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filtering process we map the set of observation samples into
[0, 1] with an affinity function A �,�, where � � (��, �) and
� � [0, �) control the location and spread of the affinity func-
tion, respectively. Thus,

A µ,γ : xi �→ A µ,γ

i ∈ [0,1] (28)

for i � 1, 2, . . ., N. The real number A �,�
i is a metric of the

proximity of the sample xi to the reference point � as mea-
sured by A �. If � corresponds to one of the order statistics,
A �,�

i is equal to the fuzzy time–rank relation between xi and
�, as introduced in Ref. 15.

While many forms of affinity functions can be adopted, we
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impose the following restrictions:
Figure 13. Structure of the median affine filter.

1. The affinity function is unimodal with mode � and such
that A �,� : � � 1.

2. The affinity function is a nondecreasing function of �,
i.e., A �,�1 : x � A �,�2 : x for �1 � �2.

d̂γ =
∑N

i=1 wiA µ,γ

i
xi∑N

i=1 |wi|A µ,γ

i

(31)

3. The affinity function reduces to a delta function at the
mode, and is uniform for all inputs at the limits of �, where the wi’s are the filter weights and A �,�

i is the affinity of
i.e., the ith observation with respect to the median observation

sample. When the context is clear, we shall refer to A �,�
i as

simply A �
i . Figure 13 shows a schematic diagram of the (un-lim

γ →0
A µ,γ : xi �→ δ(xi − µ) and lim

γ →∞A µ,γ : xi �→ 1 (29)
normalized) median affine filter.

The filter structure in Eq. (31) weights each observation
These restrictions have the following intuitive interpreta- twice: first according to its reliability, and second according
tions. The closer a sample is to the reference location �, the to its natural order. Median affine estimates are therefore
higher is its affinity and hence its degree of reliability. The based on observations that are both reliable and favorable
scale on which the transition from reliable to unreliable oc- due to their natural order. Observations that fail to meet ei-
curs is controlled by �. Here we concentrate on a symmetric ther or both criteria have only a limited influence on the es-
Gaussian affinity function, timate.

The flexibility provided by the tunable affinity function
translates to the filter characteristics of the estimator. ByA µ,γ : x �→ e−(x−µ)2/γ (30)
varying the dispersion parameter certain properties of the
median affine filter can be stressed: while a large value of �The sensitivity of the Gaussian affinity function, as a function

of �, is shown in Fig. 12. emphasizes the linear properties of the filter, a small value
puts more weight on its OS properties. Of special interest are
the limiting cases. For � � �, the affinity function is constantMedian Affine Filters
on its entire domain. The estimator, therefore, weights all ob-

Median affine filters use a Gaussian affinity function centered servations merely according to their natural order, i.e.,
on the median observation sample to gage the reliability of
observation samples and modify their influence on the esti-
mate. Thus, let � � MED[x1, x2, . . ., xN�. Then the (normal- lim

γ →∞ d̂γ =
∑N

i=1 wixi∑N
i=1 wi

(32)
ized) median affine filter is defined as

and the median affine estimator reduces to a normalized lin-
ear filter. For � � 0 the affinity function shrinks to a � im-
pulse at �. Thus, the constant weights wi are disregarded and
the estimate is equal to the sample median,

lim
γ →0

d̂γ = MED[x1, x2, . . ., xN ] (33)

Design and Optimization

The median affine filter can be designed adaptively as well as
through a process called medianization of linear FIR filters.
Medianization, although suboptimal, is a very simple and in-xi x

2 γ

1γ
1γ 2γ<

µ

A γµ ,
High affinity

Low
affinity

tuitive design procedure that is derived from the fact that theFigure 12. The affinity function A �,� assigns a low or high affinity
median affine filter behaves like a linear filter for � � �.to the sample xi depending on the location and dispersion parameters

� and �. Setting � to a large initial value, we can take advantage of
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the multitude of linear filter design methods to find the coef- Gaussian distributions may arise in practice. It turns out that
the so-called �-stable distributions do have this theoreticalficients wi of the median affine filter. Holding the wi’s con-

stant, the filter performance can, in general, be improved by foundation, as they satisfy an important generalization of the
central limit theorem. As mentioned in the introduction, agradually reducing the value of � until a desired level of ro-

bustness is achieved. Since this process strengthens the medi- wide variety of impulsive processes found in signal-processing
applications arise as the superposition of many small inde-anlike properties of a linear filter, it is referred to as mediani-

zation of a linear FIR filter. pendent effects. While Gaussian models are clearly inappro-
priate, the �-stable distributions have been proven to accu-The median affine filter can also be optimized adaptively

through an LMS-type algorithm. The development is similar rately model impulsive-type processes (5,6). Such models are
appealing in that the generalization of the central limit theo-to that for FIR linear filters and the WM optimization pre-

sented in the previous section. In this case, however, a disper- rem explains the apparent contradictions of its ‘‘ordinary’’
version, as well as the presence of non-Gaussian, infinite-vari-sion parameter � must be optimized in addition to the filter

weights. Consider first the optimization of �. Utilizing a gra- ance processes.
A random variable that can be the limit of a normalizeddient-based method, it can be shown that the optimization

update for � reduces to superposition according to the generalized central limit theo-
rem is usually called �-stable. On a first-order analysis, sym-
metric �-stable processes are characterized by their distribu-
tion having a characteristic function

γ (n + 1) = γ (n) + νγ (d − d̂)(n)

×
(

N∑
i=1

(xi − d̂)wig
(
(xi − x(med))

2)) (n)
(34)

φ(ω) = e−γ |ω|α (36)

where �� is the step size and g(y) � (y/�2) exp(�y/�). In many
The parameter �, usually called the dispersion, is a positiveapplications, it is desirable to optimize the filter coefficients
constant related to the scale of the distribution. (�1/� is a scalewi as well. A similar development leads to the following algo-
parameter of the distribution.) The parameter � is referred torithm for the adaptive optimization of the wi’s:
as the characteristic exponent. In order for Eq. (36) to define
a characteristic function, the values of � must be restricted to
the interval (0, 2]. Conceptually speaking, � determines the
impulsiveness or tail heaviness of the distribution (smaller

wi(n + 1) = wi(n) + νw(d − d̂)(n)

(
A γ

i

N∑
k=1

wkA γ

k
(xi − xk)

)
(n)

(35) values of � indicate increased levels of impulsiveness). The
limit case, � � 2, corresponds to the zero-mean Gaussian dis-

Applications tribution with variance 2�. All other values of � correspond
to heavy-tailed distributions.The median affine filter is a very flexible filtering framework

The case � � 1 corresponds to the zero-centered Cauchyand can thus be applied to a wide range of applications. As
distribution, which has densityan illustrative example, the problem of processing inverse

synthetic aperture radar (ISAR) for feature extraction and
noise smoothing is presented. ISAR has attracted increasing
interest in the context of target classification due to the high

f (x) = γ

π

1
γ 2 + x2

(37)

resolution that results from the mapping of the reflectivity
density function of the target onto the range–Doppler plane When � � 1, 2, no closed expressions are known for the den-
(16). Difficulties in target identification arise from the fact sity functions, making it necessary to resort to series expan-
that radar backscatters from the target are typically embed- sions or integral transforms to describe them. A commonly
ded in heavy clutter noise. used characterization of the general symmetric �-stable den-

Affinity measures can be incorporated into the filtering sity with unitary dispersion is given by (6)
process in a way that is particularly useful in the extraction
of ISAR features and smoothing of noise (14). To illustrate the
filter performance, a 128 � 128, 8 bit/pixel intensity image of
a B-727 has been processed. Figure 14 shows the L–l, WOS,
and affine filter outputs and errors. Note that the WOS filter
eliminates the noise well, but blurs plane details. In contrast
the L–l filter preserves the plane much better but is not very
effective in removing the clutter noise. The affine filter re-
moves the background noise to a large extent while preserv-
ing the plane in all its details.

WEIGHTED MYRIAD FILTERS
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Alpha-Stable Processes Figure 15 shows plots of normalized unitary-dispersion �-sta-
ble densities. Note that lower values of � correspond to densi-Although the generalized Gaussian model provides a flexible
ties with heavier tails. Symmetric �-stable densities maintainframework for impulsive processes, it lacks the theoretical

foundation that can explain how signals with generalized many of the features of the Gaussian density. They are
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Figure 14. Feature enhancing: (a) WOS filter, (b) absolute difference between original and WOS
filter, (c) L–l filter, (d) absolute difference between original and L–l filter, (e) affine filter, and (f)
absolute difference between original and affine filter.
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Note that, unlike the sample mean or median, the defini-
tion of the sample myriad involves the free parameter k. For
reasons that will become apparent shortly, we will refer to k
as the linearity parameter of the myriad. The behavior of the
myriad estimator is markedly dependent on the value of its
linearity parameter. It can be shown that for large values of
k, the sample myriad is equivalent to the sample mean. Thus,
given a set of samples x1, x2, . . ., xN, the sample myriad �̂k

converges to the sample average as k � � (17):

lim
k→∞

β̂k = lim
k→∞

MYRIAD{k;x1, . . ., xN} = 1
N

N∑
i=1

xi (42)
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Plainly, an infinite value of k converts the myriad into the
Figure 15. Symmetric �-stable density functions for different values sample average. This behavior explains our choice ‘‘linearity’’
of the tail constant �. Solid: � � 2 or Gaussian case; dashed: � � 1 for the name of the parameter: the larger the value of k, the
or Cauchy case; dotted: � � 0.3. According to the meaning of the tail closer the behavior of the myriad to a linear estimator. From
constant, smaller values of � correspond to heavier-tailed density our experience, we have found that values of k on the order
functions. of the data range,

smooth, unimodal, symmetric with respect to the mode, and k ∼ x(N ) − x(1) (43)
bell-shaped.

often drives the myriad to an acceptable approximation of theThe Myriad and the Sample Myriad
sample average. As the myriad moves away from the linear

Having the theoretical framework of �-stable processes, it is region (large values of k) to lower linearity values, the estima-
thus logical to develop new estimation algorithms for impul- tor becomes more resistant to the presence of impulsive noise.
sive environments, which can overcome many of the limita- In the limit when k tends to zero, the myriad acquires its
tions of WM and linear filters. To this end, we consider the maximum resistance to impulsive noise.
maximum likelihood location estimation of a heavy-tailed �- It is important to note that the availability of k as a tun-
stable distribution for which we have a closed-form expres- able parameter allows a myriad estimator to acquire some
sion, namely the Cauchy distribution. Given a set of i.i.d. ‘‘intelligence,’’ in the sense that the degree of linear or robust
samples x1, x2, . . ., xN obeying the Cauchy distribution with behavior can be inferred from the data by estimating an ade-
scaling factor k, quate value for k. Figure 16(a) depicts the sample myriad for

the data set �0, 1, 3, 6, 7, 8, 9� as k is varied from 0 to �.
It can be appreciated that as k increases, the myriad tendsfβ (x) = k

π

1
k2 + (x − β)2

(39)
asymptotically to the sample average. On the other hand, as
k is decreased, the sample myriad favors the value � � 7,the location parameter � is to be estimated from the data
which indicates the location of the cluster formed by the sam-samples as the values �̂k that maximizes the likelihood func-
ples �6, 7, 8, 9�. This is the typical behavior of the sampletion
myriad for small k: it tends to favor values where samples are
more likely to occur or cluster. The term ‘‘myriad’’ was coined
as a result of this characteristic of the estimator. The dotted
line shows how the sample myriad is affected if an additional
observation of value 100 is included. For large values of k, the
estimator is very sensitive to this new observation. On the

β̂k = arg max
β

N∏
i=1

fβ (xi )

= arg max
β

(
k
π

)N N∏
i=1

1
k2 + (xi − β)2

(40)

contrary, for small k, the data variability is assumed to be
This is equivalent to minimizing Gk(�) � �N

i�1[k2 � (xi � �)2]. very small, and the new observation is considered an outlier
Thus given k � 0, the ML location estimate is known as the and does not influence the value of the sample myriad. More
sample myriad and is given by (17) interestingly, if the additional observations are taken to be

�800, �500, 700�, the sample myriad is practically unchanged
for moderate values of k (dashed curve).

Notably, the sample myriad presents important optimality
properties compelling the use of myriad-based methods in the

β̂k = MYRIAD{k;x1, x2, . . ., xN }

= arg min
β

N∏
i=1

[k2 + (xi − β)2]
(41)

�-stable framework (17). First, the optimality of the sample
myriad in the Cauchy distribution follows from its definition.The myriad is the ML location estimate for Cauchy random

variables. However, it can be used as a robust location esti- Secondly, since the sample mean is the optimal location esti-
mator at the Gaussian model, by assigning large values tomator in general, where the samples may not obey a Cauchy

distribution and may not even be symmetrically distributed. the linearity parameter, the linear property guarantees the
optimality of the sample myriad in the Gaussian distributionMuch as the robustness of the sample median is explained by

the heavy tails of the Laplacian distribution, the myriad is (� � 2). Finally, it has been shown that the sample myriad
with k � 0 is the optimal location estimator in the ML sensehighly robust due to the very heavy tails of the Cauchy distri-

bution. for stable processes with � � 0.
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Figure 16. (a) Sample myriad as a function of k for the following data sets: solid: original data
set �0, 1, 3, 6, 7, 8, 9�; dash–dot: original set plus an additional sample at 20; dotted: additional
observation at 100; dashed: additional observations at 800, �500, and 700. (b) A probability
density function, and (c) the myriad as a function of k for this pdf.

Much as the sample mean and sample median are the esti- large, all distances become close and it can be shown that the
myriad tends to the sample mean. The geometrical interpre-mates of the mean and median parameters, the sample myr-

iad defines the myriad as a new location parameter. It turns tation provides an approach to define the myriad in a complex
or multidimensional space (17). Figure 17(c)) illustrates anout that the myriad of a probability distribution function is

the value �k that minimizes the expectation E�log[k2 � (x � approach to define the vector myriad as the point in the two-
dimensional space that minimizes the product of distances�k)2]�, where k � [0, �] is a tunable parameter. For k � 0 the

myriad of a distribution function takes on the value that min- from each sample point to the point A whose height is deter-
mined by the parameter k.imizes E�log�x � �0��. It can be shown that the myriad is al-

ways at the center of symmetry whenever the underlying dis-
tribution is symmetric. Thus, for any k, �k is an adequate Weighted Myriad Filters
indicator of location. For nonsymmetric distributions, the

Much as linear FIR and weighted median filters are impor-value of the myriad depends on k, as illustrated next. Figure
tant extensions of the sample mean and median, weighted16(b) and (c) depict the mean and myriad (for k � 0, 0.8, 1, 3,
myriad filters are important generalizations of the sample7, �) of a bimodal distribution. For k � 0, the myriad cau-
myriad. As with FIR filters, N weights are defined, one fortiously localizes the distribution at 8.5, which is the center of
each input sample used in the myriad estimate. Filters withthe dominant mode. As k increases, the myriad is pulled to
nonnegative weights have inherent limitations and are re-the value 8. Notice, however, that at k � 1 the value of the
ferred to as smoothers. Filters whose weights are not con-myriad suddenly jumps to 4. This is because k is large enough
strained to be nonnegative are, in general, more flexible andso that both modes of the distribution are considered jointly
powerful than their constrained counterparts. The definitionsreliable. For large k the myriad is confident of all data and
of weighted myriad smoothers and weighted myriad filters arethe location approaches the mean of the density.
given next.Myriad estimation, defined in Eq. (41), can be interpreted

To define the weighted myriad smoother, we invoke thein a more intuitive manner. As depicted in Fig. 17(a), it can
same ML estimation principles used in defining the weightedbe shown that the sample myriad, �̂k, is the value that mini-
median filter. Recall that the mean emerges as the ML esti-mizes the product of distances from point A to the sample
mate of equally likely Gaussian observations (w1 � w2 �points x1, x2, . . ., x6. Any other value, such as x � �	, pro-

 
 
 � wN � 1). In the same fashion, the weighted mean canduces a larger product of distances. As k is reduced, the myr-

iad searches clusters as shown in Fig. 17(b). If k is made be seen as the value �̂w that maximizes the likelihood function
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Figure 17. (a) The sample myriad �̂ minimizes the product of distances from point A to all
samples. Any other value, such as x � �	, produces a higher product of distances. (b) The myriad
as k is reduced. (c) Minimum product of distances for a two-dimensional vector sample set.
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when the density functions are defined as which can be searched for by taking an initial value �0 and
then using the recursion

βn+1 = T(βn) (51)fi(xi;β, wi) = |wi|√
2πσ

exp

(
−w2

i (xi − β)2

2σ 2

)
(44)

Although it could happen that such recursion converges to aClearly, f i(xi; �, wi) is a scaled version of f i(xi; �), where the
fixed point of T different from the weighted myriad, using onespread of the distribution is inversely proportional to wi.
(or several) good initial value(s) can give very satisfactory re-Thus, an observation assigned to a large weight can be re-
sults. This algorithm is very reliable and flexible, providing alated to a highly localized density function. The limiting case
convenient platform to manage the tradeoff between speedin which wi � � relates the observation to an impulse density
and reliability. The interested reader is referred to Ref. 19 forwhich means that the sample is 100% reliable. On the other
further information on this algorithm.hand, a very small value of wi indicates a large spread in the

density function, which implies a very poor chance of this ob-
servation to be close to the center of the distribution. If the Design and Optimization
Cauchy density model is used, maximizing the weighted like-

It was described that for very large k the weighted myriadlihood function is equivalent to minimizing �N
i�1[k2 � wi(xi �

filter reduces to a linear FIR filter. Likewise it was noted that�)2]. The weighted myriad smoother is then defined as (17)
robustness is achieved by decreasing the value of k. Thus, a
very simple method to design weighted myriad filters is to theβ̂k,www = MYRIAD{k;w2

1 ◦ x1, w2
2 ◦ x2, . . ., w2

N ◦ xN } (45)
use the weights of a linear filter (k � �), designed for
Gaussian or noiseless environments, and to subsequently re-
duce the value of k, attaining the level of robustness desired,= arg min

β

N∏
i=1

[k2 + wi(xi − β)2] (46)

before the weighted myriad is computed. We refer to this
method as ‘‘myriadization,’’ in contrast to the well-known ‘‘lin-where w2

i � xi represents the weighting operation in Eq. (46).
earization’’ approaches used in engineering (17). The follow-Since �̂k,cw � �̂k/c,w, it is clear that finding the optimal myriad
ing example clearly illustrates the effectiveness of myriadiz-smoother weights will implicitly find the best k. As with the
ing a linear low-pass FIR filter.sample myriad, it can be shown that as k � �, the weighted

Consider a phase-locked-loop (PLL) synchronization prob-myriad smoother tends to the weighted mean smoother.
lem (17). It is well known that automobile FM radios do notWeighted myriad filters admitting real-valued weights are
use PLLs because a linear PLL cannot operate with impulsivemore flexible and powerful filter structures. These are analo-
noise generated by ignitions and other interference signals.gous to linear FIR filters, whereas weighted myriad smooth-
Our goal is to design myriad PLLs that can withstand severeers (and weighted median filters) are analogous to con-
interference and still provide satisfactory performance. Thestrained linear FIR smoothers. Many linear FIR filters used
commercial applications of such robust PLLs are many, in-in practice, such as band-pass and high-pass filters, do in fact
cluding commercial FM and Loran-C receivers (20). The myri-require negative weights. In communications technology,
adization concept can be easily used in the design of a first-modulated signals are more effectively processed by filters
order PLL. Simulations were run in which the PLL had torather than smoothers. It is thus important to determine the
track the carrier phase in additive Gaussian noise. The sig-structure of the general myriad filter—one that admits real-
nal-to-noise ratio was set at 30 dB, and the parameters of thevalued weights. Following the approach in Ref. 12, it is shown
system were adjusted so that the PLL was critically damped.in Ref. 18 that the weighted myriad filter can be defined as
A linear low-pass FIR filter was designed with 13 coefficients.
Figure 18(a) shows a typical phase error plot of a linear PLL
in which random noise bursts are present. During these short
noisy intervals (from 4 to 10 sampling times), the signal-to-

β̂k,www = MYRIAD{k; |w1| ◦ sgn(w1) x1, |w2| ◦ sgn(w2) x2, . . .,

|wN | ◦ sgn(wN ) xN}
(47)

noise ratio decreases to �10 dB.
It is evident that the system with the linear filter is very

likely to lose synchronism after a noise burst. Figure 18(b)= arg min
β

N∏
i=1

{k2 + |wi|[sgn(wi) xi − β]2} (48)

shows the phase error of the optimal median-based PLL (21)
with the same noise conditions. Although the short noisewhere �wi� � sgn(wi) xi again represents the weighting opera-
bursts do not affect the estimate of the phase, the variance oftion in Eq. (48).
the estimate is very large. Figure 18(c) shows the phase errorIn general, the computation of the weighted myriad does
of the system with the same noise conditions, after the low-not admit closed-form solution, making it necessary to resort
pass filter has been myriadized using a parameter k equal toto iterative minimization procedures. In Ref. 19 it is shown
half the carrier amplitude. Although phase error is increasedthat the myriad can be seen as a fixed point of
during a burst, the performance of the myriadized PLL is not
degraded, and the system does not lose synchronism. More
interesting is the fact that even with the low-amplitudeT(β) =

∑
i hi(β)xi∑

i hi(β)
(49)

Gaussian noise, the myriadized system shows a smaller
steady-state variance, while maintaining the same synchroni-where
zation response.

Myriadization provides a simple method to design the pro-
posed filter class. However, significant gains can be attained

hi(β) = wi

k2 + wi(xi − β)2 (50)
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Figure 18. (a) Phase error plot for the PLL with a linear FIR filter; (b) phase error plot for the
PLL with a median filter; (c) phase error after the low-pass filter has been myriadized.

if we optimize the filter coefficients. Let the input to the myr- shown to result in the classes of weighted median and
weighted myriad filters. As a direct result of the heavy-tailediad filter be �x(n)�, which is assumed to be statistically related
nature of the underlying distribution models, both filterto some desired process D(n). A window of width N slides
classes are robust and perform significantly better than linearacross the input process, spanning the samples x(n), x(n � 1),
filters in many applications.. . ., x(n � N � 1). The estimate of Y(n) is given by the myr-

The space constraints of this article allow for only a briefiad filter output
overview of the covered topics. To probe further, the inter-
ested reader is referred to the cited articles, as well as numer-
ous other works in this area. Additionally, there are many

Y (n) = MYRIAD[k;w1 ◦ x(n), w2 ◦ x(n − 1), . . .,

wN ◦ x(n − N + 1)]
(52)

other areas of research in nonlinear methods that are being
actively investigated. Research areas of importance include:The goal is to find the optimal set of weights w1, . . ., wN such
(1) OS-based signal processing, (2) mathematical morphology,that the mean squared error between the desired signal and
(3) higher-order statistics, (4) radial basis functions, and (5)the filter’s output is minimized. This problem is analogous to
emerging nonlinear methods.finding the well-known normal equation of linear filters. To

OS methods are a large class of nonlinear systems basedthis end, conditions for the optimal weighted myriad filter
on robust statistics. Included in this class are the discussedhave been derived (18).
median and weighted median filters. Other OS-based meth-A simpler yet effective method to optimally design the fil-
ods include stack filters (21–26), L–l filters (27–30), permuta-ter weights has been derived through filter algorithms whose
tion filters (31–36), and RCRS filters (37), as well as numer-complexities are comparable to Widrow’s LMS algorithm.
ous hybrid and generalization methods. Each of theseGiven an N-long input vector x � [x1, x2, . . ., xN]T, a weight
methods exploits, in some fashion, the rank order, or jointvector w � [w1, w2, . . ., wN]T of real-valued weights, and the
temporal rank order, of the observation samples. Recent ef-linearity parameter k � 0, we first define the set normalized
forts have included fuzzy time–rank relations (14,15). Eachweights h w/k2. The adaptive LMS-type adaptive algorithm
of these methods has proved advantageous over linear filtersupdates the weights of the myriad filter in order to converge
in the processing of nonstationary processes with heavy-to the optimal filter weights under the MSE criterion (18):
tailed distributions.

Related to OS methods is the class of morphological pro-
cesses (38–40), which stems historically from set–lattice the-hi(n + 1) = hi(n) + µe(n)

vi(n)

[1 + |hi(n)|v2
i (n)]2

(53)

ory and stochastic–integral geometry. Many signal analysis
and computer vision tasks such as feature extraction, motionfor i � 1, 2, . . ., N, where vi � sgn(hi) � Y � xi, and sgn( 
 )
detection, segmentation, and object recognition often need ais the sign function.
multiscale formulation, where features/objects are more eas-
ily detected at coarse scales rather then at their original reso-

RESEARCH TOPICS IN NONLINEAR FILTERING lution. Although early approaches in computer vision used
linear low-pass filters (e.g. Gaussian convolutions) for

The need for nonlinear processing methods arises naturally multiscale analysis, the linear scale space suffers from its
in many applications. In this article we have focused on the shifting and blurring important features across scales. In con-
classes of filters that arise naturally from two heavy-tailed trast, morphological and OS smoothing filters have recently
distribution families. Specifically, we have focused on the gen- been used to create a nonlinear scale space for multiscale im-
eralized Gaussian distribution and �-stable distributions. age analysis that has as rich a theory as the Gaussian scale-
Both distribution families include the standard Gaussian dis- space methods and can exactly preserve vertical edges and
tribution as a special case. Importantly, both distributions the outline and location of object shapes up to the maximum
more accurately model the impulsive nature of signals often scale at which they exist.
observed in practice. The maximum likelihood estimation cri- Higher-order statistics (HOS) is another important ap-

proach to the nonlinear processing. HOS can offer significantterion can be applied to each of these distributions and was
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