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STATISTICAL METHODS FOR
SEMICONDUCTOR MANUFACTURING

Semiconductor manufacturing increasingly depends on the
use of statistical methods in order to develop and explore new
technologies, characterize and optimize existing processes,
make decisions about evolutionary changes to improve yields
and product quality, and monitor and maintain well-function-
ing processes. Each of these activities revolves around data:
Statistical methods are essential in the planning of experi-
ments to efficiently gather relevant data, the construction and
evaluation of models based on data, and decision-making us-
ing these models.

Formal statistical assessment is an essential complement to
engineering knowledge of known and suspected causal effects
and systematic sources of variation. Engineering knowledge is
crucial to specify data collection plans that ensure that statisti-
cal conclusions are defensible. If data is collected but care has
not been not taken to make ‘‘fair’’ comparisons, then the results
will not be trusted no matter what statistical method is em-
ployed or amount of data collected. At the same time, correct
application of statistical methods are also crucial to correct in-
terpretations of the results. Consider a simple scenario: The de-
position area in a production fab has been running a standard
process recipe for several months, and has monitored defect
counts on each wafer. An average of 12 defects per 8 in. wafer
had been observed over that time. The deposition engineer be-
lieves that a change in the gasket (from a different supplier) on
the deposition vacuum chamber can reduce the number of de-
fects. The engineer makes the change and runs two lots of 25
wafers each with the change (observing an average of 10 defects
per wafer), followed by two additional lots with the original gas-
ket type (observing an average of 11 defects per wafer). Should
the change be made permanently? A ‘‘difference’’ in output has
been observed, but a key question remains: Is the change ‘‘sta-
tistically significant’’? That is to say, considering the data col-
lected and the system’s characteristics, has a change really oc-
curred or might the same results be explained by chance?

Overview of Statistical Methods

Different statistical methods are used in semiconductor
manufacturing to understand and answer questions such as
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that posed above and others, depending on the particular prob- of variance, including the issue of sampling required to achieve
lem. Table 1 summarizes the most common methods and for the desired degree of confidence in the existence of an effect or
what purpose they are used, and it serves as a brief outline of difference, as well as accounting for the risk in not detecting a
this article. In all cases, the issues of sampling plans and sig- difference. Extensions beyond single factor experiments to the
nificance of the findings must be considered, and all sections design of experiments which screen for effects due to several
will periodically address these issues. To highlight these con- factors or their interactions are then discussed, and we de-
cepts, note that in Table 1 the words ‘‘different,’’ ‘‘same,’’ ‘‘good,’’ scribe the assessment of such experiments using formal analy-
and ‘‘improve’’ are mentioned. These words tie together two sis of variance methods. Examples of experimental design to
critical issues: significance and engineering importance. When enable decision-making abound in semiconductor manufactur-
applying statistics to the data, one first determines if a statisti- ing. For example, one might need to decide if adding an extra
cally significant difference exists; otherwise the data (or experi- film or switching deposition methods will improve reliability,
mental effects) are assumed to be the same. Thus, what is re- or decide which of three gas distribution plates (each with dif-
ally tested is whether there is a difference that is big enough to ferent hole patterns) provides the most uniform etch process.
find statistically. Engineering needs and principles determine In the fourth section, we examine the construction of re-
whether that difference is ‘‘good,’’ the difference actually mat- sponse surface or regression models of responses as a function
ters, or the cost of switching to a different process will be offset of one or more continuous factors. Of particular importance are
by the estimated improvements. The size of the difference that methods to assess the goodness of fit and error in the model,
can be statistically seen is determined by the sampling plans which are essential to appropriate use of regression models in
and the statistical method used. Consequently, engineering optimization or decision-making. Examples here include de-
needs must enter into the design of the experiments (sampling termining the optimal values for temperature and pressure to
plan) so that the statistical test will be able to see a difference produce wafers with no more than 2% nonuniformity in gate ox-
of the appropriate size. Statistical methods provide the means ide thickness, or determining if typical variations in plasma
to determine sampling and significance to meet the needs of the power will cause out-of-specification materials to be produced.
engineer and manager. Finally, we note that statistical process control (SPC) for

In the first section, we focus on the basic underlying issues monitoring the ‘‘normal’’ or expected behavior of a process is a
of statistical distributions, paying particular attention to those critical statistical method (1,2). The fundaments of statistical
distributions typically used to model aspects of semiconductor distributions and hypothesis testing discussed here bear di-
manufacturing, including the indispensable Gaussian distribu- rectly on SPC; further details on statistical process monitor-
tion as well as binomial and Poisson distributions (which are

ing and process optimization can be found in SEMICONDUCTORkey to modeling of defect and yield related effects). An example
FACTORY CONTROL AND OPTIMIZATION.use of basic distributions is to estimate the interval of oxide

thickness in which the engineer is confident that 99% of wafers
will reside; based on this interval, the engineer could then de-

STATISTICAL DISTRIBUTIONScide if the process is meeting specifications and define limits or
tolerances for chip design and performance modeling.

Semiconductor technology development and manufacturingIn the second section, we review the fundamental tool of
are often concerned with both continuous parameters (e.g.,statistical inference, the hypothesis test as summarized in
thin-film thicknesses, electrical performance parameters ofTable 1. The hypothesis test is crucial in detecting differences
transistors) and discrete parameters (e.g., defect counts andin a process. Examples include: determining if the critical di-
yield). In this section, we begin with a brief review of the fun-mensions produced by two machines are different; deciding if
damental probability distributions typically encountered inadding a clean step will decrease the variance of the critical
semiconductor manufacturing, as well as sampling distribu-dimension etch bias; determining if no appreciable increase
tions which arise when one calculates statistics based on mul-in particles will occur if the interval between machine cleans
tiple measurements (3). An understanding of these distribu-is extended by 10,000 wafers; or deciding if increasing the
tions is crucial to understanding hypothesis testing, analysistarget doping level will improve a device’s threshold voltage.
of variance, and other inferencing and statistical analysisIn the third section, we expand upon hypothesis testing to

consider the fundamentals of experimental design and analysis methods discussed in later sections.

Table 1. Summary of Statistical Methods Typically Used in Semiconductor Manufacturing

Topic Statistical Method Purpose

1 Statistical distributions Basic material for statistical tests. Used to characterize a popu-
lation based upon a sample.

2 Hypothesis testing Decide whether data under investigation indicates that ele-
ments of concern are the ‘‘same’’ or ‘‘different.’’

3 Experimental design and Determine significance of factors and models; decompose ob-
analysis of variance served variation into constituent elements.

4 Response surface modeling Understanding relationships, determine process margin, and op-
timize process.

5 Categorical modeling Use when result or response is discrete (such as ‘‘very rough,’’
‘‘rough,’’ or ‘‘smooth’’). Understand relationships, determine
process margin, and optimize process.

6 Statistical process control Determine if system is operating as expected.
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Descriptive Statistics � and variance �2 as x � N(�, �2). The probability density
function for x is given by

‘‘Descriptive’’ statistics are often used to concisely present col-
lections of data. Such descriptive statistics are based entirely
(and only) on the available empirical data, and they do not f (x) = 1

σ
√

2π
e−1/2[(x−µ)/σ ]2

(4)
assume any underlying probability model. Such descriptions
include histograms (plots of relative frequency �i versus mea-

which is also often discussed in unit normal form through thesured values or value ranges xi in some parameter), as well
normalization z � (x � �)/�, so that z � N(1, 0):as calculation of the mean:

x = 1
n

n∑
i=1

xi (1) f (z) = 1√
2π

e−1/2z2
(5)

(where n is the number of values observed) calculation of the Given a continuous probability density function, one can
median (value in the ‘‘middle’’ of the data with an equal num- talk about the probability of finding a value in some range.
ber of observations below and above), and calculation of data For example, if oxide thickness is normally distributed with
percentiles. Descriptive statistics also include the sample � � 100 Å and �2 � 10 Å2 (or a standard deviation of 3.16 Å),
variance and sample standard deviation: then the probability of any one such measurement x falling

between 105 Å and 120 Å can be determined as
s2

x = Sample Var{x} = 1
n − 1

n∑
i=1

(xi − x)2 (2)

sx = Sample std. dev.{x} =
p

s2
x (3)

A drawback to such descriptive statistics is that they in-
volve the study of observed data only and enable us to draw
conclusions which relate only to that specific data. Powerful
statistical methods, on the other hand, have come to be based
instead on probability theory; this allows us to relate observa-
tions to some underlying probability model and thus make
inferences about the population (the theoretical set of all pos-
sible observations) as well as the sample (those observations

Pr(105 ≤ x ≤ 120)

=
∫ 120

105

1

σ
√

2π
e−1/2[(x−µ)/σ ]2

dx

Pr
�105 − µ

σ
≤ x − µ

σ
≤ 120 − µ

σ

�

= Pr(zl ≤ z ≤ zu) =
∫ zu

zl

1√
2π

e−1/2z2
dz

=
�∫ zu

−∞

1√
2π

e−1/2z2
dz
�

−
�∫ zl

−∞

1√
2π

e−1/2z2
dz
�

= �(zu) − �(zl ) = �(6.325) − �(1.581) = 0.0569

(6)

we have in hand). It is the use of these models that give com-
puted statistics (such as the mean) explanatory power.

where �(z) is the cumulative density function for the unit
normal, which is available via tables or statistical analysisProbability Model
packages.

Perhaps the simplest probability model of relevance in semi- We now briefly summarize other common discrete proba-
conductor manufacturing is the Bernoulli distribution. A Ber- bility mass functions (pmf ’s) and continuous probability den-
noulli trial is an experiment with two discrete outcomes: suc- sity functions (pdf ’s) that arise in semiconductor manufactur-
cess or failure. We can model the a priori probability (based ing, and then we turn to sampling distributions that are also
on historical data or theoretical knowledge) of a success sim- important.
ply as p. For example, we may have aggregate historical data
that tells us that line yield is 95% (i.e., that 95% of product

Binomial Distribution. Very often we are interested in the
wafers inserted in the fab successfully emerge at the end of

number of successes in repeated Bernoulli trials (that is, re-
the line intact). We make the leap from this descriptive infor-

peated ‘‘succeed’’ or ‘‘fail’’ trials). If x is the number of suc-
mation to an assumption of an underlying probability model:

cesses in n trials, then x is distributed as a binomial distribu-
we suggest that the probability of any one wafer making it

tion x � B(n, p), where p is the probability of each individual
through the line is equal to 0.95. Based on that probability

‘‘success.’’ The pmf is given by:
model, we can predict an outcome for a new wafer which has
not yet been processed and was not part of the original set of
observations. Of course, the use of such probability models
involves assumptions—for example, that the fab and all fac-

f (x, p, n) =
�

n
x

�
px(1 − p)n−x (7)

tors affecting line yield are essentially the same for the new
wafer as for those used in constructing the probability model. where ‘‘n choose x’’ is

Normal (Gaussian) Distribution. In addition to discrete prob-
ability distributions, continuous distributions also play a cru-

�
n
x

�
= n!

x!(n − x)!
(8)

cial role in semiconductor manufacturing. Quite often, one is
interested in the probability density function (or pdf) for some
parametric value. The most important continuous distribu- For example, if one is starting a 25-wafer lot in the fab

above, one may wish to know what is the probability thattion (in large part due to the central limit theorem) is the
Gaussian or normal distribution. We can write that a random some number x (x being between 0 and 25) of those wafers

will survive. For the line yield model of p � 95%, these proba-variable x is ‘‘distributed as’’ a normal distribution with mean
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for continuous pdf ’s and discrete pmf ’s, respectively. Simi-
larly, the variance is the expectation of the squared deviation
from the mean (or the ‘‘second central moment’’) over the dis-
tribution:

σ 2
x = Var{x} =

∫ ∞

−∞
(x − E{x})2 f (x) dx

=
n∑

i=1

(xi − E{xi})2 · pr(xi) (11)

Further definitions from probability theory are also highly
useful, including the covariance:
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Figure 1. Probabilities for number of wafers surviving from a lot of
σ 2

xy = Cov{x, y} = E{(x − E{x})(y − E{y})}
= E{xy} − E{x}E{y} (12)

25 wafers, assuming a line yield of 95%, calculated using the bino-
mial distribution. where x and y are each random variables with their own prob-

ability distributions, as well as the related correlation coeffi-
bilities are shown in Fig. 1. When n is very large (much larger cient:
than 25), the binomial distribution is well approximated by a
Gaussian distribution.

Poisson Distribution. A third discrete distribution is highly
ρxy = Corr{x, y} = Cov{x, y}√

Var{x}Var{y} = σ 2
xy

σxσy
(13)

relevant to semiconductor manufacturing. An approximation
The above definitions for the mean, variance, covariance,to the binomial distribution that applies when n is large and

and correlation all relate to the underlying or assumed popu-p is small is the Poisson distribution:
lation. When one only has a sample (that is, a finite number
of values drawn from some population), one calculates the
corresponding sample statistics. These are no longer ‘‘descrip-f (x, λ) = e−λλx

x!
(9)

tive’’ of only the sample we have; rather, these statistics are
for integer � � 0, 1, 2, . . . and � � np. now estimates of parameters in a probability model. Corre-

For example, one can examine the number of chips that fail sponding to the population parameters above, the sample
on the first day of operation: The probability p of failure for any mean x is given by Eq. (1), the sample variance s2

x is given by
one chip is (hopefully) exceedingly small, but one tests a very Eq. (2), the sample std. dev. sx is given by Eq. (3), the sample
large number n of chips, so that the observation of the mean covariance is given by
number of failed chips � � np is Poisson-distributed. An even
more common application of the Poisson model is in defect mod-
eling. For example, if defects are Poisson-distributed with a s2

xy = 1
n − 1

n∑
i=1

(xi − x)(yi − y) (14)

mean defect count of 3 particles per 200 mm wafer, one can ask
questions about the probability of observing x [e.g., Eq. (9)] de- and the sample correlation coefficient is given by
fects on a sample wafer. In this case, f (9, 3) � e�339/9! � 0.0027,
or less than 0.3% of the time would we expect to observe exactly
9 defects. Similarly, the probability that 9 or more defects are

rxy = sxy

sxsy
(15)

observed is 1 � ��
x�0 f (x, 3) � 0.0038.

In the case of defect modeling, several other distributions Sampling Distributions
have historically been used, including the exponential, hyper-

Sampling is the act of making inferences about populationsgeometric, modified Poisson, and negative binomial. Substan-
based on some number of observations. Random sampling istial additional work has been reported in yield modeling to
especially important and desirable, where each observation isaccount for clustering and to understand the relationship be-
independent and identically distributed. A statistic is a func-tween defect models and yield (e.g., see Ref. 4).
tion of sample data which contains no further unknowns (e.g.,
the sample mean can be calculated from the observations andPopulation Versus Sample Statistics
has no further unknowns). It is important to note that a sam-

We now have the beginnings of a statistical inference theory. ple statistic is itself a random variable and has a ‘‘sampling
Before proceeding with formal hypothesis testing in the next distribution’’ which is usually different than the underlying
section, we first note that the earlier descriptive statistics of population distribution. In order to reason about the ‘‘likeli-
mean and variance take on new interpretations in the proba- hood’’ of observing a particular statistic (e.g., the mean of five
bilistic framework. The mean is the expectation (or ‘‘first mo- measurements), one must be able to construct the underlying
ment’’) over the distribution:

sampling distribution.
Sampling distributions are also intimately bound up with

estimation of population distribution parameters. For exam-
ple, suppose we know that the thickness of gate oxide (at the
center of the wafer) is normally distributed: Ti � N(�, �2) �
N(100, 10). We sample 5 random wafers and compute the

µx = E{x} =
∫ ∞

−∞
x f (x) dx

=
n∑

i=1

xi · pr(xi) (10)
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mean oxide thickness T � ��(T1 � T2 � � � � � T5). We now Student t Distribution. The Student t distribution is another
important sampling distribution. The typical use is when wehave two key questions: (1) What is the distribution of T?

(2) What is the probability that a � T � b? want to find the distribution of the sample mean when the
true standard deviation � is not known. ConsiderIn this case, given the expression for T above, we can use

the fact that the variance of a scaled random variable ax is
simply a2Var�x�, and the variance of a sum of independent
random variables is the sum of the variances:

T ∼ N
�

µ,
σ 2

n

�
(16)

xi ∼ N(µ, σ 2)

x − µ

s/(
√

n)
=

� x − µ

σ/(
√

n)

�

s/σ
∼ N(0,1)r

1
n − 1

χ2
n−1

∼ tn−1

(19)

where �T � �T � � by the definition of the mean. In the above, we have used the definition of the Student t
Thus, when we want to reason about the likelihood of ob- distribution: If z is a normal random variable, z � N(0, 1),

serving values of T (that is, averages of five sample measure- then z/�y/k is distributed as a Student t with k degrees of
ments) lying within particular ranges, we must be sure to use freedom, or z/�y/k � tk, if y is a random variable distributed
the distribution for T rather than that for the underlying dis- as 2

k. As discussed previously, the normalized sample vari-
tribution T. Thus, in this case the probability of finding a ance s2/� 2 is chi-square-distributed, so that our definition
value T between 105 Å and 120 Å is does indeed apply. We thus find that the normalized sample

mean is distributed as a Student t with n � 1 degrees of free-
dom when we do not know the true standard deviation and
must estimate it based on the sample as well. We note that as
k � �, the Student t approaches a unit normal distribution
tk � N(0, 1).

F Distribution and Ratios of Variances. The last sampling dis-
tribution we wish to discuss here is the F distribution. We

Pr(105 ≤ T ≤ 120) = Pr

�
105 − µ

σ/(
√

n)
≤ T − µ

σ/(
√

n)
≤ 120 − µ

σ/(
√

n)

�

= Pr

�
105 − 100

(
√

10/(
√

5)
≤ T − µ

σ/(
√

n)
≤ 120− 100√

2

�

= Pr(zl ≤ z ≤ zu)

= �(14.142) − �(3.536) = 0.0002 (17)
shall see that the F distribution is crucial in analysis of vari-
ance (ANOVA) and experimental design in determining thewhich is relatively unlikely. Compare this to the result from
significance of effects, because the F distribution is concernedEq. (6) for the probability 0.0569 of observing a single value
with the probability density function for the ratio of vari-(rather than a five sample average) in the range 105 Å to
ances. If y1 � 2

u (that is, y1 is a random variable distributed120 Å.
as chi-square with u degrees of freedom) and similarly y2 �
2

v, then the random variable Y � (y1/u)/(y2/v) � Fu,v (that is,
Chi-Square Distribution and Variance Estimates. Several

distributed as F with u and v degrees of freedom). The typical
other vitally important distributions arise in sampling, and

use of the F distribution is to compare the spread of two dis-
are essential to making statistical inferences in experimental

tributions. For example, suppose that we have two samples
design or regression. The first of these is the chi-square distri-

x1, x2, . . ., xn and w1, w2, . . ., wm, where xi � N(�x, �2
x) and

bution. If xi � N(0, 1) for i � 1, 2, . . ., n and y � x2
1 � x2

2 �
wi � N(�w, �2

w). Then
� � � � x2

n, then y is distributed as chi-square with n degrees
of freedom, written as y � 2

n. While formulas for the probabil-
ity density function for 2 exist, they are almost never used

s2
x/σ

2
x

s2
w/σ 2

w
∼ Fn−1,m−1 (20)

directly and are again instead tabulated or available via sta-
tistical packages. The typical use of the 2 is for finding the

Point and Interval Estimationdistribution of the variance when the mean is known.
Suppose we know that xi � N(�, �2). As discussed pre- The above population and sampling distributions form the ba-

viously, we know that the mean over our n observations is sis for the statistical inferences we wish to draw in many
distributed as x � N(�, �2/n). How is the sample variance s2 semiconductor manufacturing examples. One important use
over our n observations distributed? We note that each (xi � of the sampling distributions is to estimate population param-
x) � N(0, �2) is normally distributed; thus if we normalize our eters based on some number of observations. A point estimate
sample variance s2 by �2 we have a chi-square distribution: gives a single ‘‘best’’ estimated value for a population parame-

ter. For example, the sample mean x is an estimate for the
population mean �. Good point estimates are representative
or unbiased (that is, the expected value of the estimate should
be the true value), as well as minimum variance (that is, we
desire the estimator with the smallest variance in that esti-
mate). Often we restrict ourselves to linear estimators; for ex-
ample, the best linear unbiased estimator (BLUE) for various
parameters is typically used.

s2 =
�∑

i

(xi − x)2

�/
(n − 1)

(n − 1)s2

σ 2 ∼ χ2
n−1

s2 ∼
[

σ 2

(n − 1)

]
· χ2

n−1

(18)

Many times we would like to determine a confidence inter-
where one degree of freedom is used in calculation of x. Thus, val for estimates of population parameters; that is, we want
the sample variance for n observations drawn from N(�, �2) to know how likely it is that x is within some particular range

of �. Asked another way, to a desired probability, where willis distributed as chi-square as shown in Eq. (18).
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termined using the appropriate Student-t sampling distribu-
tion for the sample mean:

�
x − tα/2,n−1 · s√

n

�
≤ µ ≤

�
x + tα/2,n−1 · s√

n

�

µ = x ± tα/2,n−1 · s√
n

(24)

f (x) ~ N(   ,    /n)µ

µ

σ

α

2

/2 α /2
x x

In some cases, we may also desire a confidence interval onFigure 2. Probability density function for the sample mean. The
the estimate of variance:sample mean is unbiased (the expected value of the sample mean is

the true mean �). The shaded portion in the tail captures the proba-
bility that the sample mean is greater than a distance �x � �� from
the true mean.

(n − 1)s2

χ2
α/2,n−1

≤ σ 2 ≤ (n − 1)s2

χ2
1−α/2,n−1

(25)

Many other cases (e.g., one-sided confidence intervals) can
also be determined based on manipulation of the appropriate� actually lie given an estimate x? Such interval estimation
sampling distributions, or through consultation with more ex-is considered next; these intervals are used in later sections
tensive texts (5).to discuss hypothesis testing.

First, let us consider the confidence interval for estimation
HYPOTHESIS TESTINGof the mean, when we know the true variance of the process.

Given that we make n independent and identically distrib-
Given an underlying probability distribution, it now becomesuted samples from the population, we can calculate the sam-
possible to answer some simple, but very important, questionsple mean as in Eq. (1). As discussed earlier, we know that the
about any particular observation. In this section, we formalizesample mean is normally distributed as shown in Eq. (16).
the decision-making earlier applied to our oxide thickness ex-We can thus determine the probability that an observed x is
ample. Suppose as before that we know that oxide thicknesslarger than � by a given amount:
is normally distributed, with a mean of 100 Å and standard
deviation of 3.162 Å. We may know this based on a very large
number of previous historical measurements, so that we can
well approximate the true population of oxide thicknesses out

z = x − µ

σ/(
√

n)

Pr(z > zα ) = α = 1 − �(zα )

(21)

of a particular furnace with these two distribution parame-
ters. We suspect something just changed in the equipment,where z� is the alpha percentage point for the normalized
and we want to determine if there has been an impact onvariable z (that is, z� measures how many standard deviations
oxide thickness. We make a new observation (i.e., run a newgreater than � we must be in order for the integrated proba-
wafer and form our oxide thickness value as usual, perhapsbility density to the right of this value to equal �). As shown
as the average of nine measurements at fixed positions acrossin Fig. 2, we are usually interested in asking the question the the wafer). The key question is: What is the probability that

other way around: To a given probability [100(1 � �), e.g., we would get this observation if the process has not changed,
95%], in what range will the true mean lie given an observed versus the probability of getting this observation if the pro-
x? cess has indeed changed?

We are conducting a hypothesis test. Based on the observa-
tion, we want to test the hypothesis (label this H1) that the
underlying distribution mean has increased from �0 by some
amount � to �1. The ‘‘null hypothesis’’ H0 is that nothing has

�
x − zα/2 · σ√

n

�
≤ µ ≤

�
x + zα/2 · σ√

n

�

µ = x ± zα/2 · σ√
n

(22)

changed and the true mean is still �0. We are looking for evi-
dence to convince us that H1 is true.

For our oxide thickness example, we can now answer an We can plot the probability density function for each of the
important question. If we calculate a five-wafer average, how two hypotheses under the assumption that the variance has
far away from the average 100 Å must the value be for us to not changed, as shown in Fig. 3. Suppose now that we observe
decide that the process has changed away from the mean
(given a process variance of 10 Å2)? In this case, we must
define the ‘‘confidence’’ 1 � � in saying that the process has
changed; this is equivalent to the probability of observing the
deviation by chance. With 95% confidence, we can declare
that the process is different than the mean of 100 Å if we
observe T 
 97.228 Å or T � 102.772 Å:

α

2
= Pr

�
zα/2 ≤ T − µ

σ/(
√

n)

�
= Pr

�
−1.95996 ≤ T − µ

σ/(
√

n)

�

H0:f0(x) ~ N(   0,  2 )µ

µ δ

σ
H1:f1(x) ~ N(   1,  2 )µ σ

0 µ1

xix
x

*

|T − µ| = 1.95996σ/(
√

n) = 2.7718 (23)
Figure 3. Distributions of x under the null hypothesis H0, and under

A similar result occurs when the true variance is not the hypothesis H1 that a positive shift has occurred such that �1 �

�0 � �.known. The 100(1 � �) confidence interval in this case is de-
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the value xi. Intuitively, if the value of xi is ‘‘closer’’ to �0 than error) we are willing to endure. Power curves are often plotted
of � versus the normalized shift to detect d � �/�, for a givento �1, we will more than likely believe that the value comes

from the H0 distribution than the H1 distribution. Under a fixed � (e.g., � � 0.05), and as a function of sampling size.
maximum likelihood approach, we can compare the probabil-
ity density functions: Hypothesis Testing and Sampling Plans. In the previous dis-

cussion, we described a hypothesis test for detection of a shift
in mean of a normal distribution, based on a single observa-
tion. In realistic situations, we can often make multiple obser-f0(xi )

H0
�
H1

f1(xi) (26)

vations and improve our ability to make a correct decision. If
we take n observations, then the sample mean is normallythat is, if f 1 is greater than f 0 for our observation, we reject
distributed, but with a reduced variance �2/n as illustratedthe null hypothesis H0 (that is, we ‘‘accept’’ the alternative
by our five-wafer average of oxide thickness. It now becomeshypothesis H1). If we have prior belief (or other knowledge)
possible to pick an � risk associated with a decision on theaffecting the a priori probabilities of H0 and H1, these can also
sampling distribution that is acceptable, and then determinebe used to scale the distributions f 0 and f 1 to determine a
a sample size n in order to achieve the desired level of � risk.posteriori probabilities for H0 and H1. Similarly, we can define
In the first step, we still select z�/2 based on the risk of falsethe ‘‘acceptance region’’ as the set of values of xi for which we
alarm �, but now this determines the actual unnormalizedaccept each respective hypothesis. In Fig. 3, we have the rule:
decision point using x* � � � z�/2 � �/(�n). We finally pick nAccept H1 if xi � x*, and accept H0 if xi 
 x*.
(which determines x* as just defined) based on the Type IIIn typical use, we select a confidence 1 � � with which we
error, which also depends on the size of the normalized shiftmust detect a ‘‘difference,’’ and we pick a x* decision point
d � �/� to be detected and the sample size n. Graphs andbased on that confidence. For two-sided detection with a unit
tables are indispensible in selecting the sample size for anormal distribution, for example, we select z � z�/2 and z 

given d and �; for example, Fig. 4 shows the Type II error�z�/2 as the regions for declaring that unusual behavior (i.e.,
associated with sampling from a unit normal distribution, fora shift) has occurred.
a fixed Type I error of 0.05, and as a function of sampling size
n and shift to be detected d.Alpha and Beta Risk (Type I and Type II Errors)

The hypothesis test gives a clear, unambiguous procedure for Control Chart Application. The concepts of hypothesis test-
making a decision based on the distributions and assump- ing, together with issues of Type I and Type II error as well
tions outlined above. Unfortunately, there may be a substan- as sample size determination, have one of their most common
tial probability of making the wrong decision. In the maxi- applications in the design and use of control charts. For exam-
mum likelihood example of Fig. 3, for the single observation ple, the x control chart can be used to detect when a ‘‘signifi-
xi as drawn we accept the alternative hypothesis H1. However, cant’’ change from ‘‘normal’’ operation occurs. The assumption
examining the distribution corresponding to H0, we see that a here is that when the underlying process is operating under
nonzero probability exists of xi belonging to H1 . Two types of control, the fundamental process population is distributed
errors are of concern: normally as xi � N(�, �2). We periodically draw a sample of n

observations and calculate the average of those observations
(x). In the control chart, we essentially perform a continuous
hypothesis test, where we set the upper and lower control lim-
its (UCLs and LCLs) such that x falls outside these control
charts with probability � when the process is truly under con-
trol (e.g., we usually select 3� to give a 0.27% chance of false

α = Pr(Type I error) = Pr(reject H0|H0 is true) =
∫ ∞

x∗
f0(x) dx

β = Pr(Type II error) = Pr(accept H0|H1 is true) =
∫ x∗

−∞
f1(x) dx

(27)
alarm). We would then choose the sample size n so as to have
a particular power (that is, a probability of actually detectingWe note that the Type I error (or probability � of a ‘‘false
a shift of a given size) as previously described. The controlalarm’’) is based entirely on our decision rule and does not

depend on the size of the shift we are seeking to detect. The
Type II error (or probability � of ‘‘missing’’ a real shift), on
the other hand, depends strongly on the size of the shift. This
Type II error can be evaluated for the distributions and deci-
sion rules above; for the normal distribution of Fig. 3, we find

β = �

�
zα/2 − δ

σ

�
− �

�
−zα/2 − δ

σ

�
(28)

where � is the shift we wish to detect.
The ‘‘power’’ of a statistical test is defined as

Power ≡ 1 − β = Pr(reject H0|H0 is false) (29)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.5 1.51

B
et

a

n = 10
n = 20
n = 30
n = 40 

Delta (in units of standard deviation)

that is, the power of the test is the probability of correctly Figure 4. Probability of Type II error (�) for a unit normal process
rejecting H0. Thus the power depends on the shift � we wish with Type I error fixed at � � 0.05, as a function of sample size n

and shift delta (equal to the normalized shift �/�) to be detected.to detect as well as the level of ‘‘false alarms’’ (� or Type I
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limits (CLs) would then be set at A—that is, H1: �B � �A, as opposed to the null hypothesis
H0: �B � �A. Several approaches can be used (5).

In the first approach, we assume that in each process A
and B we are random sampling from an underlying normalCL = µ ±

�
zα/2 · σ√

n

�
(30)

distribution, with (1) an unknown mean for each process and
(2) a constant known value for the population standard devia-Note that care must be taken to check key assumptions in
tion of �. Then nA � 10, nB � 10, Var�yA� � �2/nA, andsetting sample sizes and control limits. In particular, one
Var�yB� � �2/nB. We can then construct the sampling distribu-should verify that each of the n observations to be utilized in
tion for the difference in means asforming the sample average (or the sample standard devia-

tion in an s chart) are independent and identically distrib-
uted. If, for example, we aggregate or take the average of n
successive wafers, we must be sure that there are no system-

Var{yB − yA } = σ 2

nA
+ σ 2

nB
= σ 2

�
1

nA
+ 1

nB

�
(31)

atic within-lot sources of variation. If such additional varia-
tion sources do exist, then the estimate of variance formed
during process characterization (e.g., in our etch example)

sB−A = σ

�
1

nA
+ 1

nB
(32)

will be inflated by accidental inclusion of this systematic con-
tribution, and any control limits one sets will be wider than Even if the original process is moderately nonnormal, the dis-
appropriate to detect real changes in the underlying random tribution of the difference in sample means will be approxi-
distribution. If systematic variation does indeed exist, then a mately normal by the central limit theorem, so we can nor-
new statistic should be formed that blocks against that varia- malize as
tion (e.g., by specifying which wafers should be measured out
of each lot), and the control chart based on the distribution of
that aggregate statistic. z0 = (yB − yA ) − (µB − µA)

σ

�
1

nA
+ 1

nB

(33)

EXPERIMENTAL DESIGN AND ANOVA
allowing us to examine the probability of observing the mean

In this section, we consider application and further develop- difference yB � yA based on the unit normal distribution,
ment of the basic statistical methods already discussed to Pr(z � z0).
the problem of designing experiments to investigate particu- The disadvantage of the above method is that it depends
lar effects, and to aid in the construction of models for use on knowing the population standard deviation �. If such infor-
in process understanding and optimization. First, we should mation is indeed available, using it will certainly improve the
recognize that the hypothesis testing methods are precisely ability to detect a difference. In the second approach, we as-
those needed to determine if a new treatment induces a sume that our 10 wafer samples are again drawn by random
significant effect in comparison to a process with known sampling on an underlying normal population, but in this
distribution. These are known as one-sample tests. In this case we do not assume that we know a priori what the popula-
section, we consider two-sample tests to compare two treat- tion variance is. In this case, we must also build an internal
ments in an effort to detect a treatment effect. We will estimate of the variance. First, we estimate from the individ-
then extend to the analysis of experiments in which many ual variances:
treatments are to be compared (k-sample tests), and we
present the classic tool for studying the results—ANOVA
(6). s2

A = 1
nA − 1

nA∑
i=1

(yAi
− yA) (34)

Comparison of Treatments: Two-Sample Tests
and similarly for s2

B. The pooled variance is then
Consider an example where a new process B is to be com-
pared against the process of record (POR), process A. In the
simplest case, we have enough historical information on pro-
cess A that we assume values for the yield mean �A and stan-

s2 = (nA − 1)s2
A + (nB − 1)s2

B

nA + nB − 2
(35)

dard deviation �. If we gather a sample of 10 wafers for the
new process, we can perform a simple one-sample hypothesis Once we have an estimate for the population variance, we can
test �B � �A using the 10 wafer sampling distribution and perform our t test using this pooled estimate:
methods already discussed, assuming that both process A and
B share the same variance.

Consider now the situation where we want to compare two
new processes. We will fabricate 10 wafers with process A and

t0 = (yB − yA ) − (µB − µA )

s

�
1

nA
+ 1

nB

(36)

another 10 wafers with process B, and then we will measure
the yield for each wafer after processing. In order to block

One must be careful in assuming that process A and B shareagainst possible time trends, we alternate between process A
a common variance; in many cases this is not true and moreand process B on a wafer by wafer basis. We are seeking

to test the hypothesis that process B is better than process sophisticated analysis is needed (5).
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Comparing Several Treatment Means Via ANOVA where nt is the number of observations or samples in group
t. The estimate of the sample variance for each group, alsoIn many cases, we are interested in comparing several treat-
referred to as the ‘‘mean square,’’ is thusments simultaneously. We can generalize the approach dis-

cussed above to examine if the observed differences in treat-
ment means are indeed significant, or could have occurred by s2

t = SSt

vt
= SSt

nt − 1
(38)

chance (through random sampling of the same underlying
population). where �t is the degrees of freedom in treatment t. We can

A picture helps explain what we are seeking to accomplish. generalize the pooling procedure used earlier to estimate a
As shown in Fig. 5, the population distribution for each treat- common shared variance across k treatments as
ment is shown; the mean can differ because the treatment is
shifted, while we assume that the population variance is
fixed. The sampling distribution for each treatment, on the s2

R = υ1s2
1 + υ2s2

2 + · · · + υks2
k

υ1 + υ2 + · · · + υk
= SSR

N − k
= SSR

υR
(39)

other hand, may also be different if a different number of
samples is drawn from each treatment (an ‘‘unbalanced’’ ex-

where SSR/�R is defined as the within-treatment or within-periment), or because the treatment is in fact shifted. In most
group mean square and N is the total of measurements, N �of the analyses that follow, we will assume balanced experi-
n1 � n2 � � � � � nk , or simply N � nk is all k treatmentsments; analysis of the unbalanced case can also be performed
consist of the same number of samples, n.(7). It remains important to recognize that particular sample

In the second step, we want an estimate of between-groupvalues from the sampling distributions are what we measure.
variation. We will ultimately be testing the hypothesis �1 �In essence, we must compare the variance between two
�2 � � � � � �k. The estimate of the between-group variancegroups (a measure of the potential ‘‘shift’’ between treat-
isments) with the variance within each group (a measure of the

sampling variance). Only if the shift is ‘‘large’’ compared to
the sampling variance are we confident that a true effect is
in place. An appropriate sample size must therefore be chosen

s2
T =

k∑
t=1

nt (yt − y )2 = SST

υT
(40)

using methods previously described such that the experiment
is powerful enough to detect differences between the treat- where �T � k � 1, SST/�T is defined as the between-treatment
ments that are of engineering importance. In the following, mean square, and y is the overall mean.
we discuss the basic methods used to analyze the results of We are now in position to ask our key question: Are the
such an experiment (8). treatments different? If they are indeed different, then the

First, we need an estimate of the within-group variation. between group variance will be larger than the within-group
Here we again assume that each group is normally distrib- variance. If the treatments are the same, then the between-
uted and share a common variance �2. Then we can form the group variance should be the same as the within-group vari-
‘‘sum of squares’’ deviations within the tth group SSt as ance. If in fact the treatments are different, we thus find that

SSt =
nt∑
j=1

(yt j
− yt )2 (37)

s2
T estimates

�
σ 2 +

k∑
t=1

ntτ
2
t

(k − 1)

�
(41)

where �t � �t � � is treatment t’s effect. That is, s2
T is inflated

by some factor related to the difference between treatments.
We can perform a formal statistical test for treatment signifi-
cance. Specifically, we should consider the evidence to be
strong for the treatments being different if the ratio s2

T/s2
R is

significantly larger than 1. Under our assumptions, this
should be evaluated using the F distribution, since s2

T/s2
R �

Fk�1,N�k.
We can also express the total variation (total deviation

sum of squares from the grand mean SSD) observed in the
data as

SSD =
k∑

t=1

nt∑
i=1

(yti − y2
)

s2
D = SSD

υD
= SSD

N − 1

(42)

Population
distributionsy

y

yB

yC

yA

A B C
where S2

D is recognized as the variance in the data.
Figure 5. Pictorial representation of multiple treatment experimen-

Analysis of variance results are usually expressed in tabu-tal analysis. The underlying population for each treatment may be
lar form, such as shown in Table 2. In addition to compactlydifferent, while the variance for each treatment population is as-
summarizing the sum of squares due to various componentssumed to be constant. The dark circles indicate the sample values
and the degrees of freedom, the appropriate F ratio is shown.drawn from these populations (note that the number of samples may

not be the same in each treatment). The last column of the table usually contains the probability



472 STATISTICAL METHODS FOR SEMICONDUCTOR MANUFACTURING

Table 2. Structure of the Analysis of Variance Table, for Single-Factor (Treatment) Case

Mean
Source of Variation Sum of Squares Degrees of Freedom Square F Ratio Pr(F)

Between treatments SST �T � k � 1 s2
T s2

T/s2
R p

Within treatments SSR �R � N � k s2
R

Total about the SSD � SST � SSR �D � vT � vR � N � 1 s2
D

grand mean

of observing the stated F ratio under the null hypothesis. The We now have an assumed model:
alternative hypothesis—that one or more treatments have a
mean different than that of the others—can be accepted with yti = µ + τt + βi + εti (45)
100(1 � p) confidence.

where �i are the block effects. The total sum of squares SSAs summarized in Table 2, analysis of variance can also be
can now be decomposed aspictured as a decomposition of the variance observed in the

data. That is, we can express the total sum of squared
deviations from the grand mean as SSD � SST � SSR, or the SS = SSA + SSB + SST + SSR (46)
between-group sum of squares added to the within-treatment

with degrees of freedomsum of squares. One can further decompose the total sum of
squares which includes the sum of squares due to the aver-
age: SS � SSA � SSD � SSA � SST � SSR, where SSA � Ny2. bk = 1 + (b − 1) + (k − 1) + (b − 1)(k − 1) (47)

While often not explicitly stated, the above ANOVA as-
where b is the number of blocking groups, k is the number ofsumes a mathematical model:
treatment groups, and SSB � k �b

i�1 (yi � y)2. As before, if the
blocks or treatments do in fact include any mean shifts, thenyti = µt + εti = µ + τt + εti (43)
the corresponding mean sum of squares (estimates of the cor-

where �t are the treatment means, and �ti are the residuals: responding variances) will again be inflated beyond the popu-
lation variance (assuming the number of samples at each
treatment is equal):εti = yti − ŷti ∼ N(0, σ 2) (44)

where ŷti � ŷt � � � �t is the estimated treatment mean. It is
critical that one check the resulting ANOVA model. First, the
residuals �ti should be plotted against the time order in which
the experiments were performed in an attempt to distinguish
any time trends. While it is possible to randomize against

s2
B estimates

�
σ 2 + k

b∑
i=1

β2
i

(b − 1)

�

s2
T estimates

�
σ 2 +

k∑
t=1

ntτ
2
t

(k − 1)

� (48)

such trends, we lose resolving power if the trend is large. Sec-
ond, one should examine the distribution of the residuals.

So again, we can now test the significance of these potentiallyThis is to check the assumption that the residuals are ‘‘ran-
‘‘inflated’’ variances against the pooled estimate of the vari-dom’’ [that is, independent and identically distributed (IID)
ance s2

R with the appropriate F test as summarized in Table 3.and normally distributed with zero mean] and look for gross
non-normality. This check should also include an examination

Two-Way Factorial Designsof the residuals for each treatment group. Third, one should
plot the residuals versus the estimates and be especially alert While the above is expressed with the terminology of the sec-
to dependencies on the size of the estimate (e.g., proportional ond factor being considered a ‘‘blocking’’ factor, precisely the
versus absolute errors). Finally, one should also plot the re- same analysis pertains if two factors are simultaneously con-
siduals against any other variables of interest, such as envi- sidered in the experiment. In this case, the blocking groups
ronmental factors that may have been recorded. If unusual are the different levels of one factor, and the treatment
behavior is noted in any of these steps, additional measures groups are the levels of the other factor. The assumed analy-
should be taken to stabilize the variance (e.g., by considering sis of variance above is with the simple additive model (that
transformations of the variables or by reexamining the exper- is, assuming that there are no interactions between the blocks
iment for other factors that may need to be either blocked and treatments, or between the two factors). In the blocked
against or otherwise included in the experiment). experiment, the intent of the blocking factor was to isolate a

known (or suspected) source of ‘‘contamination’’ in the data,
Two-Way Analysis of Variance so that the precision of the experiment can be improved.

We can remove two of these assumptions in our experi-Suppose we are seeking to determine if various treatments
ment if we so desire. First, we can treat both variables asare important in determining an output effect, but we must
equally legitimate factors whose effects we wish to identify orconduct our experiment in such a way that another variable
explore. Second, we can explicitly design the experiment and(which may also impact the output) must also vary. For exam-
perform the analysis to investigate interactions between theple, suppose we want to study two treatments A and B but
two factors. In this case, the model becomesmust conduct the experiments on five different process tools

(tools 1–5). In this case, we must carefully design the experi-
ment to block against the influence of the process tool factor. Ytij = µti + εtij (49)
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Table 3. Structure of the Analysis of Variance Table, for the Case of a Treatment with a
Blocking Factor

Degrees of Mean
Source of Variation Sum of Squares Freedom Square F Ratio Pr(F)

Average (correction SSA � nky 2 1
factor)

Between blocks SSB � k�b

i�1
(yi � y )2 �B � b � 1 s2

B s2
B/s2

R pB

Between treatments SST � b�k

t�1
(yt � y )2 �T � k � 1 s2

T s2
T/s2

R pT

Residuals SSR �R � (b � 1)(k � 1) s2
R

Total SS � � N � bk s2
D

where �ti is the effect that depends on both factors simultane- where an R2 value near zero indicates that most of the vari-
ance is explained by residuals (SSR � SSD � SSM) rather thanously. The output can also be expressed as
by the model terms (SSM), while an R2 value near 1 indicates
that the model sum of square terms capture nearly all of the
observed variation in the data. It is clear that a more sophisti-

µti = µ + τt + βi + ωti

= y + (yt − y) + (yi − y) + (yti − yt − yi + y) (50)
cated model with additional model terms will increase SSM,
and thus an ‘‘apparent’’ improvement in explanatory powerwhere � is the overall grand mean, �t and �i are the main
may result from adding model terms. An alternative metric iseffects, and �ti are the interaction effects. In this case, the
the adjusted R2, where a penalty is added for the use of de-subscripts are
grees of freedom in the model:

Adjusted R2 = 1 − SSR/vR

SSD/vD

= 1 − s2
R

s2
D

= 1 − Mean square of residual
Mean square of total

(52)

t = 1, 2, . . ., k
where k is the number of levels of first factor

i = 1,2, . . ., b
where b is the number of levels of second factor

j = 1,2, . . ., m
where m is the number of replicates at the t, i factor levels

which is more easily interpreted as the fraction of the vari-
The resulting ANOVA table will be familiar; the one key ance that is not explained by the residuals (s2

R/s2
D). In impor-

addition is explicit consideration of the interaction sum of tant issue, however, is that variance may appear to be ex-
squares and mean square. The variance captured in this com- plained when the model in fact does not ‘‘fit’’ the population.
ponent can be compared to the within-group variance as be- One should formally test for lack of fit (as described in the
fore, and be used as a measure of significance for the interac- regression modeling section to follow) before reporting R2,
tions, as shown in Table 4. since the R2 is only a meaningful measure if there is no lack

Another metric often used to assess ‘‘goodness of fit’’ of a of fit.
model is the R2. The fundamental question answered by R2 is Several mnemonics within the factorial design of experi-
how much better does the model do than simply using the ments methodology facilitate the rapid or manual estimation
grand average. of main effects, as well as interaction effects (8). Elements of

the methodology include (a) assignment of ‘‘high’’ (�) and
‘‘low’’ (�) values for the variables, (b) coding of the experimen-
tal combinations in terms of these high and low levels, (c)

R2 = SSM

SSD
= (SST + SSB + SSI )

SSD
(51)

Table 4. Structure of the Analysis of Variance Table, for Two-Factor Case with Interaction
Between Factors

Degrees of Mean
Source of Variation Sum of Squares Freedom Square F Ratio Pr(F)

Between levels of SST � b�k

t�1
(yt � y )2 �T � k � 1 s2

T s2
T/s2

E pT

factor 1

Between levels of SSB � k�b

i�1
(yi � y )2 �B � b � 1 s2

B s2
B/s2

E pB

factor 2

Interaction SSI �I � (k � 1)(b � 1) s2
I s2

I /s2
E pI

Within groups SSE �E � bk(m � 1) s2
E

(error)
Total (mean cor- SSD � � bkm � 1 s2

D

rected)
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Nested Variance Structures

While blocking factors may seem somewhat esoteric or indica-
tive of an imprecise experiment, it is important to realize that
blocking factors do in fact arise extremely frequently in semi-
conductor manufacturing. Indeed, most experiments or sets of
data will actually be taken under situations where great care
must be taken in the analysis of variance. In effect, such
blocking factors arise due to nested variance structures in typi-
cal semiconductor manufacturing which restrict the full ran-
domization of an experimental design (9). For example, if one
samples die from multiple wafers, it must be recognized that
those die reside within different wafers; thus the wafer is it-

Table 5. Full Factorial 23 Experimental Design (with Coded
Factor Levels)

Experiment
Condition Measured
Number Factor A Factor B Factor C Result

1 � � �

2 � � �

3 � � �

4 � � �

5 � � �

6 � � �

7 � � �

8 � � �

self a blocking factor and must be accounted for.
For example, consider multiple measurements of oxide filmrandomization of the experimental runs (as always!), and (d)

thickness across a wafer following oxide deposition. Oneestimation of effects by attention to the experimental design
might expect that measurements from the same wafer wouldtable combinations.
be more similar to each other than those across multiple wa-For example, one might perform a 23 full factorial design
fers; this would correspond to the case where the within-wa-[where the superscript indicates the number of factors (three
fer uniformity is better than the wafer to wafer uniformity.in this case), and the base indicates the number of levels for
On the other hand, one might also find that the measure-each factor (two in this case)], where the factors are labeled
ments from the corresponding sites on each wafer (e.g., nearA, B, and C. The unique eight combinations of these factors
the lower left edge of the wafer) are more similar to eachcan be summarized as in Table 5, with the resulting mea-
other than are the different sites across the same wafer; thissured results added during the course of the experiment.
would correspond to the case where wafer-to-wafer repeat-The main effect of a factor can be estimated by taking the
ability is very good, but within-wafer uniformity may be poor.difference between the average of the � level for that factor
In order to model the important aspects of the process andand the average of the � levels for that factor—for example,
take the correct improvement actions, it will be important toEffectA � yA� � yA� and similarly for the other main effects.
be able to distinguish between such cases and clearly identifyTwo-level interactions can be found in an analogous fashion;
where the components of variation are coming from.InteractionAB � ��(yAB� � yAB�), where one takes the difference

In this section, we consider the situation where we believebetween one factor averages at the high and low values of the
that multiple site measurements ‘‘within’’ the wafer can besecond factor. Simple methods are also available in the full
treated as independent and identical samples. This is almostfactorial case for estimation of factor effect sampling vari-
never the case in reality, and the values of ‘‘within wafer’’ances, when replicate runs have been performed. In the sim-
variance that result are not true measures of wafer variance,ple case above where only a single run is performed at each

experimental replicate, there are no simple estimates of the but rather only of the variation across those (typically fixed
underlying process or measurement variance, and so assess- or preprogrammed) sites measured. In our analysis, we are
ment of significance is not possible. If, however, one performs most concerned that the wafer is acting as a blocking factor,
mi replicates at the ith experimental condition, one can pool as shown in Fig. 6. That is, we first consider the case where
the individual estimates of variance s2

i at each of the experi- we find that the five measurements we take on the wafer are
mental conditions to gain an overall variance estimate (8): relatively similar, but the wafer-to-wafer average of these val-

ues varies dramatically.

s2 = v1s2
1 + v2s2

2 + · · · + vgs2
g

v1 + v2 + · · · + vg
(53)

where �i � mi � 1 are the degrees of freedom at condition i
and g is the total number of experimental conditions ex-
amined.

The sampling variance for an effect estimate can then be
calculated; in our previous example we might perform two
runs at each of the eight experimental points, so that �i � 1 and

Var{EffectA} = Var{yA+} + Var{yA−} = s2

8
+ s2

8
= s2

4
(54)

These methods can be helpful for rapid estimation of ex-
perimental results and for building intuition about contrasts
in experimental designs; however, statistical packages pro-
vide the added benefit of assisting not only in quantifying fac-

1060

1050

1040

1030

1020

1010

1 2 3 4 5 6
Wafer number

O
xi

d
e

 t
h

ic
kn

e
ss

 (
A

)

tor effects and interactions, but also in examination of the
significance of these effects and creation of confidence inter- Figure 6. Nested variance structure. Oxide thickness variation con-

sists of both within-wafer and wafer-to-wafer components.vals on estimation of factor effects and interactions.
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This two-level variance structure can be described as (9) The same approach can be used for more deeply nested vari-
ance structures (9,10). For example, a common structure oc-
curring in semiconductor manufacturing is measurements
within wafers, and wafers within lots. Confidence limits can
also be established for these estimates of variance (11). The

yij = µ + Wi + Mj(i)

Wi ∼ N(0, σ 2
W ) for i = 1, . . ., nW

Mj(i) ∼ N(0, σ 2
M ) for j = 1, . . ., nM

(55)

computation of such estimates becomes substantially compli-
cated, however (especially if the data are unbalanced and havewhere nM is the number of measurements taken on each of
different numbers of measurements per samples at each nestednW wafers, and Wi and Mj(i) are independent normal random
level), and statistical software packages are the best option.variables drawn from the distributions of wafer-to-wafer vari-

Several assumptions are made in the analysis of varianceations and measurements taken within the ith wafer, respec-
components for the nested structures above. Perhaps the mosttively. In this case, the total variation in oxide thickness is
important is an assumption of random sampling within eachcomposed of both within-wafer variance �2

M and wafer-to-
level of nesting. For example, we assume that each measure-wafer variance �2

W:
ment (within each wafer) is IID and a random sample from
within the wafer. If the same measurement points are takenσ 2

T = σ 2
W + σ 2

M (56)
on each wafer, however, one is not in fact truly estimating the

Note, however, that in many cases (e.g., for control charting), within-wafer variation, but rather the fixed-effect variance
one is not interested in the total range of all individual mea- between these measurement points. For example, it is com-
surements, but rather, one may desire to understand how the mon practice to use a spatially consistent five-point (or 21-
set of wafer means itself varies. That is, one is seeking to point or 49-point) sampling scheme when making measure-
estimate ments within a wafer. An option which adds complexity but

also adds precision is to model each of these sites separately
(e.g., maintain left, right, top, bottom, and center points) andσ 2

W
= σ 2

W + σ 2
M

nM
(57)

consider how these compare with other points within the wa-
fer, as well as from wafer-to-wafer. Great care is required inwhere W indicates averages over the measurements within
such site modeling approaches, however, because one mustany one wafer.
account for the respective variances at multiple levels appro-Substantial care must be taken in estimating these vari-
priately in order to avoid biased estimates (12–14).ances; in particular, one can directly estimate the measure-

Experimental designs that include nested variance sam-ment variance �2
M and the wafer average variance �W, but

pling plans are also sometimes referred to as split-plot de-must infer the wafer-level variance �2
W using

signs, in which a factorial design in fact has restrictions on
randomization (7,15). Among the most common restrictions
are those due to spatial factors, and spatial modeling likewiseσ 2

W = σ 2
W

− σ 2
M

nM
(58)

requires great care (16). Other constraints of the ‘‘real’’ world,
such as hardware factors, may make complete randomizationThe within-wafer variance is most clearly understood as the
infeasible due to the time and cost of installing/removingaverage over the available nW wafers of the variance s2

i within
hardware (e.g., in studying alternative gas distribution plateseach of those i wafers:
in a plasma reactor). Methods exist for handling such con-
straints (split-plot analysis), but the analysis cannot be done
if the experimental sampling plan does not follow an appro-s2

M = 1
nW

nW∑
i=1

s2
i = 1

nW

nW∑
i=1

� nM∑
j=1

(Yij − Yi.)
2

nM − 1

�
(59)

priate split-plot design. Using split-plot analyses, however,
we can resolve components of variation due (in the case ofwhere Yi � indicates an average over the j index (i.e., a within-
sites within wafers) into residual, site, wafer, and wafer–sitewafer average):
interactions, as well as the effects of the treatment under con-
sideration. For these reasons, it can be expected that nested
variance structures or split-plot designs will receive even

Yi. = 1
nM

nM∑
j=1

Yij (60)

greater future attention and application in semiconductor
manufacturing.The overall variance in wafer averages can be estimated

simply as

Progression of Experimental Designs

It is worth considering when and how various experimental
s2

W
= 1

nW − 1

nW∑
i=1

(Yi. − Y ..)2 (61)

design approaches might best be used. When confronted with
where Y � � is the grand mean over all measurements: a new problem which lacks thorough preexisting knowledge,

the first step should be screening experiments which seek to
identify what the important variables are. At this stage, only
crude predictions of experimental effects as discussed above

Y .. = 1
nW nM

nW∑
i=1

nW∑
j=1

Yij (62)

are needed, but often a large number of candidate factors (of-
Thus, the wafer-level variance can finally be estimated as ten six or more) are of potential interest. By sacrificing accu-

racy and certainty in interpretation of the results (primarily
by allowing interactions to confound with other interactions
or even with main effects), one can often gain a great deal of

s2
W = s2

W
− s2

M

nM
(63)
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initial knowledge with reasonable cost. In these cases, frac-
tional factorial, Plackett–Burmann, and other designs may
be used.

Once a smaller number of effects have been identified, full
factorial or fractional factorial designs are often utilized, to-
gether with simplified linear model construction and analysis
of variance. In such cases, the sampling plan must again be

Y
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Y
ie

ld

B–

B+

B–

B+

(–) (+) (–) (+)
Factor A Factor A

Case 1 Case 2

carefully considered in order to ensure that sufficient data are
taken to draw valid conclusions. It is often possible to test Figure 8. Interaction plot. In case 1, no clear interaction is observed:
for model lack of fit, which may indicate that more thorough Factor B does not appear to change the effect of factor A on the out-
experiments are needed or that additional experimental de- put. Rather, the effects from factor A and factor B appear to be addi-
sign points should be added to the existing experimental data tive. In case 2, the level of factor B does influence strongly the re-

sponse of yield to the high level of factor A.(e.g., to complete half fractions). The third phase is then un-
dertaken, which involves experimental design with small
numbers of factors (e.g., two to six) to support linear effects,

the step, and level (�) for factor B is to use one chemical ininteractions, and second-order (quadratic) model terms. These
the step while level (�) is to use a different chemical.regression models will be considered in the next section.

If the factors can take on continuous values, the aboveA variety of sophisticated experimental design methods
analysis is still applicable. However, in these cases, it is oftenare available and applicable to particular problems. In addi-
more convenient and useful to consider or seek to modeltion to factorial and ‘‘optimal’’ design methods (8,10), robust
(within the range of factor levels considered) an entire re-design approaches (as popularized by Taguchi) are helpful,
sponse surface for the parameter of interest. Specifically, weparticularly when the goal is to aid in the optimization of the
wish to move from our factorial experiments with an assumedprocess (17,18).
model of the form

RESPONSE SURFACE METHODS ŷij = µ̂ + Ai + Bj + εij (64)

where we can only predict results at discrete prescribed i, jIn the previous section, we considered the analysis of vari-
levels of factors A and B, toward a new model of the processance, first in the case of single treatments and then in the
of the formcase when blocking factors must also be considered. These

were generalized to consideration of two factor experiments,
where the interaction between these factors can also be con-
sidered. In all of this discussion, the factor levels were treated

ŷ = µ̂ + β1x(1) + β2x(2) + ε

x( j) ∈ [x( j)
min, x( j)

max] ∈ � (65)

as either nominal or continuous parameters. An important
issue is the estimation of the effect of a particular factor, and where each x(j) is a particular factor of interest.
determination of the significance of any observed effect. Such In this section, we briefly summarize the methods for esti-
results are often pictured graphically in a succinct fashion, as mation of the factor response coefficients �j, as well as for
illustrated in Fig. 7 for a two-factor experiment, where two analysis of the significance of such effects based on experi-
levels for each of factor A and factor B are examined. mental design data. We begin with a simple one-parameter

In the full factorial case, interactions can also be explored, model, and we build complexity and capability from there.
and the effects plots modified to show the effect of each factor
on the output parameter of concern (yield in this case), but at Single-Variable Least-Squares Regression
different levels of the other factor. Various cases may result;

The standard approach used here is least-squares regressionas shown in Fig. 8 no interaction may be observed, or a syner-
to estimate the coefficients in regression models. In the sim-gistic (or anti-synergistic) interaction may be present. These
ple one-parameter case considered here, our actual responseanalyses are applicable, for example, when the factor levels
is modeled asare discrete or nominal decisions to be made; perhaps level

(�) for factor A is to perform a clean step while (�) is to omit yi = βxi + εi (66)

where yi indicates the ith measurement, taken at a value xi

for the explanatory variable x. The estimate for the output is
thus simply ŷi � �̂xi � bxi where we expect some residual
error �i. Least-squares regression finds the best fit of our
model to the data, where ‘‘best’’ is that b which minimizes the
sum of squared errors between the prediction and observed n
data values:
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Factor A Factor B

Figure 7. Main effects plot for two-factor, two-level experiment. The
SSmin = SSR =

n∑
i=1

(yi − ŷi)
2 (67)

influence of Factor A on yield is larger than that of Factor B. Analysis
It can easily be shown that for linear problems, a direct solu-of variance is required in order to determine if the observed results

are significant (and not the result of chance variation). tion for b which gives SSmin is possible and will occur when
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the vector of residuals �i is normal to the vector of xi values: butions. The residual sum of squares SSR can be broken into
a component SSL due to ‘‘lack of fit’’ and a component SSE due
to ‘‘pure error’’ or ‘‘replication error’’:b =

∑
xy∑
x2 (68)

SSR = SSL + SSE (73)
An important issue is the estimate of the experimental er-

This enables a further test for ‘‘lack of fit’’ in our model byror. If we assume that the model structure is adequate, we
comparing the ratio of the corresponding variances; that is,can form an estimate s2 of �2 simply as
we compare s2

L/s2
E with F�L,�E

, where �E � m � 1 is the degrees
of freedom corresponding to the pure error for m replicates,
and �L � �R � �E is the degrees of freedom corresponding toS2 = SSR

n − 1
(69)

the lack-of-fit variance estimate. It is highly recommended
that at least some points (if not the entire experiment) beOne may also be interested in the precision of the estimate
replicated, so that the lack of fit and pure error can be as-b—that is, the variance in b:
sessed; otherwise, some question will remain as to the valid-
ity of the model.

These tests can also be summarized as part of the ANOVA
table, as shown in Table 7. In this case, we assume a true

Var{b} = s2∑
i

x2
i

(70)

response of the form y � �0 � �1x which we estimate or fit
with a two-parameter model y � b0 � b1x � � or ŷ � b0 � b1xassuming that the residuals are independent and identically
to also capture the mean (or intercept �). We assume that wenormally distributed with mean zero. More commonly, one re-
have made n total measurements, of which m are replicates.fers to the standard error s.e.(b) � �Var�b� and writes b �
In this table, one should first check for lack of fit. If no evi-s.e.(b). In a similar fashion, a confidence interval for our esti-
dence of lack of fit exists, then there is no reason to reject themate of � can be defined by noting that the standardized
assumed model structure, and one can assess the significancevalue for b should be t-distributed:
of the overall model or individual model coefficients. Note that
the test of significance for s2

M compared to s2
E, and the probabil-

ity pM of observing the corresponding ratio, is then equivalent
t = b − β ′

s.e.(b)
(71)

to testing if the adjusted R2 � 0. If evidence of lack of fit does
where �� is the true value for �, so that indeed exist, however, then one must seek alternative model

forms, either through transformations of the data or by seek-
ing a higher-order (e.g., polynomial) model structure. As al-β = b ± [tα/2 · s.e.(b)] (72)

ways, one should also examine the residuals.
Regression results should also be framed in an analysis of Just as one can assess significance and formulate confi-

variance framework. In the simple one factor case, a simple dence intervals for the single model coefficient case, so too can
ANOVA table might be as shown in Table 6. In this case, one find interval estimates for the model coefficients. Typi-
SSM is the sum of squared values of the estimates, and s2

M is cally, statistical packages can be utilized to assist in the for-
an estimate of the variance ‘‘explained’’ by the model, where mulation of such estimates, but care must be taken to under-
our model is purely linear (no intercept term) as given in Eq. stand the above framework in order to correctly interpret the
66. In order to test significance, we must compare the ratio of output of such packages.
this value to the residual variance s2

R using the appropriate F
test. In the case of a single variable, we note that the F test Response Surface Modeling—Experimental Designs
degenerates into the t test: F1,n � t2

n, and a t test can be used
The first part of this section focused on regression modelingto evaluate the significance of the model coefficient.
and analysis for single-factor experiments, concluding withIn the analysis above, we have assumed that the values
polynomial models of the response. In many cases, one is in-for xi have been selected at random and are thus unlikely to
terested in modeling the response as a function of multiplebe replicated. In many cases, it may be possible to repeat the
factors, with linear or quadratic models. Here we briefly re-experiment at particular values, and doing so gives us the
view aspects of popular experimental designs, and we inter-opportunity to decompose the residual error into two contri-
pret the results of analysis of variance in this multiple factor
context. While a number of experimental designs with differ-
ent properties (and indeed an entire arena of design methods
that are ‘‘optimal’’ in various senses) exist, two of the more
popular designs will be summarized here. The central com-
posite design, as pictured in the two factor case in Fig. 9, is
especially useful as a complement or addition to existing fac-
torial design data. In this case, the addition of center point
and axial points completes the central composite, and it sup-
ports quadratic modeling of the responses (if found to be nec-
essary).

A second popular option is the Box–Bhenken design, as
illustrated for the two factor case in Fig. 9. In this case, the
center point is complemented by experimental points at the

Table 6. Structure of the Analysis of Variance Table, for
Single-Factor Response Surface Regressiona

Source of Sum of Degrees Mean
Variation Squares of Freedom Square F Ratio Pr(F)

Model SSM �M � 1 (number s2
M s2

M/s2
R �

of model coef-
ficients)

Residual SSR �R � n � �M s2
R

Total SS � � n s2
T

a The degrees of freedom in the model are shown for the case when only one
model coefficient is used (strictly linear response).
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Table 7. Structure of the Analysis of Variance Table for a Single-Factor Response Surface Regression, in the Case of
Replication of Experimental Design Points

Source of Mean
Variation Sum of Squares Degrees of Freedom Square F Ratio Pr(F)

Model SSM �M � 2 s2
M �

SSM

vM
s2

M/s2
E pM

b0 SS0 �0 � 1 s2
0 � SS0 s2

0/s2
E p0

b1 SS1 �1 � 1 s2
1 � SS1 s2

1/s2
E p1

Residual SSR �R � n � �M s2
R

lack-of-fit SSL �L � �R � �E s2
L s2

L/s2
E Pr (lack of fit)

pure error SSE �E � m s2
E

Total SS � � n s2

midpoint of each segment of the n-dimensional ‘‘bounding CATEGORICAL MODELING
box’’ around that center point. Alternatively, this can be
viewed as the center point augmented by the aggregate of n Sometimes the measurement of the result is discrete. One ex-

ample is an engineer’s evaluation of a photograph, usuallyfull factorial designs in n � 1 experimental factors while hold-
ing each remaining factor at its center value. The Box– from a scanning electron microscope (SEM). The photograph

might be a top-down image of a metal or polysilicon patternedBhenken design is generally used when the expense or time
of the experiment is influenced by the number of levels, be- line. The engineer decides whether the line is too rough, a

little rough, or smooth. While many of these evaluations arecause the Box–Bhenken only requires three different levels
for each factor, while the central composite design requires being replaced with automatic defect detection and classifica-

tion tools which provide continuous numbers, especially infive. In both of these designs, it should be again emphasized
that replicates at one or more experimental points (typically production, early development still relies heavily on manual

inspection and evaluation. The engineer would like to performthe center point) are highly recommended so that lack of fit
can be assessed, and so a measure of pure or experimental an experiment whereby he or she can determine what optimal

value of the bake temperature will result in the best chanceerror can be established.
The response surface models for each case are found using of smooth lines. In addition, he or she would like to predict

how often the process will produce rough lines. Another exam-a least-squares fit to a specified model structure (typically
quadratic or polynomial) as previously discussed. An analy- ple is the profile or sidewall slope of a line. Except perhaps

Atomic Force Microscopy (AFM), no measurement method ex-sis-of-variance examination is required to check for model
lack of fit, examine factor and model coefficient significance, ists to obtain a line profile quickly and easily. However, a

cross-sectional SEM can be used to roughly estimate the pro-and establish confidence intervals on model coefficients. Care-
ful examination of residuals is crucial to ensure the validity file—that is, to note if the slope in degrees is �88, 85–88, or


88. No definite constant scale exists, but a relative scaleof the modeling assumptions—namely, that the residuals are
IID and normally distributed. does (i.e., �88 is bigger than 85–88, which is bigger than


88). The engineer would like to know if performing a cleanIn the case of multiple model coefficients, one often desires
the most parsimonious or simple model possible. Analysis of (and the length of the clean step) will result in a sharper pro-

file (�88). Categorical methods are statistical methods aimedvariance can indicate those coefficients which appear to be
insignificant. In step-wise regression, model coefficients are at use for these questions (19). While the mathematics are too

complicated to introduce here, many statistical packagesdropped or added one at a time, and the reduction (or im-
provement) in the model is evaluated until some stopping cri- (such as SAS, JMP, and Statgraphics) provide these methods

and can be applied to practical problems. The methods can beteria are met.
shown to be similar in nature to fuzzy logic (20).

SUMMARY

In this article, we have focused on the fundamental issues
in modeling important statistical elements of semiconductor
manufacturing. In many cases, we have only begun to touch
on the issues of statistical distribution modeling, hypothesis
testing, experimental design and analysis of variance, and re-
sponse surface modeling. The intent here has been to assist

Factor 1 Factor 1
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(a) (b)

in the proper interpretation of results that are now readilyFigure 9. Experimental designs often used in response surface mod-
available by way of statistical software packages; further con-eling. (a) The factorial design (augmented with center points) can be
sultation with the statistical modeling literature and statisti-extended into (b) the central composite design by adding axial design
cians is highly recommended for those seeking to get the mostpoints. (c) The Box–Bhenken design features design points at mid-

points of bounding box segments around the center point. value out of experimental resources and data. An excellent
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source for further reading are the case studies of statistical
methods applied to semiconductor manufacturing contained
in Ref. 21.
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