
KALMAN FILTERS

Estimation problems arise in diverse fields, such as com-
munications, control, econometrics, and signal processing.
Underlying these are many general results in probabil-
ity and statistics. What distinguishes the particular ap-
plications mentioned above is the fact that they have ad-
ditional structure that can be used to further refine these
general results. The proper exploration and exploitation of
this structure leads to many problems and challenges.

In this article we focus on a certain rather narrowly
defined class of problems. This is essentially the study of
linear least-squares estimation problems for signals with
known finite-dimensional linear state-space models. De-
spite its apparent narrowness, this is a rich subject with
useful applications to some very different problems, such as
those of quadratic control, adaptive filtering, H∞-filtering
and control, matrix theory, and linear algebra.

The most celebrated estimation tool in this context is the
Kalman filter; it is an efficient procedure for the estimation
of the states of a linear state-space model from noisy ob-
servations of the output process. Since its inception in the
early 1960s, the Kalman filter has attracted considerable
attention and has encountered numerous applications in
diverse fields. We discuss it in some detail in this article,
but first we review the fundamental problem that underlies
the Kalman filter theory—that of estimating one random
variable from another.

STOCHASTIC ESTIMATION

Consider two (scalar or column-vector) random variables x
and y (possibly complex-valued) with joint probability den-
sity function fx,y(·, ·). If the random variables are indepen-
dent, that is, if they assume values independently of each
other, then there is little (if anything) that can be said about
the value assumed by one random variable when the value
assumed by the other is known or measured. Therefore, we
assume that the random variables are dependent, and ask
the following question: given that the variable y assumed
the value y in a particular experiment, what can be said (or
guessed) about the value assumed by the random variable
x?

Such questions often arise when the quantity of inter-
est is not directly observable or directly measurable while
it is possible to monitor another related quantity. For ex-
ample, we may only have available noisy measurements y
of x, say y = x + v, where the random variable v represents
additive noise or disturbance. With a proper formulation,
reasonable information about x can be extracted from the
noisy measurements of y.

To tackle the general question, an estimate of the value
assumed by x, say x̂, can be described as a function of the
value assumed by y, say x̂ = h(y). We refer to x as the esti-
mate. Likewise, we refer to the random variable x̂ defined
by x̂ = h(y), as the estimator: evaluating the estimator x̂ at
a particular value for y results in an estimate x̂.

The challenge is to suitably choose the function h(·) to
yield reasonable estimates. By reasonable we mean esti-
mates that satisfy a desired optimality criterion. There are

several criteria that can be used for estimation problems,
but for signal processing, communications, and control, one
of the most important, at least in the sense of having had
the most applications, is the least-squares criterion.

Nonlinear Least-Mean-Squares Estimation

The least-mean-squares (lms) criterion determines the
function h(·) by minimizing the variance of the error vari-
able x̂ = x − x̂; in other words,

where the symbol ∗ denotes complex conjugation and E
denotes the expected value. Note that x̃x̃* is a matrix not a
scalar, since x̃ is a column random variable. In this regard,
the minimization is to be interpreted with respect to the
partial ordering defined over the set of nonnegative definite
matrices. That is, the optimal solution h(·) will be such that
the matrix difference

is always nonnegative definite for all other choices h′(·). It
turns out that the optimal h(·) is given by the conditional
expectation of x given y,

The Case of Jointly Gaussian Random Variables

For general random variables x and y, the conditional ex-
pectation in Eq. (3) is generally a nonlinear function of the
observations. For the special case of jointly Gaussian ran-
dom variables, however, the expression collapses to a linear
function of the observations. Linear estimators, as we shall
see, have several advantages: they are easier to compute
and, more important, easier to update.

The probability density function (pdf) of two jointly
Gaussian zero-mean circular random variables x and y is
proportional to

where R denotes their (nonsingular) covariance matrix,

with

For such jointly Gaussian variables, it can be verified by
direct calculation that the expression E(x|y) in Eq. (3) for
the optimal estimator becomes

which is completely specified by the auto- and cross-
correlation quantities (i.e., by the second-order statistics)
of the quantities involved.
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Linear Estimators and the Orthogonality Condition

But what if the random variables x and y are not jointly
Gaussian? An estimator having the same linear structure
as Eq. (7) can still be obtained for general zero-mean ran-
dom variables x and y by restricting ourselves to linear
functions h(·). In this case, we seek a linear estimator of
the form x = K0y, and determine the coefficient matrix K0

by minimizing the error covariance matrix, that is,

It turns out that all K0 that solve Eq. (8) are solutions to
the so-called normal equations

When Ry > 0, the solution K0 is unique and given by K0 =
RxyR−1

y, in which case the expression for x̂ is identical to
Eq. (7). Note furthermore that the normal Eq. (9) is equiv-
alent to

This suggests that if we regard the random variables x and
y as vectors (i.e., elements) in an inner product space, with
inner product defined by 〈x,y〉�Exy*, then the above condi-
tion has the geometric meaning that (x − K0y) is orthogonal
to y, written as (x − K0y) ⊥ y. This is a fundamental prop-
erty that fully characterizes linear least-mean-squares es-
timators (llmse).

Usually, the variable y is vector-valued and composed
of several observations, say y = col{y0, . . . , yN}, where each
yi is itself a possibly vector-valued random variable. (The
notation col{·} denotes a column vector with the specified
entries.) We shall then say that x̂ = K0y is the projection of
x onto the linear space spanned by the random variables
{yi}, written L{y0, . . . , yN}.

THE INNOVATIONS PROCESS

We therefore see that the solution of the llms estimation
problem in Eq. (8) requires that we solve the normal equa-
tions K0Ry = Rxy. Since the solution of linear equations is
a much studied problem, it would seem that there is not
much more to be said, except to refer to some books on
the subject. However, there are at least two features of the
problem that should give us some pause:

1. It takes proportional to N3 operations (an opera-
tion may be taken as the multiplication or addi-
tion of two real numbers) to solve an N × N set of
linear equations. This can be a substantial amount
of work when N is large: N could be of the order
10 to 100 in several aerospace problems and 500
to 2000 to 4000 to 10,000 in many environmen-
tal, geodetic, power-system, econometric, and image-
processing problems.

2. For large N, there may be a problem of data stor-
age, especially because in many applications the data
comes in sequentially, so that we have to solve the
estimation problem for sequentially increasing val-
ues of N. The storage problem could be ameliorated

if we could develop a sequential or recursive method
of solving the equations; it would be nice if the new
datum could be used to update the previous estimate,
and then discarded, so that no data storage is nec-
essary. Note that recursive solutions can be useful
whenever N is large, whether or not it is growing.

Although general methods are known for the recursive
solution of linear equations, the problem must have some
special structure if the number of computations (and the
amount of storage) is to be significantly reduced, to say
O(N2) or even O(N) from O(N3). Fortunately, such struc-
ture is present in the estimation and control problems of
interest to us; in particular, we deal with stochastic pro-
cesses that have a certain finite-dimensional (state-space)
structure, which will be reflected into the structure of the
linear equations.

The exploration of structure can be carried out by alge-
braic or geometric methods in several different ways. We
pursue one particular route here, motivated by our interest
in state-space models.

A Geometric Approach

Recall that we are not interested in linear equations as
such, but in those that arise from the problem of comput-
ing the projection of a vector, say x, onto the linear space
spanned by another set of vectors (or random variables)
{y0, y1, . . . , yN}. As we have seen, this problem reduces to
the solution of a simultaneous set of linear equations, say
K0Ry = Rxy, where

It is a pretty obvious remark that these equations would be
easy to solve if Ry were a diagonal matrix, or equivalently
if the {yi} were orthogonal to each other, in which case the
projection would reduce to just the sum of the projections
of x onto each orthogonal vector. Of course, in most prob-
lems, Ry would not be diagonal; in fact, it is the nature of
the dependence between the vectors {yi} that distinguishes
various physical problems from each other.

To begin with, we henceforth always assume that the
variables {yi} are not an arbitrary collection, but belong
to an indexed or ordered set, in the sense that yi+1 follows
yi. In other words, we assume that the {yi} constitute a
stochastic process, where the index i will be assumed, for
definiteness, to be a time index, though it could also be a
space index if desired.

The fact that the generally nonorthogonal vectors {yi}
arise from an indexed set may immediately remind one of
the obvious (in retrospect) recursive Gram–Schmidt proce-
dure for replacing a set of indexed vectors by an equiva-
lent orthogonal set of vectors. Thus assume that we have
transformed {y0, . . . , yN} to an equivalent set of orthogonal
vectors {e0, . . . , eN}, equivalent in the sense that they span
the same linear (sub)space, written, say,
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If now we have an additional vector, yN+1, a natural way of
proceeding is by projecting yN+1 onto LN to get

Moreover, finding the above projection is aided by Eq. (12),
which allows us to find the projection by separately project-
ing onto each of the previously found orthogonal vectors
{ei},

where the notation ‖e‖2 stands for Eee*. This then leads to
the recursive formula

which can be begun with e0 = y0. This is known as the
Gram–Schmidt orthogonalization procedure.

When the {yi} are random variables, a suggestive ter-
minology can be associated with the orthogonal variables
{ei}. Thus recall that in the stochastic case,

This is the part of the random variable yN+1 that is deter-
mined by knowledge of the previous random variables {y0,
. . . , yN}. The remainder is the random variable eN+1,

which we can regard as the new information or the inno-
vation in yN+1 given {y0, . . . , yN}. Therefore, we shall call

As befits the name, each vector ei brings new informa-
tion, because ei is uncorrelated with all other vectors {ej}j�=i ;
in other words, the innovations process is a white noise
process. However, the white noise property by itself is not
enough to characterize the innovations. It is important that
there is a causal relationship between the indexed collec-
tions {yi} and {ei}: for every i ≥ 0,

In other words, the processes {yi} and {ei} are related by a
causal and causally invertible linear transformation. This
causality restriction makes the white-noise process {ei}
unique (apart from scaling).

The Modified Gram–Schmidt Procedure

While the innovations process {ei} is unique, this does not
mean that there is only one way of constructing them.
Here we describe another alternative—the so-called mod-
ified Gram–Schmidt (MGS) procedure:

1. Set e0 = y0

2. Form ỹi|0 = yi − 〈yi, e0〉‖e0‖−2 e0, and then set e1 = ỹ1|0
3. Form ỹi|1 = ỹi|0 − 〈ỹi|0, e1〉‖e1‖−2 e1, and then set e2 =

ỹ2|1

and so on. The partial residuals {yi, ỹi|0, ỹi|1, . . . } can be
rearranged in a triangular array, the diagonal entries of
which are the innovations {ei}:

This and other methods for determining the innovations
all have special features of interest, but for the moment the
point we wish to make is that they all take essentially the
same order of elementary computations, that is, O(N3) for
N innovations. In applications, however, we often have spe-
cial structures, for example, stationarity of the process or
the availability of state-space or difference equation models
for it, that enable fast ways of obtaining the innovations.
In this article, our focus is on state-space structure. If we
have an n-dimensional state-space model for the observa-
tion process {yi}, then it turns out that the innovations can
be found with O(Nn3) operations, which can be very much
less than O(N3) if n < N. The details are given further
ahead.

Estimation Given the Innovations Process

The reason for seeking to determine the innovations is that
we can now replace the problem of estimation given the
process {yi}, with the simpler one of estimation given the
orthogonal innovations process {ei, i ≤ k}. Thus

can also be expressed as

which, due to the orthogonality of the {ej}, is given by

Moreover, if we now have an additional observation yN+1,
then the estimator x̂|N can be readily updated by using the
innovation eN+1,

where
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The simple formulas in Eqs. (23), (24), and (25) are the key
to many results in linear least-squares estimation theory.

We may remark that we are often interested in esti-
mating not just a single variable, x, but actually another
stochastic process, say {xi}, from observations of a process
{yi}. The way to tackle this apparently more difficult prob-
lem is to regard it as a collection of problems in each of
which we estimate one of the variables in the {xi} process
from the observations of the process {yi}. We encounter
this procedure in the sequel. Here we note again that for
the basic formulas in Eqs. (23), (24), and (25) to be re-
ally useful, we must be able to determine the innovations
{ei} in some way that requires less work than determining
x̂|N directly by solving N linear equations in N unknowns
(strictly speaking, with our numbering convention, deter-
mining x̂|N requires solving N + 1 linear equations in N + 1
unknowns; we are often guilty of this minor inconsistency).
This is possible when the observation process arises from
a finite-dimensional linear state-space model.

THE STANDARD STATE-SPACE MODEL

The assumption of a finite-dimensional state-space model
for the observations process allows the innovations to be
recursively and efficiently computed, with O(Nn3) com-
putations as opposed to O(N3), where n is the state di-
mension and N is the number of observations. There are
also many problems, especially in aerospace applications,
where the state variables have a direct physical signifi-
cance and where estimates of the state variables, or of
some linear combinations of these variables, are needed. As
noted earlier, once we have the innovations, the estimation
of related quantities (states, inputs, and linear combina-
tions thereof) is straightforward. We first set up a standard
state-space model.

Since the early 1960s, much effort has been devoted to
modeling processes {yi} in state-space form, that is,

where the n × 1 state-vector xi obeys the recursion

The processes vi and ui are assumed to be (p × 1)- and (m
× 1)-vector zero-mean white noise processes, with

whereas the initial state x0 is assumed to have zero mean,
covariance matrix �0, and to be uncorrelated with the {ui}
and {vi}, that is,

These assumptions can be compactly restated as

It is also assumed that the matrices Fi [of dimension (n ×
n)],Gi(n × m),Hi(p × n),Qi(m × m),Ri(p × p),Si(m × p), and
�0(n × n) are known a priori. The process vi is often called
measurement noise and the process ui plant noise. They
are often uncorrelated (i.e., Si = 0), but the more general
assumption is necessary to handle problems where there
may be feedback from the output to the states.

We do not discuss here how the state equations have
been obtained. In many situations, the definitions of the
state variables are naturally suggested by the physical
problem; linearization may often have to be used to actu-
ally obtain linear equations as in Eqs. (26) and (27). As a
result, the state-space model can be set up in slightly differ-
ent forms, for example, with different assumptions on the
correlation between {ui, vi}. These models can be analyzed
in ways quite similar to the ones we are going to describe
here. The model specified above will be henceforth called
the standard model.

THE KALMAN FILTER

Now we go on to the problem of whether we can conve-
niently find the innovations, ei � yi − ŷi|i−1, when the {yi}
have the state-space structure described above. It turns out
that the recursive construction of the innovations combines
nicely with the recursive evolution of the state variables to
give a recursion for the innovations in terms of the param-
eters of the model and a pair of other matrices {Kp,i , Re,i}.
These can be computed in different ways, one of which we
present here.

Recursion for the Innovations

Starting with yi = Hixi + vi, and projecting onto the linear
subspace spanned by {y0, . . . , yi−1} yields

Our standard notational convention is that x̂i|j = the pro-
jection of xi on the linear subspace spanned by {y0, . . . ,
yj}, L{y0, . . . , yj}. Now the assumptions on our state-space
model imply that vi ⊥ yj for j ≤ i − 1, so that v̂i|i−1 = 0 and

Therefore, we see that the problem of finding the innova-
tions reduces to one of finding a convenient way of deter-
mining the one-step predictions of the state-vector. For this
purpose, we can try to use the basic formula for estimation
given the (uncorrelated) innovations process

where Re,j = 〈ej, ej〉.
This seems puzzling (in fact, circular), because so far

we have only defined the innovations {ei} in terms of the
one-step predictions, which are the things we are trying to
estimate. The reason Eq. (33) can make sense is that on
the right-hand-side we have the quantities {ej, j ≤ i}, so
that in trying to find x̂i+1|i from Eq. (32), we are only using
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earlier one-step predictions {x̂j|j−1, j ≤ i}.This suggests that
what we should try to find is a recursive solution, with the
present value x̂i+1|i being computed from the most recent
past value x̂i|i−1 and the new information ei = yi − Hix̂i|i−1.
To see if this is possible, let us first rewrite Eq. (33) in a
form more indicative of a recursion

This is almost in the desired form, and would be exactly so
if the term x̂i+1|i−1 could be expressed in terms of just x̂i|i−1

and ei. At this point, no more general statements can be
made; to go further we must have more information about
the way the states change with time.

In our problem we know that xi+1 obeys the state equa-
tion xi+1 = Fixi + Giui. But then projecting onto the linear
subspace spanned by {yj, j ≤ i − 1} shows that

since by the assumptions on our model, ui ⊥ yj, j ≤ i − 1. But
a relation as in Eq. (35) is exactly what we were seeking.
In other words, by combining Eqs. (32) to (24) we have the
following recursive set of equations for determining the
innovations:

with initial conditions

and where we have defined

The subscript p indicates that Kp,i is used to update a pre-
dicted estimator.

The {Kp,i , Re,i} are nonrandom quantities that should be
completely determinable from our knowledge of the means
and covariances of the model, and in fact we shall show how
this can be done; once the {Kp,i , Re,i} have been specified,
we see that the innovations {ei} can be computed in a nice
recursive way via Eqs. (25) to (27).

We can combine Eqs. (25) and (26) as

which emphasizes that in finding the innovations, we actu-
ally also have a complete recursion for the state estimators
{x̂i|i−1}.

The Error-Variance Matrices

To complete the computation of the innovations, let us de-
scribe one way of computing the coefficients {Kp,i , Re,i}
needed for the basic recursions shown by Eqs. (25) and (26).
The formulas we present here were first explicitly given by
Kalman in 1960. Some important alternative methods (the

so-called square-root and fast equation methods) for com-
puting {Kp,i , Re,i} will be presented later.

Kalman began by introducing the quantity

which is of course of independent interest as the covari-
ance matrix of the error in the predicted state estimator,
and noting that the quantities {Kp,i , Re,i} in the basic re-
cursions in Eqs. (25) to (28) could be expressed in terms
of the {Pi}. It remains only to specify the {Pi} in terms of
the model parameters, and he showed that they could be
described via a discrete-time Riccati recursion,

with initial condition P0 = �0. The recursion was so named
by Kalman as an analog of a famous quadratically nonlin-
ear differential equation attributed to Jacopo Francesco,
Count Riccati (ca. 1700), and first ingenuously exploited in
the calculus of variations by Legendre (1786). It was rein-
troduced into control theory by Bellman in 1957, and then
in general matrix form by Kalman in 1960.

It is important to note that since one-step predicted
quantities are encountered often, we use the following
briefer notations (except when necessary for emphasis) x̂i

� x̂i|i−1, and x̃i � x̃i|i−1.

The Gain Matrix and the Innovations Variance

Returning to Eq. (42), and to see how Pi enters into the
computation of {Kp,i , Re,i}, note first that since

and vi ⊥ x̃i, we can express the covariance matrix of ei in
terms of Pi,

It turns out that this is also true of Kp,i . For we have

and it can be checked that 〈xi, ei〉 = PiH∗
i and 〈ui, ei〉 = Si.

Therefore,

so we see that {Kp,i , Re,i} can be determined once we have
the error covariance matrices {Pi}. These, we show soon,
can be successively computed via the previously mentioned
discrete Riccati recursion shown in Eq. (42).

It is important to note that the quantities {Pi, Kp,i , Re,i}
depend only upon the prior assumptions on the model and
not on the actual observations {yi}; therefore, these quan-
tities can be precomputed (or computed off-line) and stored
for use in the actual prediction calculations. However, the
above formulas do allow these quantities to be updated as
needed (in real time), thus eliminating the need for exten-
sive storage.
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Recursion for the State-Error Variance

The covariance matrix of the state-vector of a white-noise
driven process, xi+1 = Fixi + Giui, obeys the easily derived
recursion

Now we note that the estimator equation is also one driven
by a white-noise process, namely the innovations

Therefore, if we define the covariance matrix of the state
estimators as �i � 〈x̂i, x̂i〉, then (as for �i) we can write

with initial condition �0 = 0. But the orthogonal decompo-
sition xi = x̂i + x̃i, with x̂i ⊥ x̃i, shows that �i = �i + Pi. It is
now immediate that

which is indeed the Riccati recursion shown in Eq. (42).
This is perhaps the most direct route to the Riccati recur-
sion.

Statement of the Kalman Filter

In summary, given the state-space model shown in
Eqs. (<xref target="W7210-mdis-0026 W7210-mdis-0027"
style="unformatted"/>), and (30), the innovations of the
process {yi} can be recursively computed via the equations

where Kp,i = (FiPiH∗
i + GiSi)R−1

e,i , Re,i = Ri + HiPiH∗
i, and

Pi is computed using Eq. (42).
Note that the number of computations required for go-

ing from ei to ei+1 is O(n3), because the most expensive step
is the computation of the triple product FiPiF∗

i, of n × n
matrices.

Measurement and Time Updates

In addition to the predicted estimators {x̂i|i−1}, we may be
interested in the so-called filtered estimators x̂i|i , or in going
from x̂i|i−1 to x̂i|i (a so-called measurement-update step), or
from x̂i|i to x̂i+1 (a so-called time-update step). These are
readily obtained using the innovations.

For the measurement-update step we can verify that

with

Likewise, for the time-update step we have

with

These results suggest another useful way of carrying out
the Kalman filter recursions. Thus note that the estimators
{x̂i} and {x̂i|i} can be sequentially computed, starting with
x̂0|−1 = 0, and using first the measurement-update equa-
tion followed by the time-update equation. That is, starting
with the given initial estimator x̂0|−1, we can successively
compute the estimators as indicated below

where the abbreviations mu and tu stand for measurement
and time updates, respectively.

Similarly, starting with the given value P0|−1 = �0, we
can successively compute

A nice feature of this two-step (measurement and time
update) form of the equations is that it makes clear how
to proceed if we have a variable time between measure-
ments or if, for some reason, certain measurements are
lost. Therefore, digital computer implementations of the
Kalman filter tend to be of this form. Analog (or hybrid)
computer realizations usually use the prediction estima-
tor equation.

Sequential Processing

The measurement update formulation can be used to mo-
tivate another scheme that is widely used in practical ap-
plications and is based on the reduction of a vector mea-
surements problem to a sequence of scalar measurement
problems. Indeed, when Ri > 0, we can rewrite the mea-
surement update equations in the equivalent form:

Moreover, while Kf ,i does not appear explicitly in these for-
mulas, it will be useful to note that it can be rewritten as

Since the inverse of the variance of a parameter is a
(rough) measure of the information in the parameter, i.e.,
large variance means high uncertainty or less informa-
tion, these formulas are often described as information-
form measurement-update formulas.

A very useful application of these formulas is to reduce
the problem of vector measurements (i.e., yi a p × 1 vector,
p > 1) to that of a sequence of scalar measurements. Doing
this would reduce computations because inversion of the p
× p matrices Re,i would be trivialized.

If the measurements are in fact nonscalar, but the addi-
tive noise covariance matrices Ri are strictly positive def-
inite, then by preliminary operations we can arrange that
the entries of the output noise vector be uncorrelated. More
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specifically, let Ri = LiDiL∗
i denote a triangular factoriza-

tion of Ri, say, and scale the output equation yi = Hixi + vi

by L−1
i, that is, L−1

iyi = L−1
iHixi + L−1

ivi. Then the new
noise sequence v̄i = L−1

ivi is such that

for some positive numbers {dj
i}.

We further partition the entries of the scaled output vec-
tor L−1

iyi, and of the scaled matrix L−1
iHi, as follows:

where {yk(i)} are scalars and {hk
i} are row vectors.

Now the p measurement processes {y1(i), . . . , yp(i)} will
be mutually uncorrelated and we should be able to incor-
porate them one at a time, essentially by making a series
of measurement updates, first with y1(i), then with y2(i),
. . . , and finally with yp(i).

To do this, we successively compute a sequence of ma-
trices

Then Pp
i will be the updated covariance matrix Pi|i based

on all the measurements. Note that all the inversions re-
quired here are trivial, that is, scalar. As far as the estima-
tors go, sequential incorporation of the new information in
the components {y1(i), . . . , yp(i)} will lead to the equations
x̂i|i = x̂p

i, where by the basic measurement update formula

and

Now if we define Pk
i = ‖x̃k

i‖2, x̃k
i = xi − x̂k

i, then we can
readily see that

It should be noted that this is the same as the expression
for Kk

f ,i in Eq. (62), where we did not make explicit the
stochastic meaning of Pk

i and Kk
f ,i .

STEADY-STATE BEHAVIOR

The Kalman filter Eqs. (<xref target="W7210-mdis-0042
W7210-mdis-0044" style="unformatted"/>), and (45) have
the interesting feature that even when the underlying
state-space model is time-invariant, say described by the
constant matrices {F, G, H, Q, R, S}, the equations for
recursively predicting xi using {yj}i−1

j=0 are time-variant,
since both Kp,i and Re,i depend on the time-variant Riccati
variable Pi.

A natural question of interest would be to clarify
whether in the time-invariant case the gain matrices {Kp,i}

might tend to a constant matrix, say Kp, as i → ∞. Further-
more, we might wonder if the steady-state value depends
upon the particular initial condition P0 = �0, that is, Kp,0 =
(F�0H* + GS)(R + H�0H*)−1. These are important ques-
tions, with several different and important consequences.
The most obvious is that if Kp is constant, the optimum
filter will be time invariant and generally easier to imple-
ment. Less obvious is the fact that if Kp,i tends to the same
value Kp no matter what �0 ≥ 0 is, then the effects of un-
avoidable round-off errors introduced at each stage of the
computation will tend to die off as time progresses; if this
was not true, then errors would accumulate and the results
would soon become meaningless.

In fact, it turns out that convergence of the Riccati recur-
sion [Eq. (42)] can be guaranteed for some indefinite, and
even negative semidefinite, initial matrices �0 (provided
they are bounded below by a certain negative semidefinite
matrix). This has certain implications for the numerical
stability of the Riccati recursion, because it shows that
even if the Riccati variable Pi loses its positive semidefi-
niteness (due to say, numerical errors) it may still converge.

The general convergence result states that given the
Riccati recursion [Eq. (42)] and the following assumptions:

1. {F, H} is detectable There are various characteriza-
tions of detectability. For example, a pair {F, H} is
detectable if, and only, if there exists a constant ma-
trix K such that F − KH is stable. Likewise, a pair {F,
G} is said to be stabilizable if {F*, G*} is detectable.

2. {F − GSR−1H, G(Q − SR−1S*)1/2} is stabilizable
The notation Q1/2 denotes any matrix satisfying Q
= Q1/2Q*/2, where Q is nonnegative definite and Q*/2

further denotes [Q1/2]*.
3. The initial condition P0 is such that I +

(Pa)*/2P0(Pa)1/2 > 0, where Pa is the unique positive
semidefinite solution to the so-called dual Riccati
equation,

with Fs = F − GSR−1H, Qs = Q − SR−1S*.

Then Pi converges to the unique positive semidefinite ma-
trix, P, that satisfies the discrete-time algebraic Riccati
equation (DARE)

Furthermore, the limiting matrix P is such that the ma-
trix determining the observer dynamics is a stable matrix,
that is, all the eigenvalues of F − KpH, Kp = (FPH* + GS)(R
+ HPH*)−1, are less than unity in magnitude. Moreover, in
z-transform notation we have,

In other words, the steady-state (or asymptotic) estimators
of the state vector can be found by passing the observations
through a linear-time-invariant (LTI) filter with transfer
matrix (zI − F + KpH)−1Kp. This is the so-called Wiener
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filter for the problem of estimating the state vector from a
stationary output process.

It can also be verified that the rate of convergence of
Pi to P is exponential. That is, ρ(Pi − P) ≤ cλ2i , where ρ(·)
denotes the spectral radius of its argument, λ = ρ(F − KpH)
is less than unity (λ < 1), and c is a bounded constant.

FAST ALGORITHMS FOR TIME-INVARIANT SYSTEMS

Another feature of the Kalman filter equations is that their
computational requirements are indifferent to whether the
coefficient matrices {Fi, Gi, Hi, Qi, Ri, Si} are constant
(time-invariant) or not. In particular, it takes O(n3) oper-
ations (additions and multiplications of real numbers) to
update Pi to Pi+1 via the Riccati Eq. (42), whether the ma-
trices {Fi, Gi, Hi, Qi, Ri, Si} are constant or not. This is
a strength—the algorithms are general; but also a weak-
ness, because we would expect that in some way constant-
parameter problems should be easier to handle than simi-
lar time-variant problems.

It turns out that estimation for a constant parameter
state-space model {F, G, H, Q, R, S} can be achieved by
replacing the Riccati recursions used in the Kalman filter
by a different set of fast recursions. These equations can be
solved with less effort than those of the Riccati-equation-
based Kalman filter: O(n2) rather than O(n3). The differ-
ence can be very significant for large n.

The fast equations can be described as follows. Introduce
the difference

and factor it (nonuniquely) as �(�0) = L0M0L∗
0, where L0

and M0 are n × α and α × α matrices, α = rank �(�0), and
M0 = diag{1, . . . , 1, −1, . . . , −1} is a signature matrix with
as many ±1’s as �(�0) has strictly positive and strictly
negative eigenvalues. In other words, M0 describes what
is called the inertia of the matrix �(�0). Then the gain
matrix Kp,i can be computed as follows. We write Kp,i =
KiR−1

e,i , and generate {Ki, Re,i} via recursions involving
certain auxiliary sequences {Li, Rr,i}:

with initial conditions K0 = F�0H* + GS, Re,0 = R + H�0H*,
and Rr,0 = −M−1

0. Moreover, the error covariance matrix
Pi can be computed as Pi+1 = −�i

j=0 LjR−1
r,j L∗

j. This algo-
rithm is of interest when the parameter α is significantly
smaller than n, which happens in several important cases.

The above recursions are sometimes said to be of
Chandrasekhar-type because they are generalizations of
equations introduced by Chandrasekhar (1947, 1950) in
certain radiative transfer problems.

ARRAY ALGORITHMS

As mentioned earlier, the largest amount of computation
in the Kalman filter recursions arises in propagating the
error covariance matrix Pi. However, more is at stake than
the amount of computation. One consequence of round-off
error is that the computed Pi may be non-Hermitian. This
is sometimes compensated for by averaging the computed
Pi and its Hermitian transpose. A better solution is only
to propagate half the elements in Pi—say the ones on and
below the main diagonal.

A more serious consequence arises from the fact that
the Pi being covariance matrices have to be nonnegative
definite. But round-off errors in the computation might de-
stroy this property. Moreover, this is not an easy property
to check; a matrix may be indefinite even if all its diago-
nal entries are nonnegative. The diagonal entries are the
mean-square errors in the estimates of each of the compo-
nents of the state vector and, of course, the computation
would be seriously off if these diagonal entries turned out
to be negative.

Nevertheless, it has been observed that such situations
need not always be catastrophic—it can happen that the
computation recovers, and that some iterations later the
Pi are nonnegative definite. One explanation arises from
the previously mentioned result that convergence of Pi to
a constant matrix can happen even for certain indefinite �0

(provided their smallest eigenvalue is not too negative). Be-
cause the system is time-invariant, the Pi at each i can be
regarded as the initial value for the Riccati recursion, and
the result just mentioned therefore allows for Pi to be in-
definite for some values of i without affecting the ultimate
convergence.

Despite these possibilities, it is desirable to try to en-
sure that Pi is always nonnegative-definite. It turns out
that an important step in this direction is to propagate
not Pi but a square-root factor, that is, a matrix Ai such
that Pi = AiA∗

i. There will be of course round-off errors
in propagating Ai, just as for Pi, but the point is that the
product of the computed factors, say P̂ i = ÂiÂ

∗
i, is almost

certainly nonnegative-definite. In theory, ÂiÂ
∗

i always is
nonnegative-definite, but of course again round-off effects
may arise; however, they are much easier to control, and in
fact, it is easy to see that the diagonal elements will never
be negative. Such algorithms are called array algorithms
and are briefly discussed next.They have the following gen-
eral form:

1. We form a certain prearray of numbers based on the
given data at time i.

2. This array is reduced to a specified form (often trian-
gular) by a sequence of elementary unitary operations
(rotations or reflections).

3. The desired quantities at time i + 1 can be immedi-
ately read-off from the resulting so-called postarray.

No explicit equations are necessary. Such array algorithms
are often much simpler to describe and implement (in soft-
ware or hardware) than explicit sets of equations: they are
becoming the algorithms of choice in many applications,
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including state-space estimation.
In the sequel, we shall make for simplicity of presenta-

tion, the standing assumption that Si = 0. We may remark
that when Ri > 0, a circumstance to be favored in setting
up the state-space model, nonzero Si can always be accom-
modated by replacing {Fi, Qi} by

Square-Root Factors

As noted above, a matrix A such that P = AA* is called a
square-root factor of P. Such factors are not unique, since
A�, for any unitary matrix � (i.e., one that satisfies ��* =
�*� = I), is clearly also a square-root factor. We can choose
� to make the factor unique, for example, by making A�

Hermitian, or as we choose, by making it lower triangu-
lar with positive diagonal elements. For notational conve-
nience, we denote a square-root factor of a matrix P by P1/2,
and almost always understand it as the unique triangular
square-root factor. We also write

and

Array Algorithm for the Time-Update Problem

An array algorithm is fairly evident for the time-update
problem. Indeed, Eq. (55) for the error covariance matrix,
assuming Si = 0, is

Hence,

This gives a factorization of Pi+1, but unfortunately the di-
mensions of the factor [FiP1/2

i|i GiQ1/2
i] are too large, n ×

(n + m) rather than n × n. However, here we could take
advantage of the nonuniqueness of square root factors and
introduce a unitary matrix �,

and try to choose � so that

where 0n×m denotes an n × m matrix of all zero elements
and X denotes a presently undetermined n × n matrix. If
we can find such a �, then it must hold by squaring that

and, hence,

But since the left-hand side is equal to Pi+1, X can be iden-
tified as P1/2

i+1, a square-root factor of Pi+1. So we have the
following algorithm. Form a so-called prearray

and unitarily (block) triangularize it to yield a postarray of
the form

We can identify X as a square-root of Pi+1. Uniqueness could
be ensured by assuming that X is, say, lower triangular.

In summary, the array algorithm for the time-update
problem takes the following form (assuming Si = 0):

where � is any unitary matrix that triangularizes the
prearray. The matrix � can be found in several ways via
well-known methods in numerical linear algebra, includ-
ing those based on Givens rotations and Householder re-
flections.

Array Algorithm for the Measurement-Update Problem

We now wish to go from P1/2
i to P1/2

i|i in accordance with the
measurement update equation Pi|i = Pi − PiH∗

iR−1
e,iHiPi.

For this purpose, we form the prearray

and then triangularize it via a unitary transformation �:

The entries {X, Y, Z} in the postarray can be identified
by squaring both sides as above. So we shall be brief and
simply state the final form of the array algorithm:

where K̄f ,i = PiH∗
iR−∗/2

e,i .

Array Algorithm for the Predicted Estimates

By combining the measurement-and-time update steps we
can obtain the following algorithm. Form the prearray

and triangularize it via a unitary transformation � to get,
say,
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By squaring, we can identify the entries {X, Y, Z} and ob-
tain the array equations

where K̄p,i = KiR1/2
e,i .

Operation Counts and Condensed Forms

The number of operations needed in going from step i to
step (i + 1) in the array algorithm for the predicted esti-
mators is O(n3), the same order as the Riccati-based al-
gorithm. In general, though, the actual number of compu-
tations in the array method would tend to be somewhat
larger than in the direct Riccati equation method. How-
ever, there are of course important compensatory numeri-
cal advantages, and with proper programming it appears
that the computational efforts can be made essentially the
same. It is also useful to first transform the given model
parameters {Fi, Gi, Hi} by unitary operations to so-called
condensed forms, which help reduce the operations count
further.

Fast Array Algorithms

The fast recursions [Eqs. (70) to (73)] also admit an ar-
ray form. For this purpose, we assume that we are given
a constant-parameter state-space model and, at any time
instant i, we consider the difference δPi = (Pi+1 − Pi) and
introduce a (nonunique) factorization Pi+1 − Pi = L̄iJiL̄

∗
i,

where L̄i is an n × αi matrix, Ji is an αi × αi signature
matrix with as many ±1’s as (Pi+1 − Pi) has positive and
negative eigenvalues, and αi = rank(Pi+1 − Pi). The time
subscript i is used in both Ji and αi to indicate, for now,
that the inertia of δPi may vary with time. It will follow,
however, that the inertia of δPi does not vary with time.

The array algorithm follows by forming the prearray

and triangularizing it via an (I ⊕ Ji) unitary matrix �, that
is,

for some � such that

We can identify the {X, Y, Z} terms by comparing the (I
⊕ Ji) norms on both sides of Eq. (93). We omit the details
and only state that this calculation allows us to make the
identifications X = R1/2

e,i+1, Y = K̄p,i+1, Z = L̄i+1, and to
conclude also that Ji+1 = Ji ≡ J.

In summary, the quantities {K̄p,i , R1/2
e,i} can be recur-

sively updated via the array algorithm

where � is any (I ⊕ J) unitary matrix that produces the
block zero entry in the postarray. Moreover, the initial con-
ditions are

with (L̄0, J) obtained via the factorization

SMOOTHING ALGORITHMS

The Kalman filter and its variants give us recursive algo-
rithms for computing the predicted and filtered state esti-
mators, x̂i|i−1 and x̂i|i . It is not hard to compute higher order
predicted estimates x̂i+m|i , m > 0. In fact

However the determination of smoothed estimators, say
x̂i|N for i < N, requires more effort. We state here some
smoothing algorithms.

The Bryson-Frazier Formulas

Consider again the standard state-space model and as-
sume further that Si = 0, for simplicity. The so-called
Bryson–Frazier (BF) algorithm finds the smoothed estima-
tors x̂i|N by

where λi|N is found via the backward recursion

The corresponding error-covariance matrix can be found as
Pi|N = Pi − Pi	i|N Pi, where

The quantities {x̂i,i, Re,i , Fp,i , Pi} are as in the Kalman filter
formulas.

The BF formulas give us a two-pass algorithm. On a
forward pass, we compute the innovations and the pre-
dicted and filtered state estimators; then a backward pass
uses the innovations to compute the so-called adjoint vari-
ables {λi|N }. Finally, an appropriate combination gives the
smoothed estimators.

The Rauch–Tung–Striebel Formulas

Assuming that Fi is invertible and Pi > 0, the so-
called Rauch–Tung–Striebel (RTS) formulas compute the
smoothed estimators as follows:
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where

The error covariance matrix obeys

where

There is also an alternative set of discrete-time formu-
las that also goes by the name RTS formulas. They are
slightly more general than the above formulas in that they
do not require the invertibility of the Fi. Defining Fs,i =
PiF∗

p,iP−1
i+1, it can be shown that

and

where the boundary conditions x̂N|N and PN|N can be ob-
tained by applying the appropriate Kalman filter recur-
sions to the data {y0, y1, . . . , yN}.

The RTS algorithm is also a two-pass algorithm, with
all smoothed estimators being directly obtained at the end
of the backward pass; note that we need only the estima-
tors {x̂i} and {x̂i|i} for the second pass, the original data
{yi} and even the innovations {ei} need not be retained.
The fact that the P−1

i+1 are required at every step perhaps
increases the computational burden somewhat over that
required for the original BF formulas. However, the differ-
ences are small and much will depend on the actual codes
and machines on which the algorithms are run.

Note that for fixed-interval smoothing problems, the di-
rection of time is not important, and we should be able to
process the data both forward and backward in time, say
starting with yN and ending with y0. Smoothing algorithms
that are based on combinations of forward estimators and
backward estimators involve so-called two-filter formuals.
We omit the details for space limitations.

The Hamiltonian Equations

Using Eq. (100), the backward recursion for λi|N , and Eq.
(99) which gives x̂i|N as a linear combination of x̂i and λi|N ,
as well as the Riccati Eq. (42) for Pi, we can derive a slightly
different backward recursion for λi|N , that is,

Likewise, we can show that

Combining this equation with Eq. (108) in matrix form we
get

where from Eqs. (100) and (99), the boundary conditions
are found to be

These are the so-called Hamiltonian equations. They have
several interesting features. First of all, they are called
Hamiltonian equations because equations of this type are
encountered in certain classical (deterministic) variational
problems associated with famous names such as Euler, La-
grange, Hamilton, and so on.

Another interesting fact is that the Hamiltonian
equations are only a representation for the smoothed
estimators—they do not (directly) provide an algorithm for
finding {x̂i|N }. The reason is that the boundary conditions
Eq. (111) are mixed: one variable is specified at i = N + 1
(λN+1|N = 0), but the other one only at i = 0 (and that too
only implicitly, x̂0|N = �0λ0|N ).

Yet another fascinating and fruitful feature of the equa-
tions is a physical picture in terms of a (generalized)
transmission-line. This physical picture (called the scatter-
ing picture) turns out to be very useful in understanding
many aspects of the state-space estimation problem.

Equation (110) can be graphically depicted as shown in
Fig. 1, which suggests that we can regard x̂.|N as a for-
ward wave and λ.|N as a backward wave traveling through
a section of a scattering medium that is specified by the
quantities:

We can put together many such sections to get a macro-
scopic section. By studying the propagation of signals
through such scattering sections, we can derive all the fil-
tering and smoothing formulas described so far in the arti-
cle, in addition to several change-in-initial-conditions for-
mulas that are not as immediate to derive through other
methods.

CONTINUOUS-TIME STATE-SPACE FILTERING

All our discussion so far has been on discrete-time signals
and systems. Now many physical systems evolve contin-
uously in time, as do many physical signals. In this sec-
tion we provide a brief overview of results on state-space
filtering for continuous-time state-space models. Much of
the discussion is patterned along our derivation for the
discrete-time case in the earlier sections.

The standard continuous-time state-space model is of
the form



12 Kalman Filters

Figure 1. A scattering layer for the fixed-interval smoothing
problem.

where {u(·), v(·)} are white noise processes such that

where 〈a(t), b(s)〉 = Ea(t)b*(s), for zero-mean random pro-
cesses {a(·), b(·)}. These equations are clearly quite anal-
ogous to those for the standard discrete-time model. The
major difference is the presence of continuous-time white
noise processes {u(·), v(·)}. Engineers use these obviously
nonphysical processes as approximations to white band
noise processes. Here we note only that there are also cer-
tain mathematical issues in the treatment of white noise
processes in the standard theory of stochastic processes,
which mean also that the process x²(t) in Eq. (113) cannot
be directly handled in the conventional theory. Special def-
initions of stochastic integrals have to be introduced and
equations such as Eq. (113) have to be regarded as a short-
hand for a more formal (integral) version. For linear least-
mean-squares estimation problems, there is no need to in-
troduce this more formal theory, and one can proceed quite
satisfactorily with the now-usual methods of working with
white noise processes. The problem is analogous to avoid-
ing the need for delta functions in deterministic system
theory by first working with step functions and then tak-
ing (formal) derivatives—engineers (and others) have long
since learned to work comfortably with delta functions. The
same holds for studies of stochastic linear systems.

Filtered Estimators

To proceed here, we note that there are a couple of ways
of approaching the study of continuous-time problems—
directly or by reduction to an equivalent, or more often an
approximate, discrete-time problem. Here we proceed di-
rectly. Direct continuous-time solutions are quite feasible
and in fact quite straightforward when we use the innova-
tions,

where x̂(t) � x̂(t|t−) the linear least-mean-squares estima-
tor of x(t) given {y(τ), 0 ≤ τ < t}

x̃(t) x(t) − x̂(t)

The innovations can be shown to be computed via

where

and

We should note that the above formulas require that
R(·), the intensity of the measurement noise process v(·), is
invertible, that is, strictly positive-definite. This is in con-
trast to the discrete-time case, where it was only needed
that Ri ≥ 0, where Riδij = Eviv∗

j; the quantity that needed
to be invertible was Re,i = Ri + HiPiH∗

i. In the continuous-
time case, it is an interesting and important fact that

While one can of course study continuous-time problems
where R(t) is not strictly positive-definite, the solution will
generally involve derivatives of the observed process y(t)
and will therefore tend to be more sensitive to errors of
various kinds.

Moreover, the nonlinear matrix Riccati differential Eq.
(120) can rarely be solved analytically when n �= 1 (the
state dimension). In general, it will have to be solved nu-
merically, which is facilitated to some extent by the fact
that it is an initial value equation.

Also, the continuous-time formulas are somewhat sim-
pler than those in discrete-time. For one thing, in contin-
uous time, there is no distinction between predicted and
filtered estimators.

Smoothed Estimators

The continuous-time version of the BF smoothing formulas
take the following form. The smoothed estimator x̂(t|T) can
be found via

where λ(t|T) satisfies the backward time recursion

An alternative equation is



Kalman Filters 13

Moreover, the smoothed error variance can be computed as

where φ(s, t) is the state transition matrix of the closed-loop
filter F(s) − K(s)H(s). The quantities {x̂(t), e(t), K(t), P(t)}
are found in a forward pass by running the Kalman filter
equations over the interval [0, T].

Likewise, the RTS version of the smoothing filter is the
following. We find the smoothed estimator x̂(t|T) by solving,
backward in time, the equation

where Fs(t) = F(t) + G(t)Q(t)G*(t)P−1(t). The smoothing er-
rors variance obeys the equation

Fast Algorithms

As in the discrete-time case, the effort required to solve
the Riccati differential equation [Eq. (120)] is the same
whether the model is time-variant or not. By one measure,
we have to solve n(n + 1)/2 [since P(·) is Hermitian] coupled
nonlinear differential equations for the entries of P(·).

To exploit the constancy of the state-space model we
have to find a way of computing the gain function K(·) in
Eq. (119) that does not require the computation of P(·). This
is possible using a fast algorithm.

We factor P²(0) as P²(0) = L0JL∗
0, where J = (Ip ⊕ −Iq)

is the signature of P²(0), that is, p is the number of positive
eigenvalues of P²(0), whereas q is the number of negative
eigenvalues. Then

and the gain matrix K(·) of the Kalman filter can be com-
puted by solving the following set of n(p + α) coupled non-
linear equations

with initial conditions K(0) = �0H*R−1 and L(0) = L0.

APPROXIMATE NONLINEAR FILTERING

Most practical systems are nonlinear to some extent and
sometimes an idealized linear model suffices to describe
the system. But very often the nonlinearities cannot be
disregarded. Examples are nonlinear plant dynamics in
control problems, perhaps due to actuator saturation or to a
nonlinear measurement process. Another example is in the

communication task of the demodulation of frequency- or
phase-modulated signals in additive Gaussian white noise,
with the modulating signal assumed Gaussian.

Let us consider the case of frequency modulation (FM)
where the message λ(t) has a first-order Butterworth
spectrum, being modeled as the output of a first-order,
time-invariant linear system with one real pole driven by
continuous-time white noise. This message is then passed
through an integrator to yield θ(t) =

∫
t
0 λ(τ)dτ, which then

is employed to phase modulate a carrier signal with carrier
frequency ωc rad/s. The model state equations can then be
written as

for some noise disturbances v(t) and u(t) and some β > 0.
The equation for the state is linear, but the measurement
equation is nonlinear.

A more general nonlinear state-space model in continu-
ous time can be one of the form

where u(t) and v(t) are white noise signals, and {ft(·), gt(·),
ht(·)} are time-variant nonlinear functions. Regardless of
the model, the least-mean-squares estimator of the state
vector x(t), at any particular time instant t, is given by the
conditional mean

In general, the result is too complicated to be of practical
interest, with rare cases where implementations are pos-
sible. For this reason, we often resort to approximations on
two levels. First, we discretize the continuous system, thus
leading to a nonlinear discrete-time model of the general
form

with {fi(·), hi(·), gi(·)} nonlinear in general, ui, vi are zero
mean, white processes, and x0 is a random variable with
mean x̄0. We shall assume {ui}, {vi}, and x0 are mutually
uncorrelated, and that

Second, we employ linear estimation techniques to develop
estimators for the discretized state vector xi. The Kalman
solution offers an attractive alternative if the model could
be further linearized. This creates several possibilities but
we only discuss here two of the most widely used.
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A Linearized Kalman Filter

The first possibility is to linearize the state-space equations
[Eqs. (136) and (137)] around a known nominal trajectory
xnom

i. A common choice is the unforced solution,

This defines a deterministic sequence and we can write

where �xi measures the perturbation away from the nom-
inal trajectory and is a random variable.

Assuming the functions {ft, gt, ht} are smooth enough,
and making a first-order Taylor expansion, we obtain

where the matrices Fi and Hi are defined by

This means that the (k, j)th component of Fi is the partial
derivative of the kth component of fi(·) with respect to the
j-th component of x, and similarly for Hi, each derivative
being evaluated at xnom

i. Likewise, taking a zeroth order
expansion leads to

Then, it can be shown that an approximate estimator for
the state xi can be recursively computed as follows. Start
with x̂0|−1 = x̄0, P0|−1 = �0 and repeat:

The performance of the linearized filter is clearly depen-
dent on the quality of the approximation in Eqs. (141) to
(143). If Eqs. (141) to (143) are exact, the linearized filter
produces the true conditional mean estimator. Moreover,
for small i, or small ‖g(xi)ui‖, the nominal solution may be
close to the true trajectory. However, with time the two will
depart, often resulting in a breakdown of Eqs. (141) to (143)
and filter divergence.

The Extended Kalman Filter

A second possibility for the estimation of the state vector
of the nonlinear model [Eqs. (136) and (137)] is to linearize
the model around the most recent available estimate, that
is, around x̂i|i or x̂i|i−1 [here, x̂i|i denotes the estimate while
the boldface notation x̂i|i denotes the estimator.] Hence, we
define

Then, it can be shown that an approximate estimator for
the state xi can be recursively computed by using the so-
called Extended Kalman Filter (EKF). We start with x̂0|−1

= x̄0, P0|−1 = �0 and repeat

Contrary to the linearized Kalman filter, observe now
that the matrices (Fi, Hi, Gi) depend on the measurements
and, therefore, the quantities (Pi, Kf ,i ) cannot be precom-
puted. This represents an increased computational load.
Moreover, while the linearized Kalman filter depended lin-
early on the {yi}, this is not the case any more for the ex-
tended Kalman filter since Kf ,i also depends nonlinearly
on prior measurements.

The convergence of the both filter variants cannot be
guaranteed in general and it needs to be verified by sim-
ulation. Table 1 provides some indication as to which im-
plementation to choose under conditions on the duration
of the estimation interval, the size of the process noise, the
signal-to-noise (SNR) ratio, and the uncertainty in the ini-
tial state vector.

Of course, higher order filters can be obtained by retain-
ing more terms in the Taylor series. However, they are not
necessarily better than an EKF. Also, more sophisticated
filters can be developed that are based on Gaussian sum ap-
proximations, statistical linearization, spline approxima-
tions, and so on.

CONCLUDING REMARKS

The intent of this article was to provide an overview of some
of the fundamentals of state-space estimation,with empha-
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sis on array formulations of the varied algorithms (slow or
fast) that are available for this purpose. More details and
related discussion can be found in several of the references
indicated at the end of this article. The references are not
intended to be complete but rather indicative of the work
in the different areas. More complete lists can be found in
several of the textbooks mentioned therein.

Practical Issues

In concluding, we briefly comment on several issues that
are relevant in practical implementations of the Kalman
filtering algorithm, and which often lead to erroneous be-
havior. By erroneous we mean that the performance of
the filter diverges from the optimal performance that is
predicted by the underlying theory. In particular, the ob-
served state-error covariance matrix may tend to assume
values that are either considerably larger than the values
predicted by the solution of the Riccati equation or even
negative-definite. Either case can lead to practical results
that are far from ideal and therefore deserve closer exam-
ination.

There are many causes for the difficulties that arise
when Kalman filtering algorithms are implemented in
practice and numerous studies have appeared in the litera-
ture. Here, we mention some of the more significant issues
in our opinion.

Recall that the Kalman solution allows us to estimate
the state vector of a given state-space model under certain
assumptions on the measurement and process noise se-
quences. The solution is optimal in the least-mean squares
sense as long as the matrices that describe the dynamics
of the model and the statistics of the noise processes are
known exactly. Any modeling errors in these matrices can
lead to a filter design whose actual performance does not
agree with the theoretical performance. This is because the
Kalman filter does not include any mechanism that allows
it to compensate for such inaccuracies in the model.

Modeling errors can occur in many different forms.
Apart from actual errors in the model dynamics and in the
noise statistics, as mentioned above, we may also face er-
rors that are due to unmodeled bias terms. This situation
arises when either the state equation or the output equa-
tion is driven by unknown terms. By employing a Kalman
filter that simply ignores the presence of these terms, we
may obtain estimation errors that are unacceptably large.

A third example of modeling errors arises when some
modes of the actual system are ignored, either deliberately
or not. While reduced-order models lead to filter structures
that are less demanding computationally than a full scale
model, they nevertheless can still lead to erroneous perfor-
mance.

In addition to modeling errors, a second cause of sub-
optimal performance that may occur in practical imple-
mentations of Kalman filtering algorithms is the use of
suboptimal gain matrices. Although the Kalman filter is
an optimal estimator, it is nevertheless inherently time-
variant even when the underlying state-space model itself
is time-invariant. This means that the associated time-
variant gain matrices need to be repeatedly computed, and
also stored in the case of off-line implementations. A sig-

nificant reduction in computations and complexity can be
achieved if the optimal gain matrices are replaced by a
constant gain matrix, at the expense of suboptimal perfor-
mance.

A related issue of practical relevance is how to estimate
the value of the optimal steady-state Kalman gain, espe-
cially when the noise covariance matrices are unknown,
and how to tune the filter so that its performance ap-
proaches the theoretical limit in the presence of these un-
certainties.

Another cause of erroneous performance which is not
immediately related to modeling errors, is the occurrence of
round-off errors when Kalman filtering algorithms are im-
plemented in finite-precision arithmetic. Since binary rep-
resentations of real numbers cannot cover the entire range
of real values, numerical errors are bound to occur due to
overflow and underflow. Moreover, the larger the matrix
dimensions, the larger the number of floating point opera-
tions that are needed and, consequently, the larger the pos-
sibility of round-off errors. These errors can cause Kalman
filtering implementations to diverge away from their ideal
behavior. In particular, numerical errors may cause the
computed state-error covariance matrix to become nega-
tive definite, a situation that motivated us to discuss the
class of square-root algorithms. These array-based algo-
rithms help ameliorate numerical problems by working
with square-root factors of covariance matrices, but may
not resolve them completely for ill-conditioned problems.
Studies on numerically reliable implementations exist in
the literature, but we omit the details here for brevity.
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