(n + 1), y(n + 2), . . ., y(n + m)]T (161)

Sinusoidal Number Determination
we have, along with Eqs. (117) and (120),

From Eqs. (150) and (151), if there are p complex-valued si-
nusoidal components, performing eigendecomposition on thez(n) = A���x(n) + w(n + 1) (162)
autocorrelation matrix R yields p eigenvalues which are
larger than the noise variance and (m � p) eigenvalues whichwhere � is a p � p diagonal matrix
are equal to 
2. Based on this observation, the sinusoidal
number can be determined by comparing the eigenvalues��� = diag[e jω1 , e jω2 , e jωp ] (163)
with a specific threshold and calculating the number of eigen-
values which are larger than the threshold. Obviously, thewhich relates the time-displaced vector y(n) and z(n), and

hence, is called a rotation operator. selected threshold is the key parameter within this method.
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Another approach is based on the extension of the AIC in- The optimum solution to the unknown parameter estima-
formation criterion, which was proposed by Wax and Kailath tion is based on minimizing the squared error
(16). One chooses the sinusoidal number p by minimizing the
function:

ε =
N−1∑
n=0

|y(n) − x(n)|2 (176)

MDL(k) = − log
[

G(k)

Q(k)

]N

+ E(k), k = 0,1, . . ., m − 1 (170)
which is a difficult nonlinear least-squares problem. First, the
computation will be very expensive since there are 4p un-

where known parameters. Second, the solution involves an iterative
process in which a good initial guess of the unknown parame-
ters is required; otherwise, the algorithm may not converge
or may converge to the wrong solution. Based on this fact,

G(k) =
m∏

i=k+1

λ(i) (171)

some suboptimal methods, such as Prony’s method, KT
method, and MKT method, are developed which do not mini-
mize Eq. (176) but still may provide satisfactory results.Q(k) =

[
1

m − k

m∑
i=k+1

λ(i)

]m−k

(172)

Prony’s Method. Define polynomial A(z) asand

E (k) = 1
2

p(2m − k) log N (173) A(z) =
p∏

k=1

(z − zk) =
p∑

i=0

a(i)z p−i, a(0) = 1 (177)

with 
(1) � 
(2) � · · · � 
(m) being the eigenvalues of R, It has been shown that x(n) satisfies the following difference
and N being the number of data samples. equation

APPLICATIONS TO TIME-VARYING x(n) = −
p∑

m=1

a(m)x(n − m), n = p, p + 1, . . ., N − 1 (178)
SIGNAL SPECTRAL ANALYSIS

Note that the complex exponentials zks are the roots of theIn this section, we discuss two problems which are closely re-
polynomial A(z); hence, in order to estimate zks, we may firstlated to the spectral analysis problem: damped sinusoidal pa-
estimate the coefficients a(m)s. In doing so, substitutingrameter estimation and instantaneous frequency measure-
x(n) � y(n) � w(n) into Eq. (178) yieldsment. The former problem is frequently encountered in

magnetic resonance spectroscopy and radioastronomy; the
latter one may be found in vibration measurements, doppler
radar returns, geophysical processing, and surveillance obser-
vations of the electromagnetic spectrum. In both problems,
the signals are nonstationary; hence, the approaches devel-
oped earlier are not applicable directly.

y(n) = −
p∑

m=1

a(m)x(n − m) + w(n)

= −
p∑

m=1

a(m)y(n − m) +
p∑

m=0

a(m)w(n − m)

(179)

Damped Sinusoidal Parameter Estimation for p � n � N � 1. Equation (179) represents the sum of
damped sinusoids in additive noise in terms of the noiseA sequence x(n) consisting of p damped sinusoidal signals can
w(n) and the observed sequence y(n). Also, it is a specialbe expressed as
ARMA model with identical AR and MA parameters driven
by noise process w(n). Unlike Eq. (128), the coefficients
a(m)s here are not constrained to produce polynomial roots of
unit modulus (no damping).

x(n) =
p∑

m=1

bmz n
m (174)

The least-squares solution to the parameters a(m)s can be
where bm � Amexp( j�m) is nonzero amplitude, zm � exp(��m obtained by minimizing �N�1

n�p �w(n)�2. However, this procedure
� j�m) and �m � 0, and �� � �m � � for k � 1, 2, . . ., p. �m again leads to a set of nonlinear equations. An alternative
is called the damping factor of the damped sinusoid with an- method is to minimize the term
gular frequency �m. The larger the damping factor, the faster
the amplitude of the sinusoid decays. The observed sequence
y(n) is given by

y(n) = x(n) + w(n) (175)

J =
N−1∑
n=p

∣∣∣∣∣
p∑

m=0

a(m)e(n − m)

∣∣∣∣∣
2

=
N−1∑
n=p

∣∣∣∣∣y(n) +
p∑

m=1

a(m)y(n − m)

∣∣∣∣∣
2

(180)

where w(n) is additive measurement noise, which is assumed
to be a complex white Gaussian process. The problem of inter-

which can be solved by a well-established least-squares algo-est is to estimate the parameters �Am, �m, �m, �m� and p from
finite data y(n), n � 0, 1, . . ., N � 1. rithm.
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Once a(i)s are determined, bms can be estimated by min- to have a solution, either h must be in the span �u(1), u(2),
. . ., u(p)� or ĥ, which is the projection of h on span �u(1),imizing
u(2), . . ., u(p)�, must be used instead of h in Eq. (189). In
either case, Eq. (189) can be written as

Q =
N−1∑
n=0

∣∣∣∣∣y(n) −
p∑

m=1

bmẑ n
m

∣∣∣∣∣
2

(181)
Âc = −ĥ (190)

Finally, the ampitude Ai, phase �i, damping factor �i, and the where
frequency �i can be computed as follows:

Ai = |bi|, θi = tan−1[Im(bi)/Re(bi)] (182) ĥhh =
p∑

k=1

[uH (k)h]u(k) (191)

αi = ln |zi|, ωi = tan−1[Im(zi)/Re(zi)] (183)
Since rank(Â) � p � L, Eq. (190) is an underdetermined sys-
tem of equation about c, and there are multiple solutions. The

Kumaresan–Tufts (KT) Method. The Prony’s method is con- solution minimizing 	c	 is given by
ceptually simple and computationally efficient; however, it is
highly sensitive to additive measurement noise. In fact, this
method is statistically inefficient in the sense that the vari- c = −

p∑
k=1

1
λ(k)

[uH (k)h]v(k) (192)
ances of the estimated parameters often exceed the Cramer-
Rao (CR) lower bound.

It has been proven in (17) that if c is estimated using Eq.Kumaresan and Tufts (17) proposed a method which has
(192), then the prediction polynomial C(z) has p zeros outsideconsiderable performance improvements over Prony’s method,
the unit circle, which are the reciprocals of zi for i � 1, 2,at the expense of greater computational complexity. The KT
. . ., p, and (L � p) zeros inside the unit circle. By means ofmethod has the following features: (1) it uses an overdeter-
this property, the zeros outside the unit circle uniquely deter-mined set of linear equations and overestimates the order of
mine the parameters �ms and �ms.the assumed linear model; (2) the solution of the linear set of

equations involves singular value decomposition (SVD) of the
MKT Method. The KT method uses the low-rank matrix ap-

data matrix, followed by a truncation of the set of the singular proximation to reduce the noise effect and, thus, has much
values; (3) the backward predictor polynomial is estimated, better performance than Prony’s method. Indeed, when the
and its roots are used to determine the frequency parameters. SNR is high and enough data are available, the rank approxi-

Let A and h denote the (N � L) � L [min(N � L, L) � p] mation in the KT method will reduce the measurement noise
conjugate backward prediction matrix and the (N � L)-com- effect significantly; hence, the KT method in this case will
ponent column vector, respectively almost attain the CR bound. However, if the SNR is reduced

to a certain degree, the rank approximation in the KT method
is unable to reduce the noise effect efficiently, and moreover,
the noise threshold appears.

On the basis of the KT method, Li, Liu, and Razavilar (18)
proposed a modified KT (MKT) algorithm which exploits not

A =




y∗(1) y∗(2) · · · y∗(L)

y∗(2) y∗(3) · · · y∗(L + 1)

...
...

... · · ·
y∗(N − L) y∗(N − L + 1) · · · y∗(N − 1)


 (184)

only the rank-deficient property but also the Hankel property
of the prediction matrix.h = [y∗(0),y∗(1), . . ., y∗(N − L − 1)]T (185)

In fact, if a data sequence x(n) consists of p distinct sinu-
soids, as in Eq. (174), then for any L (L � p), the L � L predic-The KT method is to find an L-component prediction vector
tion matrix PL � �x(i � j)�L�1

i, j�0 is a singular Hankel matrixc � [c(1), c(2), . . ., c(L)]T such that
with rank p and full rank p � p principle minor Pp � �x(i �
j)� p�1

i, j�0. Conversely, for any L � L singular matrix PL � �x(i �Ac ≈ −h (186)
j)�L�1

i, j�0 with rank p, if its p � p principle minor Pp � �x(i �
Then, zms can be estimated by calculating the roots of the pre- j)� p�1

i, j�0 is full rank, then x(n) for n � 0, 1, . . ., (2L � 2) can be
diction polynomial uniquely expressed as the summation of p distinct sinusoids

as given by Eq. (174). These observations reveal a one-to-one
C(z) = 1 + c(1)z−1 + · · · + c(L)z−L (187) correspondence between a data sequence consisting of

damped sinusoids and a rank-deficient Hankel matrix. There-
To estimate c, the optimum rank p approximation of A is first fore, parameter estimation of damped sinusoidal signals from
constructed by noisy data is equivalent to performing the low-rank Hankel

matrix approximation.
The MKT algorithm is summarized as follows:Â =

p∑
k=1

λ(k)u(k)vH(k) (188)

Step 1. Choose L, and form the square prediction matrix
where �
(1), 
(2), . . ., 
(p)� are the p largest singular values PL � �y(i � j)�L�1

i, j�0.
of A, and u(k) and v(k) are the left right singular vector of A Step 2. Find rank-p approximation matrix PL � �y(i,
corresponding to the singular value 
(k), respectively. To j)�L�1

i, j�0 � �p
k�1 
(k)u(k)vH(k), where 
(k) for k � 1, 2, . . .,

make the matrix equation p are the p largest singular values of PL, and u(k) and
v(k) are corresponding left and right singular vectors,
respectively.Âc = −h (189)
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Step 3. Find a Hankel matrix P̂L � �ŷ(i � j)�L�1
i, j�0 to approxi- where �1(n) is prediction error at time n:

mate the rank-p prediction matrix PL.
ε1(n) = x(n) − x̂(n) (199)Step 4. Repeat Steps 2 and 3 to get an estimation of ŷ(n)

from P̂L, where in the repeation, PL is replaced by P̂L.
The LMS algorithm takes the update equation as given byStep 5. Estimate the parameters using the KT algorithm

to ŷ(n). â(n + 1;k) = â(n; k) + µx(n − k)ε(n), k = 1,2, . . ., 2p (200)

As compared with the original KT algorithm which ignores
where � is the step size. This algorithm, which was proposedthe Hankel property of the prediction matrix, the MKT algo-
by Griffiths (19), can track the variation of the instantaneousrithm has a lower noise threshold and can estimate the pa-
frequency provided that the frequency is slowly time-varying,rameters of signals with larger damping factors.
and that the step size � is chosen optimally so that the predic-
tion error �1(n) is small for all n.Instantaneous Frequency Measurement

In this subsection, we are concerned with the problem of in- RLS Algorithm. Let
stantaneous frequency measurement, that is, estimating the
frequency content of a sinusoidal signal with time-varying y(t) = [x(t − 1), x(t − 2), . . ., x(t − 2p)]T (201)
frequencies or a narrow-band signal with time varying
power spectrum. Suppose we have observed the vectors y(t), t � 0, 1, . . ., n,

As we know, AR models are usually used to represent sig- and we wish to determine the coefficient vector a(n) � [a(n;
nals with a narrow-band spectrum. Accordingly, a narrow- 1), a(n; 2), . . ., a(n; 2p)]T. The RLS solution is obtained by
band signal with time-varying spectrum can be characterized minimizing the time-average weighted square error
by a time-varying AR model,

J2 =
n∑

t=0

wn−t|ε2(t;n)|2 (202)
x(n) = −

2p∑
k=1

a(n;k)x(n − k) + w(n) (193)

where the error is defined as
On the other hand, a signal consisting of p time-varying si-
nusoidal components satisfies the following prediction equa- ε2(t; n) = x(t) − aT (n)y(t) (203)
tion:

and w represents a weighting factor 0 � w � 1. Minimizing
J2 with respect to the coefficient vector yields the RLS solu-
tion as follows

x(n) = −
2p∑

k=1

a(n;k)x(n − k) (194)

where a(n; k)s are the time-varying model parameters, and a(n) = R−1(n)D(n) (204)
w(n) in Eq. (193) is a zero-mean white noise process with
time-varying variance 
2(n). In both cases, the instantaneous where
frequencies are determined by locating the peak positions of
the modified spectrum, which is defined as R(n) =

n∑
t=0

wn−ty∗(t)yT (t) (205)

and
P(n;ω) = 1

|1 +∑2p
k=1 a(n;k)e− jωk|2

(195)

To measure the instantaneous frequencies, we need to design
an adaptive algorithm, such as a least-mean-square (LMS) or D(n) =

n∑
t=0

wn−tx(t)y∗(t) (206)

recursive least square (RLS) algorithm, for tracking the
model parameters at each time instant, say â(n; k). Then, the The major advantage of the LMS algorithm lies in its compu-
instantaneous frequencies at each time instant are computed tational simplicity. However, the price paid for this simplicity
by determining the peak positions of the following function is slow convergence. The RLS algorithm, on the other hand,

can achieve fast convergence; however, it involves more com-
plex computations. Note the computation of matrix inversion
in the RLS algorithm can be avoided by using the Kalman

P̂(n;ω) = 1

|1 +∑2p
k=1 â(n;k)e− jωk|2

(196)

filtering approach.
LMS Algorithm. Define the prediction equation
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