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MULTIDIMENSIONAL SIGNAL PROCESSING

This article presents the basic concepts of multidimensional
signal processing and their application to system identifica-
tion. Examples of multidimensional signals include images in
two dimensions and video in three dimensions. There are a
number of good reference texts on multidimensional signal
processing; for example, see Refs. 1, 2, and 3. One cannot dis-
cuss multidimensional signal processing without first dis-
cussing sampling in multidimensions. This concept of sam-
pling is based on the mathematics of lattices [e.g., (4)]. The
engineering analysis of sampling began in the classic paper
by Petersen and Middleton (5). The multidimensional z-trans-
form is carefully described in Ref. 6. This article covers basic
problems in systems identification and presents a workable
approach to their solution.

We present a systematic approach to the sampling of a
multidimensional signal, which involves the mathematical
concept of a sampling lattice. We then introduce multidimen-
sional sampled signals by way of multidimensional z-trans-
forms and multidimensional Fourier transforms. In the next
section, we present an introduction to an exciting new appli-
cation area of multidimensional signal processing—system
identification. Then we present examples and applications of
system identification. Finally, we offer concluding remarks.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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SAMPLING LATTICES is called a N-dimensional lattice, and it will be denoted by R .
In other words, the space R spanned by the set of vectors

There are many ways to choose the sampling geometry, so �r1, . . ., rN� is the space consisting of all linear combinations
of the vectors. The set of vectors �r1, . . ., rN� is a basis for Rsampling a multidimensional signal is more complicated than

sampling a one-dimensional signal. Although sampling points if the vectors are linearly independent and the space spanned
by �r1, . . ., rN� is equal to R . Then we say that R has dimen-can be arranged on a rectangular grid, often there are more

efficient ways to sample multidimensional signals. Nonrect- sion N.
To better understand the definition of the lattice, considerangular sampling can efficiently minimize the number of

points needed to characterize an M-dimensional hypervolume. the following illustration in two dimensions. Let
As Fig. 1 shows, if the functions of interest are bandlimited
over a circular region, then significant savings are possible if
hexagonal sampling is used instead of rectangular sampling.

In order to describe precisely and conveniently an arbi-
rrr1 =

[
r11

r21

]
, rrr2 =

[
r12

r22

]
, and nnn =

[
n1

n2

]

trary sampling geometry, we must appeal to the language of
linear algebra using the mathematical theory of sampling lat- Then
tices. The set of all k-dimensional integer vectors will be
called the fundamental lattice, and it will be denoted N . That
is, n1rrr1 + n2rrr2 = n1

[
r11

r21

]
+ n2

[
r12

r22

]

N = {rrr = [rrr1, rrr2, . . ., rrrk]T|rrri is an integer}
or equivalently,

The set of all k-dimensional real vectors will be denoted E .
Now let us review a few definitions related to sums of vec-

tors. A linear combination of N vectors �r1, . . ., rN� � N is n1rrr1 + n2rrr2 =
[

n1r11 + n2r12

n1r21 + n2r22

]
an expression of the form

This can be rewritten as a matrix-vector product:N∑
i=1

nirrri

where ni, i � 1, . . ., N, are integers and are called coeffi-
n1rrr1 + n2rrr2 =

[
r11 r12

r21 r22

][
n1

n2

]
= [rrr1 rrr2]nnn = RnRnRn

cients. The set of vectors �r1, . . ., rN� is said to be linearly
independent if

where the matrix R is called the sampling matrix. In general,
let ri be the ith column of the matrix R, that is,N∑

i=1

nirrri = 0 ⇒ ni = 0 for all i
RRR = [rrr1, rrr2, . . ., rrrN ]

If the set of vectors �r1, . . ., rN�, is linearly independent, then then the sampling matrix R is said to generate the lattice R .
the totality of vectors of the form As such, the lattice R , defined by the sampling matrix R and

denoted LAT(R), is also given by{
N∑

i=1

nirrri| ni is an integer

}
R = LAT(RRR) = {mmm ∈ N |mmm = RnRnRn for nnn ∈ N }

If R is the identity matrix, then each ri is a unit vector point-
ing in the ith direction, and the resulting lattice, R , is the
fundamental lattice N .

Let us present some examples of sampling lattices using
black dots to represent the lattice points and white circles to
represent points in N that are not in LAT(R). The rectangu-
lar sampling lattice defined by the sampling matrix

RRR =
[

2 0
0 3

]

is depicted in Fig. 2. The hexagonal sampling lattice defined
by the sampling matrix
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Figure 1. Percent savings: Hexagonal versus rectangular sampling.

RRR =
[

1 1
2 −2

]
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n1
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n1

Figure 2. Lattice structure using rectangular sampling matrix. Figure 4. Lattice sampling using quincunx sampling matrix.

trix V, then LAT(MV) � LAT(M). For notation purposes, letis depicted in Fig. 3. The quincunx sampling lattice defined
J(M) � �det M�, the absolute value of the determinant of theby the sampling matrix
sampling matrix M. It can be easily shown that given a non-
singular matrix M and an integer-valued unimodular matrix
V, J(M) � J(MV) � J(VM).RRR =

[
1 1

−1 1

]
Therefore J(M) is unique and independent of the choice of

basis vectors. Moreover J(M) can be interpreted geometrically
is depicted in Fig. 4. as the k-dimensional volume of the parallelepiped defined by

For a given sampling matrix R, the corresponding Fourier M. Sometimes 1/J(M) is called the sampling density. Now,
domain sampling matrix is 2�R�T, and the lattice it generates consider the following sampling matrices:
is called the reciprocal lattice.

The matrix that generates a lattice is not unique. As we
will see later in this subsection, the following matrices gener-
ate the same lattice:

RRR =
[

1 0
2 −4

]
and SSS =

[
1 1
2 −2

]

where J(R) � J(S) � 4. Since RE � S for a unimodular ma-
trixRRR =

[
1 0
2 −4

]
and SSS =

[
1 1
2 −2

]

The theory underlying the nonuniqueness of these sampling
lattices is based on unimodular matrices. Thus, in order to

EEE =
[

1 1
0 1

]

discuss the nonuniqueness of sampling lattices, we must first
and R and S generate the same sampling lattice. In this casebriefly discuss unimodular matrices. An integer-valued ma-
the sampling lattice is known as a hexagonal samplingtrix A is a unimodular matrix if �det A� � 1. Unimodular ma-
lattice.trices have many interesting properties. For example, if A is

Given an integer-valued matrix R, a unit cell includes onean integer-valued unimodular matrix, then A�1 exists and is
lattice point from LAT(R) and J(R) � 1 adjacent points in Nan integer-valued unimodular matrix. In addition, given a
that are not in LAT(R). If these unit cells are periodicallynonsingular matrix M and an integer-valued unimodular ma-
replicated on LAT(R), then the entire space is tiled with no
overlap. Thus the unit cell is a footprint that characterizes
the sampling lattice. Given an integer-valued matrix R, the
fundamental parallelepiped of lattice LAT(R), denoted
FPD(R), is the unit cell that includes the origin and is
bounded by all lattice points one positive unit away. Formally
the fundamental parallelepiped is given by

FPD(RRR) = {yyy ∈ E |yyy = RxRxRx for all xxx ∈ [0, 1)k}

where E is the set of all k-dimensional real vectors.
Consider the following example as an illustration of the

concept of fundamental parallelepipeds. Assume that the
sampling matrix

n
2

n1

Figure 3. Lattice sampling using hexagonal sampling matrix.

RRR =
[

2 0
0 3

]
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then V2 is a sublattice of V1. As such, J(V2) � 16 and J(V1) �
4; then J(V2) is, as expected, an integer multiple of J(V1),
which means that J(V2) � 4J(V1). An important special case
results when the lattice LAT(V1) coincides with the funda-
mental lattice N , namely LAT(V1) � LAT(I). In addition � �
J(V2)/J(V1) represents the number of cells of FPD(V1) that can
fit into FPD(V2). The lattice point in each one of these cells
can be thought of as a shift vector a, which, if added to each
vector of LAT(V2), will generate an equivalence class of points
called a coset. The union of all cosets is LAT(V1).

Thus the concept of a coset will provide a natural way to
partition LAT(V1) into subsets, which is a necessary step for
the generation of multidimensional multirate filter banks.

Let V1 and V2 be integer-valued matrices such that

n
2

n1

Figure 5. Fundamental parallelpiped example. LAT(VVV 2) ⊆ LAT(VVV 1)

Let a � LAT(V1) � FPD(V2). Define the coset C(V1, V2, a) toThen the fundamental parallelepiped is as given in Fig. 5. By
beinspection, there are J(R) � 6 points in the fundamental par-

allelepiped.
C(VVV 1, VVV 2, aaa) = LAT(VVV 2) + aaaIt can be easily shown that given an integer-valued uni-

modular matrix U and an integer-valued diagonal matrix �,
If LAT(V1) � N , then by convention, V1 is not explicitly

identified; that is, the coset is simplyFPD(UAUAUA) = UUU FPD(�)

C(VVV 2, aaa) = LAT(VVV 2) + aaaSometimes in the literature, authors refer to the sym-
metric parallelepiped, denoted SPD(R). It is defined by

Given integer-valued matrices V1 and V2 such that
LAT(V2) � LAT(V1), we denote the set of shift vectors bySPD(RRR) = {yyy ∈ ε|yyy = RxRxRx for all xxx ∈ [−1, 1)k}

Let V1 and V2 be k � k integer matrices. LAT(V2) is called N (VVV 1, VVV 2) = {aaa|aaa ∈ LAT(VVV 1) ∩ FPD(VVV 2)}
a sublattice of LAT(V1) if LAT(V2) � LAT(V1), that is, every

Similar to the convention for cosets, the convention for shiftpoint of LAT(V2) is also a point of LAT(V1).
vectors when LAT(V1) � N is not to explicitly identify V1;Let V1 and V2 be integer matrices, where LAT(V2) �
that is, the set of shift vectors is simplyLAT(V1). Then, for every m � N , there exist n � N such

that
N (VVV 2) = {aaa|aaa ∈ N ∩ FPD(VVV 2)}

VVV 1nnn = VVV 2mmm
Returning to the example above, if

or equivalently,

nnn = VVV −1
1 VVV 2mmm VVV 2 =

[
4 0
0 4

]

Since n and m are integer vectors and since V1n � V2m, then
andV�1

1 V2 must be an integer-valued matrix. Let L � V�1
1 V2. Then

V1L � V2. Since det V1L � (det V1) (det L),

det VVV 2 = (det VVV 1)(det LLL)
VVV 1 =

[
2 0
0 2

]

so that then the cosets are uniquely defined by the following set of
shift vectorsJ(VVV 2) = J(VVV 1)(det LLL)

Hence, J(V2) is an integer multiple of J(V1). For example, if N (VVV 1, VVV 2) =
{[

0
0

]
,

[
2
0

]
,

[
0
2

]
,

[
2
2

]}

VVV 2 =
[

4 0
0 4

]
MULTIDIMENSIONAL SAMPLED SIGNALS

and
Unfortunately, some important sampling structures cannot
be represented as a lattice. For example, consider an impor-
tant sampling structure for high definition television (HDTV)
called line quincunx, where two samples are placed one verti-

VVV 1 =
[

2 0
0 2

]
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cally above the other in place of every sample in the sampling Let L be an integer-valued nonsingular matrix, then, zL is
given bygrid. But line quincunx can be represented as the union of

two shifted lattices using the multidimensional z-transform.
Here we first define some underlying vector mathematics, and zzzLLL = [zzzLLL0 , . . ., zzzLLLk−1 ]
then we present the multidimensional z-transform and the
multidimensional discrete Fourier transform (DFT). In order where Li is the ith column of L, that is,
to generalize the definitions that we have grown accustomed
to seeing in one-dimension, we provide the definition of a vec- LLL = [LLL0, . . ., LLLk−1]
tor raised to a vector power and subsequently the definition
of a vector raised to a matrix power. The following interesting property of the multidimensional

Given complex-valued vector z-transform can be easily shown. Let L be an integer-valued
matrix where Li, i � 0, . . ., k � 1, are the columns of L.
Thenrrr = [

r0, . . ., rN−1

]T

and integer-valued vector (zzzLLL)nnn = zzzLLLnnn

sss = [
s0, . . ., sN−1

]T

Multidimensional Discrete Fourier Transform

The multidimensional discrete Fourier transform (DFT) is anThen the vector r raised to the vector s power is a scalar, and
exact Fourier representation for periodically sampled arrays.it is defined to be
Therefore, it takes the form of a periodically sampled Fourier
transform. As in the one-dimensional case, the multidimen-rrrsss = rs0

0
, rs1

1
, . . ., rsN−1

N−1 sional discrete Fourier transform can be interpreted as a Fou-
rier series representation for one period of a periodic se-

or equivalently, quence.
In this formulation we have to address two types of period-

icities: one due to the sampling lattice and one due to the
signal (defined on lattice points) to be Fourier transformed.

rrrsss =
N−1∏
m=0

rsssm
m

Let V denote the sampling matrix; hexagonal, quincunx, rect-
Then, building on this definition, we can define a vector angular, and so on. Let N denote the periodicity matrix,

raised to a matrix power. which characterizes the periodicity of the lattice points on
Given a complex-valued vector which the signal to be Fourier transformed is defined. Assume

that LAT(N) is a sublattice of LAT(V). Then we define equiva-
lence classes between periodic replicas of the data byrrr = [r0, . . ., rN−1]T

and an integer-valued matrix [nnn] = {mmm ∈ LAT(VVV )|nnn − mmm ∈ LAT(NNN)}

Therefore, if parallelograms are drawn between the elementsLLL = [L0, . . ., LN−1]
of LAT(N), then any two vectors that occupy the same relative
position are in the same equivalence class.where Li is the ith column of L. Then the vector r raised to

Many properties of the periodicity matrix, N, follow bythe matrix L power is a row vector, and it is defined to be
analogy from the corresponding facts for sampling matrices.
For example, the density of the periodicity matrix is uniquelyrrrLLL = [rrrLLL0 , rrrLLL1 , . . ., rrrLLLN−1 ]
defined by 1/�det N�, denoted 1/J(N), but for a given periodic
sequence the periodicity matrix N is not unique, since it canMultidimensional z-Transform
be multiplied by any unimodular matrix and still describe the

The k-dimensional z-transform of x(n0, . . ., nk�1) is defined by same periodic signal. In addition the columns of N indicate
the vectors along which it is periodically replicated.

A multidimensional sequence x(n) is periodic with period
N; that is, for all n, r � N , x(n) � x(n 
 Nr). Let I N repre-

X (z0, . . ., zk−1) =
∑
n0

· · ·
∑
nk−1

x(n0, . . ., nk−1)z−n0
0

. . . z−nk−1
k−1

sent one period of x(n). Then
or equivalently,

X (ω) =
∑

nnn∈IN

x(nnn) exp[− jωTVVVnnn]
X (zzz) =

∑
n∈N

x(nnn)zzz−n

where V defines the underlying sampling lattice. Moreover,
where, z � [z0, . . ., zk�1]T is a complex-valued vector, n � since x(n) is periodic with period N, X(�) can also be written
[n0, . . ., nk�1]T is an integer-valued vector, and as

X (ω) =
∑

nnn∈IN

x(nnn) exp[− jωTVVV (nnn + NNNrrr)]zzz−nnn =
k−1∏
m=0

z−nnnm
m
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or simply as Invoking the periodicity of X(m), that is, X(m) � X(m 
 Pq),
will cause x(n) to become

X (ω) =
∑

nnn∈IN

x(nnn) exp[− jωTVVVnnn] exp[− jωTVNVNVNrrr]

x(nnn) = 1
α

∑
mmm∈IP

XXX (mmm) exp[ jnnnT(2πNNN−T)(mmm + PqPqPq)]

But

or equivalently,
X (ω) =

∑
nnni∈IN

x(nnn) exp[− jωTVVVnnn]

x(nnn) = 1
α

∑
mmm∈IPPP

XXX (mmm) exp[ jnnnT(2πNNN−T)mmm] exp[ jnnnT(2πNNN−T)PqPqPq]

Therefore

Butexp[− jωTVNVNVNrrr] = 1

which is equivalent to the condition x(nnn) = 1
α

∑
mmm∈IPPP

XXX (mmm) exp[ jnnnT(2πNNN−T)mmm]

ωTVNVNVN = 2πmT

Therefore
where m is a vector of integers. Upon further examination of
�T, we observe that exp[ jnnnT(2πNNN−T)PqPqPq] = 1 for all qqq ∈ N

Since n and q are integer-valued vectors, thenωT = 2πmmmT(VNVNVN)−1

or equivalently, NNN−TPPP = III

or equivalently,ωT = (2π(VNVNVN)−Tmmm)T

PPP = NNNT
Therefore

Therefore, X(m) is periodic with period NT; that is, X(m) �ω = 2π(VNVNVN)−Tmmm
X(m 
 NTq). Hence

The matrix 2�(VN)�T serves as a Fourier domain sampling
matrix. Substituting this equation into the equation for X(�)
yields

x(nnn) = 1
α

∑
mmm∈I

NNNT

XXX (mmm) exp[ jnnnT(2πNNN−T)mmm]

Now let us determine the constant � by substituting the equa-
tion for x(n) into the equation for X(m). Hence

X (mmm) =
∑

nnn∈IN

x(nnn) exp[− j2πmmmTNNN−1VVV −1VVVnnn]

or equivalently, X (mmm) = 1
α

∑
sss∈I

NNNT

XXX (sss)
∑

nnn∈INNN

exp[ jnnnT(2πNNN−T)mmm]

exp[− jnnnT(2πNNN−T)sss]
X (mmm) =

∑
nnn∈IN

x(nnn) exp[− jmT(2πNNN−1)nnn]

or equivalently,Let us further examine the inner product that occurs in the
argument of the exponential:

X (mmm) = 1
α

∑
sss∈I

NNNT

XXX (sss)
∑

nnn∈INNN

exp[ jnnnT(2πNNN−T)(mmm − sss)]
mmmT(2πNNN)−1nnn = (2πNNN−1nnn)Tmmm

= nnnT(2πNNN−T)mmm
However,

Therefore ∑
nnn∈INNN

exp[ jnnnT(2πNNN−T)(mmm − sss)] = J(NNN)δmmm,sss

X (mmm) =
∑

nnn∈IN

x(nnn) exp[− jnnnT(2πNNN−T)mmm]

Hence

Suppose that the multidimensional sequence X(m) is periodic
α = J(NNN)with period P; that is, X(m) � X(m 
 Pq) for m, q � N . Also

let I P represent one period of X(m). Then, by analogy with which is as expected, since J(N) � �det N� is the number of
the one-dimensional discrete Fourier transform, x(n) has the samples in one period for LAT(N). Therefore the multidimen-
following form for some constant �: sional discrete Fourier transform pair are given by

X (mmm) =
∑

nnn∈INNN

xxx(nnn) exp[− jnnnT(2πNNN−T)mmm]x(nnn) = 1
α

∑
m∈IP

XXX (mmm) exp[ jnnnT(2πNNN−T)m]
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and Since we are working with a sampling grid with samples at
integer-valued locations, it is important that we perform the
phase shift for integer multiples of 2�/N1. But b/an2m1 is real-
valued. Therefore we need to quantize b/an2m1 to integer val-

x(nnn) = 1
JJJ(NNN)

∑
mmm∈I

NNNT

NNN(mmm) exp[ jnnnT(2πNNN−T)mmm]

ues through the use of the round function.

It should be noted that these equations reduce to the usual 3. Compute N1N2-point FFTs, one for each column in the
discrete Fourier transform pair in the one-dimensional case n2 direction:
and to the familiar rectangular multidimensional discrete
Fourier transform when N is a diagonal matrix.

As an illustration of this theoretical development, some-
times it is of interest to input data from an arbitrary lattice

X3(m1, m2) =
N2−1∑
n2=0

X2(m1, n2) exp
�

− j2π
n2m2

N2

�

and output it on a rectangular lattice so that it could be con-
veniently displayed on a computer display. Assume that V is The last example has shown how one-dimensional tech-
defined by niques can be generalized to perform two-dimensional opera-

tions. This foreshadows the work in the following section on
system identification. Much of this work has been and contin-
ues to be done with one-dimensional problems, but as moreVVV =

[
a b
0 c

]
sophisticated problems emerge, the underlying geometry will
need to be considered. This will lead the area of system identi-

For hexagonal input, a � 2, b � 1, and c � 2. Moreover, for fication into multidimensional statistical signal processing.
quincunx input, a � 2, b � 1, and c � 1. In addition, for
rectangular input, b � 0. Select a periodicity matrix so that

SYSTEM IDENTIFICATION PROBLEMVN is a diagonal matrix. The resulting Fourier analysis will
be on a rectangular grid. Now let us pick N to be

Determining a dynamical system’s parameters from its noise-
corrupted input and output measurements is what system
identification is all about. As such, system identification
stands out in stark contrast to the mathematical modeling-

NNN =

N1 −b

a
N2

0 N2




based approaches to dynamical system elucidation, so en-
grained in physics and engineering practice, for system iden-Then
tification, embraces an empiricism-based route to modeling.
Therefore system identification is a basic scientific tool, for it
entails a ‘‘black box’’ approach to modeling. In other words, a
model of the dynamical system is being matched to the known

VNVNVN =
[

a b
0 c

]
N1 −b

a
N2

0 N2


 =

[
aN1 0

0 cN2

]
input data and the measured output of the system. In the
development here, it is envisaged that the data (input and

This N matrix is a good choice for a periodicity matrix. There- output) are specified on a simple one-dimensional and regular
fore the DFT becomes grid, yet from the earlier discussion it should become appar-

ent how the system identification methodology presented in
the sequel can be adapted to the multidimensional setting.X (mmm) =

∑
nnn∈INNN

xxx(nnn) exp[− jnjnjnT(2πNNN−T)mmm]

Linear discrete-time single input/single output (SISO) con-
trol systems are considered, and their transfer function

where
y(z)

u(z)
= b1z−1 + b2z−2 + · · · + bmz−m

1 − a1z−1 − · · · − anz−n

is identified; that is, the n 
 m coefficients a1, . . ., an, b1,
. . ., bm are determined. The corruption of the input (u) and

NNN−T =




1
N1

0

b
a N1

1
N2




the output (y) by measurement noise is a major concern, and
This suggests the following algorithm: therefore system identification entails a statistical approach

to modeling. Hence it should come as no surprise that the
1. Compute N2N1-point fast Fourier transforms (FFTs), methods of statistics have a strong bearing on system identi-

one for each row in the n1 direction: fication, as shown in this article. Roughly speaking, system
identification is the ‘‘dynamic’’ counterpart of the ‘‘static’’ lin-
ear regression method of statistics, whose broad fields of ap-
plication encompass the ‘‘softer’’ (i.e., with less structure) en-X1(m1, n2) =

N1−1∑
n1=0

x(n1, n2) exp
�

− j2π
n1m1

N1

�

dowed disciplines of economics and the social sciences. Hence,
because of its statistical foundations, system identification is

2. Apply a phase shift to each point of the resulting data: applicable to a wide variety of economic, scientific, and engi-
neering problems. However, if system identification were a
straightforward task, our dependence on mathematical mod-
eling, and indeed on physics, would be significantly reduced.

X2(m1, n2) = X1(m1, n2) exp
�

− j
2π

N1
round

�b
a

n2m1

��
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Unfortunately, the inverse problem nature of system identi- that additional variables are being measured. This ap-
proach is feasible provided that additional sensors arefication requires that careful attention be given to it. So far

regression-based system identification has not been widely used. This affords the use of ARX models for the identi-
fication of dynamic systems with sensor noise. The in-applied [e.g., see (7,8)]. In this article the current shortcom-

ings of the system identification paradigm are elucidated, and clusion of additional sensors reduces the computational
effort. This approach is therefore particularly suitablea practical system identification algorithm is developed. Vali-

dation issues are also addressed. for on-line system identification, as required in adaptive
and reconfigurable control. This approach is success-Linear regression based approaches for the identification

of the parameters of linear control systems are used in on- fully pursued in Refs. 11–14.
line and real-time operations where the linear structure of 2. ARMAX Models with Dynamic System Identification. A
the dynamics is directly exploited and only the system’s pa- careful analysis of the attendant stochastic problem is
rameter (without the system’s state) is estimated. In the sig- required, involving discrete measurements and devel-
nal processing literature, this main line of research in system oping iterative and computationally intensive algo-
identification based on the statistical method of linear regres- rithms.
sion (10) is also referred to as ‘‘linear prediction.’’

If either the system under consideration is static, as is the In this article the second approach is emphasized.
case in the linear regression paradigm of statistics, or if dy-
namical systems with process noise but with no measurement Linear Regression
noise are considered, then auto regressive with exogeneous

Static estimation problems are the object of statistics and areinputs (ARX) models are obtained. The problem of estimating
referred to as linear regression problems. Consider the staticthe parameters of an ARX model leads to a linear regression
linear regression problem where the parameter vector � �formulation, whose solution is given by a least-squares esti-
Rn needs to be estimatedmate. Therefore the identification of the parameters of an

ARX model is a relatively simple task. These models are often
Z = H� + V (1)discussed in the controls literature. Unfortunately, ARX mod-

els are not very interesting in control work, due to the dy- The ‘‘measurement vector’’ is Z � RN, and the known re-
namic nature of control systems and the ubiquity of measure- gressor H is an N � n matrix. The statistics of the ‘‘equation
ment noise. Note that in signal processing, finite impulse error,’’ or measurement noise, V � RN are specified: V is a
response (FIR) filters yield ARX models. zero-mean Gaussian random vector whose known covariance

Linear regression–based system identification algorithms matrix
applied to the identification of discrete-time dynamical sys-
tems with measurement noise yield auto regressive moving R = E(VV T) (2)
average with exogeneous inputs (ARMAX) models.

It is important to recognize that, notwithstanding the lin- R is an N � N real, symmetric and positive definite matrix.
ear structure of the linear regression, the identification of an The minimum variance (MV) parameter estimate is
ARMAX model is a nonlinear filtering problem. The linear
regression, like the formulation of equations to be solved in �̂MV = (HTR−1H)−1HTR−1Z (3)
order to identify (determine) the parameter vector, only
serves to mask the inherently nonlinear nature of the original The estimation error covariance
system identification problem. Thus in ARMAX models mea-
surement (or sensor) noise is responsible for the introduction E((� − �̂)(� − �̂)T) = PMV
of correlation into the ‘‘equation error’’ of the ensuing ‘‘linear’’
regression. Correlation causes the least squares–based pa- where the n � n real, symmetric, and positive definite matrix
rameter estimates to be ‘‘biased,’’ which means that the pa-
rameter estimates are bad. Hence, when ARMAX models are PMV = (HTR−1H)−1 (4)
used, it is important to recognize and properly model the cor-
relation inherent in the linear regression’s equation error. It The following is an important special case: The covariance
is therefore required to calculate the parameter’s minimum matrix of the equation error is a scaled identity matrix
variance estimate, which incorporates the equation error co-
variance information. In conclusion, the notorious correlation R = rIN
phenomenon encountered in the ‘‘linear’’ regression formula-

where r is a positive number. In this case the parameter esti-tion of the problem of identifying ARMAX models is just an
mate is particularly simple:alternative manifestation of the difficult nature of the nonlin-

ear filtering problem.
These basic difficulties of system identification point to the �̂LS = (HTH)−1HTZ (5)

following two avenues of approach, which have been explored
with varied success. Roughly speaking, the trade-off is be- and the estimation error covariance is
tween computational effort and instrumentation hardware:

PLS = r(HTH)−1 (6)
1. Simple Static Estimation. The identification problem of

dynamic systems in the presence of sensor noise is The estimate Eq. (5) is also referred to as the least-squares
(LS) estimate.transformed into a static estimation problem provided
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The crucial advantage of the LS parameter estimate Eq. Next, define
(5) is its independence from the covariance of the equation
error, which in this case is determined solely by the measure-
ment noise intensity r. Furthermore, note that in this impor-
tant special case where the measurement’s error covariance
matrix is a scaled identity matrix, the LS estimate is in fact
the MV estimate.

Z =




yk+1

yk+2

...
yk+N




N×1

(11)

The system identification route to parameter estimation is
rooted in the statistical method of linear regression (10). Lin-
ear regression is basically a batch-type algorithm. Hence, the
system identification algorithms developed in the sequel are
readily adaptable to a ‘‘moving window’’ type of algorithm,
and hence they are used to estimate time-varying parameters

V =




vk+1

vk+2

...
vk+N




N×1

(12)

and parameters subject to jumps. A useful rule of thumb from
statistics is to take a large number of measurements for the

andbatch size:

N ≈ n2

Thus the batch data processing to system identification is the
preferred approach.

Linear Regression for System Identification 1

An nth order linear discrete-time SISO control system is con-
sidered. The dynamical system is

H =




yk yk−1 . . . yk−n+1

yk+1 yk . . . yk−n+2

...
...

...
yk+N−1 yk+N−2 . . . yk+N−n

uk uk−1 . . . uk−m+1

uk+1 uk . . . uk−m+2

...
...

...
uk+N−1 uk+N−2 . . . uk−m+N




N×(m+n)

(13)

The parameter vector is

yk+1 = a1yk + a2yk−1 + · · · + anyk−n+1 + b1uk + b2uk−1 + · · ·
+ bmuk−m+1, k = 1, 2, . . .

(7)

The measurement is

zk+1 = yk+1 + vk+1 (8)

where the measurement noise vk
1 is a Gaussian random vari-
able with a variance of �2. The measurement noise is white,
E(vkvl) � 0 for all k � l (i.e., there is no correlation).

A naive linear regression approach to system identification

� =




a1

...
an

b1

...
bm




(m+n)×1
entails the ‘‘substitution’’ of Eq. (8) into Eq. (7) so that

Thus the linear regression model Eq. (1) is obtained, where
the covariance of the ‘‘measurement error’’ is a scaled unity

yk+1 = a1yk + a2yk−1 + · · · + anyk−n+1 + b1uk + · · ·
+ bmuk−m+1 + vk+1

(9)
matrix, namely

is obtained. This is indeed an ARX model.
R = E(VV T) = σ 2INConcatenating N measurements yields the linear regres-

sion
Hence the minimum variance estimate is the least-squares
estimate given by Eq. (5). The estimation error covariance is
given by Eq. (6).

In the conventional system identification literature, an in-
ordinate amount of attention is being given to the recursive
(on the number of recorded measurements N) form of the
above result. One then refers to recursive least squares (RLS)
system identification. The latter is readily derived using the
Bayes formula. Thus, given the parameter estimate �̂N and
the estimation error covariance matrix PN, which are obtained
after a data record of length N has been processed, the latest
N 
 1 measurement satisfies the scalar equation

yk+N+1 = h� + vk+N+1 (14)




yk+1

yk+2

...
yk+N


 =




yk yk−1 . . . yk−n+1

yk+1 yk . . . yk−n+2

...
...

...
yk+N−1 yk+N−2 . . . yk+N−n

uk uk−1 . . . uk−m+1

uk+1 yk . . . uk−m+2

...
...

...
uk+N−1 uk+N−2 . . . uk−m+N−1







a1

...
an

b1

...
bn




+




vk+1

vk+2

...
vk+N−1


 (10)
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where the row vector Next insert Eq. (19) into Eq. (7). Define the zero mean
Gaussian random variable

ṽl = vl − a1vl−1 − a2vl−2 − · · · − anvl−n,

l = k + 1, . . ., k + N (20)

h1×(m+n)

= (yk+N, yk+N−1, . . ., yk+N−n+1, uk+N, uk+N1
, . . ., uk−m+N )

(15)

The (N 
 1)th measurement is integrated into the estimation Hence the novel linear regression is obtained
algorithm as follows:

�̂N+1 = �̂N + K(yk+N+1 − h�̂N ) (16)
zl+1 = a1zl + a2zl−1 + · · · + anzl−n+1 + b1ul + b2ul−1 + · · ·

+ bmul−m+1 + ṽl+1, l = k, . . ., k + N − 1
(21)

where the Kalman gain
The linear regression Eq. (21) is in appearance similar to the
linear regression Eq. (9). However, the entries of the Z and HK = 1

hPNhT + σ 2
PNhT (17)

matrices now consist of the actual measurements/observ-
ables z, and not the unavailable internal variables y:and the covariance of the updated estimation error is

PN+1 = PN − 1
hPNhT + σ 2

PNhThPN (18)

Note that additional measurements help improve the parame-
ter estimate, so PN
1 � PN, as expected. At the same time the
parameter estimate supplied by the RLS algorithm at time N
is identical to the parameter estimate arrived at by applying
the batch linear regression algorithm to the very same data
record (of length N) provided that the recursive algorithm was
initialized at some earlier time N
 � N using the estimate
and the estimation error covariance supplied by an applica-
tion of the batch algorithm to an initial data record of length
N
. This result follows from the application of the matrix in-
version lemma (15).

The RLS- and LS-based system identification algorithms
are widely used in the control community to identify the pa-
rameters of control systems [specified by Eqs. (7) and (8)]. At

Z =




zk+1

zk+2

...
zk+N




N×1

H =




zk zk−1 . . . zk−n+1

zk+1 zk . . . zk−n+2

...
...

...
zk+N−1 zk+N−2 . . . zk+N−n

uk uk−1 . . . uk−m+1

uk+1 uk . . . uk−m+2

...
...

...
uk+N−1 uk+N−2 . . . uk−m+N




N×(n+m+2)

(22)
the same time their estimation performance is often deficient.
For this reason the parameter estimate is euphemistically re- Moreover, the ‘‘equation error’’ in Eq. (21) is the zero-mean
ferred to as biased, so the RLS- or LS-based system identifi- Gaussian random variable
cation does not work. The root cause of the failure of the RLS
or the LS identification algorithms Eqs. (16)–(18) or (5) and
(6), respectively, is the sloppy derivation of the linear regres-
sion in Eq. (9). Hence in a later section, in sequel, a proper
analysis is undertaken.

Ṽ =




ṽl+1

...
ṽl+N


 (23)

Linear Regression for System Identification 2 Now the calculation of the minimum variance estimate of the
parameter associated with the linear regression Eq. (21) re-For the ARMAX model a careful stochastic analysis of the

parameter estimation process is required. In this respect, the quires the evaluation of the covariance of the equation error.
distinction between the true output of the control system at Hence the expectation
time k, yk, and the actually recorded measurement, zk, is cru-
cial. Thus, yk is an internal variable governed by the dynamics R = E(ṼṼ T) (24)
Eq. (7) and is not directly accessible to the observer. The ob-

needs to be calculated. The elements of the real symmetricserver records the measurements zk which are related to the
and positive (semi)definite R matrix are calculated by invok-internal variable yk according to the measurement Eq. (8). It
ing Eq. (20). Thus, the diagonal elements of the R matrix areis here assumed that the input variable uk is noiseless.
all equal:Use the measurement Eq. (8) to back out the internal vari-

able yl, for l � k � n 
1, . . ., k 
 N [e.g., see Eq. (7)]. Thus Ri,i = E(ṽ2
k+i) = E((vk+i − a1vk+i−1 − · · · − anvk+i−n)2)

= r = σ 2(1 +
n∑

k=1

a2
k)

(25)

for all i � 1, . . ., N. The off-diagonal elements of the sym-
metric equation error covariance matrix are

Ri, j = E(ṽk+iṽk+ j ) = σ 2

�
−ai− j +

n+ j−i∑
k=1

akai− j+k

�
(26)

yk−n+1 = zk−n+1 − vk−n+1

...

yk+1 = zk+1 − vk+1

yk = zk − vk

...

yk+N = zk+N − vk+N

(19)
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for all i � 1, . . ., N, j � 1, . . ., N and i � j. For example, The measurement noise vk
1 is a zero-mean Gaussian random
variable with variance �2. The measurement errors vk and vlthe 1, 2 element of the equation error covariance matrix is
are temporally uncorrelated for all k � l.

The data record for time k, k 
 1, . . ., k 
 N is considered,
and following the analysis in the preceding section, the linear
regression is obtained:

R1,2 = R2,1 = E(ṽk+1ṽk+2)

= E((vk+1 − a1vk − a2vk−1 − · · · − anvk−n+1)

(vk+2 − a1vk+1 − a2vk − · · · − anvk−n+2))

= σ 2(−a1 + a1a2 + a2a3 + · · · + an−1an)

The off-diagonal elements of R no longer vanish. In other
words, the equation error random vector Ṽ is not white, for

zk+1 = azk + buk + ṽk+1

zk+2 = azk+1 + buk+1 + ṽk+2

zk+N = azk+N−1 + buk+N−1 + ṽk+N

(30)

example, E(Ṽ1Ṽ2) � 0, and there is correlation in Ṽ. Correla-
tion is responsible for the fact that the least-squares and min-

Letimum-variance estimates are no longer identical, since in Eq.
(3) the R matrix is not a scaled identity matrix. Hence the
least-squares formula Eq. (5) no longer yields the minimum
variance estimate. That is why the widely used and easy-to-
calculate least-squares estimate Eq. (5) is biased, that is, in-
correct. The MV estimate Eq. (3) of � should be used instead.

The calculation of the minimum-variance estimate re-

Z =




zk+1

zk+2

...
zk+N


 , H =




zk uk

zk+1 uk+1

...
...

zk+N−1 uk+N−1


 , Ṽ =




ṽk+1

ṽk+2

...
ṽk+N




quires the knowledge of R. Unfortunately, R is not a priori
known, and in addition to the expected dependence on the

and the parameter vector isgiven sensor’s measurement error �, R is also determined by
the (as yet unknown) coefficients of the system’s transfer
function denominator. Thus it is important to realize that
[e.g., see Eq. (25) and (26)] � =

[
a
b

]

R = σ 2R′(�)

The covariance matrix of the ‘‘equation error’’ is
This calls for an iterative calculation of the minimum-vari-
ance estimate. Thus in Eqs. (25) and (26) the prior estimate
�̂0 of the parameter is used to estimate the covariance matrix
R; then an improved minimum variance estimate of the pa-
rameter, �1, is obtained from Eq. (3). Strictly speaking, only
the prior estimates of the parameters of the system’s dynam-
ics, which are encapsulated in the coefficients a1, . . ., an, are
used. Thus

R = E(ṼṼ T) = E

�


ṽk+1

ṽk+2

...
ṽk+N


 [ṽk+1 ṽk+2 . . . ṽk+N]

�
(31)

Hence

R = σ 2R′




a1

a2

...
an


 (27)

This process is repeated, and the convergence of the so-
obtained parameter sequence �i is gauged. Numerical experi-
mentation shows that when the above process converges then
this parameter estimate closely approximates the true pa-
rameter.

SYSTEM IDENTIFICATION EXAMPLES

These concepts are carefully illustrated in the context of the
identification of a first-order (scalar) control system.

Scalar Example

The dynamics are

yk+1 = ayk + buk, k = 1, 2, . . . (28)

At time k 
 1 the measurement equation is

zk+1 = yk+1 + vk+1 (29)

R = E

�


vk+1 − avk

vk+2 − avk+1

...
vk+N − avk+N−1


 [vk+1 − avk

vk+2 − avk+1 . . . vk+N − avk+N−1]

�

=




E((vk+1 − avk)(vk+1 − avk))

E((vk+2 − avk+1)(vk+1 − avk))

...
E(vk+N − avk+N−1)(vk+1 − avk)

E((vk+1 − avk)(vk+2 − avk)) . . .

E((vk+2 − avk+1)(vk+2 − avk+1)) . . .

...
E(vk+N − avk+N−1)(vk+2 − avk+1) . . .




(32)
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Thus R is a tridiagonal N � N matrix: where the 2 � 2 matrix P� is

R = σ 2




1 + a2 −a 0 0 0 0 0
−a 1 + a2 −a 0 0 0 0
0 −a 1 + a2 −a 0 0 0
0 0 . . . 0 0
0 0 0 0 −a 1 + a2 −a
0 0 0 0 0 −a 1 + a2




(33)

R is invertible, since for a � 1,

det(R) = a2(N+1) − 1
a2 − 1

and for a � 1,

�
[

zk zk+1 . . . zk+N−1

uk uk+1 . . . uk+N−1

]




1 + â2 −â 0 0 0 0
−â 1 + â2 −â 0 0 0
0 −â 1 + â2 −â 0 0
0 0 . . . 0

0 −â 1 + â2




−1




zk uk

zk+1 uk+1

...
...

zk+N−1 uk+N−1




�
(36)

det(R) = N + 1
For example, if two measurements are taken (N � 2), the
following explicit parameter estimation formulas for a first-Hence, in order to identify the parameters a and b of the
order ARMAX model are obtained:ARMAX model above, the following iteration for the estima-

tion of the control system’s parameters is obtained:
P = σ 2

(1 + â2 + â4)(ukzk+1 − uk+1zk)
P′′ (37)

where the 2 � 2 � P� matrix is[
−(1 + â2)(u2

k + u2
k+1) − 2âukuk+1

(1 + â2)(ukzk + uk+1zk+1) + â(ukzk+1 + uk+1zk)

(1 + â2)(ukzk + uk+1zk+1) + â(ukzk+1 + uk+1

−(1 + â2)(z2
k + z2

k+1) − 2âzkzk+1

]

and the parameter estimates are

âMVi+1
= 1

(ukzk+1 − uk+1zk)2
[(1 + â2

i + â4
i )(ukzk+1 − uk+1zk)

(ukzk+2 − uk+1zk+1)

+ 2âi(1 + â2
i )(ukzk+1 + uk+1zk+2)(ukzk+1 + uk+1zk)]

b̂MVi+1
= 1

(ukzk+1 − uk+1zk)2
[(1 + a2)(z2

k + z2
k+1) + 2azkzk+1]

× [(1+ a2)(ukzk+1 + uk+1zk+2)+ a(ukzk+2 + uk+1zk+1)]

− [(1 + a2)(ukzk + uk+1zk+1) − a(ukzk+1 + zkuk+1)]

× [(1 + a2)(zkzk+1 + zk+1zk+2)

+ a(zkzk+2 + z2
k+1)] (38)

The estimation errors �s are

[
âi+1

b̂i+1

]
=

�
[

zk zk+1 . . . zk+N−1

uk uk+1 . . . uk+N−1

]




1 + â2
i −âi 0

−âi 1 + â2
i −âi 0

0 −âi 1 + â2
i −âi 0

0 0 . . .

0 −âi 1 + â2
i




−1




zk uk

zk+1 uk+1

...
...

zk+N−1 uk+N−1




�−1 [
zk zk+1 . . . zk+N−1

uk uk+1 . . . uk+N1

]




1 + â2
i −âi 0 0 0 0

−âi 1 + â2
i −âi 0 0 0

0 −âi 1 + â2
i −âi 0 0

. . .

0 0 0 0 1 + â2
i −âi

0 0 0 0 −âi 1 + â2
i




−1




zk+1

zk+2

...
zk+N


 (34)

σa = σ

ukzk+1 − uk+1zk

�
(1 + â2)(u2

k + u2
k+1

σb = σ

ukzk+1 − uk+1zk

�
(1 + â2)(z2

k + z2
k+1) + 2âzkzk+1

(39)

The estimation error’s covariance matrix is
It is appreciated that the source of difficulty in system identi-
fication is correlation. The latter is caused by measurement
(sensor) noise, not process noise. Hence it is instructive to re-P = σ 2 P′ (35)
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consider the identification of this first-order control system in The explicit formulas for the LS parameter estimates are
the case where a disturbance, namely process noise, enters
the system and there is no measurement noise. As discussed
in the next section, this yields a legitimate ARX model.

The dynamics are

yk+1 = ayk + buk + wk, k = 1, 2, . . . (40)

The process noise is a zero-mean Gaussian random variable

âLS =

∑N
i=1 u2

k+i−1

∑N
i=1 zk+izk+i−1

− ∑N
i=1 uk+i−1zk+i−1

∑N
i=1 zk+iuk+i−1∑N

i=1 u2
k+i−1

∑N
i=1 z2

k+i−1 − (
∑N

i=1 uk+i−1zk+i−1)
2

b̂LS =

∑N
i=1 z2

k+i−1

∑N
i=1 zk+iuk+i−1

−∑N
i=1 uk+i−1zk+i−1

∑N
i=1 zk+izk+i−1∑N

i=1 u2
k+i−1

∑N
i=1 z2

k+i−1 − (
∑N

i=1 uk+i−1zk+i−1)
2

(45)

with variance �2 and the process noise sequence is white,
namely E(wkwl) � 0 for all k � 1. The measurement equation No iterations are required.
is Moreover the estimation error covariance is

zk+1 = yk+1 (41)

Since yk � zk and yk�1 � zk�1, the following holds:

P = σ 2(HTH)−1

= σ 2

[ ∑N
i=1 z2

k+i−1

∑N
i=1 zk+i−1uk+i−1∑N

i=1 zk+i−1uk+i−1
∑N

i=1 u2
k+i−1

]−1

The � estimation errors of the system’s a and b parameter iszk+1 = azk + buk + wk (42)

Hence the following linear regression is obtained:
σa = σ

q∑N
i=1 u2

k+i−1q∑N
i=1 u2

k+i−1

∑N
i=1 z2

k+i−1 − (
∑N

i=1 uk+i−1zk+i−1)
2

σb = σ

q∑N
i=1 z2

k+i−1q∑N
i=1 u2

k+i−1

∑N
i=1 z2

k+i−1 − (
∑N

i=1 uk+i−1zk+i−1)
2

(46)


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
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zk uk

zk+1 uk+1
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...

zk+N−1 uk+N−1


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[
a
b

]
+




wk

wk+1

...
wk+N−1




Identification Experiment
Define

Simulation experiments validate the above insights and deri-
vation. The truth model’s parameters are

a = 0.95

b = 1

and the intensity of the measurement noise is determined by

Z =




zk+1

zk+2

...
zk+N


 , H =


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zk uk

zk+1 uk+1
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...
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
 , W =
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

wk
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...
wk+N−1




σ = 0.1
Now

The input signal is
R = E(WWT) = σ 2IN (43)

uk = sin(0.1k), k = 0, 1, . . ., 9

that is, the covariance matrix of the equation error is a scaled and the prior information is
identity matrix. Hence the LS estimate is correct, since the
parameter estimate â0 = 0.8

b̂0 = 1.2
(47)

or

â0 = 0.5

b̂0 = 1.5
(48)

The LS estimate is given by Eqs. (51) and (52):

â = 0.9390

b̂ = 1.0257
(49)

[
â

b̂

]
= (HTH)−1 HTZ

=
[ ∑N

i=1 z2
k+i−1

∑N
i=1 zk+i−1uk+i−1∑N

i=1 zk+i−1uk+i−1
∑N

i=1 u2
k+i−1

]−1

[
zk zk+1 . . . zk+N−1

uk uk+1 . . . uk+N−1

]


zk+1

zk+2

...
zk+N




(44)
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Table 1. Estimation Performance

â0 b̂0 â1 b̂1 â b̂

0.8 1.2 0.9425 1.0177 0.9427 1.0173
0.5 1.5 0.9415 1.0200 0.9427 1.0173

The experimental results show the following:

1. The MV estimates are superior to the LS estimates.
2. The calculated confidence level in the MV estimates is

lower than in the LS estimates.

According to item 1 above, the MV estimates are less biased
than the LS estimates. Moreover, item 2 above suggests that
the system identification scheme based on MV estimation is
less prone to the notorious ‘‘divergence’’ of EKFs (extended
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Kalman filtering). Indeed it is reasonable to gauge the estima-
Figure 6. Iterated parameter estimates (â0 � 0.8, b̂0 � 1.2). tion performance of a system identification algorithm using

the metric

and the � estimation errors of the system’s a and b parame-
ters are

|â − a|
σa

+ |b̂ − b|
σb

In view of 1 and 2 above one concludes that the performance
of the system identification scheme based on MV estimation

σa = 0.022

σb = 0.065
(50)

is superior to the LS based system identification, as expected.
The MV parameter estimate is iteratively determined ac-

Flight Control Applicationcording to Eqs. (40) to (42). The (fast) convergence of the esti-
mates is graphically illustrated in Figs. 6 and 7 for the prior In this flight control application, system identification experi-
information in Eqs. (53) and (54), respectively. ments concerning the pitch dynamics of an aircraft are pre-

sented [e.g., see (17,18)]. The identification of the ‘‘short-The identification results are summarized in Table 1.
period’’ dynamics of an aircraft is considered first. The truthThe � estimation errors are
model is adapted from Ref. 16: At a certain flight condition
the transfer function, which represents the aircraft’s pitch
rate y in response to elevator deflection u, is

σa = 0.042

σb = 0.108
(51)

and
y(s)
u(s)

= b1s + b2

s2 + a1s + a2
= 4.8s + 1.44

s2 + 0.84s + 1.44

The Bode plot for this transfer function, which is used for
σa = 0.05

σb = 0.14
(52)

innerloop flight control system design, is shown in Fig. 8. Rep-

for the prior information in Eqs. (53) and (54), respectively.
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Figure 9. LS estimate.

resentative measurement noise values for use in this example that the MV system identification algorithm yields relatively
unbiased parameter estimates. Additionally the novel MVare representative of a Tektronix frequency analyzer. The

manufacturer’s specifications give measurement error values system identification algorithm is doing a good job of pre-
dicting the accuracy of its estimate; that is to say, the algo-of �0.2 dB and �0.5	. These are taken conservatively as two

sigma values for the noise on the amplitude and phase mea- rithm is efficient.
The results of the experiments are summarized in Tablesurements.

If the LS estimate is used, then the results in Fig. 9 are 2. In all cases the values shown correspond to a 16 (phasor)
measurement linear regression. The Monte Carlo averagedobtained. Shown in the plots are average error and estimation

error covariances, which are the result of a 20-run Monte estimation error (e) and sigma (�e) are given for the LS and
MV algorithms, and the algorithm predicted sigma (�p) isCarlo experiment and which, on evoking the weak law of

large numbers, render a gauge of the identification algo- given for the MV experiments. In each case the bias in the
MV estimates is about two orders of magnitude smaller thanrithm’s estimation bias. As can be seen in the plots, there are

large biases in the average errors, which are outside the one in the naive LS estimate, and the estimation error covariance
is much smaller as well. Finally, when Bode plots are con-sigma bounds. This implies that the majority of the parame-

ter estimates in the 20 runs are outside this bound. structed using 
 � e � 2� as parameter values, all the plots
lie virtually on top of one another.However, when the correct MV estimate is used, the re-

sults improve dramatically, as Fig. 10 shows. The biases and In sum, the modeling of a realistic process of system identi-
fication using a frequency analyzer instrument takes a fre-estimation error covariances are much smaller (note the scale

difference). Included in these plots is the system identification quency domain approach, and phasors are used for system
identification. Gaussian measurement noise is assumed, as isalgorithm predicted estimation error covariance. The pre-

dicted estimation error covariance is very close to the realized customary in classical filtering and system identification
work. The proper minimum-variance estimate equations areestimation error covariance after about nine (phasor) mea-

surements. The small biases and covariance differences imply derived and compared with the simple least-squares estimate
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Figure 10. MV estimate.

for a second-order dynamical system representative of an air- A recent application of the iterated MV system identifica-
tion algorithm to deep-level transient spectroscopy experi-craft’s pitch channel, and this is used for innerloop flight con-

trol system design. ments in physics is documented in Ref. 19.
While the parameter vector estimate is initially very poor

for just a few (phasor) measurements, the estimation error
CONCLUSIONcovariance converges quickly as more measurements are

added until a steady state is achieved at around 16 measure-
Multidimensional signal processing and system identificationments. For this reason 16 measurements are taken in the it-
are the mainstay of signal processing. They address the re-erated MV estimation. In all cases the MV estimate outper-
spective deterministic and stochastic aspects and should beformed the LS estimate.
synergistically applied. The presentation of this article while
very basic is not elementary, and a wealth of extensions and
applications is possible.
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