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quence of numbers (usually, we read it as the nth sample of
the sequence x), H(z) describes the recursive digital filter,
and y(n) is the resulting output sequence of numbers.
Whether the digital filter is implemented on a general-pur-
pose computer, on a special-purpose computer, or with spe-
cial-purpose digital circuitry is usually a function of the re-
quired processing speeds (sampling rates) or the volume of
units needed in production. The digital sequence of numbers
x(n) is most typically generated from an analog waveform
through the use of an analog-to-digital converter (ADC). The
output sequence y(n) is most typically used to generate an
analog waveform using a digital-to-analog converter (DAC).
For instance, consider the recording and playback system for
digital audio commonly called the compact disk. The audio is
recorded using microphones, whose analog outputs are digi-
tized using the ADC. These digital samples may be filtered in
the processing and mixing of the recording. The resulting dig-
ital waveform is stored optically on the compact disk. The
compact disk player reads the digital signal, filters these sig-
nals digitally, and then produces the analog output for the
power amplifier and speakers using a DAC. Some signals are
digital by nature and thus do not require the conversions be-
tween the analog and digital formats. A classic example of
such a signal is the price of a stock or commodity. Consider a
digital speech signal that has been converted from an analog
signal (a microphone output). The digital sequence represent-
ing the sentence ‘‘This is sound’’ is shown graphically in Fig.
2. The amplitudes of the speech vary between 90 and 160,
with the average value being approximately 128. This is the
result of the speech being quantized to 8 bits, so that the am-
plitudes are limited to integers between 0 and 255 (which is
28 � 1). The sampling frequency is 8 kHz, so that the samples
are spaced 1/8000 s apart. The alternation pattern for various
portions of the sequence indicate that the frequency content
of the speech varies over the 35,000 samples shown. For in-
stance, the samples in the breaks between ‘‘This’’ and ‘‘is’’ and
between ‘‘is’’ and ‘‘sound’’ have flat amplitude values of 128 or
129. These portions of the sequence have a 0 frequency (often
called ‘‘dc’’) component only. The words, which have more sig-
nificantly varying amplitude values, have a much richer fre-
quency content. The highest frequency present in a digital
sequence is the Nyquist frequency. The Nyquist frequency is
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A digital filter is the implementation of an algorithm that
computes an output sequence of numbers from an input se-
quence of numbers. The algorithm may be implemented (or
realized) using a general-purpose computer running software,
a special-purpose computer such as a digital signal processor
(DSP) running software, or special purpose hardware such as
an application specific integrated circuit (ASIC) or field pro-
grammable gate array (FPGA). In this latter case, the digital
circuit is designed specifically to accomplish the filtering task.
This process is shown in Fig. 1. Here, x(n) is an input se-
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Figure 2. A digital sequence of speech representing the words ‘‘ThisFigure 1. Filter block diagram showing input x(n), output y(n), and
transfer function H(z). is sound.’’
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the real frequency that is one-half of the sampling frequency.
Real frequencies above the Nyquist frequency are folded over
into lower frequencies. Once this happens, the signal is said
to be aliased, and in general the original analog signal cannot
be recovered from the digital sequence.

Filtering is required in many products and systems com-
monly used everyday. Digital filters have been used in tele-
communications systems since at least the mid-1970s. As
communication systems increasingly become totally digital,
this use will only increase. Common communication applica-
tions are in echo cancellers, voice codecs (coder/decoder) or
vocoders, image and video codecs, and certain switching de-
vices. Medical devices, electronic consumer items, and mili-
tary devices are major users of digital filters. Common appli-
cations are in heartbeat monitoring and radiological imaging,
compact disk audio and digital tape, digital cameras and
video, and radar and sonar. Digital filters are required to sep-
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arate an information-bearing signal from extraneous (noise)
signals, which is the signal-to-noise ratio (SNR) enhancement Figure 4. The bounded input and unbounded output of an unstable

recursive digital filter.problem. Digital filters are also used to separate and extract
information for use in detection and estimation problems.

Digital filters work on the principle of frequency separa-
tion. For a filter to be effective in separating an information- shown are between 0 and 1, where 0 is dc and 1 is the Nyquist

frequency. In the case of the speech sequence shown in Fig.bearing signal from the noise, the frequency content of the
information-bearing signal must be sufficiently different from 1, the Nyquist rate is one-half of 8 kHz, or 4 kHz. Each of

these filter types is designed to pass unaltered the frequencythe frequency content of the noise. The quality of a filter is
the frequency selectivity of the filter—that is, its ability to content of the input signal across a range of frequencies while

blocking the frequency content at other frequency ranges. Forfrequency discriminate. The discrimination is measured using
gain (or attenuation). Plots of gain (or attenuation) versus fre- instance, a low-pass filter is typically used to eliminate broad-

band noise in communication systems. Such a filter wouldquency are called the magnitude response of the filter. Several
classical magnitude responses are the low-pass, high-pass, have unity gain across the frequency range containing the in-

formation-bearing signal and zero gain at all other frequen-band-pass, and band-stop filters. Magnitude responses for ex-
amples of these filter types are shown in Fig. 3. Content of cies. Thus, all frequency content of the noise outside the unity

gain frequencies will be removed. The magnitude response ofthe sequence that is at frequencies where the gain is 0 are
passed without amplitude loss. Other content is attenuated the digital filter is controlled by the placement of the poles

and zeros of the digital filter. Frequencies near poles are am-according to the amount of the gain. If the gain is �100, then
the amplitude is reduced by 5 orders of magnitude; that is, plified, while frequencies near zeros are attenuated. The

number of poles and zeros determines the order of the filter.the amplitude is reduced by a factor of 105. The frequencies
For instance, a digital filter with five poles and three zeros is
a fifth-order filter. The filter stability is a function of the loca-
tion of the filter poles. For causal filters, all poles must have
a magnitude less than one; that is, the complex-valued poles
must lie inside the unit circle of the complex plane. Filter
stability is usually determined using the bounded-input,
bounded-output (BIBO) criterion. BIBO stability means that
the output sequence resulting from any input sequence that
has all sample values less than some value must also be
bounded by some value (not necessarily the same value that
bounds all input sequence values). To say this in a less pre-
cise but more intuitive manner, a filter is not BIBO stable if
for some input sequence whose sample values are all finitely
valued, some filter output samples are infinite in magnitude.
This case is shown in Fig. 4, where the magnitude of the pole
of the filter is 1.1. In this case, the input sequence to the filter
has sample values that are all 1. The output sequence values
are tending toward infinity as the sample index increases.
Clearly then, an unstable filter is undesirable. The order of
the filter is also directly related to the number of multiplies
and adds required to compute the filter output sequence given
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an input sequence (i.e., ‘‘to run the filter’’). This number, of
course, directly translates into the amount and capabilities ofFigure 3. Classical magnitude responses for low-pass, high-pass,

bandpass, and bandstop filters. the digital circuitry required to run the filter.
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Prior to the advent of very large scale integration (VLSI) have one special property that makes them invaluable in cer-
tain high-fidelity systems and products: They can be designedfor integrated electronic circuits, the use of digital filters was

so restricted that many applications required the use of ana- and implemented so that the filter minimally distorts the in-
formation-bearing signal. The price of this distortion-free fil-log filters. Analog filters require resistors and need either in-

ductors or capacitors (or both). More recently, the use of ac- tering is in the increased requirements of the digital circuitry
in terms of both speed and quantity of digital devices. Bothtive components such as operational amplifiers in

combination with resistors and capacitors was extremely com- speed and quantity translate to the real costs of power and
size. Consequently, recursive filters, which do distort the in-mon. However, with the development of the sigma-delta mod-

ulation (���) and multirate filtering, the use of all digital formation-bearing signal, are often used. The causes of this
distortion are evident from the Payley–Wiener conditions,systems has increased significantly, to the point that analog

filtering may only be used in high-power amplifier systems. and we will examine these in a later section. For now, we
classify the distortions into two categories: amplitude andDigital filters are superior to analog filters in many respects.

They allow high-precision frequency shaping, manufacturing time delay. All causal filters produce amplitude distortion, al-
though this distortion can be minimized directly in the designand reuse, system integration, and system design.

While many possible categorization techniques exist, the process. The gain cannot be uniform across a range of fre-
quencies; however, the magnitude response is directly speci-most common classes of digital filters are the finite impulse

response (FIR) and infinite impulse response (IIR) digital fil- fied in the design process and thus can be controlled. All
causal IIR filters (unlike causal FIR filters) cause time delayters. FIR filters are also called moving average (MA) or all-

zero filters. IIR filters come in two varieties: the autoregres- distortion. Because time delay is not part of the basic filter
design problem, it cannot be controlled directly in the designsive (AR) or all-pole filters and the autoregressive/moving av-

erage (ARMA) filters. The ARMA filters have both poles and process. Time-delay distortion is measured using group delay,
and we specifically define this in a later section. However,zeros. It is the AR and ARMA filters that are recursive, be-

cause the filter output depends on both input and past output an intuitive understanding of group delay can be developed.
Suppose the input signal is a musical chord consisting of sinu-(the regression). The MA filters are nonrecursive, because the

filter output depends only on a finite number of filter input soids of several frequencies with a given phase relationship.
The filter processing creates a time delay in the filter output.samples. Because MA filters only have poles located at the

origin of the complex plane (all poles have magnitude zero, If the phase relationship present in the input is maintained
in the output, we say the filter is without distortion. This dis-which is less than 1), MA filters are always stable. MA filters
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Figure 5. Phase response as time delay for two sinusoids passing through a filter.
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Figure 6. Response showing the phase
distortion when the stem of two sinusoids
is passed through a filter.
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tortion is examined in Figs. 5 and 6. The sequence given in sponses for the four classical filter types whose magnitude
responses are shown in Fig. 3 are given in Fig. 7. Notice thatFig. 6(a) (the total signal) is the sum of the two individual

sinusoids given in Figs. 5(a) and 5(c). Both sinusoidal fre- the low-pass filter impulse response smoothly decays toward
zero, while the high-pass filter impulse response alternatesquencies fall within the region where the filter gain is 0 (they

are passed without the amplitudes being altered). Figures between positive and negative values as it decays toward
zero. The duration of the bandpass filter impulse response is5(b) and 5(d) show the output sequences when only the corre-

sponding individual sinusoids are filtered. Notice that the long when compared to the other three filter types. Signal
flow graphs represent the filter graphically. More impor-phase relationship between the two sinusoids is not main-

tained. The first sinusoid is delayed by nearly 9 samples while tantly, they detail the order of computations required to de-
termine the filter output. State-space descriptions of digitalthe second sinusoid is delayed by nearly 15 samples. To see

how this causes phase distortion, examine Fig. 6(b). Because filters are a matrix version of the difference equation. Differ-
ent characterizations (often called representations) of a digi-both sinusoid frequencies are within the range of frequencies

where the amplitude is not altered, one would expect the out- tal filter are often needed either to dovetail the required com-
putations to the computational device(s) or to reduce theput and input sequences to be identical. However, close exam-

ination and comparison of the input and output sequences impact of finite precision arithmetic.
Methods for designing recursive filters can be classifiedshows that the output sequence is a distorted version of the

input sequence. In particular, examine the amplitude of the into two main types: direct designs using computer optimiza-
tion and designs obtained from classical analog filter designs.next to last peak shown in the figure (we have included the

dashed lines to assist in the comparison). If the phase rela- Many of these techniques rely on direct manipulation of the
magnitude response only. Direct designs of both AR andtionship is not maintained (as in our example), we say the

filter causes distortion. However, the fact that for a given set ARMA digital filters are performed using least-squares tech-
niques that we will develop. Such designs use all the tech-of filter specifications or requirements a recursive filter will

always use less digital circuitry than a nonrecursive filter in- niques of computer optimization, including multivariate and
multicriterion methods. Designs obtained by transforming an-dicates that recursive filters will always find extensive appli-

cation. alog filters were the first design methods developed for digital
filters because a large body of literature and many designFilters are commonly characterized in several ways: differ-

ence equation, impulse response, signal flow graph, and state methods had been developed over the many years of practical
analog filter use. These methods rely on certain analytical op-space. A difference equation is a mathematical equality that

relates past and present inputs to past and present outputs timization methods of polynomials. These methods also re-
quire conversion techniques that transform the designed ana-of causal filters. A noncausal filter adds future inputs to the

causal equality. The various terms are weighted by the coef- log filter to a digital filter suitable for implementation. We
will develop the two most commonly used methods of conver-ficients. The impulse response of a filter is the filter output

in response to a very particular input sequence that is zero sion, impulse-invariance and bilinear transformation. Fur-
thermore, since the analog design methods are based on theeverywhere except at the zeroth sample. The impulse re-
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Figure 7. Classical filter impulse responses for low-pass, high-pass, bandpass, and bandstop
filters.

design of low-pass filters, frequency transformations are re- intermediate quantities (often called the internal signals)
computed in the course of computing the overall output sam-quired to change filter magnitude responses between low-pass

and the high-pass, bandpass, and bandstop designs that may ples. The hardware may be either fixed- or floating-point. In
implementations using fixed-point hardware, the design mustbe desired.

We examine methods and techniques relevant to the im- incorporate scaling to minimize the quantization distortion of
these intermediate quantities. In floating point hardware, theplementation of digital filters. The designs of digital filters

are most commonly performed on general-purpose computers, hardware scales the results automatically. However, in either
case, quantization, usually in the form of rounding, is stillmost often on machines with at least 64 bits of floating point

representations. However, digital filters are most often imple- required to ‘‘fit’’ the resulting values into the available mem-
ory locations. This nonlinear distortion causes the problem-mented with finite precision arithmetic hardware that uses

much fewer bits (e.g., 16 or 32 bits). By this, we mean that atic limit cycle. For example, consider the high-pass filter
whose magnitude response is shown in Fig. 9(a). The input toall filter coefficients and input, output, and internal signals

are represented using a fixed number of bits. When the filter the filter is zero [see Fig. 9(b)], but the initial value y(0)
equals 1. The designed output should approach zero, ascoefficients are quantized from the designed representation

using the higher number of bits to the realized representation shown in Fig. 9(c). If the internal signals are quantized
coarsely (to the nearest tenth), then the actual output ap-using a lower number of bits, the poles and zeros of the real-

ized filter are different from the poles and zeros of the de- proaches the limit cycle where the samples alternate between
�0.5 [shown in Fig. 9(d)]. This feature of recursive digital fil-signed filter. One critical issue of utmost practical concern to

the filter designer is to determine whether or not this realized ters is very undesirable. Increasing the resolution (the num-
ber of bits) used in the internal representation and calcula-filter is still stable. As an example, consider the input and

output sequences shown in Fig. 8. The low-pass filter has the tions will minimize the effect of the limit cycle. Thus, the
choice of scale is crucial to the actual performance of the real-magnitude response given in Fig. 8(a). The single-frequency

(sinusoid) input is given in Fig. 8(b). The designed filter ized digital filter. The order of computations affects the ro-
bustness of the filter implementation to these errors. We de-should have the output sequence given in Fig. 8(c) as the re-

sponse to the input sequence. However, when the coefficients velop the theory of an optimal form, as well as other forms
that are commonly used to minimize the effects of the inter-are quantized to 40 bits (the most available in any current

DSP microprocessor), the actual output [shown in Fig. 8(d)] is nal quantization distortion on the digital filter output se-
quence. The basic approach in these forms is the isolation ofthe output of an unstable system. Furthermore, even if the

realized filter is stable, the changes in the poles and zeros filter components, usually through the deconstruction of a
high-order filter into many low-order filters whose outputs aremight still significantly alter the actual magnitude response

to the point where the design specifications are not met. One then recombined to produce the desired output. The most
common of these forms is the parallel form, wherein a high-other consideration for the designer is the quantization of the
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Figure 8. A stable filter becomes unstable
when its coefficients are quantized to 40
bits.
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order filter is decomposed into many second-order components FILTERING
(called subfilters) and possibly one first-order filter if the order
of the high-order filter is odd. The outputs of this form are Causal, recursive digital filters produce an output sequence
recombined properly by adding the outputs of all of the sub- using both current and previous inputs and previous outputs
filters. Other forms, such as the cascade and lattice structure, only. Referring to Fig. 1, recursive digital filters are most of-
isolate second- and first-order subfilters in a cascade struc- ten parameterized in terms of the difference equation
ture. Wave digital filter structures are sometimes used for
this purpose.

y(n) = −
N∑

k=1

aky(n − k) +
M∑

k=0

bkx(n − k) (1)

The filter output y(n) is computed for each sample n. We will
see in a later section that these parameters (the ak, k � 1, 2,
. . ., N and the bk, k � 1, 2, . . ., M) are not the best for
implementation. The filter order is max(N, M). The unit sam-
ple response (or commonly, the impulse response) h(n) is
equal to the filter output when the input x(n) � �(n), where
the unit sample (impulse) sequence is given by

δ(n) =
{

1, n = 0

0, n �= 0
(2)

For a causal filter as described in Eq. (1), we must have
h(n) � 0 for n � 0 and consequently the impulse response
sequence h(n) may be directly computed. The impulse re-
sponses for the four classical filter magnitude responses are
shown in Fig. 7. To ease our notation, we introduce the unit
step sequence
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u(n) =
{

1, n ≥ 0

0, n < 0
(3)
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Because the filter parameters are constant (i.e., not functions �gaindB. Figure 10(c) shows two important characteristics of
of n) and because the difference equation is linear, we have all filters: (1) The transient or start-up response is caused by
the convolution result the lower limit on the sum in Eq. (5) being 0 instead of ��,

and (2) the phase response of the system is a time delay in
the output waveform. The group delay of a filter is defined
using the phase as

y(n) = x(n) ∗ h(n) ≡
∞∑

k=−∞
x(k)h(n − k) =

∞∑
k=−∞

h(k)x(n − k)

(4)

The convolution sum given in Eq. (4) is proven as follows. τ = −d�H(e jω )

dω
(7)

Recognize that the special nature of the unit sample sequence
permits any sequence to be rewritten as

The group delay is a measure of the amount of phase distor-
tion introduced by the filter. Ideally, the group delay is a con-
stant function of �, and so, if the input to the filter is a sum

x(n) =
∞∑

k=−∞
x(k)δ(n − k)

of sinusoids of different frequencies, the phase relationship of
the sinusoids is maintained at the filter output. In the exam-Since the filter parameters are constant, the filter response to
ple shown in Figs. 5 and 6, we see that the filter delays theeach individual term in the sum is just x(k)h(n � k); and since
first sinusoid by 8.6 samples, and the second sinusoid by 14.5the filter is linear, the sum of the responses [as given in the
samples. The fractional samples result in the peak sampleconvolution of Eq. (4)] is the digital filter output.
amplitude being slightly reduced. Also, because the sinusoidsNow, consider what the filter response is to the pure tone
have nearly a 6-sample delay difference, the output of the(complex exponential) x(n) � ej�0n. From Eq. (4) and using
sum is distorted.some algebra, we have the filter output

The filter transfer function is the Z transform (ZT) (or dis-
crete Laplace transform) of the impulse response and is di-
rectly

y(n) =
∞∑

k=−∞
h(k)e jω0 (n−k)

= e jω0 n
∞∑

k=−∞
h(k)e jω0k ≡ e jω0 nH(e jω0 )

H(z) =
∞∑

n=−∞
h(n)z−n (8)

The complex-valued function

The complex variable z denotes complex frequency; that is,
z � rej�. Comparing Eq. (8) to Eq. (5), we see that the DTFT
is the ZT evaluated on the unit circle in the complex plane

H(e jω ) =
∞∑

n=−∞
h(n)e− jωn ≡ |H(e jω )|e j�H(e jω ) (5)

z � ej�. Points in the complex plane where H(z) � 0 are called
defines the discrete-time Fourier transform. We have written zeros of the filter, while points where H(z) � � are called
the transform in polar notation, using the magnitude and poles. For digital filters described by Eq. (1), the transfer
phase notation, respectively ��� and ��. Consequently, we function is always a rational polynomial in z of the form
see that the output of the filter with impulse response h(n)
may be written

H(z) = b0 + b1z−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
(9)

y(n) = |H(e jω0 )|e j(ω0 n+�H(e jω0 ))

The frequency �0 of the pure tone is unchanged from the in- The coefficients are the same difference equation coefficients
put frequency. However, the magnitude and phase are al- in Eq. (1). Because the filter is causal, the sum in Eq. (8)
tered. We define the magnitude and phase responses of the always converges (exists) for points in the complex plane out-
filter at all frequencies as �H(ej�)� and �H(ej�) respectively. side the outermost pole. The causal filter is said to be BIBO
Figure 10 shows the frequency response (magnitude and stable when the outermost pole lies inside the unit circle—
phase responses), impulse response, and the input and output that is, when its radius is less than 1. An alternative method
at two different frequencies for a tenth-order (Butterworth)

for determining the stability of causal digital filters is the ab-recursive digital filter. The selectivity of a filter is a function
solute summability condition on the impulse responseof the magnitude response—that is, which frequencies are

‘‘passed through’’ with unity gain �H(ej�)� � 1 and which fre-
quencies are ‘‘rejected’’ with zero gain �H(ej�)� � 0. The four
classical filtering functions have magnitude responses exem-

∞∑
n=0

|h(n)| ≤ S < ∞ (10)

plified in Fig. 3. The magnitude response is given in decibel
(dB) units, which may be computed from the gain (magnitude)

The value of S must be finite for the filter to be stable. Thevalues as
impulse response shown in Fig. 4 is that of an unstable digital
filter because the sum in Eq. (10) is infinite.gaindB = 20 log10(gain) (6)

Typically, all recursive filters are designed to match a de-
sired magnitude response. Ideal classical filters fall into fourThus, a gain of 1 is 0 dB. Alternatively, the magnitude re-

sponse can be given in terms of attenuation, measured as categories: ideal low-pass filters (ILPF), high-pass filters
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Figure 10. Filtering definitions.

(IHPF), band-pass filters (IBPF), and band-stop filters (IBSF). 3. The magnitude response �H(ej�)� of a filter cannot be dis-
continuous at any frequency.These four filter types are given by:

4. The magnitude response �H(ej�)� and the phase
response �H(ej�) of a filter are not independent of each
other.

What these conditions mean as far as digital filter designs are
concerned is that:

1. Ideal responses cannot be achieved.
2. Optimization techniques must be employed to find the

causal filter whose magnitude response is closest to the
desired filter response. Because of the general form of a

1. ILPF: HILPF(e jω )=
{

1, ω < ωc

0, ω > ωc

2. IHPF: HIHPF(e jω )=
{

0, ω < ωc

1, ω > ωc

3. IBPF: HIBPF(e jω )=
{

1, ωcl < ω < ωch

0, otherwise

4. IBSF: HIBSF(e jω )=
{

0, ωcl < ω < ωch

1, otherwise
causal recursive digital filter [see Eq. (1)], these optimi-
zation techniques are nonlinear, and consequentlyThe bandwidth of a filter is specified as the width of the posi-
many different techniques with different convergencetive frequency range where the gain is greater than some
and design routes are available for the practicing engi-specified value. For example, when using the 3 dB bandwidth
neer to use. The engineer must choose the design tech-measure, the gain threshold is 3 dB below the maximum filter
nique for which available tools are suitable and forgain. If life were simple, then we would just implement the
which a given set of specifications can be matched.above filters directly and be done with the problem. However,

all causal filters must satisfy the Payley–Wiener (1) condi-
tions: One other problem in the design of recursive digital filters

that must always be considered is the phase response of the
1. The magnitude response �H(ej�)� of a filter cannot be zero designed system. In practice, the phase response of the filter

except at a finite number of frequencies. is ignored until the design is complete—that is, until design
techniques match only the magnitude response. Conse-2. The magnitude response �H(ej�)� of a filter cannot be con-

stant over any finite range of frequencies. quently, after the magnitude response is matched as closely
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as is practical, the phase response must be checked. Some-
times, special remedies like phase compensators are needed.
Because the phase responses of Butterworth and Chebyshev
II filters are nearly linear over the pass-band of the filter, the
group delay is nearly constant. However, the Chebyshev I and
elliptic filters are equal-ripple in the pass-band, causing a
nonlinear phase response. To reduce the distortion, an all-
pass filter can be cascaded with the original recursive filter.
The magnitude response of the cascade is unaltered (because
the all-pass filter gain is unity), but the phase response is
equal to the sum of the phase response of the original and all-
pass filters. The phase response (and order) of the all-pass
filter can be optimized to minimize the overall phase dis-
tortion.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

M
a

g
n

itu
d

e
 r

e
sp

o
n

se

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized frequency (Nyquist = 1)

r = 0.995

r = 0.8

DESIGN METHODS

Figure 11. Pole placement effect on the filter quality (frequency se-
We discuss two basic approaches to designing recursive digi- lectivity).
tal filters. First, we define certain special filter types that will
be useful for developing further ideas or that are useful di-
rectly in their own right. These special-type filters are often Coupled oscillators are used in phase-quadrature modulation
designed by directly manipulating the pole and zero locations. communication systems. These modulators generate sine and

cosine oscillations simultaneously and are most often imple-
Special Types mented using a CORDIC algorithm of Hu (2).

All-Pass. Consider the first-order system with transfer
function Notch and Comb Filters. A notch filter is a band-stop filter

with a pair of complex-conjugate zeros (z � e�j�0) on the unit
circle and a pair of resonant poles which has the transfer
function

Hap(z) = z−1 − a∗
1 − az−1

= −a∗ z − 1
a∗

z − a
(11)

The asterisk (*) indicates conjugation. This system has a pole
at z � a and a zero at the conjugate reciprocal location HN (z) = 1 − 2 cos ω0z−1 + z−2

1 − 2r cos ω0z−1 + r2z−2 (15)

z � 1/a*, both of which lie on the same radius in the complex
z plane, mirrored about the unit circle. For instance, if the The bandwidth of the notch is determined by the value of r;
filter pole is at a � rej�, then the filter zero is at 1/a* � r�1ej�. that is, the closer r is to the unit circle, the narrower the
Now, consider that the conjugate of the denominator of the notch, as exemplified in Fig. 11. A comb filter is a high order
transfer function evaluated along points of the unit circle (i.e., notch filter that has notches uniformly spaced around the
points of the frequency response) is z(z�1 � a*), which is z unit circle.
times the numerator. Consequently, the magnitude response
of this filter is 1 at all frequencies. However, the phase re- Direct Designs
sponse is a nontrivial function of the pole and zero. In this

Least-Squares Techniques. Consider the matrix equationfirst-order case, we can determine

Ha = g + e (16)Hap(e jω ) = e− j(ω+2 tan−1[r sin θ/(1−r cos(ω−θ ))])

H is an L � N matrix (i.e., it has L rows and N columns), aA general nth-order, real all-pass system has the form
is an N � 1 column vector of unknowns (the ‘‘solution’’ if you
will), g is an L � 1 column vector of ‘‘ideal’’ values or equali-
ties, and e is an L � 1 column vector of ‘‘errors.’’ The matrixHap(z) = an + an−1z−1 + · · · + a0z−n

a0 + a1z−1 + · · · + anz−n
(12)

equation given has two practical cases:

Resonators and Oscillators. A resonator is a two-pole band-
1. If L � N, then the square matrix equation Ha � g haspass filter with a pair of complex-conjugate poles (z � re�j�0)

a unique solution, a � H�1g and the error vector is zeronear the unit circle, which has a transfer function
(assuming that H�1 exists).

2. If L � N, then in general no solution yields an error
vector equal to zero, and we must find a solution whichHR(z) = b0

1 − 2r cos ω0z−1 + r2z−2
(13)

minimizes the error by some measure.
An oscillator is a resonator whose poles are on the unit circle

The most common solution to the second practical case is the(i.e., whose poles are z � e�j�0), with the transfer function
method of finding the least-squared error:

E ≡ ete = (Ha − g)t (Ha − g) = atHtHa − 2atHtg + gtg (17)
HO(z) = A sinω0

1 − 2 cos ω0z−1 + z−2
(14)



324 RECURSIVE FILTERS

The superscript t denotes transpose. To minimize E, we take diagonal elements to the right and down with the leftmost,
top element. Considerits derivative and set it equal to zero; that is,

∂E
∂a

= 0 = 2HtHa − 2Htg (18)

Evaluation of Eq. (18) results in the solution

a = (HtH)−1Htg ≡ H#g (19)

The solution is a minimum because the second derivative is
�2E/�a2 � HtH � 0 (i.e., the second derivative is positive defi-
nite). The orthogonality principle of the least-squares problem
results from a rewriting of Eq. (18). Consider that HtHa � Htg
� Hte � 0. Thus, the error is orthogonal to the columns of H.

The Autocorrelation and Covariance Methods. These methods
will determine autoregressive (AR) filters only. Suppose that
H(z) � 1/A(z), where A(z) is the denominator polynomial
given in Eq. (9). Then we know that H(z)A(z) � 1, and taking
the inverse ZT we have h(n)*an � �(n), which is valid for all
n 	 0. Writing the first L 
 1 equations and putting them in

RN ≡




L∑
n=0

h2(n)

L−1∑
n=0

h(n)h(n + 1)

L−1∑
n=0

h(n)h(n + 1)

L∑
n=0

h2(n)

...
. . .

L−N∑
n=0

h(n)h(n + N) · · ·

· · ·
L−N∑
n=0

h(n)h(n + N)

. . .
...

. . .
L−N∑
n=0

h(n)h(n + 1)

L−1∑
n=0

h(n)h(n + 1)

L∑
n=0

h2(n)




(22)

matrix form results in
Then we have the autocorrelation method solution (3)

a = h(0)R−1
N u1 (23)

To close this subsection, we consider the major performance
differences using the desired impulse response h(n) �
1.1nu(n). Consider first the covariance method design. Appli-
cation of Eq. (20) with L � 100 and N � 1 yields ACOV(z) �
0.9975 � 1.0972z�1, which has a root (a filter pole) at z � 1.1,
the exact location needed to match h(n) exactly. However, this




h(0) 0 · · · 0
h(1) h(0) · · · 0

...
. . .

. . .
...

h(N) n(N − 1) · · · h(0)

...
. . .

. . .
...

h(L) h(L − 1) · · · h(L − N)







a0

a1

...
aN


 =




1
0
...
0


 (20)

is an unstable design. Application of Eq. (23) yields AAC(z) �
1.000 � 0.9100z�1, which has a root at z � 0.91. While thisThe LS solution of Eq. (20) is called the covariance method of
solution does not precisely match the desired impulse re-Makhoul (3). Now consider that the covariance method solu-
sponse, it is stable. Note that the pole has been reflectedtion can be written as a � (HtH)�1h(0)u1, where u1 is the vec-
about the unit circle. We state without proof [proof may betor on the right-hand side of Eq. (20). Define �N � HtH so
found in many places; for example, see Hayes (4)] that thethat a � h(0)��1

N u1. Now
autocorrelation method always yields stable designs, while
the covariance method yields the most accurate (with respect
to matching the impulse response).

The Prony Method. In the Prony method as developed by
Burrus and Parks (5), we allow the filter to have zeros as
well as poles. In this situation we rewrite the ARMA transfer
function as H(z)A(z) � B(z), which has the inverse transform
relation h(n)*an � bn. This entails a rewriting of Eq. (20) to
remove the influence of the zeros as

�N =




L∑
n=0

h2(n)

L−1∑
n=0

h(n)h(n + 1)

L−1∑
n=0

h(n)h(n + 1)

L−1∑
n=0

h2(n)

...
. . .

L−N∑
n=0

h(n)h(n + N) · · ·

· · ·
L−N∑
n=0

h(n)h(n + N)

. . .
...

. . .
L−N∑
n=0

h(n)h(n + 1)

L−N∑
n=0

h(n)h(n + 1)

L−N∑
n=0

h2(n)




(21)

Examining Eq. (21), we can see that on each diagonal the
further right and down we go, the fewer terms are present in
the sum. More accuracy could be achieved by replacing all




h(M) h(M − 1) · · · h(M − N + 1)

h(M + 1) h(M) · · · h(M − N + 2)

...
. . .

. . .
...

h(M + N) h(M + N − 1) · · · h(M + 1)

...
. . .

. . .
...

h(M + L) h(M + L − 1) · · · h(M + L − N + 1)







a1

...
aN


 = −




h(M + 1)

h(M + 2)

...
h(M + L + 1)


 (24)
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To formulate the equations, we have assumed that a0 � 1.
The numerator coefficients in this method are determined di-
rectly using the relationship

bn = h(n) +
N∑

k=1

akh(n − k), n = 0, 1, . . ., M (25)

The solution of Eq. (25) produces zero error in the first M
terms of the impulse response (a Pade approximation). How-
ever, this is not the only solution possible, and several vari-
ants are possible. The Prony method is not guaranteed to
yield stable results.

The Stieglitz–McBride Method. The Stieglitz–McBride

��
��
yy
yy

��
��
yy
yy
��
��
��

yy
yy
yy

1

1 –   1

δ  2

δ

  cΩ   rΩ

Frequency (rad/s)

M
a

g
n

itu
d

e
 r

e
sp

o
n

se

method (6,7) minimizes the difference between the desired
Figure 12. Low-pass filter specifications showing passband rippleand designed filter impulse responses in an iterative fashion.
and corner frequency and stop-band attenuation and corner fre-This is in contrast to the Prony method solution given above.
quency.

Define the matrices

in the iterations. Otherwise, the Steiglitz–McBride method
converges quite rapidly, often after only a few iterations.

Designs from Analog Prototypes

Designing Analog Filters. One approach to the design of re-
cursive digital filters is to use the full body of knowledge de-
veloped over the many years of analog filter design, which are
by nature recursive. The typical approach is to design a low-
pass filter according to the magnitude response specifications
as indicated in Fig. 12. An analog filter has the transfer func-
tion

Ha(s) =
∑M

k=0 fksk

1 +∑N
k=1 gksk

= F(s)
G(s)

H =




h(0) 0 · · · 0
h(1) h(0) · · · 0

...
. . .

. . .
...

h(N) h(N − 1) · · · h(0)




Ĥ =




h(0) 0 · · · 0
h(1) h(0) · · · 0

...
. . .

. . .
...

h(M) h(M − 1) · · · h(0)

...
...

. . .
...

h(N) h(N − 1) · · · h(N − M)




(The first M + 1 columns of H)
The subscript a differentiates a continuous-time function
from the discrete-time function. Also,H([a]) and Ĥ([a]) are the corresponding matrices using the

impulse response of the AR ‘‘inverse’’ filter 1/(a0 

�N

k�1 akz�k). We have not scaled the zeroth-order coefficient to
unity.

Ha(s) =
∫ ∞

−∞
ha(t)e−st dt

The iteration on the AR parameters is
is the Laplace transform of the impulse response of the con-
tinuous-time filter. Because the filter is analog, N 	 M. The
filter is stable and causal if the poles of the analog transfer
function have negative real parts.

Butterworth. Butterworth filters have a maximally flat
magnitude response, and they consequently possess a phase
response that is close to linear. The main drawback is the




a0

a1

...
aN




i+1

= (H([a]i)H
)#

Ĥ
(
[a]i

)(
Ĥ([a]i)

)#



h(0)

h(1)

...
h(N)


 (26)

large transition region for any given order. The magnitude-
The numerator coefficients are then determined after conver- squared response is
gence of Eq. (26):

|Ha( j�)| = 1

1 +
(

j�
j�c

)2N (28)

We have used � to denote real (analog) frequency. In the s
domain, we have




b0

b1

...
bM


 = Ĥ([a])#




h(0)

h(1)

...
h(N)


 (27)

A good initial starting vector in the iteration can be obtained
using Eq. (24). Overestimation of the number of poles can re-
sult in a failure of the denominator coefficients to converge

Ha(s)Ha(−s) = 1

1 +
(

s
j�c

)2N (29)
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�c is the 3 dB frequency. To determine the poles, we set the The poles lie equally spaced on an ellipse centered about the
origin of the s plane. The filter has no finite zeros. The poledenominator of Eq. (29) equal to zero and solve, yielding
locations are determined using the variables

sk = �ce j(π/2+π (2k−1)/2), k = 1,2, . . ., 2N (30)
α = 1

N
sinh−1

(
1
ε

)
(36)

All of the poles lie on a circle in the s-plane of radius �c cen-
tered at the origin. Half of the poles have negative real parts.
The other half are mirrored about the j� axis and thus have
positive real parts. To obtain a stable and causal filter, Ha(s)

βm =




π
2m + 1

2N
, m = 0, 1, . . .,

N
2

− 1; N even

π
2m + 1

2N
, m = 0, 1, . . .,

N − 1
2

− 1; N odd
(37)

contains only the poles with negative real parts, with Ha(�s)
containing the remaining half. The filter has no finite zeros.

The poles of the analog filter are then located at the N loca-To determine the order required to meet design specifications
tions in the s-plane:as shown in Fig. 12, consider that

sm = − sinh(α) sin(βm) ± j cosh(α) cos(βm) (38)

If the filter order is odd, then one of the poles is real and
located at the s-plane location s � �sinh(�). A type II Cheby-

δ2 = 1

1 +
(

j�r

j�c

)2N

shev filter has magnitude-squared response

Solving for N, we can see that we must require the integer
order N to be such that |Ha( j�)|2 = 1

1 + ε2




T2
N

(
�r

�c

)

T2
N

(
�r

�

)



(39)

N ≥
log10

(
1
δ2

2

− 1

)

2 log10

(
�r

�c

) (31)

This filter has an equal-ripple response in the stop-band, with
a flat response in the pass-band. The relationships given in
Eqs. (34) and (35) remain valid. The poles do not lie on anyChebyshev. A more rapid roll-off of the magnitude re-
simple geometric shape as before, and this filter has finitesponse at the cut-off frequency can be achieved with the mag-
zeros that lie on the imaginary axis of the s-plane. Using thenitude-squared response of the type I Chebyshev filter:
definitions of Eqs. (36) and (37), we have the pole locations

|Ha( j�)|2 = 1

1 + ε2T2
N

(
�

�c

) (32) sm = − sinh(α) sin(βm)

[sinh(α) sin(βm)]2 + [cosh(α) cos(βm)]2

± j
cosh(α) cos(βm)

[sinh(α) sin(βm)]2 + [cosh(α) cos(βm)]2

(40)

This filter has an equal-ripple response in the pass-band and
has a flat response in the transition and stop bands. The If the filter order is odd, then one of the poles is the single
Chebyshev polynomial TN(x) � cosh(N cosh�1 x) can be gener- real pole at s � �1/sinh(�). As for the finite zeros, they occur
ated recursively using the relation (and initial polynomials at the locations
T0(x) � 1 and T1(x) � x)

s = ± j sec(βm) (41)
TN+1(x) = 2xTN (x) − TN−1(x), N = 2, 3, . . . (33)

If the filter order is odd, then the filter will have one infinite
zero in addition to the N � 1 listed in Eq. (41).Since TN(1) � 1 for all N, we can solve Eq. (32) for 
, yielding

Elliptic. Elliptic (or Cauer) filters display equal-ripple re-
sponses in both the pass and stop bands. For a given filter
order, allowable pass-band ripple, and stop-band rejection, no
other filter type can provide a narrower transition region. The

ε2 = 1
(1 − δ1)2

− 1 (34)

magnitude-squared response is

Similarly to the Butterworth derivation, we can also deter-
mine that the integer order must satisfy |Ha( j�)|2 = 1

1 + ε2U2
N

(
�

�c

) (42)

The Jacobian elliptic function UN(x) must be computed nu-
merically via computer (or looked-up in a table; e.g., see Refs.
8–10). Software programs are now almost exclusively relied

N ≥
cosh−1

(
1

δ2ε

)

cosh−1
(

�r

�c

) (35)
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upon to perform these filter designs. To locate the poles and In the case where the filter order N is odd, the real pole is
located atzeros of the filter, we need to first define a few terms:

• Incomplete elliptic integral of the first kind: IEI(�, k) �
��

0 (1 � k2 sin2(x))�1/2 dx
• Elliptic sine: sn(u, k) � sin(�)
• Elliptic cosine: cn(u, k) � cos(�)
• Elliptic tangent: sc(u, k) � tan(�)

sm = −
sn


α,

√
1 −

(
�c

�r

)2

 cn


α,

√
1 −

(
�c

�r

)2



1 − sn2


α,

√
1 −

(
�c

�r

)2



(48)

The complete elliptic integral of the first kind is defined in
The zeros are purely imaginary:terms of the IEI:

CEI(k) = IEI
(π

2
, k
)

(43) sm = ± j
1(

�c

�r

)
sn
(

βm,

(
�c

�r

)) (49)

The order of the elliptic filter required to meet the specifica-
tions is

Example: Suppose we wish to design low-pass filters with
the following specifications:

• Passband ripple of 0.25 dB
• Stopband rejection of 50 dB
• Passband cutoff at 1000 Hz

N ≥

CEI
(

�c

�r

)
CEI



√√√√√1 − ε2

1
δ2

− 1




CEI




ε√
1
δ2

− 1


CEI



√

1 −
(

�c

�r

)2



(44)

• Stopband starts at 1500 Hz
• Sampling rate is 10 kHzThe pole and zero locations are then determined:

The required order for each filter type described above is com-
puted: Butterworth 16, Chebyshev I and II 8, and Elliptic 5.
We have shown the resulting magnitude responses in Fig. 13.
The equal-ripple natures of the Chebyshev and elliptic filters
can be seen in both the pass band and stop band zooms. The
elliptic filter is the most efficient design, but the alternations
in the magnitude response across the pass-band create sig-
nificant distortion in the phase response, and thus create sig-
nificantly different group delays.

Analog-Domain to Digital-Domain Conversions. Once we
have an analog prototype, we must somehow convert Ha(s) to
the desired digital filter H(z). We desire a mapping of the s-
plane into the z-plane that preserves both of the following:

1. Stability. The half-plane of s with negative real parts

cn
(

βm,
�c

�r

)
dn
(

βm,
�c

�r

)

sm = −
sn


α,

√
1 −

(
�c

�r

)2

 cn


α,

√
1 −

(
�c

�r

)2



1 − dn2

(
βm,

�c

�r

)
sn2


α,

√
1 −

(
�c

�r

)2



± j

dn
(

βm,
�c

�r

)
dn


α,

√
1 −

(
�c

�r

)2


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(45) must map to the interior of the unit circle of the z plane.
2. Frequency response. The imaginary axis in the s planeWe have used

must map to the unit circle of the z plane.

The two most commonly used methods [and apparently the
most effective according to Jackson (11) and Rabiner and Gold
(12)] for accomplishing these tasks are impulse invariance
and the bilinear transformation. We consider them in order.

Impulse Invariance. The idea in impulse invariance is rela-

α =

CEI
(

�c

�r

)
sc−1




1
ε
,

ε√
1
δ2

− 1




N · CEI

(
ε

√
1
δ2

− 1

) (46)

tively straightforward: Let h(n) � ha(nT); that is, set the im-
pulse response of the discrete-time filter equal to a sampled
version of the analog filter impulse response. Because this is
sampling, the frequency response of the digital filter is the
aliased spectrum

H(e jω ) = 1
T

∞∑
k=0

Ha

(
j
�

T
+ j

2π

T
k
)

(50)

βm =




(2m + 1)CEI
(

�c

�r

)
N

, m = 0,1, . . .,
N − 1

2
− 1, N odd

(2m + 2)CEI
(

�c

�r

)
N

, m = 0,1, . . .,
N
2

− 1, N even

(47)
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Figure 13. Classical design magnitude responses showing flat and equiripple responses.

The mapping is many-to-one from the s plane to the z plane. Thus
Consequently, no inverse mapping exists. With regard to sta-
bility, consider that Eq. (50) implies that z � esT. So, assuming
that s � � 
 j�, we have z � e�Tej�T � rej�. Now we can see
that for � � 0 we have r � 1, so the stability is preserved

H(z) =
N∑

k=1

Ak

1 − eskT z−1

(condition 1 above). One can easily verify that the imaginary
axis of the s plane maps to the unit circle of the z plane (condi- While the poles are mapped from the s plane to the z plane
tion 2 above). A word of caution: The imaginary axis of the s via the transformation z � esT, the zeros are not. They are
plane wraps around and around the unit circle of the z plane functions of the Ak and sk for each k. To preserve scale, we
(the aliasing) without end. To view impulse invariance in an-

often multiply through by T to eliminate the division in Eq.
other way, consider the partial fraction expansion of the con-

(50), resulting intinuous-time transfer function with simple poles (multiple
poles can be dealt with; see the discussion on the parallel
form in a later section):

H(z) =
N∑

k=1

TAk

1 − eskT z−1
(51)

Ha(s) =
N∑

k=1

Ak

s − sk
Because of the aliasing inherent to the method, only band-
limited filter designs are suitable for impulse invariance de-Taking the inverse Laplace transform yields
signs. Furthermore, pass-band ripple cannot be preserved, so
that elliptic and type II Chebyshev filter designs cannot be
performed (in general).ha(t) =

N∑
k=1

Akesktu(t)
Bilinear Transformation. In contrast to the impulse invari-

ant technique, the bilinear transformation is a one-to-one
so that

mapping of the s plane onto the z plane. The problem in the
impulse invariance method is the aliasing of the spectrum. To
eliminate the aliasing potential, we ‘‘compress’’ the s plane
into a strip around the real axis of the s plane as shown

h(n) =
N∑

k=1

AkesknT u(nT )



RECURSIVE FILTERS 329

tially, we look for transformations that accomplish the follow-
ing:

LPF ↔




LPF

HPF

BPF

BSF

To accomplish these transformations, we need to find a map-
ping of the z plane such that the designed LPF H(z) trans-

jΩ j

j
T

Ω^

σσ ^

^

π

—j
T
π

s-planes-plane forms to the desired frequency response Hd(z). Define the
mapping transformationFigure 14. Bilinear transformation mapping of the entire s-plane

into the compressed s-plane to prevent aliasing.
ẑ = G(z) (55)

This mapping must preserve
in Fig. 14. The compression is a result of the mapping
ŝ � (2/T) tanh�1 (sT/2). Then s � �� � ŝ � �j(�/T) and 1. Stability: the interior of the unit circle in z must map
s � 0 � ŝ � 0. Now, if we take the mapping z � eŝT, we have to the interior of the unit circle of ẑ
ŝ � (1/T) ln z. Using the fact that s � (2/T) tanh (ŝT/2), we 2. Causality: the unit circle in z must map to the unit cir-
see cle of ẑ

The second condition implies that G(z) should be an all-
pass system. This can readily be seen from a close examina-

s = 2
T

1 − z−1

1 + z−1 (52)

tion of Eq. (55) and taking the absolute value of both sides.
Any mapping G(z) that is of the form given in Eq. (12) willThus, different from the impulse invariance technique, the
accomplish frequency transformation. The most typical trans-bilinear transformation is an algebraic one-to-one transfor-
formations are given in Table 1. Derivations of these formulaemation that is invertible; that is,
can be found many places—in particular, Constantinides (13).
As an example, consider the LPF system with pole z � c and
zero z � �1:

z =
1 + T

2
s

1 − T
2

s
(53)

H(z) = 1 + z−1

1 − cz−1

Let z � rej�. Then Using the second row of Table 1, we transform the LPF to an
HPF as

s = 2
T

r2 − 1
1 + r2 + 2r cos φ

+ j
2
T

2r sinφ

1 + r2 + 2r cos φ
≡ σ + j�

We can now see that for � � 0 we have r � 1, so the stability
is preserved (condition 1 above). Also, the frequency response

Hd (z) =
1 −

(
1 − ξz−1

z−1 − ξ

)−1

1 + c
(

1 − ξz−1

z−1 − ξ

)−1 = 1 + ξ

1 − cξ
1 − z−1

1 + c − ξ

1 − cξ
z−1

is preserved because the real part of s vanishes when r � 1
(condition 2 above). In this case, we have

The filter Hd(z) has a zero at z � 1 and a pole at
z � �(c � �)/(1 � c�). Note that poles and zeros map ac-
cording to the table transformation. Consequently, the trans-� = 2

T
2 sinω

2(1 + cos ω)
= 2

T
tan

ω

2
(54)

formations can be accomplished by either (a) transforming the
poles and zeros according to the frequency transform and re-
constructing the transfer function or (b) direct substitution ofEquation (54) is called the frequency warping of the bilinear
the frequency transformation into the original LPF transfertransformation. To account for the warping, the analog fre-
function.quency design specification must be prewarped. One signifi-

cant problem of the bilinear transformation is that the infi-
nite poles and zeros of analog filters are mapped to z � �1

FINITE PRECISION EFFECTS AND FILTER STRUCTURESin H(z). Thus, Butterworth designs that have N zeros at in-
finity will have N zeros at z � �1 in H(z).

Because all digital filters are implemented using digital hard-
ware that performs mathematical computations using a fixed

Frequency Transformations. To design any of the four classi- number of bits, certain losses due to rounding (quantization)
cal filter shapes, we must determine methods for converting are expected. The ordering of the computations used to com-

pute the output values from the input values and previousan original low-pass filter to any of the other shapes. Essen-
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Table 1. Frequency Transformations

Hd(z) G(z) Parameters

1 � �z�1

z�1 � �
� �

sin ��c � �̂c

2 �
sin ��c 
 �̂c

2 �Low-pass with cutoff �̂c

� �

cos ��c 
 �̂c

2 �
cos ��c � �̂c

2 �High-pass with cutoff �̂c ��1 � �z�1

z�1 � �
�

Band-pass with cutoffs �̂c
l
, �̂c

h
��1 
 �z�1 
 �z�2

z�2 
 �z�1 
 � � K � cot ��̂c
h
� �̂c

l

2 � tan ��̂c

2�

� �

cos ��c 
 �̂c

2 �
cos ��c � �̂c

2 �
� �

�2�K
K 
 1

, � �
K � 1
K 
 1

1 
 �z�1 
 �z�2

z�2 
 �z�1 
 �
Band-stop with cutoffs �̂c

l
, �̂c

h
K � cot ��̂c

h
� �̂c

l

2 � tan ��̂c

2�

� �

cos ��c 
 �̂c

2 �
cos ��c � �̂c

2 �
� �

�2�

K 
 1
, � �

1 � K
1 
 K

output values is critical to filter performance. In this section, has an SFG shown in Fig. 16. This SFG is essentially the
algorithm for directly computing the difference equation ofwe first detail mathematical descriptions of filters so that

these round-off errors can be analyzed. We then examine the the digital filter. We do not have to be so restrictive in com-
puting the filter output. To understand how we can be lessphysical natures of the round-off errors and finally close with

the filter implementation synthesis methods incorporating restrictive, we introduce the concept of state-space digital
filters.the round-off analysis.

State-Space. The state of a system is its memory. KnowingMathematical Descriptions
the state of a system means that we know what happened

Round-off errors that occur in the computation of a filter out- previously, so that future outputs can be computed from the
put result from the filter coefficients (the design) and from
the internal (partial result) signals that are a natural result
of the computational order. These two error types require the
filter designer to be able to specify the coefficients, the order
of computation, and the internal signals resulting from these
computations.

Signal Flow Graphs. A graphical technique for specifying
filter implementations is the signal flow graph (SFG). This
directed graph has two basic elements: nodes and directed
edges called ‘‘branches.’’ Nodes are signals, and branches
specify computations and timing. For our purposes, only the
three groups shown in Fig. 15 are required: sum, amplify, and
delay. The SFG describes a method of computing the system
output for any input sequence. For example, the second-order
filter

v(n)

v(n)

w(n)

x(n) = v(n) + w(n)

x(n) = av(n)
a

(a) Sum

(b) Amplify

w(n)
z–1

w(n – 1)

(c) Delay

Figure 15. Signal flow graph components.
H(z) = r

1 − a1z−1 − a2z−2 (56)
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Quantization Errors

Because digital filters are implemented using either fixed-
point or floating-point arithmetic, two basic quantization er-
rors result. Coefficient quantization causes the implemented
filter to have poles and zeros slightly different from the de-
signed filter. If the implemented structure is sensitive to the

x(n) y(n)
r

a1

a2

z–1

z–1

perturbations, the filtering operation performed by the real-
Figure 16. Second-order digital filter SFG. ized filter could be inappropriate, or the filter could become

unstable. Also, internal signal quantization can result in limit
cycles, which are ‘‘stable’’ oscillations or erroneous outputs.
To minimize the distortion caused by internal signal quanti-states and present input without actually having to know
zation, fixed-point implementations need to be scaled appro-what any of the past inputs were. Therefore, since the system
priately, while floating-point realizations are auto-scaled.in Eq. (56) requires the retention of two past outputs, we need

two states to describe the second-order system. The minimum
Coefficient Quantization. Coefficient quantization results innumber of states required to describe a filter is equal to the

the realized filter having poles and zeros that are differentorder of the filter, though more states may be used. In any
from the (infinite precision) designed filter poles and zeros.SFG, the natural states are the nodes at the arrowhead ends
For example, consider the second-order all-pole filterof the delay branches. In our example, if we use the top delay

branch to define state one (v1(n)) and the bottom delay branch
to define state two (v2(n)), we can write the two state equa- H(z) = 1

1 + a1z−1 + a2z−2
tions in matrix form:

Suppose that the filter has a pair of complex-conjugate poles
at z � p, p* such that

[
v1(n + 1)

v2(n + 1)

]
=
[

a1 a2

1 0

][
v1(n)

v2(n)

]
+
[

r
0

]
x(n) (57)

The state equations relate the current state to the ‘‘next’’
a1 = −2Re{p}
a2 = |p|2

state. We also need to define the output in terms of the state
and input, which is accomplished via the output equation

Quantization of the parameters of the transfer function re-
sults in a quantization of the real part of the poles, as well as
the square-root of the pole radii. If we quantize each parame-
ter (coefficient) to b bits, then the realized poles must be lo-

y(n) = [a1 a2]

[
v1(n)

v2(n)

]
+ rx(n) (58)

cated in the z plane at the intersection of b uniformly spaced
vertical lines and b nonuniformly spaced circles (due to theIn general, we may write the two equations
squaring). Thus, the density of realizable pole locations is
denser near the points z � �j than near the points z � �1.
Oversampling by substantially more than the minimum Ny-

v(n + 1) = Av(n) + bx(n)

y(n) = cv(n) + dx(n)
(59)

quist rate increases the coefficient sensitivity because we are
‘‘squashing’’ the low frequencies toward z � 1 [see DeBrunnerThe state matrix A has N rows and N columns (where N is
and Beex (14)]. This may seem counterintuitive because asthe number of states), the input vector b has N rows, and the
the sampling frequency is increased, we should approach aoutput vector c has N columns. The feed-through d is a scalar.
continuous-time filter. However, even though aliasing is re-We say the system is �A, b, c, d�. If we desire the input/output
duced, we now not only require faster hardware, but since thetransfer function, we need to take the Z-transform of Eq. (59)
sensitivity is increased we also require more accurate hard-and collect like terms to see
ware! With higher-order filters, increased sensitivity results.
Also, coefficient sensitivity increases as pole magnitudes ap-H(z) = ct (zI − A)−1b + d (60)
proach unity—that is, as the poles get close to the unit circle
in the z plane. In the example shown in Fig. 8, a tenth-orderI is the N � N identity matrix (i.e., the N � N matrix with
low-pass elliptic filter with transition region between 0.04 andones on its diagonal and zeros everywhere else). We state
0.06, pass-band ripple 0.9 dB, and stop-band attenuation ofwithout proof that the poles of the filter are the eigenvalues
at least 120 dB is designed. The designed filter has a maxi-of A. The zeros of the filter are in general not apparent di-
mum pole radius of 0.9979. When the coefficients are quan-rectly from the state-space equations. Now, the state-space
tized with as many as 40 bits, the maximum pole radius isdescription gives us another implementation of the system be-
1.0333. With even fewer bits, the maximum pole radius of thecause we can compute the output using Eq. (59). An equiva-
implemented filter is even larger.lent system to �A, b, c, d� with different (new) states ṽ may be

obtained using the state transformation matrix ṽ � T�1v,
where T is any invertible matrix of appropriate dimension. Internal Signal Quantization. Scaling is required in all fixed-

point digital filters. The scaling of all internal signals re-The new system is �Ã � T�1AT, b̃ � T�1b, c̃ � cT, d�. The
input and output remain unchanged; consequently, the trans- sulting from a multiplication and add is used to prevent any

register or memory location overflow. In the state-space no-fer function given in Eq. (60) is valid for both system descrip-
tions. menclature, this means scaling to the states. If the internal
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ing or by using saturation arithmetic, which is achieved by
limiting the result of any calculation to be less than M in
magnitude.

Structures

The way in which the calculations required to compute the
filter output are performed is called the structure of the filter.
All forms start with the difference equation given in Eq. (1).
However, as we have seen, structures based on these direct
computations suffer from significant quantization effects.
Thus, we introduce several other forms. One definition is re-

Table 2. Limit Cycle Caused by Quantization

Rounding to Rounding to
Sample Nearest Hundredth Nearest Tenth

0 �0.9 �0.9
1 0.81 0.8
2 �0.72 �0.7
3 0.65 0.6
4 �0.59 �0.5
5 0.53 0.5
6 �0.48 �0.5
7 0.43 0.5

quired: A canonical structure has the minimum number of
amplify and delay branches.

transfer function from the filter input to the ith state is de-
Direct Forms. Consider writing the transfer function of Eq.noted Fi(z) with the corresponding impulse response f i(n),

(9) as the cascade of the filter H1(z) � �M
k�0 bkz�k followed bythen a necessary and sufficient condition to ensure that no

the filter H2(z) � 1/(1 
 �N
k�1 akz�k). The internal signals andoverflow occurs at the state node is to require for each state

the ordering of the computations that result arethat

∞∑
n=0

| fi(n)| ≤ 1 (61) w(n) =
M∑

k=0

bkx(n − k) (62)

This constraint is often overly restrictive, and other scaling
bounds provided by Jackson (11) can be used which control y(n) = w(n) −

N∑
k=1

aky(n − k) (63)

the number of instances of overvlow. A practical note when
summing more than two numbers in 1’s or 2’s complement The SFG is given in Fig. 17. This direct form I structure re-
form: If the result is small enough to be represented in the quires keeping the most recent M inputs and the most recent
memory, the correct sum will be obtained regardless of the N outputs in memory. Also, N 
 M 
 1 coefficients are re-
order in which the numbers are added and regardless of quired. Since the filter order is max(N, M), the direct form I
whether any intermediate result causes overflow. Conse- structure is not a canonical structure. However, if we swap
quently, it may be desirable to defeat the normal overflow the order of the cascaded subfilters so that the AR portion
detection circuitry in the hardware. comes first, we can reduce the number of memory locations

Limit-cycle oscillations occur for two reasons: quantization required to implement the filter to the filter order, resulting
and overflow. Consider the first-order system with difference in the canonical direct form II structure. The internal signals
equation and the ordering of the computations that result are

y(n) = x(n) − 0.9y(n − 1)

This stable system has a pole at z � �0.9. Now, suppose the
v(n) = x(n) −

N∑
k=1

aky(n − k) (64)

system is run with initial condition y(0) � 1 and no input.
The output sequence using rounding to the nearest hun-
dredth and rounding to the nearest tenth is given in Table 2.

y(n) =
M∑

k=0

bkv(n − k) (65)

Notice that after the fifth sample, the more coarsely quan-
tized implementation has an output oscillating between �0.5
and 
0.5. This is the limit cycle. The more finely quantized
implementation also has a limit cycle, which occurs when the
output reaches �0.05. Consequently, we see that the limit cy-
cles caused by quantization can always be reduced in magni-
tude to acceptable levels by using a sufficient number of bits.
This example (with the rounding to the nearest tenth) is
shown in Fig. 9. Limit cycles due to overflow (lack of proper
scaling) must be stopped in all cases. Again, an example is
given to indicate the nonlinear process. Suppose that M is the
full-scale value that the memory can hold. Now, consider the
total sum 1.1(2M/3) 
 0.9(2M/3). The overflow result will be
�2M/3 instead of the correct value 4M/3 if 2’s complement
arithmetic is used. Hence, the stable (pole is at radius 0.9847)
zero-input AR difference equation y(n) � 1.1y(n � 1) �

x(n) w(n) y(n)

a1

a2

b1

b2

aN –1

aN

bM – 1

bM

z–1

z–1

z–1

z–1

z–1

z–1

0.9y(n � 2) can support an overflow oscillation of amplitude
2M/3 and frequency equal to half the sampling frequency. Figure 17. Direct form I structure SFG showing ‘‘extra’’ delay

branches.Overflow limit cycles can be eliminated either by proper scal-
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As in the parallel form, the second-order subfilters are imple-
mented in the direct form II structure. It is common practice
to place the subfilters with lowest magnitude later in the
cascade.

Lattice. The general ARMA lattice structure SFG is shown
in Fig. 19. The parameters are derived using the backward
Levinson recursion

ak−1(i) = ak(i) − ak(k)a∗
k(k − i)

1 − |ak(k)|2 ,
i = 1, 2, . . ., k − 1;
k = N, N − 1, . . ., 2

(70)

x(n) y(n)

a1

a2

b1

b0

b2

aN –1

aN

bM – 1

bM

z–1

z–1

z–1

The subscripts denote order; thus the recursion starts with
Figure 18. Direct form II canonical structure showing the minimum the transfer function denominator coefficients subscriptednumber of delay branches.

with N. Then, the reflection coefficients are obtained:

�i = ai(i), i = 1, 2, . . ., N (71)
The SFG is shown in Fig. 18. Note that this structure does
not maintain delayed versions of either the input or the out- The zeros are implemented with the tap coefficients [the
put signals, but rather maintains delayed versions of the in- cm( j)] that are obtained by solving the set of equations
ternal signal v(n).

Parallel and Cascade. The parallel structure is based on the bM(k) =
M∑

j=k

cM( j)a∗
j ( j − k) (72)

partial fraction expansion of the transfer function, H(z) �
�(N
1)/2

k�1 Hk(z), where
This form is often used when a low-sensitivity implementa-
tion is desired.

Hk(z) = γ0k + γ1kz−1

1 + α1kz−1 + α2kz−2
(66)

Wave Filters. Wave digital filters (WDF) were introduced
by Fettweiss in the early 1970s and described fully in Ref. 17.

Assuming that the order of the MA part (H1(z) from the previ- In their most basic form, the WDF are passive analog ladder
ous section) is less than the order of the AR part [H2(z) from and lattice filter designs that have been bilinear-transformed.
the previous section] and that the transfer function H(z) has These forms allow low-delay realizations and filters with coef-
only single poles, the transfer function may be expanded in ficients implemented with only a few bits. Thus, this struc-
the partial-fraction expansion ture has become very important in systems demanding high

data rates, such as sonar, video, and microwave frequency
communications. The primary benefit of reducing the number
of bits in the coefficients is that the multiplication is replaced

H(z) =
N∑

k=1

Ak

1 − pkz−1 (67)

by a few shifts and one less add. The lattice WDF consists of
two parallel signal paths containing cascades of second-orderThe pk are the N distinct poles of H(z). The Ak are determined
all-pass filters, with a first-order all-pass filter section re-using
quired if the overall filter order is odd. The two outputs of the
last section are added to form the filter output. It is possibleAk = [H(z)(1 − pkz−1)]z=pk

(68)
to construct a WDF so that two complementary outputs are
available from one filter (In fact, the most common construc-

Further details on the partial-fraction expansion may be tion provides this capability). Thus, for instance, we can con-
found in Oppenheim et al. (15) or in Oppenheim and Schafer struct a WDF that provides one low-pass filtered output and
(16). Each second-order section is implemented as a direct one high-pass filtered output.
form II filter. If the original filter order is odd, then one of the Methods to design a WDF are to straightforwardly trans-
subfilters is a first-order filter. The second-order subfilters are form a passive analog filter design with the bilinear transfor-
used to allow the realization of complex-conjugate pole pairs mation. However, Gaszi (18) has provided methods for imple-
with real-valued coefficients. No design method for collecting menting the Butterworth, Chebyshev, and elliptic filters
real poles in the second-order sections exist; however, it is described in the previous section. WDF design for nontradi-
common practice to collect the real poles to provide maximal tional frequency shapes is a current research task.
distance between the poles of each subfilter.

The cascade structure uses the factorization of the transfer
Optimal Forms. Mullis and Roberts (19,20) first developedfunction, H(z) � �(N
1)/2

k�1 Hk(z), where
the optimal form. It is based on two matrices from system
theory: the controllability Grammian K � AKtA 
 bbt and the
observability Grammian W � AtWA 
 ctc. The names of these
two matrices do not have any relative meaning to us. How-

Hk(z) = 1 + β1kz−1 + β2kz−2

1 + α1kz−1 + α2kz−2
(69)
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Figure 19. Lattice structure SFG illus-
trating its order modularity.
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(b) ARMA lattice

KN KN – 1

cN – 1 c1cN
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x(n)
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ever, the solutions to these two Nth-order algebraic Lyapunov is computed from
equations are

kij = 1
2π j

∮
u

∂H(z)

∂ci

∂H(z−1)

∂c j

dz
z

(Note that kii =
∞∑

n=0

| fi(n)|2)

(73)

λ∗
i =




N∑
m=i

θm

Nθi




1/2

The � 2
i are the eigenvalues of K0W0 (the product of thewij = 1

2π j

∮
u

∂H(z)

∂bi

∂H(z−1)

∂bj

dz
z

(74)
grammians of the state-space structure).

2. Solve for the Cholesky factor T0 whereOne method for constructing the transformation matrix T re-
quired to convert the direct form II structure (described in T0Tt

0 = K0state-space) to the optimal form is given by Hwang (21). In
this transformation, the controllability grammian diagonals

3. Finally, solve for the orthogonal matrix R1 where(the kii, i � 1, 2, . . ., N) are forced to unity, and so the deter-
mination of the optimal form is reduced to the problem of
minimizing the trace of the observability grammian tr(W)—
that is, minimizing the sum of the diagonal elements of the
grammian. While simplifying the problem, the important rea-
son for constraining the controllability grammians is that the
resulting filter will be scaled, as can be seen by comparing

Rt
1Tt

0W0T0R1 =




θ2
1 0 · · · 0

0 θ2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 θ2

N




the defining relation given in Eq. (73) with the scaling condi-
tion given in Eq. (61). Consequently, an important property The transformation matrix that converts the present state-
of the optimal forms is that overflow oscillations decay to zero. space form to the optimal form is then given by
The construction algorithm is based on the solution of three
basic matrix equations (21). T = T0R1�

∗Rt
0 (75)

1. Determine the orthogonal matrix R0 from
and the optimal state space structure obtained is �T�1AT,
T�1b, ctT�. The new grammians are

{T−1K0T−t, TtW0T} (76)

Because the state-space form is full of non-structural parame-
ters, the form is not canonical. Consider that an Nth-order

R0(�∗)−2Rt
0 =




1 % · · · %

% 1
.. .

...
...

. . .
. . . %

% · · · % 1




≡ K

canonical filter requires 2N 
 1 coefficients while the optimal
form requires N2 
 2N 
 1 coefficients. Recognizing this prob-The % means ‘‘don’t care.’’ The diagonal matrix
lem, two attractive alternatives are the block- and section-
optimal structures developed by Jackson, et al. (22). These
forms are based on the parallel and cascade forms, respec-
tively. Each of the second-order subfilters in the parallel or
cascade structures is implemented using a second-order opti-
mal structure. These designs, while suboptimal, often perform
very well, with quantization noise power being very close to

�∗ =




λ∗
1 0 · · · 0

0 λ∗
2

. . .
...

...
. . .

. . . 0
0 · · · 0 λ∗

N



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optimal. The number of filter parameters has been reduced 2. The parallel form is
to 4N. The parameters of these forms are obtained from the
second-order transfer function

H(z) = γ1z−1 + γ2z−2

1 + β1z−1 + β2z−2 + d

The second-order optimal state-space form is then constructed
using the following:

v(n + 1) =




0 1 0
−0.689750194 1.316988002 0

0 0 0.657873146


 v(n)

+




0
1
1


 x(n)

y(n) = [0.262118112 − 0.20426974 0.283603691]x(n)

The sensitivity is 15.70.
3. The cascade form is

v(n + 1) =




0 1 0
−0.689750194 1.316988002 0
−0.397527345 1.607214942 0.657873146


 v(n)

+




0
1
1


 x(n)

y(n) = [0 0 0.079306721]x(n)

The sensitivity is 43.51.
4. The optimal form is

â11 = â22 = −β1

2

â12 = 1 + γ2

γ 2
1

[(
γ2 − β1γ1

2

)
+ (γ 2

2 − γ1γ2β1 + γ 2
1 β2)1/2

]

â21 = 1
1 + γ2

[(
γ2 − β1γ1

2

)
− (γ 2

2 − γ1γ2β1 + γ 2
1 β2)1/2

]

b̂1 = 1 + γ2

2

b̂2 = γ1

2

ĉ1 = γ1

1 + γ2

ĉ2 = 1

The optimal form is then the scaled network �T�1ÂT, T�1b̂,
ĉT, d�, where

v(n + 1) =




0.6672421816 0.0588820057 0.1297010701
0.0951152564 0.6488117266 0.5866572779
0.089399279 −0.4660588199 0.6588073673


 v(n)

+




0.6221731984
−0.1549534962

0.6111579978


 x(n)

y(n) = [0.2917887397 0.2806760077 − 0.09612048753]x(n)

T =




1
2π j

∮
u

∂H(z)

∂γ2

∂H(z−1)

∂γ2
0

0
1

2π j

∮
u

∂H(z)

∂γ1

∂H(z−1)

∂γ1


 (77)

The sensitivity is 8.81.
5. The block-optimal form isExample

We include a design example that shows the effects of finite
precision on recursive filter implementation. The example
uses the third-order low-pass digital filter with transfer func-
tion

v(n + 1) =




0.658494001 0.684463705 0
−0.3742139062 0.658494001 0

0 0 0.657873146


v(n)

+




0.312887592
−0.652953035

0.753128756


 x(n)

y(n) =[−0.326470236 0.156440787 0.376567338]x(n)

H(z) =
0.079306721z−1 + 0.023016947z−2 + 0.0231752363z−3

1 − 1.974861148z−1 + 1.556161235z−2 − 0.4537681314z−3

The sensitivity is 7.34. This sensitivity is lower than the
optimal form sensitivity, probably because of numericalThe forms described previously and the corresponding sensi-
inaccuracies incurred in the computation of the optimaltivities as measured using the technique given by DeBrunner
form and because the sensitivity measure provides onlyand Beex in (14) are as follows:
a linear upper bound to the output quantization noise
power.1. The direct form II is

6. The section-optimal form is

v(n + 1) =




0 1 0
0 0 1

0.4537681314 −1.556161235 1.974861148


v(n)

+




0
0
1


 x(n)

y(n) = [0.0231752363 0.023016947 0.079306721]x(n)

v(n + 1) =




0.658494001 0.50628116 0
−0.5059162 0.658494001 0
1.787303811 0.851076483 0.657873146


 v(n)

+




0.338621722
0.711122804
0.753128756


 x(n)

y(n) =[0 0 0.105303004]x(n)

The sensitivity is 24.79.The sensitivity is 93.71.
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We can see from the above that the block-optimal and optimal (79) is apparently considerably more computationally effi-
cient. Extensive application of the methods indicated that theforms have the lowest coefficient sensitivity by a factor of two

better than the next lowest form (the parallel form). Analysis proposed techniques compare favorably in performance to ex-
isting techniques, and that the computational complexity isof the output quantization noise power as a function of fixed-

point word-length shows that: reduced. Occasional stability problems were noted in the ar-
ticle.

The noniterative approach by Pei and Shyu (28) uses a1. The section-optimal form possesses the lowest error at
10 bits. technique based on the computation of an eigenvalue and its

corresponding eigenvector of a real symmetric and positive-2. The optimal form possesses the lowest error at 8, 16
definite matrix derived from the appropriate objective func-and 20 bits.
tion. The particular objective function used in the article is3. The block-optimal form possesses the lowest error at 12,
based on a squared impulse response error14, and 18 bits.

4. The parallel form performs well at all word lengths, e = AtDtWDA ≡ AtQA, Q ≡ DtWD (80)
equaling the performance of the block-optimal form at
14 bits. The recursive filter parameters are incorporated in the vector

A � [a0, a1, . . ., aN, b0, b1, . . ., bM]. Note that in Eq. (1),
From a realization standpoint, it is important for the designer

a0 � 1, a condition that can be enforced by scaling the coeffi-
to understand that place-holders in the state-space descrip-

cients appropriately. The matrix D is obtained from the
tion are indicated by the 0 and �1 coefficients. Consequently,

length L desired impulse response in the following manner.
the direct form II, parallel and cascade structures require six

Define the following:
multiplications (the minimum number). The block- and sec-
tion-optimal forms each require 11 multiplications, while the
optimal form requires the maximum number of 15 multiplica-
tions.

CURRENT RESEARCH AND PRACTICE

Design Methods

General Designs. Three approaches to the general design
problem are considered: least-squares optimizations, polyno-
mial methods, and alternative design procedures. We consider
these in order.

Least-Squares Methods. In this case, we consider two differ-
ent approaches: iterative and noniterative. An Lp minimiza-
tion technique, in particular an L� minimax procedure, is de-
veloped by Antoniou (23). This article describes a new class
of algorithms developed to improve the performance of two
existing optimization algorithms in the filter design case
where the frequency response H(ej�) is matched to a desired
frequency response. In particular, the methods use standard

1. h̃(n) =



1
2

hd(n), n = 0

hd(n), 1 ≤ n ≤ L

2. D1 =




h̃(0) 0 0 · · · 0

h̃(1) h̃(0) 0 · · · 0

h̃(2) h̃(1) h̃(0) · · · 0
...

...
...

. . .
...

h̃(N) h̃(N − 1) h̃(N − 2) · · · h̃(0)




3. D2 =




h̃(N + 1) h̃(N) h̃(N − 1) · · · h̃(1)

h̃(N + 2) h̃(N + 1) h̃(N) · · · h̃(2)

h̃(N + 3) h̃(N + 2) h̃(N + 1) · · · h̃(3)

...
...

...
. . .

...

h̃(L) h̃(L − 1) h̃(L − 2) · · · h̃(L − N)




4. D3 = −I
optimization techniques from Fletcher (24) and Luenberger

Then,(25) with the objective function

D =
[

D1 D3

D2 0

]
(81)min

x
�(x) = Lp = Ê(x)

{
K∑

i=1

[
|ei(x)|
Ê(x)

]p}1/p

(78)

The arbitrary diagonal weighting matrix W � diag(w(0),The values ei(x) � �H(x, ej�i)� � �Hd(x, ej�i)�, i � 1, 2, . . ., K are
w(1), . . ., w(L)) is provided to allow unequal importance tothe difference in the magnitudes of the designed and desired
the impulse response errors. The minimizing solution to Eq.filters at selected frequencies, the x are the recursive filter
(80) is the eigenvector associated with the smallest eigen-coefficients, and Ê(x) � max

1�i�K
�ei(x)�. The value p is any inte-

value of the real, positive definite matrix Q. The method com-
ger. A variation of the technique uses methods developed by pares favorably to iterative method designs using a desired
Charalambous (26,27) uses the objective function impulse response.

Polynomial Methods. The polynomial methods use the solu-
tion to the Chebyshev approximation problem. In Lee and
Chen (29) two algorithms using the generalized Ellacott–

�(x, λ, ξ ) =
∑
i∈I1

1
2

λi[φi(x, xi)]2 +
∑
i∈I2

1
2

[φi(x, ξ )]2 (79)

Williams algorithm (30) for the design of complex coefficient
recursive digital filters. In the algorithms, a linear complex� and the �i are constants and �i(x, �) � �ei(x)� � �. The indices

are defined I1 � �i: �i(x, �) � 0, �i � 0� and I2 � �i: �i(x, �) � Chebyshev approximation problem is solved at each iteration.
These are solved numerically using the procedures developed0, �i � 0�. The algorithm using the objective function in Eq.
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by Lim et al. (31). The algorithm may be computed with a Multiplying both numerator and denominator in Eq.
(82) by z2M and z2M
1, respectively, to eliminate the nega-lower computational burden than other methods. A minimax

filter design method for the direct computation of the lattice tive powers of z and using the bilinear transformation
of Eq. (53), we obtain the analog transfer functionform parameters is provided by Lee and Ku (32). This method

always provides a stable design, because the lattice reflection
coefficients are constrained to fall in the range (�1, 1).

Alternative Design Methods. In an interesting new direc- H(s) =
∏M

i=1(s
2 + ω2

i )

(1 + s)i
∑N

i=0 bisi
(83)

tion, Hui and Want (33) develop an optimal design technique
for recursive digital filters using a highly interconnected Hop-

2. The coefficients in Eq. (83) can be determined usingfield neural network. These networks are used because they
classical techniques to either produce a maximally flatguarantee global solutions for least-square and linear pro-
(39) or an equal-ripple (40) group delay.gramming problems. The optimization criterion is the im-

3. Prewarp the stop-band frequencies and use the bilinearpulse response error used in the eigenvector design method
transformation to get the desired digital filter.discussed previously. The authors conclude that the approach

works suitably well, although the benefits and costs are not
Least-Squares Methods. We present the work from two arti-well-defined at present.

cles in this section. The first presents a design technique suit-
able to the design of nearly linear phase filters with adjust-

Design Methods for Near Linear Phase. We next consider re- able magnitude response at arbitrarily specified frequencies
search in methods to design recursive digital filters that have (41). In this article, Trisuwannawat et al. use a power series
nearly linear phase responses (or equivalently nearly con- expansion of the numerator of the frequency response of a
stant group delay) in the filter pass-band. As we have seen, general recursive filter to develop a set of linear equations
this feature is important in many high-fidelity filtering appli- that can be solved by a variety of numerical procedures to
cations (recall the example whose results are shown in Figs. yield the optimal filter coefficients. The derivation is straight-
5 and 6). We see several different approaches to the designs. forward, and the results indicate that the method should be
The basic approaches to these designs are: attractive in certain cases.

In the second article, Gu and Shenoi (42) present a sample
1. Polynomial methods (using the Chebyshev theory) domain technique that uses an FIR design to yield the desired

impulse response. This response is matched optimally using2. Methods using direct optimization
least-squares techniques to the impulse response of a de-3. Methods based on structures using all-pass filters
signed recursive digital filter. The authors employ optimal

4. Methods that approximate the good phase response of Hankel approximation techniques, although any of the de-
the analog Butterworth filter using a design technique signs by modeling could be used. The method produces causal
that is completely in the digital domain and stable designs. The design method is intended to reduce

the computational complexity of the design, particularly for
We consider each of these approaches in turn. 2-D linear phase filters for use in image processing.

Polynomial Methods. Thajchayapong et al. (34) designed a Design Methods Using All-Pass Filters. The other major tech-
recursive digital filter with prescribed group delay and Cheb- niques incorporate the use of all-pass filters. The classical ap-
yshev stop-band using transfer functions with a numerator proach to nearly linear phase designs has been the phase
order higher than the denominator order. The article shows compensation technique previously discussed. However, re-
that the transfer function can be determined using the bilin- cent research has centered on the use of parallel combinations
ear transformation on analog designs. The method uses ana- of two all-pass filters (43,44) and the recasting of a general
log designs with mirror-image polynomials in the numerator classical filtering function design into a special all-pass filter
to obtain Chebyshev attenuation (35–38). Direct transforma- design problem (45). We consider these in turn.
tion techniques (36,38) appear to have an advantage over the In the first article using the parallel combination that we
indirect transformation method described by Thajchayapong consider, Jaworski and Saramaki (43) use the structure
and Lomtong (35). However, this article shows that by modi-
fying the first three steps of the indirect method in Ref. 35
and using the bilinear transformation, the results of the di-
rect and indirect methods are identical. The changed steps
are as follows:

H(z) = E(z)

D(z)
= 1

2
[A(z) + B(z)]

G(z) = F(z)

D(z)
= 1

2
[A(z) − B(z)]

(84)

The transfer functions A(z) and B(z) are stable all-pass filters1. Define the transfer function
of orders K and L, respectively. The order of the parallel com-
bination transfer functions is thus N � K 
 L. Causality con-
ditions on the filters require that H(z)H(z�1) 
 G(z)G(z�1) � 1
and that E(z) is a linear phase FIR filter with symmetric im-
pulse response of order N and that F(z) is the same with the
exception that its impulse response is antisymmetric. The de-
signs described in this article are limited to low-pass, high-
pass pairs, where E(�1) � 0 and F(1) � 0. Furthermore,
(N � 1)/2 zeros of F(z) are located on the unit circle of the

H(z) =




∏M
i=1(1 − 2 cos θiz

−1 + z−2)∑N
i=0 aiz−i

,

M even and 2M ≥ N

(1 + z−1)
∏M

i=1(1 − 2 cos θiz
−1 + z−2)∑N

i=0 aiz−i
,

M odd and 2M + 1 ≥ N

(82)
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complex plane at frequencies �k, 0 � k � (N � 1)/2 � 1. Se- domain is given by Stojanovic and Nikolic (47). The resulting
designs are called ‘‘transitional Butterworth–Chebyshev fil-lecting the zeros of E(z) appropriately guarantees the second

causality condition. The first condition is met by constraining ters’’ and share properties with both of the named filters. The
motivation of this work is that when analog filters are trans-the magnitude response of the low-pass filter appropriately.

The approximation is solved using the alternation theory of formed to digital filters (say, using the bilinear transform) an
all-pole analog design becomes a digital function with bothChebyshev.

In the second method, Lawson (44) uses the same struc- poles and zeros. The direct design of digital Butterworth fil-
ters [proposed by Rader and Gold (48)] and of Chebyshev fil-ture as the method given in (43), but the approach is quite

different. In this method, the magnitude and phase responses ters [proposed by Soltis and Sid-Ahmed (49)] is improved
upon in this article. The designs have better phase responseof the parallel combination are written as functions of the in-

dividual all-pass filter phases: than the Chebyshev designs, with better transition band roll-
off than the Butterworth designs.

Design Methods Incorporating Both Magnitude and
Phase. Two methods using the parallel combination of all-
pass filters have been proposed. As such, they are generaliza-
tions of the methods described in Refs. 43 and 44. In the first
article, Lawson (50) gives methods to design recursive filters

|H(e jω )| =
∣∣∣∣cos

1
2

(φ1 − φ2)

∣∣∣∣
�H(e jω ) = 1

2
(φ1 + φ2)

τ (e jω ) = 1
2

(τ1 + τ2)

(85)

with prescribed magnitude and phase characteristics. These
The subscripts denote the phase response and group delay of methods use the structure from Ref. 44 with slight modifica-
the two all-pass filters. The overall filter is designed by writ- tions for the magnitude specification and the arbitrary (not
ing the individual phase responses and group delays in terms necessarily linear) phase specification. Again, aspects of clas-
of the all-pass filter coefficients, where the structure of each sical optimization theory (the linear programming from be-
all-pass filter is a cascade of the first-order filter with transfer fore) are used to determine the optimal filter parameters. Ad-
function in Eq. (11). A linear programming algorithm for ditionally, simulated annealing and genetic algorithms are
searching the solution space for the optimal answer is given developed to reduce the computational burden and improve
in the article. The method can be extended to the design of optimization performance. The structure is deemed suitable
phase compensators using only one all-pass branch. in many applications because the resulting structure is not

An interesting approach to the near linear phase IIR filter too sensitive. This approach is considered further by Lawson
design problem is given by Song and Gu (45). In this ap- and Wicks (51). Further computational complexity reduction
proach, a design method is given to determine the all-pass is possible through the use of results given by Gregorian and
coefficients of Eq. (12) from a set of phases and frequencies. Temes (52), which yield a set of linear equations for each all-
The procedure relies on the Remez exchange algorithm [for pass subfilter.
instance, see Braess (46)]. Then, the synthesis of near linear
phase IIR filters is recast as an all-pass design method, so Conversion and Transient Designs. Erfani, et al. (53) discuss
that the algorithm developed for all-pass designs is modified a new technique for converting an analog filter to a digital
slightly to perform the task at hand. This is accomplished by format. In that article, a generalized bilinear transformation
considering designs where technique is developed that uses the biquadratic approxima-

tion

1
sT

= 1
3

(
z + 1
z − 1

+ 1
z − 1

+ 1
z + 1

)
(89)H(e jω ) =




e jω, passband

0, stopband

don’t care, elsewhere

(86)

The algebraic substitution averages the bilinear transforma-
The recasting of the problem is accomplished using the new tion, a forward difference, and a corrective term. As in the
transfer function bilinear substitution, the relationship in Eq. (89) warps the

frequencies
G(z) = 2zDH(z) − 1

to design the all-pass filter � = 3
T

sinωT
2 + cos ωT

(90)

The warping of Eq. (90) is straightforward for low-pass filters,
integrators, and differentiators. The mapping may not pre-
serve stability as the bilinear transformation does; conse-

G(e jω ) =




1, passband

−1, stopband

don’t care elsewhere

(87)

quently, the digital filter should be tested for stability. One
other difference when compared to the bilinear transforma-The filter that we are interested in is then obtained:
tion is more obvious: The digital filter order is doubled in the
application of Eq. (89). However, the multiplication by 4 in
the (combined) numerator of Eq. (89) can be accomplished byH(z) = z−D

2
(
1 + G(z)

)
(88)

a two-bit shift to the left.
In filtering cases where the length of the available input isDigital Butterworth–Chebyshev Designs. A design method

that approximates an AR filter function directly in the digital short, the transient response (i.e., the effective duration of the
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impulse response) creates a problem. This case often arises in current research. Methods of approach include (and we con-
sider them each in turn):radar applications (54) because extremely narrow-band filters

are required. In these cases, we require the filter’s steady-
1. Decomposition of high-order filters into subfilter de-state output (recall Fig. 5), but the length of the available

signs (64,65)input is so short that only the transient response is ever com-
puted. Classically, the approach to solving this problem has 2. Decomposing the filter into parallel combinations of all-
been to optimize the initial conditions of the digital filter. In pass filters (66–68) or, more generally, into orthogonal
cases where the input duration is not a problem, the initial filters (69)
conditions of the filter are almost always ignored. Sometimes 3. Designs that either minimize coefficient count or max-
the initial conditions are zeroed, and typically the initial con- imize the number of coefficients with coefficients that
ditions are left to the arbitrary nature of the implemented are powers-of-two (70–73)
digital circuitry. Optimizing the initial conditions results in a 4. Designs that increase the filter order (75,76)
nonlinear problem. Recently, Musa and Al-Ahmad (55) have
developed techniques that optimize the transient response of Incomplete Partial Fraction Expansion. The incomplete par-
the filter in combination with a desired frequency response. tial fraction expansion allows the rational polynomial

Sensitivity and Round-off Noise

Considerable work on sensitivity and designing implementa-
T(z) = Q(z)

F(z)G(z)

tions with low-output quantization round-off noise has taken
to be written asplace over the years. Several areas of active research are

methods for analyzing the effects of the nonlinear quantiza-
tion operations, designs of novel structures, and methods that
employ special digital circuitry. We examine each of these

T(z) = H(z)

F(z)
+ K(z)

G(z)
(91)

areas in turn.
instead of the ‘‘complete’’ PFE given in Eq. (67) by Price and
Sandler (64). Two structures based on the partial transferAnalysis of Quantization Effects. DeBrunner and Beex (14)
functions given in Eq. (91) arise because they can be imple-provide a thorough review of the background into the analysis
mented in either cascade or parallel forms (other forms areof quantization effects. A classic article relating coefficient
possible, but are not considered in this article). The methodssensitivity designs and minimal output quantization round-
of the article are not proven, but the performance appears tooff noise power is given by Tavsonoglu and Thiele (56). Design
be satisfactory. The method using the cascade forms, calledtechniques for producing implementations possessing both
the parallel interconnection of cascade subfilters (PICS) for-properties are given as well. Rao (57) presents further results
mat, is studied by Sandler (65). The authors consider the cas-regarding coefficient sensitivity. All of these articles use Lp
cade structure to be superior because the individual scalingnorms on some of the internal transfer functions found in
required for each subfilter can be straightforwardly accom-Eqs. (73) and (74) and combinations of these equations, al-
plished.though the combinations are slightly different in each. The

All-Pass Filters. All-pass filters used for low-sensitivity de-combination used in Ref. 14 is an exact computation of the
signs were developed at least as early as 1986 by Vaidyana-upper bound estimate used in Refs. 56 and 57. Some more
than et al. (66). Digital all-pass filters can be efficiently real-recent results may be found in Refs. 58–63. In the first of
ized using lossless structures that possess low-sensitivity,these, Goodall (58) describes methods for designing analog
low-output quantization noise power, and are free of overflowfilters (primarily for real-time control applications) that ex-
limit cycles. Nie et al. (67) show that every rational transferhibit low sensitivity when bilinear transformed. The main
function, as in Eq. (9), that is stable can be decomposed intoidea is that analog designs should incorporate (through de-
a linear combination of stable first-order all-pass filters. Con-sign specifications) the knowledge that the filter implementa-
sequently, any stable recursive filter can be implemented astion is digital. Farison and Kolla (59) extend generalizations
either a parallel or cascade connection of all-pass filters. Ato the coefficient sensitivity relations above to time-varying
technique that allows filters with several pass- and stopbandrecursive digital filters, such as those used in communication
regions (i.e., a restricted class of nonclassical filters) to be im-(modulation) systems. Some analysis of existing, thought-to-
plemented with the all-pass structures is developed by Sara-be low sensitivity filter structures that use error feedback (de-
maki (68). The developed algorithm uses the Remez algorithmscribed below in the section entitled ‘‘Error Feedback Sys-
to optimally determine the subfilters.tems’’) is provided by Baez-Lopes et al. (60). Furthermore,

Nie et al. (69) give an interesting addition to the researchMacedo et al. (63) provide methods for examining limit cycles
of the all-pass filters. Here, the authors show that stable re-in error feedback systems. Thus, we see the cross-fertilization
cursive filters can be implemented using an orthogonalbetween these two areas beginning to aid in the development
expansion of N functions (N being the filter order). The expan-of truly low sensitivity filters. Worthington and Turner (61)
sion is as follows. Write the filter transfer function asprovide L1 bounds (and methods for their computation) on er-

rors resulting from signal quantization at selected frequencies
of interest. The output quantization distortion for cascade im-
plementations is provided by Mollova (62).

H(z) = bNzN + bN−1zN−1 + · · · + b1z + b0

(z − p1)(z − p2) · · · (z − pN )
(92)

The pi, 1 � i � N, are the poles of the filter, and we haveStructures that Minimize Quantization Effects. Structures
that minimize quantization effects are a very active area of assumed that the MA order is M � N. The stable transfer
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function H(z) given in Eq. (92) can be written in the expanded form II subfilters to reduce the filter sensitivity and to lower
the output quantization noise power. Optimal search algo-form using the orthogonal functions
rithms for determining both real and complex-conjugate can-
cellation pairs are given. Designs are given in the example
section that show sensitivities near the optimal form sensitiv-
ity with significantly lower coefficient counts. DeBrunner et

Gk(z) =
√

1 − p2
k

z − pk

k−1∏
i=0

Ai(z), k = 1,2, . . ., N

G0(z) = 1

(93)

al. (76) present an optimization method that matches the im-
pulse response and lowers the sensitivity simultaneously in

The all-pass transfer functions are defined as follows: a multicriterion approach. One interesting result from this
method is that the designs in Ref 75 are shown to be optimal.

Error Feedback Systems. Error feedback systems give a com-
pletely alternative approach to reducing output quantization

Ai(z) = 1 − p∗
i z

z − pi

A0(z) = 1
(94)

noise power. Error feedback works by using extra digital cir-
Then, we have cuitry to feed the rounding error back to the next computa-

tion. Several possibilities exist. In one recent article, Leung
(77) describes a method for designing an accumulator that not
only produces low-output quantization noise power, but also

H(z) = λ0 +
N∑

k=1

λkGk(z) (95)

increases the density of realizable pole locations near the z �
1 location of the complex plane. The method requires only twoThe � are the projections of H(z) on the orthogonal basis func-
effective multiplications per output sample for a second-ordertions
section. Laakso and Hartimo (78) research the problem of de-
termining the optimal error feedback coefficients. The authors
conclude that for high-order filters, the optimization results
in solving the classical Wiener–Hopf equations (for instance,

λ0 = lim
z→∞H(z)

λk = 1
2π j

∮
|z|=1

Gk(z)H∗(z−1)
dz
z

, k = 1,2, . . ., N
(96)

see Ref. 4), thus showing that the problem is a special case
of Wiener filtering. The article discusses special methods for

Application of the Parseval theorem yields designing suboptimal error feedback with symmetric or anti-
symmetric coefficients, as well as methods that incorporate
filters with powers-of-two coefficients.‖H(z)‖ = 1

2π j

∮
|z|=1

H(z)H∗(z−1)
dz
z

=
N∑

k=0

|λk|2 (97)

VLSI
If 	H(z)	2 � 1 (i.e., if the digital filter is properly scaled), then

Because a separate article will discuss methods of implement-Eq. (97) implies that the filter can be realized using structur-
ing DSP algorithms (including recursive filters) in VLSI, weally passive component subfilters Gk(z). Thus, the resulting
present only a brief overview of some current research trendsimplemented filters can possess very low output quantization
of VLSI implementation as they overlap with the design pro-noise power and have low sensitivities.
cess. For instance, Bowrouzian et al. (79) describe a new digi-Coefficient Manipulation. The articles by Bomar and Hung
tal filter structure based on an equally resistively terminated(70) and Bomar (71,72) describe several methods for manipu-
lossless Jaumann two-port network. This analog filter islating the filter designs to increase the number of ‘‘trivial’’
transformed into a digital filter using the bilinear transforma-coefficients. In these articles, methods are developed that pro-
tion with compensation. The derived filter structure is suit-duce near optimal connections of second-order filter struc-
able for fast parallel processing because all of the internaltures. The constraints placed on the coefficients attempt to
states can be computed in two steps. The structure requiresreduce the total number of coefficients in the filter descrip-
the canonical number of multipliers. Alternatively, Kwan (80)tion. These constraints force some of the coefficients to be
describes a structure suitable for implementing a recursivestructural ones and zeros, while others are forced to be exact
filter on a systolic array. Finally, Dhar (81) describes tech-powers of two, thus making multiplication equivalent to shift-
niques suitable for realizing very high-speed recursive filtersing the binary point. Fahmy and Raheem (73) develop a
such that the throughput rates that can be achieved are notmethod to design scaled, fixed-point digital filters that are
limited by the atomicity of the device used to implementfree of limit cycles. The method reduces as many of the filter
them. For instance, typically only one delay is tolerated in thecoefficients to zero as possible using an optimization method
feedback path. The article describes a technique that convertsbased on minimizing the total output quantization noise
the structure into several processing paths that can be imple-power.
mented by multiprocessing systems using commercial pro-Filter Order. Of all the techniques described above to re-
cessors. The developed structures consist of modules that areduce digital filter sensitivity, one of the most unusual is based
repeated many times over with mostly local interconnections.on the use of the filter order. Jackson (74) describes a Chebys-

hev optimization procedure that designs filters with more
zeros than poles. If the MA and AR orders are chosen appro- BIBLIOGRAPHY
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