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SIGNAL DETECTION AND PROCESSING

Detection in signal processing is often referred to as determining the number of signal sources in a noisy envi-
ronment. It has many engineering applications, ranging from military surveillance to mobile communications.
As an example, the engine vibration of an underwater submarine is a source of signals. The determination of
the number of such sources is of interest in sonar signal processing.

Detection is also important in other areas of signal processing, such as the estimation of certain param-
eters: frequency spectrum and direction of arrival. The spectral peaks obtained from the Fourier transform of
the data were used initially to estimate these parameters, but the spectral resolution was generally poor due
to practical limitations such as the time length of the data record. In the last 20 years, model-based parameter
estimation has been an area of active research. Many high-resolution approaches have been developed, but
they require certain prior knowledge. Among them the number of signal sources is often the most crucial.
It is thus clear that signal detection plays an important role in parameter estimation, system modeling and
identification, and stochastic realization.

Detection problems are generally classified into two categories: determination of the number of signals,
each having different frequencies; and determination of signals, each coming from different locations. While
the former problem utilizes a single measurement device such as a broadband sensor, the latter generally
uses an array of sensors to gain spatial information. The latter models are more complicated. Without loss of
generality, only the array signal formulation will be considered here.

The earlier use of the Fourier (frequency or spatial) spectrum to determine the number of signals by
observing the number of peaks lacks resolution in that when two sources are closely spaced, their spectral
peaks may merge into one. In this situation signals may be inadvertently missed. The recent development of
information-theoretic approaches has greatly improved the determination.

Detection is complicated in practice as ideal conditions rarely occur. Rather than ideal narrow-band
signals, wide-band signals may be encountered; rather than ideal uncorrelated signals, there may be coherent
signals; rather than Gaussian stationary noise, colored non-Gaussian nonstationary noise may be the case. In
order to obtain the necessary theoretic results only ideal conditions will be addressed; the nonideal situations
remain for future research.

Assumption and Signal Model

Suppose that we have an array of two identical sensors, and a plane-wave signal from the far field impinges
on this array so that the normal of the plane wave front makes an angle φ with the line joining the sensors in
the array. The signal arriving at the second sensor x2(t) is a delayed version of the signal arriving at the first
sensor x1(t). That is to say, if x1(t) = s(t), then x2(t) = s(t − τ). If two sensors are spaced a distance d apart,
then the time delay τ between two sensors is τ = d sin φ/v = (2πd/λcωc) sin φ, where v and λc are the speed
and wavelength of the plane-wave signal, respectively. Now we further assume that q uncorrelated plane-wave
signals simultaneously impinge on an array of p sensors.
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The following assumptions are made throughout the entire article unless being otherwise stated.

• The p array sensors are identical to each other. The number of sensors is greater than the number of signal
sources (p > q).

• The q signal wave fronts sk are narrow-band (compared with the center wavelength λc) plane waves (far-
field).

• The observation noise ni at each sensor is additive complex white Gaussian noise with zero mean and
variance σ2/2 for independent real and imaginary parts), independent from sensor to sensor and from the
signals.

With the preceding generic assumptions, the signal arriving at the ith sensor located at (xi, yi) (for i = 1,
. . ., p) at time t is

for i = 1, . . ., p, where sk(t) is the kth narrow-band signal (with center wavelength λc) arriving at an angle φk.
The signals arriving at all the sensors at time t are

or in matrix notation,

where A(�) = [A(φ1),. . ., A(φq)] is referred to as the direction of arrivals (DOA) matrix, n(t) is the receiver’s
noise vector, and q is assumed unknown but is less than p. For statistical analysis, it is assumed that {A(φ1),. . .,
A(φq)} are linearly independent and the signals s(t) are distributed as a complex multivariate with zero mean
vector 0 and nonsingular covariance matrix �. The definition of the complex multivariate distribution can be
found in many books on signal processing, for example, Ref. 1. It is further assumed that s(t) and n(t) are
independent. Then the covariance matrix 	 of x(t) is given by

where E denotes the mathematical expectation and the superscript ∗ denotes the transpose complex conjugate.
Let λ1 ≥ λ2 ≥ ··· ≥ λp denote the eigenvalues of 	. Due to the fact that � is a q × q matrix, the eigenvalues
may be arranged as λ1 ≥ λ2 ≥ ··· ≥ λq > λq+1 = ··· = λp = σ2 > 0. It is this basic fact that there are p − q equal
smallest eigenvalues on which most methods of detection are based. The subspace spanned by A(�) is referred
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to as the signal subspace and its orthogonal complement is called the noise subspace. Suppose that there are
n independent observations x(t1), x(t2), . . ., x(tn) available. Let the sample covariance matrix be S = (1/n)	n

i = 1
x(ti)x∗(ti) and the eigenvalues of S be δ1 ≥ δ2 ≥ . . . ≥ δp. Note that the assumptions made in this section are
supported by real data.

Hypotheses Testing

A statistical hypotheses testing procedure was developed to find the multiplicity (or the number of equal
eigenvalues) of eigenvalues (2), which is equivalent to finding the number of signals by Eq. (3). It consists of a
set of nested hypotheses as given by

Hp All the eigenvalues of 	 are equal
Hp − 1 Only the last p − 1 eigenvalues of 	 are equal ···
Hk Only the k eigenvalues of 	 are equal ···

To test Hk, the following χ2 statistics with (k2 + k − 2)/2 degrees of freedom is used:

where

If Hp, . . ., Hk+1 are rejected and Hk are accepted, then an estimate of q is given as the corresponding
value p − k.

Another hypotheses test, called the predicted eigenthreshold approach (3), of the multiplicity of the
eigenvalues σ2 is as follows: Define

where t is the critical value of standard normal for the two-tailed test with an α level of significance.
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Assuming that the multiplicity of σ2 is m, let the two hypotheses be

H0 k < p − m
Ha k = p − m

Starting with m = 1, accept Ha or H0 according to whether δp − m > dp − m or δp − m ≤ dp − m. If Ha is accepted,

then an estimate of q is = p − m. Otherwise increase m by 1 and continue the test until either Ha is accepted
or m = p.

In both of the preceding estimates, a subjective threshold is required. Since the exact joint distribution
of the eigenvalues is difficult to compute and the asymptotic distribution depends fundamentally on the
eigenstructure of 	, the performances of both tests are unclear due to the fact that the rejection region is
decided by the limiting distribution of the eigenvalues in practice. The advantage for both tests is that the
probability of underfitting is somehow under control.

Information-Theoretic Criteria

White-Noise Case. The general idea of the information-theoretic criteria is based on either minimizing
a type of “closeness” between two probability functions or minimizing the length of coding of a data set from a
model while being penalized for using a more complex model.

The Akaike information criterion (AIC) is a well-known information-theoretic criterion of the first type
and the minimum description length (MDL) criterion is a well-known information theoretic criterion of the
second type. Consider the following model of k signals:

with θ∗ being the true parameter. Let {x1, x2, . . ., xn} be an independent identically distributed data sequence

according to a probability function f k0 ·|θ∗|). Let k be the maximum likelihood estimate (MLE) of θ∗ based
on {x1, x2, . . ., xn} under the assumption that the true model is the model Mk. Denote the number of free
parameters in the model Mk by |Mk|.

The AIC (4) is to choose the model so that

while the MDL criterion (5) is to choose the model so that

Apply these criteria to the data set of Eq. (2) and use the model Mk in Eq. (4) with parameter vector θ = (λ1, . . .,
λk, σ2, vT

1, . . ., vT
k)T, where v1, v2,. . ., vk are, respectively, the eigenvectors of λ1, λ2,. . ., λk. Leaving out terms
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not involving θ, the logarithmic likelihood function is given as

and the number of free parameters is k(2p − k) + 1. Discarding terms not involving k, the two criteria for
estimating the number of signals q are given as

It was shown that MDL yields a consistent estimate of q in the sense that the probability of an incorrect
detection goes to zero as n goes to infinity, while the AIC overestimates the number of signals with positive
probability (6). In fact, MDL will give the true number of signals for large n with probability 1 (7) and the
upper bound on the probability of wrong detection converges to zero at an exponential rate (8).

The additive term, which is an increasing function of |Mk|, is called a penalty term, as it penalizes for the
use of a more complex model. The greater the number of free parameters in a model, the larger the penalty.
For example the AIC in Eq. (8) the penalty term 2[k(2p − k +1)+1] is an increasing function of k where k
reflects the complexity of the model. Comparing the AIC in Eq. (8) with the MDL criterion in Eq. (9), the
difference is essentially the two penalty terms. This results in a completely different performance for the two
criteria. The AIC tends to overestimate while the MDL criterion is strongly consistent but is penalized because
of the possibility of underestimation for small sample size. A class of strongly consistent information-theoretic
criteria is proposed in Ref. 7, which are obtained by adjusting the penalty term as follows:

where Cn is a function of n satisfying

Arguing that the set of free parameters should not include the eigenvectors because of the fact that the
eigenvectors are invariant under a similarity transformation (9), a smaller parameters set was employed using
the following criteria:
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where

i and are solutions to the system of equations

For large n, this criterion is approximately equal to

where = [1/(p − k)] 	p
i = k+1 δi. While this criterion is not known to be consistent due to the difficulty in the

analysis because some of the logarithmic terms could be infinite, some criteria having the spirit of Eqs. (12)
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and (13) are proposed in Ref. 10, such as letting the function − log g(X| k) in Eq. (12) be given as

where and are solutions to the system of equations:

and 0 < ρ < 1 is a constant. It was proved in Ref. 10 that the system has a unique solution for large n and for
ρξ > λ1 − σ2. These criteria are shown to be strongly consistent in Ref. 10.

Even though the consistent detection criteria discussed above can be applied to the non-normal noise case
while the consistency of estimates still holds, their original derivations are based on the likelihood function
of the complex normal distribution. A nonparametric detection criterion was proposed in Ref. 11 which uses a
type of function, called r-regular, in place of the logarithmic likelihood function.

Definition. Let f be a real-valued function defined on finite sequences of M , an open subset of the real numbers.
f is said to be r-regular if the following conditions are satisfied

(1) If x1 = x2 = ··· = xm, then f (x1, x2, ···, xm) = f (x1).
(2) If x1, x2, ···, xm are not identical, then f (x1, x2, ···, xm) > f (x1).
(3) For each k, then restriction of f on M

k, denoted by f k, belongs to Cr+1(M
k), where M

k is the k Cartesian
product of M , and the partial derivatives of f k up to order r are all zero on the set {(x1, x2, ···, xm) ∈ M

k|x1 =
x2 = ··· = xk}.

An example of a 3-regular function is

Definition. Let f be a real-valued function defined on finite sequences of M , an open subset of the real numbers.
f is said to be r-regular if the following conditions are satisfied:
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An example of a 3-regular function is

and M = R, the set of real numbers.
Suppose that a sequence of p values {l1

(n), l2
(n), . . ., lp

(n)|n = 1, 2,···} satisfies the following:

(1) |li
(n) − λi| = O(αn) a.s. for i = 1, 2, . . ., p, 0 < αn → 0 as n → ∞

(2) 0 < βn → 0 and αn
r+1/βn → 0 as n → ∞

where a.s. stands for “almost surely”. For a r-regular function f the following criterion gives a strongly
consistent estimate of q:

The advantage of this method is that it is not necessary to compute the likelihood ratio test statistic and to
count the number of parameters. It seems that the larger the r, the faster the convergence.

For an example of this type of estimate, let li
(n) be the eigenvalues δi of the covariance matrix S. Then |li

(n)

− λi| = O a.s. or αn = . βn is chosen to satisfy

For instance, βn = c (log n/n)(r+1)/2, where c is a constant, will satisfy the requirement. Choose an r-function f
with r ≥ 2, then the error bound of wrong detection

tends to zero (11) faster than that of Eq. (10).
Color-Noise Case. When the noise is colored, i.e., the noise covariance matrix is not equal to σ2I, the

criteria discussed above are not valid. Consider the case for two independent samples, one for the noise and
the other for the received signals with arbitrary noise added. A type of pre-white-noise procedure is performed
first. In particular, let S1 be a sample covariance matrix estimate for noise covariance matrix 	1 and let S2 be
the independent estimate of 	2, where
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Then 	1
− 1/2	2	

− 1/2
1 = 	1/2

1 A�A∗ 	− 1/2
1 + σ2 I is similar to Eq. (3). In this case a strongly consistent

information-theoretic criterion (12) is given as

where δ1 ≥ δ2 ≥ ··· ≥ δp are the eigenvalues of S2S1
− 1, k0 satisfies the following equation:

n1 and n2 are, respectively, the sample sizes for S1 and S2, and n = n1 + n2. The terms ν (p, k) = k(2p − k +1)/2
and Cn satisfy Eq. (11).

For the case when only one sample of the output on the receivers is available, a method employing two
well-separated arrays, with, respectively, p1 and p2 sensors to receive the q signals, is formulated (13,14).
Suppose that both p1 and p2 are larger than q and that p1 ≤ p2. As in the case of Eq. (2), these outputs may be
written as

The covariance matrix of (x1(t), x2(t))T (where the superscript T denotes transpose) is equal to

where 	ii = Ai (�i) �Ai
∗ (�i) + 	i, i = 1,2 and 	12 = 	21

∗ = A1 (�1) �A2
∗ (�2).

Suppose that there is a set of independent observations (xT
1 (t1), xT

2 (t1))T, ···, (xT
1 (tn), xT

2 (tn))T on the
two arrays, where xT

1 (t1) denotes the transpose of x1(t1) and x1(ti) and x2(ti) are, respectively, the outputs on
the two arrays. With the assumption that the noises impinging on the two arrays are independent, and with
model Mk of Eq. (4) the logarithmic likelihood statistics are equivalent to

where γ2
1 ≥ γ2

2 ≥ ··· ≥ γp1
2 are the eigenvalues of S11

− 1/2 S12S22
− 1S21S11

− 1/2 and
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Given an increasing function ν(k), a strongly consistent estimate of q (14) is given as

where Cn may be chosen as a function satisfying Eq. (11).

Coherent Signals

The case with fully correlated signals is referred to as the coherent signal case. In this situation, it is usually
assumed that A(�) is of full rank, which is supported by real data. It is of interest to estimate the rank q of
A(�) and the true number of signals, which is less than q. The signals are assumed to be either random or
nonrandom. If the signals are assumed to be random, the true number of signals q′ is the same as the rank of
the covariance matrix of the signals. The previous approaches are usually not applicable to the coherent case
since � will be singular and hence λq will not be greater than λq+1. However, an information-theoretic criterion
for a uniform linear array of sensors can be formulated. It uses a preprocessing scheme that involves stacking
the data sequence so that the new � matrix will be nonsingular (15).

For the case of white noise, the method in Ref. 11 still works with the use of differently defined li
(n), and

an example is given in Ref. 11. Another example is given by the differential residues (16). For a given model
Mk of Eq. (4), a p × p matrix A(�(k)) as a function of �(k) can be computed as:

where �(k) denotes the vector (φ1, . . ., φk) and the projection matrix P(�(k)) onto the noise subspace is equal to

Define the set {lk
(n), k = 0,1,···, K} as
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where tr stands for the trace of a matrix, K = � p/2 	, the largest integer less than or equal to p/2 and q is
assumed to be bounded above by p/2. Three r-functions were used:

An estimate of q is then given as

The f 1 and f 2 are, respectively, 1- and 3-regular functions while f 3 is a 1-regular function. The sequence βn can
be taken as the one given in Eq. (14). The probability of error bound in Eq. (15) holds for these three criteria.

Another criterion based on the MDL principle is given in Ref. 17. Let l1(�(k)) ≥ ··· ≥ lp − k(�(k)) denote the
nonzero eigenvalues of the p × p matrix P(�(k))SP(�(k)). Suppose that

Then the MDL based criterion is given as

where

Note the similarity of this function and that of the logarithmic likelihood function in Eq. (7). This is no

coincidence in that they both involve eigenvalues for the noise subspace. Improving on the estimate of the (k)

and with a smaller set of free parameters, another MDL type estimator was derived in Ref. 18:
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where

l1
S(�(k)) ≥ ··· ≥ lk

S(�(k)) are the nonzero eigenvalues of the matrix [I − P(�(k))]S[I − P(�(k))] and l1
N(�(k)) ≥

··· ≥ lp − k
N (�(k)) denote the nonzero eigenvalues of the matrix P(�(k))SP(�(k)). As pointed out in Ref. 18, this

MDL criterion seems to perform better than the previous one in Eq. (19), notwithstanding more computation

on the parameter (k).
Reasoning that the presence of coherent signals can be detected by the “distance” between signal subspace

and the array manifold, a subspace-fitting method is formulated (19). Suppose that the model Mk of Eq. (4) is
true. Using the eigendecomposition of the sample covariance matrix S, let s = diag(δ1, . . ., δk) and s = (v1, . . .,
vk) where v1, . . ., vk are, respectively, the eigenvectors of δ1, . . ., δk. Suppose that

where 2 = [1/(p − k) 	p
i = k+1 δi. Define

Starting with an estimate of q′, such as found by applying the MDL criteria for white noise, and with Cn
satisfying Eq. (11), a test of hypotheses for a given significance level α proceeds as follows:

(1) Set k = .

(2) Compute the critical value γ for a right-tailed area α of χ2 distribution with 2 (p − k) − k degrees of
freedom.

(3) If g(k) ≤ γCn, then let = k; otherwise increase k by 1 and go to step 2.

With properly chosen Cn, this procedure gives a strongly consistent estimate of q.
Using the model of two well-separated arrays for the case of colored noise, a method based on a test of

hypotheses is given in Ref. 20. Assuming the model Mk, let γi, i = 1, 2, . . ., k be the singular values of S11
− 1/2

S12 S22
− 1/2 and U be the matrix of the left singular vectors. The canonical vector matrix is L = S− 1/2

11 U. Let
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Ls be the first k columns of L and also Rs be the first k columns of S11
1/2 U. Define

where � = diag(γ1,. . ., γk). Then 2nf (k) has an asymptotic χ2 distribution of 2q′(p1 − k) − k degrees of freedom.
In order to apply the test, an estimate of q′ is required and a method is given in Ref. 21. Denote the estimate

of q′ by . The test then proceeds as follows:

(1) Set k = .
(2) Compute 2n f (k).

(3) Find the critical value c(k) for a χ2 distribution with 2 (p1 − k) − k degrees of freedom for a given α

significance level.

(4) If 2nf (k) ≤ c(k), set = k. Otherwise increase k by 1 and go to step 2.

Analysis

The accuracy of detection is measured by the probability of error, P( 
= q|Mq). It is clear that this quantity
depends on how a detection criterion is constructed. When the criterion is based on the sample eigenvalues,
the accuracy of the detection depends on how accurately the eigenvalues of the sample covariance matrix
approximate those of a true covariance matrix. When two or more signals have nearly equal angles of arrival,
the matrix A will have two or more nearly equal columns. This will in term imply that the some of eigenvalues,
other than those of the last p − q are almost equal. With small n, this may affect the accuracy of the detection.

For two Hermitian p × p matrices A and B with their ordered eigenvalues λ1 ≥ λ2 ≥ ··· ≥ λp and γ1 ≥ γ2
≥ ··· ≥ γp, respectively, it can be shown that

where A = (aij) and B = (bij). Under certain conditions, 	 − S = O ( a.s.). Thus it is no surprise
that the probability of wrong detection depends on sample size and also on the signal-to-noise ratio (SNR). The
most general type of result about this probability (8,14,22) is of the following form:

where α satisfies certain conditions. This inequality holds for MDL criteria of Eq. (9) and criteria of Eqs. (10),
(16), and (18) under less stringent conditions such as (i) ν (p, k) or ν (k) are increasing, (ii) Cn satisfies Eq. (11),
(iii) the signal x(t) has at least second moments, and (iv) α = αn → 0, Cn/(nα2) → 0 as n → ∞.
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If signals are such that E{exp[κ|x(t)|2]}< ∞ for some κ > 0, then an exponential decrease of the probability
of error is possible:

where b, c, and ε are some positive numbers. Analysis of the performance of signal detection may also include
quantification of its SNR threshold under which the detection algorithms fail (23).

Discussion

When the sample size is small, the penalty term in the criteria significantly affects the performance. Even for a
small change such as a different constant factor, the results could be drastically different. It is then reasonable
to make the penalty also depend on the data set, and an example of such a criterion was mentioned in Ref. 14.
More studies of this type may be of great value.

For the information-theoretic criterion, an accurate evaluation of the information provided by the data set
should yield an improved determination. As an example, in the derivation of the MDL, a smaller parameter set
would require a shorter encoding string and thus a smaller description length. Such is the case of the criterion
in Eq. (12). Another possibility is to use the Bayesian approach (24).

Many detection criteria were derived with the assumption that the noise is complex normally distributed
[denoted as condition (N)]. A criterion may still be consistent even without condition (N), but its performance for
a small sample is questionable. Note also that the complex normality assumption is at most an approximation
to reality. It is often the case that the noise is not complex normal or it is far from being complex normal. For
example, the noise may be a mixture of two independent noises, where one represents the nominal background
noise and the other could be an impulsive component. Even through both noises are complex normal, the
mixture may not be normal. Furthermore, the assumption of the independence of the observations may be a
problem [which was relaxed to include the case when the sequence of observations is a mixing sequence (7,11)].
Thus there may be a need to look into robust criteria.

Other recent research on signal detection includes (but is not limited to) many specific topics, such as the
multiple sources within a cluster (25); the signals in unknown noise fields (26, 27); and adaptive algorithms
(28).
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