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tance, or frequency) over which the dependent variable, say
the signal, is nonzero. This finite support can be defined over
multiple dimensions, for instance, extending over a line, a
plane, or a volume. Windows can be continuous functions or
discrete sequences defined over their appropriate finite sup-
ports.

At the simplest level, a window can be considered a multi-
plicative operator that turns on the signal within the finite
support and turns it off outside that same support. This oper-
ator affects the signal’s Fourier transform in a number of un-
desired ways; the most significant is by undesired out-of-band
side-lobe levels. The size and order of the discontinuities ex-
hibited by the signal governs the level and rate of attenuation
of these spectral side-lobes. Other unwanted effects include
spectral smearing and in-band ripple. The design and applica-
tion of windows is directed to minimizing or controlling the
undesired artifacts of in-band ripple, out-of-band side-lobes,
and spectral smearing.

Examples of the application of windows to control finite
aperture effects can be found in numerous disciplines. These
include the following:

1. Finite Duration Filter Impulse Response (FIR) Design.
Windows applied to a prototype filter’s impulse re-
sponse to control transition bandwidth and levels of in-
band and out-of-band side-lobes.

2. Spectrum Analysis, Transforms of Sliding, Overlapped,
Windowed Data. Windows applied to observed time se-
ries to control variance of spectral estimate while sup-
pressing spectral leakage (additive bias).

3. Power Spectra as Transform of Windowed Correlation
Functions. Windows applied to a sample correlation
function to suppress segments of the sample correlation
function exhibiting high bias and variance.

4. Nonstationary Spectra and Model Estimates. Windows
applied to delayed and overlapped collection time series
to localize time and spectral features (model parame-
ters) of nonstationary signals.

5. Modulation Spectral Mask Control. Design of modula-
tion envelope to control spectral side-lobe behavior.

6. Synthetic Aperture RADAR (SAR). Windows applied to
spatial series to control antenna side-lobes.

7. Phased Array Antenna Shading Function. Window ap-
plied to spatial function to control antenna side-lobes.

8. Photolithography Apodizing Function. Smooth trans-
mission function applied to optical aperture to control
diffraction pattern side-lobes.

We will discuss a subset of these applications later in this
chapter. For convenience and consistency, we will consider
the window as being applied to a time domain signal. The
window can, of course, be applied to any function with the
same intent and goal. The common theme of these applica-
tions is control of envelope smoothness in the time domain toSPECTRAL ANALYSIS WINDOWING obtain desired properties in the frequency domain.

A window is the aperture through which we examine the
world. By necessity, any time or spatial signal we observe, WINDOWS IN SPECTRUM ANALYSIS
collect, and process must have bounded support. Similarly
any time or spatial signal we approximate, design, and syn- A concept we now take for granted is that a signal can be

described in different coordinate systems and that there isthesize must also have bounded support. Bounded support is
the range or width of the independent variable (time, dis- engineering value in examining a signal described in an alter-
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nate basis system. One basis system we find particularly use- A natural question to ask when examining Eq. (3) is how has
limiting the signal extent with the multiplicative window af-ful is the set of complex exponentials. The attraction of this
fected the transform of the signal? The simple answer is re-basis set is that complex exponentials are the eigen-functions
lated to the relationship that multiplication of two functionsand eigen-series of linear time invariant (LTI) differential
(or sequences) in the time (or sequence) domain is equivalentand difference operators, respectively. Put in its simplest
to convolution of their spectra in the frequency domain. Asform, this means that when a sinewave is applied to an LTI
shown in Eq. (4), the transform of the windowed signal is thefilter the steady-state system response is a scaled version of
convolution of the transform of the signal with the transformthe same sinewave. The system can only affect the complex
of the window:amplitude (magnitude and phase) of the sinewave but can

never change its frequency. Consequently complex sinusoids
have become a standard tool to probe and describe LTI sys-
tems. The process of describing a signal as a summation of
scaled sinusoids is standard Fourier transform analysis. The
Fourier transform and Fourier series, shown in Eq. (1), per-
mits us to describe signals equally well in both the time do-
main and the frequency domain:

HW (ω) = 1
2π

∫ +∞

−∞
H(λ) · W (ω − λ) dλ,

HW (θ ) = 1
2π

∫ +π

−π

H(λ) · W (θ − λ) dλ

H(ω) = 1
2π

∫ +∞

−∞
h(t)e− jωt dω,

H(θ ) =
+∞∑
−∞

h(n)e− jθn

W (ω) = 1
2π

∫ +T/2

−T/2
w(t)e− jωt dω,

W (θ ) =
+N/2∑
−N/2

w(n)e− jθn

(4)

This relationship and its impact on spectral analysis can be

H(ω) =
∫ +∞

−∞
h(t)e− jωt dt,

H(θ ) =
+∞∑
−∞

h(n)e− jθn

h(t) = 1
2π

∫ +∞

−∞
H(ω)e+ jωtd ω,

h(n) = 1
2π

∫ +π

−π

H(θ )e+ jθn dθ

(1)

dramatically illustrated by examining the Fourier transform
of a single sinusoid on an infinite support and on a finite sup-

Since the complex exponentials have infinite support, the lim- port. Figure 1 shows the time and frequency representation
of the rectangle window, of a sinusoid of infinite duration, andits of integration in the forward transform (time-to-frequency)
of a finite support sinusoid obtained as a product of the previ-are from minus to plus infinity. As observed earlier, all sig-
ous two signals. Eqs. (5a) and (5b) describe the same signalsnals of engineering interest have finite support, which moti-
and their corresponding transforms:vates us to modify the limits of integration of the Fourier

transform to reflect this restriction. This is shown in Eq. (2)
where TSUP and N define the finite supports of the signal.

HSUP(ω) =
∫

TSUP

h(t)e− jωt dt,

HSUP(θ ) =
∑

N

h(n)e− jθn

h(t) = 1
2π

∫ +∞

−∞
HSUP(ω)e+ jωt dω,

h(n) =
∫ +π

−π

HSUP(θ )e− jθn dθ

(2)

The two versions of the transform can be merged in a single

w(t) =

1 −T

2
< t <

T
2

0 otherwise

W ( f ) = T
sin(π fT )

(π fT )

s(t) = A sin(2π f0t − φ), ∞ < t < +∞

S( f ) = A
2

e− jϕ δ( f − f0) + A
2

e+ jϕ δ( f + f0)

sW (t) = A sin(2π f0t − φ), −T
2

< t < +T
2

SW ( f ) = AT
2

e− jϕ sin[π( f − f0)T]
[π( f − f0)T]

+ AT
2

e+ jϕ sin[π( f + f0)T]
[π( f + f0)T]

(5a)
compact form if we use a finite support window to limit the
signal to the appropriate finite support interval, as opposed
to using the limits of integration or limits of summation. This
is shown as

HSUP(ω) = HW (ω) =
∫ +∞

−∞
w(t) · h(t)e− jωt dt,

HSUP(θ ) = HW (θ ) =
+∞∑
−∞

w(n) · h(n)e− jθn

h(t) = 1
2π

∫ +∞

−∞
HW (ω)e+ jωt dω,

h(n) = 1
2π

∫ +π

−π

HW (θ )e+ jθn dθ

(3)

w(n) =

1 −N

2
< n <

N
2

0 otherwise

W (θ ) = sin(θ N/2)

sin(θ/2)

s(n) = A sin(θ0n − φ), ∞ < n < +∞

S(θ ) = A
2

e− jϕ δ(θ − θ0) + A
2

e+ jϕ δ(θ + θ0)

sW (n) = A sin(θ0n − φ), −N
2

< n < +N
2

SW (θ ) = A
2

e− jϕ sin[(θ − θ0)N/2]
sin[(θ − θ0)/2]

+ A
2

e+ jϕ sin[(θ + θ0)N/2]
sin[(θ + θ0)/2]

(5b)
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ture significantly lower than the side-lobe structure of the
rectangle window.

A comment is called for on this example. Under the re-
stricted condition that the frequencies of the two signals are
harmonically related to the observation interval (i.e., that the
two signals each exhibit an integer number of cycles in the
observation interval), the two signals would be resolvable and
measurable. The reason is that for the conditions described,
the two signals are orthogonal. When interpreted in the fre-
quency domain, this means that the spectrum of the second
signal is located on a zero crossing of the spectrum of the
first signal. We will discuss this special condition and similar
examples in the section on windows and the discrete Fourier
transform (DFT).

As mentioned earlier, the main-lobe width of the windowed
transform limits the ability of the transform to resolve closely
spaced spectral components of comparable amplitudes. This
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limitation is demonstrated in Fig. 3, where we demonstrate
loss of resolvability of two signals as the spectra of two sinu-Figure 1. Time and spectral description of rectangle window, sinus-
soids of finite support are brought closer together.oid, and windowed sinusoid.

In this example the amplitude of the two signals is the
same, and the interaction between the phase of the main-
lobes and the interaction between the main-lobes and the
neighbor’s side-lobes has been ignored. It is apparent that the

As we can see, the transform of the windowed sinusoid, being spacing between adjacent spectral lines that can be resolved
the convolution of a pair of spectral impulses located at f � by a windowed transform is related to the main-lobe width of
�f 0 with sin(�fT)/(�fT) or sinc(�fT) which is the transform of the window’s spectrum. For the rectangle window, this main-
the window, results in the window’s transform being scaled lobe width (measured from peak to first zero crossing) is 1/T,
and translated to the frequency of the impulses. This can be the reciprocal of the window’s duration in the time domain.
considered as a special case of the modulation theorem shown We will find in the next section that as we modify windows to
in Eq. (6) where we can consider the time function h(t) to be obtain a desired reduction in side-lobe levels, this side-lobe
the window w(t): reduction is accompanied by an increase in main-lobe width,

Modulation Theorem
If h(t) has a transform H( f ),

then h(t) e j2π f0 t has a transform H( f − f0). (6)

The effects of the window on the spectrum of a signal can be
readily seen in Fig. 1. Here we note that the Fourier trans-
form of the constant envelope sinusoid has zero width. The
first effect we observe is a smearing of the transforms spectral
width (from infinitesimally small to the main lobe of the
sin(�fT)/(�fT)). The second effect is spectral leakage, the
spreading of the singularity to the sin(�fT)/(�fT) side-lobes, a
function occupying an infinite support with an envelope ex-
hibiting a spectral decay rate of 1/f .

The side-lobe structure of the windowed transform limits
the ability of the transform to detect spectral components of
significantly smaller amplitude in the presence of a large-am-
plitude component, while the main-lobe width of the win-
dowed transform limits the ability of the transform to resolve
or separate nearby spectral components. The first of these
limitations is demonstrated in Fig. 2 where a stylized power
spectrum of two sinusoids of infinite extent and of finite ex-
tent is presented. For this example the relative amplitude of
the low-level signal at frequency f 2 is 60 dB below the high-
level signal at f 1. Note that the side-lobe structure of the high-
level signal is greater than the main-lobe level of the low-level
signal; hence it masks the presence of the low-level signal. If

0

–80

–60

–40

–20

0

f1 f2
f

d
B

–80

–60

–40

–20

0

d
B

Power spectrum, unwindowed

0 f1 f2
Power spectrum, windowed

f

the low-level signal is to be detected in the presence of the
nearby high-level signal, the window applied to the data must Figure 2. Spectral representation of unwindowed and of a rectangle

windowed sinusoids of significantly different amplitudes.be modified. Windows must be selected with side-lobe struc-
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and with amplitude of its first spectral side-lobe of 2/3�, or
�13.5 dB below the main-lobe peak. The way to reduce the
side-lobes is to destructively cancel them by the side-lobes of
judicially placed pairs of scaled sinc(�( f � f 0)T) functions. One
popular option is to translate a pair of sinc(�fT) functions to
the first zero crossings of the sinc(�fT) function. These zeros
are located at frequency �1/T, the first frequency orthogonal
to the rectangle window of length T. These sinc(�fT) functions
represent a cosine with period exactly equal to the support of
the rectangle window (frequency � 1/T). As seen in the figure,
the side-lobes contributed by the additional pair present op-
posing polarity side-lobes to those of the original sinc(�fT)
function. The effect of adding three sinc(�fT) functions is now
obvious: The main-lobe width is doubled, and the side-lobe
levels are reduced by an amount dependent on the particular
values of ak.

The window just constructed is called a raised cosine win-
dow and is a member of a class of windows formed by a short
cosine Fourier transform of the form

w(t) =
N∑

k=0

ak cos
�2π

T
kt
�

,
−T
2

< t <
T
2

(noncausal)

w(t) =
N∑

k=0

(−1)kak cos
�2π

T
kt
�

, 0 < t < T (causal)

w(0) =
N∑

k=0

ak = 1, scales peak of w(t) to 1.0

(7)

Windows with two-term Fourier transforms include the
HANN and HAMMING windows. When the two term coeffi-
cients (a0, a1) � (0.5, 0.5), the window is the HANN window
(often incorrectly called the HANNING window). It is also
called the cosine-squared window. For these weights the high-
est side-lobe is 0.0267 or �31.47 dB below the peak main-lobe
response and decays thereafter at 18 dB/octave. When the
coefficients (a0, a1) � (0.54, 0.46), the window is the HAM-
MING window. For these weights, the highest side-lobe is

No overlap resolvable

f∆

Slight overlap resolvable

f∆

f∆

f∆

Significant overlap
barely resolvable

Significant overlap
not resolvable

f

f

f

f

0.00735 or �42.76 dB below the peak main-lobe response andFigure 3. Spectral representation of windowed sinusoids of succes-
decays thereafter at 6 dB/octave. We observe that we can re-sively decreasing spectral distance demonstrating loss of resolution
alize over two orders of magnitude side-lobe level suppressiondue to merging of main-lobe responses.
by doubling the main-lobe width.

If additional side-lobe level suppression is desired, we have
to increase the number of terms in the short cosine transform.

which reduces the spectral resolution capabilities of the Each new term increases the main-lobe width by placing an-
window. other pair of sinc(�fT) functions in the main-lobe. As the

main-lobe bandwidth increases, we use the additional degrees
of freedom to realize additional side-lobe level suppression.WINDOWS AS A SUM OF COSINES
Examples of windows formed by the short cosine transforms
and their respective side-lobe levels are shown in Table 1. TheWe cannot build windows without side-lobes in their spectra.
number of terms in the cosine series expansion represents theWhat we can do is design windows with arbitrarily low-level
main-lobe width between the spectral peak and the first zeroside-lobes. We can accomplish this with a number of design
crossing of the main-lobe. Note that the coefficients listedtools, which we will examine shortly. The common mecha-
here include the alternating signs, shown in the second optionnism of these tools is that they control side-lobe levels by con-
of Eq. (7), which forms causal windows.trolling the smoothness of the window in the time domain.

The time and frequency responses of the windows listed inWe will demonstrate how the window smoothness in the time
Table 1 are presented in Figs. 4 through 9. The windows con-domain and window side-lobe levels in the frequency domain
tain 51 samples, a length selected to permit us to see someis coupled. Figure 4 presents the time and spectral descrip-
detail in their (1024) point Fourier transforms. The apparenttion of the rectangle window. We note the spectrum is the
modulation of the spectral side-lobes is an artifact due to theubiquitous sin(�fT)/(�fT) or sinc(�fT). This represents a spec-

trum centered at zero frequency with main-lobe width 1/T sampling grid bracketing the spectral zero crossings.
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Figure 4. (a) Spectra and time description of a
window formed as sum of rectangle and cosine.
(b) Hann window and its Fourier transform.
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WINDOWS WITH ADJUSTABLE DESIGN PARAMETERS now examine two windows that can make this trade in accord
with an optimality criterion.

We recognize that windows trade spectral main-lobe width for
Dolph-Chebyshev Windowspectral side-lobe levels. A good window achieves low side-

lobe levels with minimum increase in main-lobe width. We The optimality criterion addressed by the Dolph-Chebyshev
window is that its Fourier transform exhibits the narrowest
main-lobe width for a specified (and selectable) side-lobe level.
The Fourier transform of this window exhibits equal ripple
at the specified side-lobe level. The Fourier transform of the
window is a mapping of the Nth-order algebraic Chebyshev
polynomial to the Nth-order trigonometric Chebyshev polyno-
mial by the relationship TN(x) � cos(N�). The Dolph-Chebys-
hev window is defined in terms of uniformly spaced samples
of its Fourier transform. These samples are expressed as

W (k) = (−1)k cosh[N cosh−1
(β cos(π k/N))]

cosh[N cosh−1
(β)]

, 0 ≤ k < N − 1

(8)

where

β = cosh
[

1
N

cosh−1
(10−A/20)

]
A = side-lobe level (in dB)

w(n) =
N−1∑

W (k)e j 2π
N nk

W (N − k) = W (−k)

Table 1. Windows with Short Cosine Transforms

Name Weights Max Side-Lobe Level

Hann a0 � 0.5 �32 dB
a1 � �0.5

Hamming a0 � 0.54 �43 dB
a1 � �0.46

Blackman a0 � 0.42 �58 dB
(approximate) a1 � �0.50

a2 � 0.08
Blackman a0 � 0.426 591 �68 dB

(exact) a1 � �0.496 561
a2 � 0.076 849

Blackman-Harris a0 � 0.423 23 �72 dB
(3-term) a1 � �0.497 55

a2 � 0.079 22
Blackman-Harris a0 � 0.358 75 �92 dB

(4-term) a1 � �0.488 29
a2 � 0.141 28
a3 � �0.011 68
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Figure 5. Hamming window and its Fourier
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Since the discrete Fourier transform is periodic on the unit polynomial) and as such must contain impulses in its time
series. These impulses are located at the window boundaries.circle, there is an end-point problem with the sample located

at pi when the unit circle is cut at pi. It requires a slight When this window is used as a shading function in antennae
systems, these impulses are not realizable, and their suppres-modification of the relationship shown in Eq. (8). This modi-

fication is shown in the MATLAB code presented below. This sion results in an allied window known as the Taylor
weighting. Figures 10 and 11 present the time and frequencycode accomplishes the following tasks: First, reduce the num-

ber of sample points by one (from N to N � 1). Second, com- description of a 40 dB side-lobe and an 80 dB side-lobe Dolph-
Chebyshev window. The 40 dB window is included to demon-pute N � 1 spectral samples. Third, scale the first point by

half and append a copy of this scaled sample to the opposite strate the end point impulses. As an aside, the Chebyshev, or
equal-ripple behavior of the Dolph-Chebyshev window can beend of the spectral array, thus returning the array to the de-

sired length N. Last, transform spectral samples to the time obtained iteratively by the Remez (or the equal ripple, or
Parks-Mclellan) filter design routine. For comparison, Fig. 12domain by an N-point DFT. This code is slightly simpler than

the MATLAB code (Chebwin) used by the Signal Processing presents a window designed as a narrowband filter with 60
dB side-lobes. The MATLAB call for this design wasToolbox and does not have the restriction that the size N be

an odd integer.
ww�remez(50,[0 .001 .047 0.5]/0.5,[1 1 0 0]).

function w�dolph(n,a)
% written by fred harris, SDSU, The weights were scaled by ww(max) to set the maximum
n�n-1; value of the window to unity. This filter, by virtue of the
beta�cosh(acosh(10∧(abs(a)/20))/n); equal-ripple side-lobes, also exhibits end-point impulses.
arg�beta*cos(pi*(0:n-1)/n); A comment on system performance is called for at this
wf�cos(n*acos(arg)); point. Windows (and filters) with constant-level side-lobes,

while optimal in the sense of equal ripple approximation, are
w�real(fft((wf.*cos(pi*(0:n-1))))); suboptimal in terms of their integrated side-lobe levels. The
w(1)�w(1)/2; w�[w w(1)]; window (or filter) is used in spectral analysis to reduce the
w�w/max(w); signal bandwidth and then the sample rate. The reduction in

the sample rate causes aliasing. The spectral content in the
side-lobes (the out-of-band energy) folds back to the in-bandThe Fourier transform of this window exhibits uniform, or

constant level side-lobes levels (inherited from the Chebyshev interval and becomes in-band interference. A measure of this

Figure 6. Blackman (approximate) window and
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Figure 7. Blackman (exact) window and its
Fourier transform.
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Figure 8. Blackman-Harris (3-term �67 dB)
window and its Fourier transform.
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Figure 9. Blackman-Harris (4-term �92 dB)
window and its Fourier transform.
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Figure 10. Dolph-Chebyshev (40 dB) window
and its Fourier transform.
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Figure 11. Dolph-Chebyshev (80 dB) window
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unexpected interference is integrated side-lobes which, for a time-bandwidth product, seems like a reasonable candidate
for a window. Since windows span a finite support, when thegiven main-lobe width, is greater when the side-lobes are

equal-ripple. From a systems viewpoint, the window (or filter) Gaussian is used as a window, we must truncate or discard
its tails. By restricting the window to a finite support theshould exhibit 6 db per octave (1/f ) rate of falloff of side-lobe

levels. Faster rates of falloff actually increase integrated side- (truncated) Gaussian loses its minimum time-bandwidth dis-
tinction. Nevertheless, the window enjoys wide usage by vir-lobe levels because of an accompanying increase in close-in

side-lobes as the remote side-lobes are depressed (while hold- tue of its simplicity and (misplaced) reputation as a minimum
time-bandwidth function.ing main-lobe width and window length fixed). System design-

ers should shy away from equal-ripple windows (and filters). The sampled Gaussian window is defined in Eq. (10) with
the parameter �, the inverse of the standard deviation, con-
trolling the effective time duration and the effective spectralGaussian Window
width:

A second window that exhibits a measure of optimality is the
Gaussian or Weierstrass function. A desired property of a
window is that they be smooth (usually) positive functions
with Fourier transforms that approximate an impulse (i.e.,

w(n) = exp

[
−1

2

�
α

n
N/2

�2
]

(10)

tall thin main-lobe with low-level side-lobes). From the uncer-
tainty principle we know that we cannot simultaneously con- The Fourier transform of this truncated window is the convo-
centrate both a signal and its Fourier transform. We can de- lution of the Gaussian transform with a Dirichlet kernel as
fine the measure of concentration (or width) as the function’s indicated in Eq. (11). The convolution results in the formation
second central moments (i.e., moment of inertia). With 
T be- of the spectral main-lobe (approximating the target’s main-
ing the RMS time duration and with 
W being the RMS band- lobe) with accompanying side-lobes whose peak levels depend
width (in hertz), we know these parameters must satisfy the on the parameter �. As expected, the larger � leads to a wider
uncertainty principle inequality main-lobe and lower side-lobes. Figures 13 and 14 present

Gaussian windows with parameter a selected to achieve 60
and 80 dB side-lobe levels. Note that the main-lobes are con-σTσW ≥ 1

2 (9)
siderably wider that those of the Dolph-Chebyshev and the
upcoming Kaiser-Bessel windows. A useful observation is thatThe equality constraint is achieved only by the Gaussian

function. Thus the Gaussian function, exhibiting a minimum the main-lobe of the Gaussian window is �� again wider than

Figure 12. Remez algorithm low-pass filter/
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Figure 13. Gaussian (60 dB, � � 3.1)
window and its Fourier transform.
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the Blackman-Harris window exhibiting the same side-lobe where
level.

Kaiser-Bessel Window I0(x) =
∞∑

k=0

[
(x/2)k

k!

]2

The last window we examine, designed in accord with an opti-
mality criterion, is the Kaiser-Bessel (or prolate spheroidal The transform of the Kaiser-Bessel window (within very
wave) function. The previous two windows were characterized low-level aliasing terms) is the function shown in Eq. (12). We
by minimum main-lobe width for a given side-lobe level and see that this function tends to sin x/x when the spectral argu-
(hopefully) minimum bandwidth by approximately a mini- ment is evaluated beyond the time-bandwidth related main-
mum time-bandwidth product. Both windows had defects: lobe bandwidth:
One exhibited constant-level side-lobes (resulting in high-in-
tegrated side-lobes); the other exhibited excessive main-lobe
width. An alternate, and related, optimality criterion is the
problem of determining the wave-shape on a finite support

W (θ ) = N
I0(απ)

sinh
[�

(απ)2 − (Nθ/2)2
]

�
(απ)2 − (Nθ/2)2

(12)

that maximizes the energy in a specified bandwidth. This
wave-shape has been identified by Slepian, Landau, and Pol- Note that the Kaiser-Bessel window can also be approximated
lak as the prolate spheroid function (of order zero) which con- by samples of the main-lobe of its spectra, since the window
tains a selectable time-bandwidth product parameter. Kaiser is self-replicating under the time-limiting and band-limiting
has discovered a simple numerical approximation to this operations. That is, if w(n) and W(�) are a Fourier transform
function in terms of the zero-order modified Bessel function pair, then the band-limited version Rect(�/� �) � W(�) is a
of the first kind (hence the designation Kaiser-Bessel). The scaled version of w(n). Similarly the transform of the band-
Kaiser-Bessel window is defined in Eq. (11) where the param- limited spectra is a time series consisting of the original time-
eter �� is the window’s half time-bandwidth product. The se- limited series w(n) with appended side-lobe tails. Time lim-
ries for the Bessel function converges quite rapidly due to the iting this new time series (truncating the tails) returns the
k! in the denominator. pair back to their original relationship.

Figures 15 and 16 present the Kaiser-Bessel window for
parameter �� selected to achieve 60 dB and 80 dB side-lobes.
Compare the main-lobe widths to those of the earlier win-

w(n) = I0

{
πα
p

1.0 − [n/(N/2)]
}

I0[πα]
(11)

Figure 14. Gaussian (80 dB, � � 3.7)
window and its Fourier transform.
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Figure 15. Kaiser-Bessel (60 dB, �� � 8.3) win-
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dow and its Fourier transform.

dows. As commented on earlier, windows can be designed us- s(nT ) = AS ejφS e jωS Tn + AU ejφU ejωU Tn +N (nT ) (13)
ing the Remez algorithm. When the penalty function of the
Remez algorithm is made to increase linearly with frequency

The primary signal-processing tool used to perform spectrumthe side-lobes fall inversely with frequency (�6 dB/oct). Fig-
analysis is the discrete Fourier transform (DFT). Conse-ure 17 presents a window designed by a modified Remez algo-
quently we will limit subsequent discussion of windows inrithm. The call to the modified routine is of the form
spectral analysis to DFT based analysis. The DFT of the com-
posite signal described in Eq. (13) will consist of three compo-ww�remez(50,[0 .001 .0655 0.5]/0.5,[1 1 0 0],’slope �
nents as shown in Fig. 18 and as presented in Eq. (14). In�1’)
this expression �k and �k are the frequency displacements (in
DFT bins) of the desired and undesired signal componentsNote that due to the reduced side-lobe slope, this window ex-
from the DFT bin closest to the desired signal frequency. Re-hibits a narrower main-lobe width compared to a Kaiser-Bes-

sel with the same �80 dB side-lobe level. call that the DFT bin centers are located at integer multiples
of the fundamental frequency 2�/NT radians/second defined
by the support interval NT. Thus the sampled data frequencySPECTRAL ANALYSIS AND WINDOW FIGURES OF MERIT
is defined by the index k with units of cycles per interval or
by the equivalent sampled data frequency of k(2�/N) radians/Windows are used in spectrum analysis to minimize additive
sample:biases caused by the artificial boundaries or discontinuities

imposed on the time series being analyzed. We will now ex-
amine the incidental effects of the windows on the spectrum
analysis process. In one use of a spectrum analyzer, we pro-
cess a composite signal consisting of a sinusoid of interest,
which we will consider the desired signal; we will consider
other sinusoids not of interest as undesired interference and
additive white noise. Figure 18 is a representation of the spec-
tra of this signal set containing a single undesired line compo-
nent described as

S(k) =
N−1∑
n=0

w(n)s(n)e− j 2π
N nk

=
N−1∑
n=0

w(n)[AS ejφS e+ j 2π
N n(k+δk) + AU ejφU e+ j 2π

N n(k+
k)

+N (n)]e− j 2π
N nk

(14)

Figure 16. Kaiser-Bessel (80 dB, �� � 10.7)
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Figure 17. Remez algorithm (80 dB, �6 dB/oct)
window/filter and its Fourier transform.
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The three separate components of the DFT presented in Eq. The signal component, S(k)DES SIG, of the DFT output is seen
(14) are identified as to preserve the complex amplitude of the input sinusoid but

multiplies that amplitude by a gain term, which we recognize
as the DFT of the window. The DFT is evaluated at �k, the
frequency displacement of the input sinusoid from the nearest
DFT bin. We note that the frequency response of the window
spectra centered at the kth bin and observed by the input
sinusoid at frequency k � �k cycles/interval is the same as
the frequency response of the window centered at DC and ob-
served at frequency offset �k. When the displacement, �k, is
zero this gain defaults to the DC (or zero frequency) response
of the window. This gain is called the peak amplitude gain of
the window and, as shown in Eq. (16), is the sum of the win-
dow weights. This sum is bounded by N (for the rectangle
window) and is a0N for the short cosine transforms (see Sec-
tion entitled Windows as a Sum of Cosines). For good win-
dows, typical values of peak amplitude gain is on the order of
0.5 � N through 0.35 � N. A related gain term is called the
peak power gain of the window which is expressed as

S(k)DES SIG =
N−1∑
n=0

w(n) AS ejφS e+ j 2π
N n(k+δk) e− j 2π

N nk

= AS ejφS

N−1∑
n=0

w(n)e+ j 2π
N nδk

= AS ejφS W (δk)

S(k)UNDES SIG =
N−1∑
n=0

w(n) AU ejφU e+ j 2π
N n(k+
k) e− j 2π

N nk

= AU ejφU

N−1∑
n=0

w(n)e+ j 2π
N n
k

= AU ejφU W (
k)

S(k)NOISE =
N−1∑
n=0

w(n)N (n)e− j 2π
N nk

(15)

Peak signal gain ≡ W (0) =
N−1∑
n=0

w(n)

Peak signal power gain ≡ W2(0) =
[

N−1∑
n=0

w(n)

]2 (16)

The undesired component, S(k)UNDES SIG, of the DFT output
is also seen to preserve the complex amplitude of the input
sinusoid but multiplies that amplitude by a gain term
W(�k). We recognize the gain term as the DFT of the window
evaluated at �k, the frequency displacement of the undesired
input sinusoid from the DFT bin of interest. This term is the
spectral leakage term or out-of-band frequency response of
the window. It is our desire to control this term which moti-
vated us to design and use good windows. When �k is greater
than the window’s main-lode width (3 to 6 bins), this term is
the window’s side-lobe levels, which can be on the order of
0.01 � N through 0.0001 � N.

The component S(k)NOISE is the DFT of the input noise. We
can assume that this noise is zero mean and white with vari-
ance 
2

N . Since the noise in a random variable, so is it’s DFT,

Translated window spectra

f

H(f )

S(f )

S(f )H(f )

G(f )

Collected
noise

Collected spectra

Interference
spectra

Signal
spectra

Noise
spectra

Supressed
spectra

Noise component
Interference component

Signal component

f

f

f

so we are obliged to describe the DFT of the noise by its sta-
tistics. Two statistics of primary interest are the first and sec-Figure 18. Graphical representation of spectra interacting with ob-

servation window. ond moments:
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Peak power gain

ENBW

Same area

T=θ ω

Figure 19. Equivalent noise bandwidth (ENBW): Area under power
gain curve allocated to rectangle of same amplitude.

We note that the rectangle window has the smallest ENBW
of 1/N, while a Hann window has an ENBW of 1.5/N. The
units of ENBW are spectral bins, and the larger ENBW indi-
cates an increased variance of a spectral measurement. It is
common practice to normalize the ENBW of the particular
window of length N to the ENBW of the rectangle of the same
length. Thus the normalized ENBW of the Hann window is
1.5 bins A table of popular windows along with their ENBW
is presented at the end of this section.

A related figure of merit for a windowed DFT is the pro-
cessing gain (PG) or improvement in signal-to-noise ratio ob-

E{SNOISE(k)} = E

{
N−1∑
n=0

w(n)N (n)e j 2π
N nk

}

=
N−1∑
n=0

w(n)E {N (n)} e− j 2π
N nk

= 0

E{|SNOISE(k)|2} = E




N−1∑
n1=0

N−1∑
n2=0

w(n1)w∗(n2)N (n1)

N ∗(n2)e− j 2π
N n1ke+ j 2π

N n2k




=
N−1∑
n1=0

N−1∑
n2=0

w(n1)w∗(n2)E{N (n1)N (n2)}

e− j 2π
N (n1−n2 )k

=
N−1∑
n=0

w2(n)σ 2
N

= σ 2
N

N−1∑
n=0

w2(n)

(17)

tained when using the window. This improvement is the ratio
of output SNR to input SNR of a noisy sinewave. ProcessingWe see that the DFT output variance, due to input noise, is a
gain can be as large as N (for a rectangle) and is usually onscaled version of the input noise variance. The scale term is
the order of 0.4N for windows with good side-lobe levels. Thethe sum of square of the window weights. This gain, shown
processing gain is also equal to the reciprocal of the window’sin Eq. (18), is termed the peak noise power gain of the win-
ENBW:dow. This is of course bounded by N (for the rectangle) and is

on the order of (��) N for other windows:

Peak noise power gain ≡ NPG =
N−1∑
n=0

w2(n) (18)

Figures of Merit

The use of a window leads to conflicting effects on the output

SNROUT =
A2

[∑N−1
n=0 w(n)

]2

σ 2
N

∑N−1
n=0 w2(n)

SNRIN = A2

σ 2
N

PG = SNROUT

SNRIN
=
[∑N−1

n=0 w(n)
]2

∑N−1
n=0 w2(n)

= 1
ENBW

(20)

of the transform. The window is applied to data to suppress
out-of-band side-lobe levels. This is a desirable effect. The

Scalloping Loss. The amplitude gain of a windowed trans-window controls side-lobes by smoothly discarding data near
form applied to a sinusoid located at bin k � �k was presentedthe boundaries of the observation interval. This has the effect
in Eq. (16) and is repeated here in Eq. (21). The amplitudeof reducing the amplitude, hence energy, of both signal and
gain W(�k) is a function of the frequency offset, �k, of the in-noise components presented to the transform. Concurrently
put sinusoid from the processed bin. Thisthe increased bandwidth of the window’s spectral main-lobe

(required to purchase the reduced side-lobe levels) permits
additional noise into the measurement.

To facilitate comparison of different windows, we define
two performance measures related to the effects of the win-
dow on both signal and noise. The first of these is equivalent
noise bandwidth (ENBW). This parameter indicates the
equivalent rectangular bandwidth of a filter with the same

SDES SIG(k) =
N−1∑
n=0

w(n)AS ejφS e j 2π
N (k+δk)n e− j 2π

N kn

= AS ejφS

N−1∑
n=0

w(n)e j 2π
N δkn

= AS ejφS W (δ k)

(21)

peak gain of the filter that would result in the same output
frequency-dependent gain due to the offset from the DFT binnoise power. ENBW is illustrated in Fig. 19 and is computed
center represents a reduction in processing gain and is knownby dividing the total energy collected by the window by the
as scalloping loss. The structure of the frequency-dependentpeak power gain of the window:
gain can be visualized with the aid of Fig. 20.

As shown in Fig. 20, when a sinusoidal input frequency is
located in the center of a particular DFT bin, the pair of filters
bracketing this bin respond with equal amplitudes. If the cen-
ter frequency of an input sinusoid is shifted from the bin cen-

ENBW =
∑N−1

n=0 w2(n)[∑N−1
n=0 w(n)

]2 (19)
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alternate technique is to modify the window so that it is has
a flat spectral width between bin centers. This modification of
the window criterion results in windows with negative
weights and a significant increase in ENBW of the filter. We
have used this form of a window, called the Harris flattop in
a number of spectrum analyzers used as frequency-dependent
voltmeters (for use in acceptance testing procedures). The pa-
rameters of this window are presented in the figure of merit
table, and Fig. 21 presents the time and frequency response
of the window along with a detailed view of its scallop loss.

Overlap Correlation. When the DFT is used to obtain power
spectral estimates of random stationary processes, an ensem-
ble of spectral measurements is averaged to reduce the vari-
ance of the estimates. The signal flow for this process is
shown in Fig. 22, where we see the input data are buffered,
windowed, and transformed to form the spectral description
of the input data blocks. The transform is converted to a raw
(two degrees of freedom) estimate of power spectrum by a con-
jugate product and converted to a smoothed (higher degrees
of freedom estimate) by averaging a number of raw power es-
timates.

When the successive transforms are obtained from non-
overlapped segments of the time series, the standard devia-
tion of the spectral estimates obtained by simple averaging is
reduced by the square root of the number of averages. For
instance, averaging 32 independent transforms will reduce
the standard deviation by a factor of 5.6 or 15 dB. Figure 23
demonstrates the improvement in variance obtained by the
ensemble averaging of independent transforms. We apply
windows to data to suppress artificial discontinuities at the
data boundaries. The window essentially discards the data in
the intervals nears near the boundaries. To avoid missing
data, we overlap successive intervals and obtain what has
been called the sliding windowed DFT. Typical values of in-
terval overlap for successive transforms are 75% and 50%.

Signal centered
in filter k +1

Filter k +1

Filter k

Filter k–1

Filter k +1

Filter k

Filter k–1

Response of filter k–1  to
signal at location k +    kδ

  Response of filter k to
signal at location k +    kδ

Response of filter k
to signal at location k

Response of filter k–1
to signal at location k

    Scallop loss due to
signal displaced    kδ

    Scallop loss due to
signal displaced    kδ

   Signal and filter
at location k+    kδ

   Signal at location k +    kδ

   Signal at location k

    Response of filter k+1
to signal at location kδ

Response of filter k +1
to signal at location k

kδ

Frequency 

Indexk–1 k k +1

Frequency 

Indexk–1 k k +1

Frequency 

Indexk–1 k k +1

Frequency 

Indexk–1 k k +1
These overlap intervals are often called 4-to-1 overlaps and 2-

Figure 20. Scalloping loss: Reduction in spectral response of DFT to-1 overlaps, respectively. The data collected from successive
filters to bin-centered and non-bin-centered spectral line. overlapped and windowed transforms are not independent.

Consequently the amount of variance reduction obtained by
ensemble averaging of spectra will be significantly reduced.

The variance reduction obtained by averaging correlatedter of filter k toward filter k � 1, the amplitude response of
data can be easily determined by examining the terms in thefilter k � 1 and filter k drops, and the response of the filter
covariance matrix of the summation ask � 1 is increased. This drop in amplitude is scalloping loss.

When the sinusoid is located at the midpoint between two
filters, say at k � ��, the two bracketing filters, k and k � 1,
respond with the same amplitude. This amplitude corre-
sponds to the maximum reduction in filter response and is
called the peak scallop loss. When the peak scallop loss is
presented in decibels, it represents the maximum reduction in
signal to noise ratio of a windowed transform due to spectral
position of input signals. Note that the signal can never be
located, more than �� a bin from some center frequency. The
rectangle window, due to its very narrow main-lobe width,
exhibits the maximum scallop loss of �3.9 dB. Windows with
deeper side-lobe levels have wider main-lobes and conse-
quently exhibit reduced scalloping loss typically on the order

σ 2
AVG = E



[

1
N

N−1∑
n=0

p(n)

]2



= 1
N2 SUM OF ENTRIES



r(0) r(1) r(2) · · · r(N − 1)

r(−1) r(0) r(1) · · · r(N − 2)

r(−2) r(−1) r(0) · · · r(N − 1)

. . .
. . .

. . .
. . .

r(−N + 1) r(−N + 2) r(−N + 3) · · · r(0)




(22)
of 1.0 dB.

If scalloping loss is an important consideration, it can be When the entries in the summation of Eq. (22) are indepen-
dent, the diagonal terms of the covariance matrix are the onlysignificantly reduced by zero-extending the windowed data

and performing a double-length transform. The loss then cor- nonzero terms, and the summation collapses to c(0)/N. When
the collected data represent 50% overlapped intervals, theresponds to a �� bin shift of the original spectral analysis. An
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Figure 21. (a) Harris flattop window and its
Fourier transform. (b) Scallop response of
three adjacent DFT bins for �80 dB Harris
flattop window and for �80 dB Dolph-Chebys-
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matrix becomes banded and contains only the diagonal terms The correlation coefficients presented in Eqs. (23) and (24) are
related to the normalized coefficients of correlation asand the first upper and lower off-diagonal terms. Gathering

all the terms on the three diagonals results in the summation
r(x) = c2(x)r(0) = c2(x)σ 2

p (25)

Substituting Eq. (25) into Eqs. (23) and (24) results in Eq.
σ 2

AVG(0.50 − OL) = 1
N

[r(0) + 2r(0.5)] − 2
N2

[r(0.5)] (23)

(26), the expressions derived by Walsh:
When the collected data represent 75% overlapped intervals,
the matrix becomes banded and contains only the diagonal
terms and the three upper and lower off-diagonal terms.
Gathering all the terms on the seven diagonals results in the
summation

σ 2
AVG(0.75 − OL) = 1

N
[r(0) + 2r(0.75) + 2r(0.50) + 2r(0.25)]

− 2
N2 [r(0.75) + 2r(0.50) + 3r(0.25)]

(24)

σ 2
AVG(0.50 − OL) = σ 2

P

[
1
N

[1 + 2c2(0.50)] − 2
N2 [c2(0.50)]

]

σ 2
AVG(0.75 − OL)

= σ 2
P




1
N

[1 + 2c2(0.75) + 2c2(0.50) + 2c2(0.25)]

− 2
N2

[c2(0.75) + 2c2(0.50) + 3c2(0.25)]




(26)

The correlation coefficients required to evaluate Eq. (26) are
listed in Table 2 for many useful windows.

How Much Overlap?

Windows are applied to a sequence of overlapped intervals to

Overlap
buffer

d(n)
DFT

*

Window

Pavg(k)dw(n)d(n)

w(n)

D(k) P(k)

Z –1

form the sliding windowed DFT. When the data are station-
ary, an ensemble average can be performed to improve statis-Figure 22. Estimating power spectrum as average of overlapped and

windowed DFTs. tics of the spectral estimates. As observed in the previous sec-
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Figure 23. Ensemble averages of power
spectra demonstrating need for variance
reduction and rate of reduction with in-
creased number of terms.
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tion, the overlapped windows deliver correlated spectral DFT bin, the replicates of the main-lobe must be separated
by its lobe width plus a half a bin-width. For instance, theestimates to the averager, and the variance reduction is no

longer proportional to the square root of the number of aver- main-lobe width for a rectangle window is 1 DFT bin ( fs/N).
To keep the main-lobe from folding back in-band (above theages. A question we address here is how much overlap should

we apply to the succession of windows and what effect does �13.5 dB side-lobe levels), the spectral copies must be sepa-
rated by 1.2 bins. Thus the required sample rate is 1.25 �the percent overlap have on the stability of the resulting spec-

tral estimate. f s/N. This output rate is achieved by taking 1 output for ev-
ery 0.8N inputs, which corresponds to 20% overlapped rectan-The overlap process is indicated in Fig. 24. When a smooth

window is applied to a data observation interval, the sup- gle weighting. Similarly the Hann and Hamming windows
have a main-lobe bandwidth of 2 DFT bins, so the requiredpressed data near the boundaries are recovered by overlap-

ping successive intervals. To determine the required amount spectral separation, hence sample rate, is approximately 2.5
� f s/N. This output rate is achieved by taking 1 output forof overlap, we can view the window as a filter that limits the

bandwidth of the output signal and then invoke the Nyquist every N/2.5 inputs, which corresponds to 60% overlap of suc-
cessive windows. The actual overlap is slightly smaller due tocriterion to match the output sample rate to the output band-

width. The Fourier transform of the typical window and the allowing a section of the main-lobe below side-lobe level to
alias back into band. Table 3 presents common windows andrequired spectral spacing to maintain a clear spectral region

is shown in Fig. 25. The window main-lobe bandwidth, be- their required overlap. In practice, actual overlap amounts
are chosen to be convenient intervals such as 50% or 75%.tween the peak and first zero crossing, widens as the side-

lobe structure is reduced by modulating the time envelope. To When we window and overlap transforms, we recognize
that the windowed spectra exhibits a higher variance due toprevent the main-lobe spectra from aliasing back into the
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Table 2. Figures of Merit for Common Windows

Overlap
Maximum Side-Lobe Scallop

Correlation
Side-Lobe Slope Coherent ENBW Loss

Window (dB) (dB/OCT) Gain (bins) (dB) 4–1 2–1

Rectangle �13.4 �6 1.000 1.000 �3.92 0.750 0.500
Triangle �26.5 �12 0.500 1.333 �1.83 0.719 0.250
Hann �31.5 �18 0.500 1.500 �1.43 0.659 0.167
Hamming �42.7 �6 0.540 1.364 �1.75 0.707 0.234
Exact Blackman �67.6 �6 0.426 1.693 �1.15 0.578 0.100
Blackman �58.2 �18 0.420 1.727 �1.10 0.567 0.090
Gaussian

� � 2.46 �40.0 �6 0.502 1.427 �1.62 0.679 0.202
� � 3.15 �60.0 �6 0.397 1.784 �1.06 0.537 0.081
� � 3.76 �80.0 �6 0.333 2.123 �0.75 0.413 0.029

Dolph-Chebyshev �40.0 0 0.589 1.304 �2.06 0.719 0.286
�60.0 0 0.479 1.518 �1.42 0.646 0.161
�80.0 0 0.414 1.743 �1.09 0.559 0.087

Kaiser-Bessel
� � 5.47 �40.0 �6 0.522 1.412 �1.62 0.700 0.208
� � 8.15 �60.0 �6 0.431 1.681 �1.16 0.584 0.103
� � 10.66 �80.0 �6 0.379 1.903 �0.09 0.498 0.053

Remez (�80 dB) �80.0 �6 0.407 1.773 �1.05 0.547 0.079
Harris flattop (�80 dB) �80.0 0 0.234 3.495 �0.01 0.102 �0.031
Blackman-Harris �71.0 �6 0.423 1.791 �1.13 0.572 0.096

Minimum 3-term
Blackman-Harris �92.0 �6 0.359 2.004 �0.83 0.460 0.038

Minimum 4-term

the increased ENBW associated with the window. The reduc-
tion in variance improvement was alluded to in Eq. (26) and
is repeated in slightly altered form

1
NEFFECTIVE

= 1
NAVG


1 +

NAVG∑
n=1

�
1 − n

NAVG

�
c2(ns)


 (27)

Here the parameter s is the fractional shift of the overlapped
intervals, c(s) is the normalized correlation coefficient, NAVG is
the number of overlapped intervals spanning the data pro-
cessing interval, and NEFFECTIVE is the equivalent number of
independent terms in the averaging process. We note that
a small amount of shift, s, is equivalent to a large overlap
(OL � 1 � s) and that large overlap intervals implies high
correlation and little improvement in variance due to averag-
ing. Conceptually the overlapped windows offer additional
terms to the averager that uses the additional terms to reduce
the variance. With additional increase in overlap, the averag-
ing improvement saturates due to the high correlation of the
data.

Table 4 lists the actual number of intervals for various
amounts of overlap for a data set, which spans 32 nonoverlap-
ping intervals. Figure 26 demonstrates how the effective
number of terms initially increases with percent increased
overlap and then saturates as the overlap increases the corre-
lation of successive intervals. For this example the length of
the data interval corresponded to 32 contiguous blocks. Note
that even the rectangle window offers additional variance re-
duction with overlapped processing.

Nonoverlapped
window intervals

rectangle weighting

Nonoverlapped
window intervals
smooth weighting

Weighted data

Data time line

Overlapped
window intervals
smooth weighting

. . .

Weighted data

Data time line

Weighted data

Data time line

Observe that in Fig. 26 the N_eff curves for the different
windows saturate at different amounts of overlap and thatFigure 24. Partition of time line to nonoverlapped and overlapped

window segments. this overlap corresponds to the percent overlap listed in Table
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Figure 25. Window bandwidth and spectral repli-
cates at output sample rate.
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3 determined by the Nyquist criterion applied to the main-
lobe of the window’s spectra. An interesting observation is
that the ratio of the saturated N_eff of each window to the
N_eff of the rectangle window at the same overlap for which
the curve saturates is the ENBW of that window. Conversely,
the saturated processing gain of each window divided by the
window’s ENBW is the N_eff of the rectangle window op-
erating at the same level of overlap. This relationship is dem-
onstrated in Table 5 for the various windows of Fig. 26. This
is an important observation. It tells us that the increase in
spectral variance due to the wider bandwidth of the window
(applied to succession of time intervals) is precisely canceled
by the increased processing gain offered by the overlap pro-
cessing.

Table 3. Windows and Optimum Overlap Widths Required to
Satisfy Nyquist

Overlap
Aliasing

Window Level Percent Shift

Rectangle �13.4 dB 20.0% 0.80N
Triangle �26.8 dB 52.0% 0.48N
Hann �31.5 dB 56.0% 0.44N
Hamming �42.7 dB 56.0% 0.44N
Blackman �58.2 dB 69.0% 0.31N
Gaussian

� � 2.46 (�40 dB) �40.0 dB 70.0% 0.30N
� � 3.15 (�60 dB) �60.0 dB 76.0% 0.24N
� � 3.76 (�80 dB) �80.0 dB 83.0% 0.17N

Dolph-Chebyshev �40.0 dB 44.0% 0.56N
�60.0 dB 67.0% 0.33N
�80.0 dB 74.0% 0.26N

Kaiser-Bessel
� � 5.47 (�40 dB) �40.0 dB 40.0% 0.60N
� � 8.15 (�60 dB) �60.0 dB 70.0% 0.30N
� � 10.66 (�80 dB) �80.0 dB 75.0% 0.25N

Harris-flattop (�80 dB) �80.0 dB 78.0% 0.22N
Blackman-Harris �71.0 dB 70.0% 0.30N

Minimum 3-term
Blackman-Harris �92.0 dB 76.0% 0.24N

Minimum 4-term
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Figure 26. Effective number of independent samples obtained from
processing windowed and overlapped blocks.

Table 4. Number of Overlapping Intervals Spanning 32
Nonoverlapped Intervals

OL 0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

NAVG 32 36 42 51 64 85 128 256
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spectral analysis by processing a signal composed of two
closely spaced sinewaves of vastly different amplitudes. Other
applications of windows such as window design and modula-
tion envelopes follow easily from the basic understanding of
how a window affects the windowed spectrum.
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Figure 27. Ratio of N_eff to N_actual as function of overlap.


