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SEMICONDUCTOR FACTORY CONTROL
AND OPTIMIZATION

The integrated circuit (IC) is the fundamental building block
of modern electronics and is one of the most significant devel-
opments in technology of the twentieth century. The semicon-
ductor industry, created 40 years ago, has fueled the high-
tech industries that have changed the way that the world
works, communicates, and plays today. Developments in
semiconductor manufacturing have come about as a result of
the increasing pace of scientific and technological break-
throughs and the rapidity with which they have been adopted
for commercial production. Companies have learned that the
market demand for faster, smaller consumer products with
increased functionality determines their profitability and fu-
ture growth. In today’s market, several cycles for product re-
leases exist simultaneously in different phases. The competi-
tive advantage of companies is realized by shortening the
time to market of each product release and anticipating the
demands and opportunities of the marketplace. However, the
increasing complexity and the shrinking cycle of product de-
velopment and introduction to market also increase the risk
of failure. Disruptions in this economic chain stemming from
late deliveries or consumer recall can mean the difference be-
tween huge profits or catastrophic losses.

To prevent disruptions and reduce the time to achieve full-
ramp product quality, many different monitoring and control
methods are utilized in the modern semiconductor fab (fac-
tory). This synergistic combination of methods is known as
factory control. The combination must provide coverage for a
wide variety of possible sources of variation and abnormali-
ties (control in breadth), as well as mitigate risk as early as
possible (control in depth).

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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CONTROL IN BREADTH GENERIC MODEL OF THE ELEMENTS OF A CONTROLLER

Factory control in breadth is controlling all the factors in the Figure 2 is a generic control model that illustrates the con-
troller elements and their relationships to the process. Thewafer fab that have an impact on or may cause variation in

the product characteristics. These sources are the ‘‘whats’’ control cycle begins with a plan that provides instructions or
actions for a process based on the input target value, feedfor-that should be controlled in order to reduce product variabil-

ity and to eliminate disruptions of product flow. These poten- ward data, and an expectation of how those actions will have
an impact on the process. An example would the machine set-tial sources of variation for a typical wafer fab have been

identified and classified on the Ishikawa (or fishbone) dia- tings and conditions to achieve a target thickness on a deposi-
tion process. Machine sensors or measurements of the processgram shown in Fig. 1. Note that the diagram is generic and

that it would be tailored to the type of technology of the wafer output are compared with the expectation of the process to
produce information. This feedback information regarding thefab (e.g., bipolar versus MOS or mixed signal versus logic)

Table 1 describes each branch of Fig. 1. state of the process is passed to the correction procedure that
analyzes what type of corrective action should be taken toConsiderably more space would be required to discuss all

the methods used to control all the ‘‘whats’’ in Fig. 1. Conse- adjust or correct the problem. The feedback information may
be either analog (e.g., the deposition rate is 10 A/s greaterquently, just some of the key controllers will be examined in

detail. These controllers are associated with the following than expected) or digital (e.g., an indication of normal versus
abnormal condition of the process). The digital aspect of con-branches: Methods (SPC, Outliers), Systems (Changes), and

Technology (Defects). However, first one must understand the trol is more generally known as fault detection. The correction
procedure is based upon the feedback information. One possi-essential elements of any control system in order to compre-

hend the control systems put in place for any of the branches ble corrective procedure is to change the process by a given
amount (e.g., to change the process time by 2 s) to achieve thein Fig. 1.

Continuous improvement

Designs
Customer

require-
ments

Material Systems Environment
DI

water Resistivity

Particles

Bacteria

Chemicals and gases

Silicon wafers

Equipment supplies
and components

Waste

Power
Defects

Reticles

Design rule 
conformance

Physical
conformance

Production

Traceability

Loading
plan

Nonconformance
material

Policy 
deployment
accelerated 
improvement

Changes

Experimentation

Specifications

Outlier material

Abnormal material

Humidity

Static 
charge

Vibration

House-
keeping

Temperature

Light

Structural
materials

Air flow

Particles

SPC

Model- based
process control

Outlier
control

Quality alert

Knowledge
sharing

Assessments

Audits

WLR

FDC

Skills

Safety

Knowledge

Practices

Defects

Reliability

Critical technology
properties

Major/Minor change definition

Critical/noncritical change
definition

Operation

Precision

Software

Hardware

Capability

Accuracy

Methods People Technology baseline
(specification)

Process/metrology/test
equipment

FACTORY CONTROL IN BREADTH

Yield
Reliability
Quality
Performance
Cost

Figure 1. Ishikawa diagram illustrating the concept of factory control in breadth. All sources of
variation are identified, mapped, and risk assessed to establish the controls within the wafer
manufacturing factory.
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Table 1. Definition of the Primary Sources of Variation Within a Wafer Fab from Figure 1

Branches Definition

Environment The conditions of a wafer fab to which wafers are exposed. Examples include temperature, humidity, light, airborne
particles, air flow, static charge, structural materials, vibration, and housekeeping.

Material Consumable items that are used in manufacturing semiconductors or in operating the wafer fab. Examples are sili-
con wafers, DI water, chemicals, gases, waste, power, reticles, and equipment supplies and components.

People Personnel with responsibility for manufacturing or the operation of the wafer fab. Examples of people variations are
skills, knowledge, and practices.

Equipment All wafer fab machinery and hardware used in manufacturing, measuring, or testing of wafers. This includes test,
process, and metrology equipment. Examples include accuracy, precision, capability, hardware, and software.

Methods Standardized practices used to control or improve processes or factors of variations. Examples include statistical
methods, model-based process control, audits, assessments, knowledge sharing, quality alerts, outlier control, and
wafer-level reliability.

Systems Policies, practices, procedures, and business automation used to effectively operate the wafer fab. Examples include
production, specifications, experimentation, changes, classification and handling of material, traceability, policy de-
ployment, and continuous improvement.

Technology Baseline The electrical, reliability, and yield requirements and the fabrication process that define the product performance
and characteristics. Examples of factors include defects, charging (for MOS), mobile ion contamination, major/
minor changes, critical/noncritical changes, and critical technology properties.

desired results. For faults, the corrective procedure is usually sponse time of the controller. This response time is an impor-
tant measure of the risk of material in the process loop thatfirst to confirm the abnormality and then, if the fault is con-

firmed, to perform maintenance on the offending machinery. may be in jeopardy if the output is very far off from target or
if a fault has occurred. Thus, speeding or improving the qual-Also shown in Fig. 2 are two types of control: feedforward

control and feedback control. Feedforward control uses the in- ity of any of the components of the controller (feedforward
information collection, procedure identification, informationformation from the previous process and enters material to

make adjustments to drive the output of the current process extraction, or measurement) can reduce the amount of mate-
rial at risk. Thus, a controller’s effectiveness is not only ato a desired target. An example of feedforward control is using

the postpatterned feature size measurements to adjust the function of the time to collect data after a fault has occurred,
but also its ability to use that data to detect process shifts oretch process to achieve the targeted feature size. The second

type of control is feedback control, which uses the output in- events and decide what corrective actions to take. This idea
of reducing risk by speeding data collection versus the data’sformation to adjust the procedure for the next processing.

Feedback is also called closed loop control because of the loop innate information content about a fault is the foundation for
the concept of control in depth.created by the feedback information, and the correction action

as shown in Fig. 2. Because feedback control is more widely
practiced in the industry, future references to control systems
will refer to feedback control. CONTROL IN DEPTH

Note that the model is a closed loop series consisting of
action based upon initial information, data, new information, Testing the electrical function (known as multiprobe) of the

integrated circuit provides the highest confidence that all theand corrective action. The time from when the fault or change
occurs until when corrective action is implemented is the re- processes used in its manufacture are in control. Multiprobe

Figure 2. A generic control model show-
ing the major elements of a closed loop
control system. The response time is
equal to the time from a fault or change
occurring and the control system imple-
menting a correction. The response time
can be measured in the number of wafers
at risk. Improving any of the components
[i.e., speed/frequency of data collection,
ability to detect a change (quality of data
and comparator), or accuracy of the plan-
ning or correction procedure] will de-
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results are normally represented by the yield, defined as the
number of ‘‘good’’ die divided by the number of ‘‘possible’’ die.
Yield, which represents the overall integration of control for
the wafer fab, has a direct impact on the financial cost of
manufacturing. Therefore, it is the major index for driving
improvement. Unfortunately, it can be very difficult to deter-
mine exactly which processes are the cause for reduced yield.
As stated previously, an effective control system requires the
ability to decide what actions to take. Therefore, to isolate
information on the process results and interactions, electrical
parametric testing of discrete devices (e.g., diodes, transis-
tors) is essential. The parametric test structures can be em-
bedded in the scribe lines between dies or special structures
within the die itself. In addition, some individual dies on a
product wafer may be entirely test structures. Besides test
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structures on product wafers, special short loop test wafers
Figure 3. Control ‘‘iceberg’’ showing the levels of control. The pinna-may also be used. These test structures allow the measure-
cle or ‘‘tip of the iceberg’’ is the electrical parametric indices. Becausement of specific electrical parameters, such as gate oxide in-
they have well-defined specification limits, they are good performance

tegrity, isolation, sheet resistance, and breakdown. Paramet- indices to compare wafer fabs running the same technology. Process
ric testing produces a few parameters that can be compared controls and equipment controls indicated below the surface are in-
with well-defined limits (or expectations) derived by simula- ternal fab controls tailored to each fab’s equipment set and process
tion models and experimentation. In addition, these test capabilities.
structures provide some isolation of the fault to certain pro-
cesses and films. Exactly what and how many test structures

Control systems in a wafer fab can be ranked by their asso-are used is a function of the maturity of the product. (See
ciated risk and quality. Figure 4 illustrates this concept ofSEMICONDUCTOR MANUFACTURING TEST STRUCTURES for more de-
risk versus quality for several methods of control. The risk ontails.)
the left axis is measured in the approximate number of wafersYield and parametric data provide accurate data relating
in jeopardy from when the fault/change occurs to when theto the control and capability of a wafer fab and may be useful
control method implements a corrective action (i.e., the re-in comparing fabs running the same technology. However, the
sponse time of the control system). The horizontal axis in Fig.effectiveness of a control system depends on its data collection
4 shows the controller quality by using the concept of errortime and its ability to detect process shifts or events. Al-
rates (�, �). Table 2 demonstrates the concept of Type I andthough the use of yield and parametric data provides a control
II errors and the associated error rates (�, �). For example, if

system with very good ability to detect faults or changes, the in reality a result is good, in � of the cases, the statistical test
data collection time is very long because of the amount of time will indicate a bad result. Conversely, if in reality a result is
it takes to manufacture a device (3 to 12 weeks depending on bad, in � of the cases, the test will indicate a good result. The
complexity and maturity level). In addition, even with para- ‘‘truth’’ for Fig. 4 to determine � and � is whether the device
metric data, the ability to decide what corrective actions to performs correctly in the customer’s system. For Fig. 4, Test
take can be difficult. Thus, other levels of controls must be power (1 � �) is defined as the probability of detecting a pro-
established at the process level and equipment level for early cess shift or a failure that results in defective material. Also
detection of problems and easier linkage to specific machines represented along the bottom of Fig. 4 is the false positive
and processes. The idea of yield and parametric data being rate (�) which is the probability of the control method saying
used for comparing fabs but the bulk of the factory control a shift has occurred when in reality the final product is not
system being at the process and equipment level is illustrated impacted. For example, a controller using an in situ particle
by the iceberg concept shown in Fig. 3. The tip represents monitor may create an alarm based upon detecting an in-
the visible electrical parametric data, and the majority of the creased number of particles, but none of these particles actu-
control indices internal to the fab are below the surface. Al- ally deposit on the wafer in such a way as to cause the device
though the tip should be common for any factory running a to fail. Note that the values for � and � in Fig. 4 are only
particular product, what is below the surface is dependent an approximation for illustrating the relationships of various
upon the equipment, people, environment, systems, and ma- control methods and the concept of control in depth. The true
terials used by a particular fab. To decide which process and values of � and � may be quite different.
equipment controllers to use, a systematic analysis must be The right axis of Fig. 4 illustrates the classification of the
performed to link each parametric variable, such as speed, to levels of control: preventive, concurrent, and failure. Preven-
material properties, such as the physical dimensions of the tive control is the use of systems or actions taken to reduce
polysilicon gate. In turn, how the fab’s equipment, processes, variability or prevent abnormal conditions from occurring.
and metrology affect each material property is estimated. Concurrent control is the use of systems that detect abnormal
Based upon a careful analysis of possible risks associated conditions or problems and that react to correct the problem
with each piece of equipment and the capability of the me- before there is a high risk of material in jeopardy. Failure
trology, the overall impact to the parametric results can be control refers to those systems that detect abnormal condi-
assessed. Using this assessment, necessary process and tions or problems past the point of making corrections. Within

failure control, there may be containment control, which pre-equipment control methods can be determined.
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Figure 4. Factory control in depth is the
methodology of defining a control system
based on the risk of disruption to Test
Power (1 � �) and False Positive Rate (�).
Tradeoffs between risk and confidence
must be balanced with the economical
costs of controls. Note that the values of �
and � are for illustration purposes only;
the true values could be different. The
bold boxes will be discussed in more detail
in later sections. (WPT � Wafer Position
Tracking; WLRC � Wafer Level Reliabil-
ity Control; Outlier � Multiprobe and
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vents the abnormal material or problems from effecting the highlighted. Then equipment signal monitoring will be pre-
sented leading into a discussion on sensors. The sensor dis-customer. Beyond the containment of the fab, other control

methods are directed to discovering problems and providing cussion ties into in situ particle monitors that lead to an over-
view of in-line defect control. In-line defect control alsocorrective actions, for example, methods using customer-iden-

tified failures have the highest confidence, but unacceptable highlights the relationship with higher-level methods, such
as bitmapping, which is then reviewed. The order of discus-risk.

In order to minimize the risk of customer disruptions and sion of in situ particle monitors, in-line defect data, and bit-
mapping is done to stress how methods at higher and lowerto maximize yield, careful analysis is required to define an

integrated control system that uses controls at each level to levels are aimed at the same source of variation. After bit-
mapping, the rest of the higher-order methods will be dis-minimize risk and maximize information. Thus, different

methods operating at different levels may be used for control- cussed, beginning with wafer position tracking, followed by
data mining, outliers, and WLR control. Parametric monitorsling the same source of variation. For example, in situ particle

monitors, in-line defect control, and bit map matching are all have already been discussed. The article will conclude with a
very detailed discussion of multivariate SPC, predominatelyat least partially focused on detecting and eliminating parti-

cles. Not only do the different levels provide risk reduction, focused on its use in equipment signal monitoring. In general,
hardware and software will not be discussed in detail becausedata from the higher levels are also used to fine-tune the

methods operating at lower levels in order to increase the of the speed at which hardware and software are evolving.
However, the Reading List provides contact information forpower and decrease the false positives of the lower levels.

Further details on the selected control methods identified major suppliers and Web pages dedicated to semiconductor
manufacturing, especially defects and control. Because of thein Fig. 4 will be explained in the following sections. Change

management will be discussed first as an example of a pre- breadth of this article, the reader will probably encounter
many new terms and acronyms. Thus, a glossary is providedventive method. In-line process statistical process control

(SPC) will be discussed next because other control methods at the end of the article to assist the reader.
[wafer level reliability (WLR) and in-line defect control] use
mathematics. Model-based process control will be discussed

CHANGE MANAGEMENTafter SPC, and its relationship to in-line process SPC will be

It is often a misconception that changes within wafer manu-
facturing are undesirable because deliberate changes must
occur for continuous improvement, increased yield, and in-
creased profit margins. Change control is a preventive control
method to manage risk systematically and to obtain these re-
sults. It is essential that a predetermined methodology exists
for making changes to each of the branches of factory con-
trol; material, systems, environment, people, equipment, tech-
nology baseline, and methods. An effective change control sys-

Table 2. Explanation of Type I and Type II Error and
Associated Distribution as Function of �, � Error Rates

Reality

Test Result Good Bad

Good (1 � �) II � �
Bad I � � (1 � �)
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tem will contain all of the elements of the generic control or failure event) is dependent on the noise, or variation, of the
data, the sampling frequency, and the sensitivity of the filtermodel in Fig. 2. Usually, a control procedure is defined for

reoccurring changes such as processes, equipment (these pro- (i.e., the type of SPC chart and the alarm settings). If there
is large variation in the process or the measurement system,cedures are sometimes called engineering or equipment

change notices, ECNs), or new employees (orientation or ter- then any signal indicating a drift or special cause event will
be masked by the noise and not detected. Likewise, if the in-mination procedures), specific to the type of change that is

being made. Program management practices, which also fol- correct SPC chart is applied and insufficient alarm settings
are used, then the out-of-control signal will not be detected.low the generic control model, are used for a one-time event

change such as upgrading equipment to larger wafer sizes. However, if filter is too sensitive (i.e., too many alarm levels),
then there will be frequent, false, out-of-control events.The change result data are compared with the change expec-

tation. This information is used to correct the change or ac-
tions to obtain the desired result (target). The corrective re- Gauge Studies. Understanding the measurement systems

contribution to the total variation is of paramount importancesult may also change the procedure or program plan itself. An
additional and important aspect of change control is the re- to ensure that the control system does not respond to the

noise of the measurement system. Sources of variation couldcord of the change for traceability and dissemination of infor-
mation. Knowing what, why, and when the change occurred consist of bias, repeatability, reproducibility, and linearity.

Bias, or accuracy, is the difference between the observed aver-is important if some of the side effects of the change are not
discovered until later or if the reason for the change is no age of measurements and the reference value. Linearity is the

difference in bias values over the range of the measurementlonger applicable. Communicating this information prior to
initiating the change is important in order to get buy-in and system. Repeatability is the variation of the measurement

system under identical conditions. Reproducibility is the vari-other inputs relating to the effect of the change.
ation of the measurement system induced by different condi-
tions (e.g., operator, location). Gauge repeatability and repro-

STATISTICAL PROCESS CONTROL ducibility (GR&R) (4,5) studies will determine if the
measurement system is acceptable for control purposes.

Statistical process control is the most widely used control Whether a measurement system is satisfactory depends
method in a wafer fab. It has generally been as a quality pro- largely on the percentage of tolerance that is consumed by the
gram focused on eliminating product variations. However, measurement system variation. This is expressed as %GR&
SPC is a highly effective control tool that can be used to in- R or as a measurement capability (Cp) index. The generally
crease yield, reduce process variations, and minimize the im- acceptable ranges of measurement Cp or %GR&R are listed
pact of equipment failures. With respect to the control model in Table 3. The equations for Cp and %GR&R follow:
presented in Fig. 4, SPC encompasses all the elements of the
control model: the output data, the comparison with expecta- σR&R =

p
(Sr)

2 + (SR)2 (1)
tion, and the correction procedure. Each one of these subcom-
ponents will be addressed in detail later. %GR&R = 6 × σR&R

USL − LSL
× 100% (2)

Process, Data, and Expectation
where

Understanding the relation of the process factors (or inputs)
and interaction to responses (outputs) of the process is of par- Sr is the standard deviation for repeatability
amount importance prior to applying a statistical control sys- SR is the standard deviation for repeatability
tem. Some of the tools that can be used to identify and study USL, LSL are the upper and lower specification limits, re-
this relationship are design of experiments (DOE), failure spectively
mode and effects analysis (FMEA) (1), quality function de-
ployment (QFD) (2), computer simulations, fault-tree analysis
(3), cause-and-effect analysis, and analysis of the variance Measurement Cp = 1

%GR&R
× 100 (3)

(ANOVA). DOE is the key tool for determining the critical
factors affecting the output target values, choosing optimum Sampling Plans, Univariate SPC Charts, and Alarm Rules. The
settings for the factors and building empirical models of the bulk of data collected daily in most wafer fab operations may
process that can be used for adjusting the process back into not be time or cost efficient. The proper choice of a representa-
control. In a series of carefully designed experimental runs, tive sample from the population allows predictions about the
the levels of many factors can be simultaneously varied, and process and its state. The objective of defining a sampling
the effects can be observed on the resulting responses. DOE plan is to provide accurate process information while decreas-
can make its most dramatic contribution in the design phase
of process, when it is least expensive to make changes. (See
STATISTICAL METHODS FOR SEMICONDUCTOR MANUFACTURING for
more information on design of experiments.)

Comparison

The function of the comparitor in SPC control is to determine
whether the process state is in control or not in control. The
detection of a change in the control state (i.e., a process drift

Table 3. The Criteria for Acceptance of Gauge Repeatability
and Reproducibility

Measurement Cp %GR&R Rating

Cp � 3 %GR&R 
 33% Unacceptable
3 � Cp � 10 10% � %GR&R � 33% Marginal
Cp � 10 %GR&R � 10% Acceptable
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Table 4. Most Commonly Used Control Chart Types for Continuous Data in a Wafer Fab

Control Chart Type Subgroup Size Data Plotted Typical Use

Xbar and Range 2 � n � 5 Averages and ranges of subgroups Process Control
Xbar and Sigma n 
 2 Averages and standard deviation of subgroups Process Control
X-Moving Range n � 1 Individuals data and moving ranges of individuals data Process Control
X-Sigma n � 1 Individual data Process Control
Xbar-Moving Range n 
 1 Averages of subgroups Process Control
Xbar-Moving Range and Range n 
 1 Averages and moving ranges of averages Process Control

ing the production cost. Analysis of variance (ANOVA) is used The final component of the comparator subsystem is the
alarm levels or trigger conditions for indicating an out of con-to analyze the different sources of variation in a process and

to determine the proper subgroups for control charting. A trol condition. The Western Electric (WECO) (9) rules are the
most generally used rules. Referring to Fig. 5, they are: (1)sampling plan should be selected so that if assignable causes

are present, the chance for differences between subgroups will one point outside of the control limits; (2) two out of three
successive points on the same side of the centerline in Zone Abe maximized, while the chance for differences resulting from

these assignable causes within a subgroup will be minimized. or beyond; (3) four out of five successive points on the same
side of the centerline in Zone B or beyond; (4) eight successiveFor example, most wafer fab manufacturing processes are run

in a batch rather than a continuous flow. This results in hier- points on one side of the centerline; and (5) seven consecutive
points increasing or decreasing. Note that not all situationsarchical, or nested, design structure, where each run, lot, wa-

fer, and measurement is a unique term adding to the total warrant all the rules applied. Underusage of the appropriate
rules will lower the sensitivity to detect changes and faults,variability. If the run-to-run variability is the greatest, then

the sampling plan should be based on run-to-run samples whereas overusage will cause the controller to overreact.
rather than lot-to-lot samples.

The effectiveness of SPC (6–9) depends in a large part on Corrective Procedure
the selection of the control chart. Process data can be classi-

The last component of the SPC controller is the corrective pro-
fied as four types: a defect, which is an individual failure to a

cedure. If an out-of-control event has been determined, the
specification; a defective, which is a unit of product that con-

process should be stopped and a corrective procedure initiated
tains one or more defects; variable data, which can be mea-

promptly. The correction procedure should contain diagnostic
sured on a continuous scale; and attribute data, which can be

procedures with associated recommended actions. Typically,
classified as either conforming or not conforming. The control

these contain a hierarchy of different levels of authorized ac-
chart type selection is based on the type of data, sampling

tions, which specifies which conditions allow different levels
method, and the type of variation observed. Tables 4 and 5

of authority to make corrective actions. For example, an oper-
list the most commonly used univariate control chart types

ator may be required to verify the metrology and equipment
for variable and discrete data. Univariate denotes a single

settings, whereas the authorization to stop production may
variable. Most SPC charts used today are univariate. Multi-

be given only by the supervisor. If the process has been well
variate SPC charts will be discussed at the end of the article.

characterized, there may be one or more settings that can be
Note that an underlying assumption for the charts which use

adjusted to bring the output back to its target value.
groups of data is that the within-subgroup variation is the
same as the subgroup-to-subgroup variation in charts based

Qual Plans
on subgroups (such as the XBar, R). Because the process has
considerable systematic nonuniformity across the wafer and A formal procedure for implementing SPC and qualifying a

process is typically termed a qual plan (7,10). Part of the qualthe metrology is wafer-based, such an assumption is rarely
true in semiconductor processing, where ‘‘natural’’ sub- plan would include performing a gauge study and determin-

ing the sampling plan, both of which were discussed earlier.grouping would be at sites on a wafer. The random lot-to-lot
variation is not the same as the random variation across a The importance of executing a formal qual plan has even led

to the marketing of software for this specific purpose (11). Awafer. In addition, the variation across the wafer is mainly
the result of systematic nonuniformities of the process rather qual plan is a control method that is considered a preventive

control because it involves techniques to prevent the installa-than random behavior. Thus, charts for individuals usually
are more appropriate for the semiconductor processing in- tion of a process that could easily produce scrap. Thus, good

qual plans that are executed well will result in effectivedustry.

Table 5. Most Commonly Used Control Chart Types for Discrete Data Such as Particle Count Data and Yield

Control Chart Type Subgroup Size Data Plotted Typical Use

C Chart Constant Number of defects Product Inspection
U Chart Constant or variable Average number of defects per item Product Inspection
NP Chart Constant Number of defective items Product Inspection
P Chart Constant or variable Percentage of defective items Product Inspection
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cause the results are needed to determine how to run future
lots, not just decide whether to shut down the tool.

EQUIPMENT SIGNAL MONITORING, REAL-TIME
FAULT DETECTION AND CLASSIFICATION

Most modern processing equipment has a semiconductor
equipment communication standard (SECS) port that allows
collection of up to approximately 50 different variables (sig-
nals, traces) once per second on many machines. In addition,
some signals may be gathered using hard-wiring (i.e., splicing
into a signal line to obtain the data). Monitoring of these sig-
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nals is most common in etch, furnaces, CVD, PVD, and im-
plant. In other words, monitoring using data from the SECSFigure 5. WECO rules are a method for triggering out-of-control
port is common in all areas except lithography, but that situa-events. Each zone represents one standard deviation of normal varia-

tion of the process. The percentage indicates how much of the data tion is expected to change in the near future. The equipment
will be contained in that zone, based on the probabilities for a nor- variables that provide the most information are actuators
mal distribution. used in a real-time feedback control loop on the processing

equipment (e.g., a throttle valve used to control pressure) and
noncontrol process measurements (e.g., dc bias or an uncon-
trolled chuck temperature). Sensors that have been added on

SPC and fewer process problems. As model-based process con- to the tool also provide real-time traces (for a list of possible
trol (MBPC) becomes more widespread, qual plans are being sensors, see the section on Sensors).
modified to include steps required for successful MBPC imple- Monitoring equipment signals to detect a change in the
mentation. process or tool has come to be known as fault detection and

classification (FDC). However, fault detection can occur with
any data, and thus real-time fault detection or real-time SPCRUN-TO-RUN MODEL-BASED PROCESS CONTROL
is a more appropriate name. Also, currently, classification of
the fault to a source is rare, but the name FDC is still com-Historically, the process recipe, the set of setpoints for the
monly used. Note that the term real-time denotes that theequipment, does not vary from batch to batch. Correspond-
signals are from traces, not that the analysis and interdictioningly, in traditional SPC, the process is assumed not to drift
occur in realtime (i.e., analysis and shutdown may occur post-or shift in typical behavior. However, many processes do expe-
processing rather than during processing of the wafer). Cur-rience drifts or shifts, and such behavior is not considered a
rently, three methods for fault detection are common:‘‘fault’’ by the process or equipment engineers. Even though

the drift or shift is not a fault, it does cause undesired varia-
• Guardbandingtion in the product. Therefore, a technique is needed to com-
• Multiple univariate SPC charts of metrics created frompensate for this undesired variation by varying the recipe on

the tracean as-needed basis to maintain a constant output. This tech-
• Multivariate SPC of metrics created from the tracenique is known as model-based process control because mod-

els are used to describe the expected process behavior (12). As
the process shifts or drifts, the models are tuned to predict In guardbanding, a reference trace is used with a guardband,

a zone of %-X% around the reference trace. The process tracethe new output. The tuned model is used to decide how to
change the recipe to counteract the shift or drift. MBPC is is compared with the reference trace and the number of out-

of-zone samples are counted. If the total number of out of zonealso known as run-to-run (RtR) control because the recipe is
changed on a run-to-run basis, if need be. This contrasts with samples is greater than a threshold value, then a fault is de-

clared. Because the process time may vary because of auto-the real-time controllers on the equipment that change actua-
tors during processing to maintain the process on setpoint. matic endpointing and varying incoming wafer states, dy-

namic time warping may also be used to stretch or shrink theReal-time controllers may also be model based, but are not
discussed further because they are in the jurisdiction of the process trace to match it up with the reference trace (see the

subsection on Trace Analysis). Regardless of the fault detec-equipment supplier.
In comparison with traditional in-line SPC, the data tion method, once a fault is declared, interdiction may occur.

Interdiction normally is to shut down the equipment and per-sources for RtR MBPC are the same. However, the informa-
tion filters and procedure for determining corrective action form a diagnostic procedure, similar to that discussed in the

section on SPC.are different. SPC charts may still be used to determine when
a shift or drift has occurred and the model should be tuned For the other two methods, the trace is decomposed into

metrics, such as the average throttle valve position during(13). In addition, SPC concepts are employed to decide
whether the recipe should be changed, or the process behavior step 2 of the process and the standard deviation during step

1 of the process. Thus, a single trace for one variable can behas changed drastically and manual repair should be per-
formed. MBPC results in fewer wafers at risk than traditional decomposed into several metrics. Because the signal may not

decompose easily using step number, dynamic time warpingin-line SPC because the fab typically maintains tighter man-
agement of measurement and control actions for MBPC be- may be used to identify the region boundaries. The generated
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metrics are then used similar to data obtained with in-line way into manufacturing is the RF sensor (25). The RF sensor
measures the RF signals either before or after the matchingmeasurement tools (i.e., used in SPC charts). However, be-

cause of the volume of metrics generated, it requires multiple network on plasma systems. The actual measurement of de-
livered power is demonstrating the potential for tighter con-univariate charts or true multivariate SPC schemes. Because

of the level of detail that will be presented, a discussion of trol. In addition, fault and endpoint information is being dis-
covered in the harmonic signals. Some of the sensors, whilemultivariate SPC and the challenges of using multiple uni-

variate charts will be done at the end of the article. unsuited for use in a manufacturing environment, provide
useful information for process development in the R&D envi-
ronment. An example of such a sensor is the Langmuir probe,
which provides valuable information about the electron den-SENSORS
sity (26). Another type of sensor is aimed at monitoring parti-
cles in the equipment, known as in situ particle monitors.Equipment signal monitoring is usually performed with sen-

sors supplied with the equipment. These sensors can be di-
vided into two classes: machine sensors and process sensors.

IN SITU PARTICLE MONITORS
Machine sensors that measure some aspect of a machine actu-
ator setting, such as throttle valve position, capacitor posi-

In situ particle monitors (ISPMs) represent a focus on tool-
tions, and supplied power. The actuator is usually used in a

based defect detection rather than on wafer-based defect de-
closed loop controller, such as temperature or pressure con-

tection. In reference to Fig. 4, ISPMs reduce the number of
trol. Process sensors, such as dc bias, pressure, and tempera-

wafers at risk compared with in-line defect control methods.
ture, measure a result of the equipment and the wafer states.

However, the false positive rate is higher with ISPMs, and
They may, such as for pressure, or may not, such as for dc

the power may be lower. ISPMs are sensors placed on pro-
bias, be controlled by a feedback control loop.

cessing tool hardware, such as an exhaust line or a recircula-
In the past, all sensors were those provided by the equip-

tion line in a wet process, to truly detect defects as they occur
ment supplier. They generally were very limited in number.

during wafer processing. They consist of a laser that is per-
A new source of sensors is appearing as companies are form-

pendicular to the flow of air/process gas. As particles pass
ing which sell sensors directly to the end user, as well as

through the laser beam, they reflect light into a sensor and
equipment suppliers. These sensors many times provide more

are counted. ISPMs are small and much less expensive than
visibility into the process and wafer states. Thus, they provide

defect detection tools; consequently, they are being used more
better measurements for use in feedback control and fault de-

and more in modern fabs in an effort to move even closer to
tection. A common process sensor that is beginning to mature

monitoring of the sources of defects. A recent article summa-
is optical emission spectroscopy (OES) (14). Even though sin-

rizes several successful applications of ISPM (27).
gle wavelength optical emission spectroscopy has been used
for years to endpoint plasma-based processes, only recently
has multiwavelength shown promise as being appropriate for IN-LINE DEFECT MONITORING AND

CONTAMINATION CONTROLthe manufacturing environment. Newer processes, such as
chemical mechanical polishing (CMP), are also driving devel-

Controlling defects during every processing step of semicon-opment of sensors for measuring both thickness in situ and
in-line (i.e., on the tool) but not in the processing chamber ductor devices is vital to successfully manufacturing modern

integrated circuits. The requirements for tight defect control(15). Measurement of uniformity is increasing in importance
because of the switch to 300 mm wafers. Thus, sensors aimed become increasingly severe with each new generation of semi-

conductors. Not only must the total number of defects on wa-at uniformity measurements are becoming available, such as
the NOVA CMP sensor (15) and the Liebold Full Wafer Inter- fers decrease with each generation, but the defect concentra-

tion per mask level must be reduced at an even faster rateferometer for etch, which uses the light of the plasma to gen-
erate an interferometric signal (16). Temperature measure- because of higher circuit complexity and increased number of

mask levels (Table 6). These defect reduction requirementsment of the wafer itself is being driven by rapid thermal
processing (17,18). One key for success is that the equipment are for DRAMs, commonly used as the technology driver, but

must also be achieved in other device families such as ASICssupplier provides necessary kits so that the sensors can be
mounted. Such is happening for both the NOVA CMP sensor and microprocessors.

In this article, the words particle, defect, and contamina-and, for some etch suppliers, the full wafer interferometer.
Some sensors are modifications of existing sensors but with tion are used interchangeably. Particulate that falls on a wa-

fer during processing, chemical corrosion, moisture, and pat-modifications to the hardware or increased algorithmic capa-
bilities (19). The use of advanced mathematics, such as Kal- tern anomalies such as missing pattern or extra pattern are

but a few examples. Even though they each have their ownman filters, is also bringing new opportunities to older sensor
technology, such as lithography development interferometers definition, all are unwanted in semiconductor processing and

are treated as one problem here. Particulate contamination(20). Monitoring of the delivery system for contaminants is
also now becoming popular because of the availability of the in semiconductor processing arises from four general sources:

clean rooms, people, equipment, and processes. Although thesensors and the increased importance of contamination con-
trol (21,22). Development continues in combining novel math- sources have remained the same over the past decade, the

percentage of particles from each has changed quite dramati-ematics with novel sensor technology to allow for key mea-
surements in lithography (23,24). Besides CMP sensors, OES, cally. For example, in the mid-1980s, clean room/people and

equipment/processes each contributed about an equal amounttemperature sensors, and mass spectrometry, including resid-
ual gas analyzers (RGAs), the other sensor that is making its of particulate. Ten years later, however, the clean rooms have
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Table 6. Device Manufacturing Trends: Killing Defect Size Versus Minimum Feature (from 1997 National
Technology Roadmap for Semiconductors)

Year of First Product Shipment 1997 1999 2001 2003 2006 2009 2012

Technology generation (nm) 250 180 150 130 100 70 50
Critical defect size (nm) 125 90 75 65 50 35 25
Chip area (mm2) 300 340 385 430 520 620 750
Mask levels 22 23 23 24 25 27 28
Faults per mask level 88 74 66 56 45 35 28

become much cleaner, as good as Class 1. (Clean room classi- extended periods of time with few false positives (�), repre-
fications relate to the number of particles per cubic meter of sented by the nuisance counts, and high power (1 � �), repre-
air at a specified particle size and are typically cleaner by sented by a high defect capture rate.
orders of magnitude than hospital surgical rooms.) Better Classical wafer-based defect detection tools fall into two
clean room garments plus reduced people interaction by use broad genres: optical image comparison/analysis and laser-
of wafer-handling robotics have reduced the contribution of based light scattering. Optical image tools use a comparison
clean rooms and people to less than 10%. Equipment and pro- algorithm and image subtraction across identical structures,
cesses now have a greater contribution of particles, with pro- either in the same die (memory cells) or across a row of dies
cesses themselves projected to be the greatest contributor by (random logic circuitry) to identify portions of the image that
the year 2001. One method of improving die yield is obviously do not match the identical structures surrounding it. The
to reduce particle levels in equipment. The most practiced tools typically use visible light of either a narrow or broad
method is to process in vacuum. The increase in vacuum pro- band of wavelengths. The optics path closely resembles that
cessing is trending higher, and providing clean processes in of a high power microscope, except that the image is fed into
vacuum will continue to challenge equipment suppliers for a 1-D detector, such as a line of charge-coupled device (CCD)
many years to come. Another source of contamination is mo- detector. Images are taken by scanning the wafer, line by line,
lecular contaminants such as organics, metals, ions, mole- across the fixed optics path and feeding in image data as
cules, and other species that can adsorb to a wafer surface. grayscales to a powerful image processor. Image clean-up/fil-
Metal-ion contamination is also known as mobile ion contami- tering, image subtraction, and application of the set defect
nation and is another major issue in wafer processing in that thresholds are all done on the image processor, the power of
it can diffuse or migrate through silicon and destroy electrical which is a limiting factor for the speed of the tool. Sensitivity
functionality of an integrated circuit. This type of contami- depends on the magnification optics. Higher magnification
nant requires an entirely different set of tools for detection gives greater resolution of smaller defects, but it also in-
and analysis, and is treated in another chapter (see creases the scan time for a wafer. Such tools are probably the
CLEANING/SURFACE PREPARATION). best in terms of absolute defect capture rate, but they often

Defects have one very important aspect: killing or nonkill- have higher nuisance rates and are slower than laser-based
ing. A killing defect is any kind of defect that destroys the tools. This type of tool can typically scan an 8 in. diameter
electrical functionality of a device and renders it useless. A wafer in 5 to 20 min, depending on the sensitivity required
nonkilling defect does not affect the electrical functionality of for that device type.
a device and is sometimes viewed as a less serious problem. Laser-based tools work on the principle of light scattering
A nonkilling defect could be in the scribe line between devices off defects in a way that distinguishes them from the normal
or in an open area on the device where there is no active pattern of the wafer. Tools for production monitoring invari-
circuitry, or it could be a particle that is removed from the ably have the laser scanning across the wafer at a small
wafer in a clean-up step. Although some fabs are only inter- oblique angle (2� to 3�). Defects rising above the standard pat-
ested in killing defects, any defect is a potential killer, and all tern level of the circuit will scatter light at angles other than
attempts should be made to eliminate the defect itself as well the angle of the main reflected beam. Dark field detectors at
as the source. Nuisance defects are ‘‘defects’’ detected by the key locations will pick up this light and apply the pro-
defect detection tool but that do not actually exist and are grammed threshold levels to identify the defects. This type of
artifacts of the defect detection technology. Nuisance counts tool can typically scan an 8 in. diameter wafer in 2 to 5 min.
arise from such process conditions as color variation, metal However, in general, this type of tool is less sensitive than
grain size, or pattern nonuniformity and are not considered the optical imaging tool.
true defects. Laser scattering-based tools have actually been in use for

many years in the unpatterned wafer market (and later de-
Tools for Defect Detection, Classification, and Analysis veloped into the patterned wafer inspection market). In gen-

eral, unpatterned wafer inspection tools are much more sensi-It is crucial to have the correct tool set to meet the fab-specific
tive simply because there is no need to filter out patternrequirements for defect detection, both on production and un-
effects (anything that is not flat silicon or films is a defect);patterned wafers. Equally critical are defect review and anal-
defects under 0.1 �m can be detected on bare silicon. Unpat-ysis tools, as well as a methodology that uses all these tools
terned wafer inspection tools come in two varieties: laser within harmony to deliver the most reliable and complete analysis
normal incidence (for bare silicon and smooth films) and laserand data set possible. Furthermore, the production wafer de-

fect detection tools need to have the capability to operate for with oblique incidence (for rough films and metals). The nor-
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mal incidence tools give higher sensitivity to smaller defects, Manual or automatic classification of the defects (based on
training from previous defect data) will give the next levelincluding stacking faults or small pits in the silicon. The

oblique incidence tools have a grazing angle of 2� to 3� in or- of information needed to identify excursions of a particularly
crucial defect (such as blocked etch or peeling films) or to giveder to minimize effects of grain size and film roughness (such

as in tungsten chemical vapor deposition and rugged poly). clues about the root cause of a new defect type. An experi-
enced and trained technician can perform optical review verySimply detecting defects is only the first of many steps in

contamination-free manufacturing (CFM) practices. Review of quickly. However, because human judgment is inconsistent
from person to person and day to day, there has been a strongthe defects to identify their visual properties is the next logi-

cal step. Review information will quickly identify the true de- movement in the past few years to move to automatic defect
classification (ADC). Automatic defect classification algo-fects from any nuisance defects that may have been detected

from an inspection recipe that was too sensitive. Classical re- rithms are now available on defect detection, optical review,
and SEM tools. ADC is mostly software that uses the visualview tools have been optical microscopes with a computer-con-

trolled stage. Defect coordinates from either the defect detec- attributes of a defect to determine a classification. Some of
these attributes are color, shape, elongation, contrast, andtion tool or some central defect database are downloaded to

the review station and translated to the coordinate system size. ADC uses an image obtained from defects during either
inspection or review, applies the algorithm, and determinesused by the review tool, and the appropriate wafer is loaded.

The user will then align the wafer to the die corners, pick a what the defect is, based on a training set of similar defects.
ADC takes from 2 to 15 s to arrive at a classification, de-sample (or all) of the defects to review, and proceed to classify

the defects manually according to some preset codes devel- pending on the algorithm. ADC is performed on production
wafers at various inspection steps, and allows the process en-oped by the fab. New advances in optical review stations in-

clude confocal optics for suppression of out-of-focus features gineer to arrive at the root cause of a processing problem at
the time it occurs.and integration of laser imaging.

With increasingly small device geometries, we must be All these tools and methods are suited especially well for
defect detection, review, and analysis on production wafersconcerned about increasingly small defects. Optical review,

even with new advancements, is limited by the wavelengths sampled in-line. However, all these methods can also be used
for unpatterned pilot wafers to obtain defect information forof optical light (4000 Å to 7000 Å or 0.4 �m to 0.7 �m). Even

now, a large portion of defect review, especially for new or an individual tool. Unpatterned defect detection tools have
been in use much longer as a result of the relatively simpleunknown defects, is done on a scanning electron microscope

(SEM), where resolution is 100 Å or better. See Fig. 6 for a challenges of detecting defects on a smooth surface, compared
with one covered with complex circuitry. Recent optical re-comparison of optical versus SEM review tool capability. The

defect review SEM is an especially powerful tool because of view and SEM analysis tools all have the capability of work-
ing with unpatterned wafers as well as production wafers.its ability to do much more than just provide a high-resolution

image of the defect. Integrated X-ray analysis, usually by en- However, for unpatterned wafers, the fine alignment of the
wafer to the coordinate system must be done with the defectsergy dispersive spectroscopy (EDS), has been a mainstay of

SEM tools for many years. With such integrated capability, themselves, instead of die corners or alignment marks. For
this to happen, there must be at least a few defects largecomposition of particulate contamination can be quickly and

easily identified, which is a key piece of information to enough to be found at low magnification before fine alignment
is done. The trend in current manufacturing is to eliminatetracking down the root cause or source tool. Typically such

defect review SEMs also include tilt capability. Newer models unpatterned wafers for routine monitoring. Unpatterned wa-
fers add extra cost, take extra time, and tie up tools neededalso include a focused ion beam (FIB) for in-line cross sec-

tioning of defects. for production wafers. Semiconductor makers are finding

Figure 6. Contrast in optical versus SEM review images and ability. Defect is a via etch defect
on top of intermetal dielectric oxide. EDS on SEM tool showed Si/C. (a) Optical; (b) SEM.
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ways to perform process monitoring on production wafers as outline of all the various inspections performed. The key ben-
they go through each step of processing, to detect any prob- efit of in-line defect monitoring is reduced cycle time of fixing
lems in-line and in real time. However, unpatterned wafers problems with process and equipment compared with using
will continue to be used for wafer-handling tests, acceptance probe data alone (see Fig. 4). A severe issue near the front
and qualification of new tools, and qualification of processes end of the line (like isolation or gate) might not be caught at
in tools after service or routine maintenance (i.e., unpattern test for more than 30 days for an advanced process flow (4	
wafers will continue to be used for preventative control). levels of metal). An in-line inspection plan in the right place

might take three days for the problem to be identified and
Methodology another day or so for the offending loop or equipment to be

identified so that hopefully a fix can be implemented quicklyMultiprobe yield (also known as sort yield, nominal yield, or
afterward. For emerging or developing technologies or con-die yield) is arguably the best metric to distinguish between a
trolled experiments, in-line detection gives almost instantsemiconductor fab that is struggling to perform and maintain
feedback on any visual integration problems. For baseline de-financial progress and one that is smoothly operating and
fect reduction, top defects on the yield loss Pareto can be iden-thriving in the competitive marketplace. Established semi-
tified by review and classification. Partitioning of the processconductor technologies that have been in volume manufactur-
loop and SEM/EDS characterization of the defects can quicklying for more than one year typically have probe yields that
identify the root cause.are defect-limited. Newer technologies are usually still devel-

Because it is impractical and unnecessary to inspect everyoping and fine-tuning the process and equipment to work out
wafer of every lot at every inspection step, some samplingmarginalities in the process/design and are limited to lower
plan must be implemented in order to minimize the cost ofyields by systematic issues, only some of which may be caught
inspection. However, this must be done in such a way as toby in-line visual inspection. What is obvious to all in the in-
minimize the likelihood of a crucial defect issue going unde-dustry is that no semiconductor manufacturer can hope to be
tected and unresolved for several days, in which time severalsuccessful, especially with newer technologies and smaller ge-
hundred more wafers would be contaminated and suffer theometries, without adequately clean facilities and equipment.
yield loss associated with the problem. Usually only 2 to 3Approaches to addressing low yields in the early 1980s re-
wafers per lot are inspected, and the same wafers at everylied almost solely on physical failure analysis of failed die at
inspection, if possible, to allow calculating the number of de-the end of the line. With the relentless advance in technology
fects added between inspection points (i.e., ‘‘adder’’ defects).toward smaller geometries, larger die, and more processing
The results are generalized to represent the condition of thesteps, as well as an increasing demand to recover the greater
entire lot if results are fairly consistent from wafer to wafer.than $1 billion cost of fabs quickly, such techniques are far
Lot sampling varies from every lot to every second, third, ortoo slow, expensive, and limited in scope. Extensive in-line
even fifth lot. As a rule, within-lot variation is less than lot-monitoring of defects, either particulate contamination or pro-
to-lot variation, so more value is obtained by inspecting morecess-induced defects, such as corrosion, is now a standard ap-

proach for yield enhancement in all newer fabs. See Fig. 7 for lots and fewer wafers per lot (in a capacity-limited scenario).

Figure 7. Inspection and data manage-
ment flowchart for defect and contamina-
tion control. (ADC � Automatic Defect
Classification; SSA � Spatial Signature
Analysis; SEM � Scanning Electron Mi-
croscope; EDS � energy dispersive spec-
troscopy.)
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Thought must also be given to where in the process flow to
place the inspection steps. Laser-scatter-based patterned wa-
fer inspection tools perform best after film deposition and are
adept at detecting particles that rise above the surface of the
film. Optical-based inspection tools are often the best choice
for postpattern or postetch inspection steps because they can
pick up planar defects such as blocked etch or residue be-
tween the structures. Intimate knowledge of the fab equip-
ment, device and process flow is essential to choose the best
plan to inspect and control defects for a particular situation.

Rigorous SPC control of defects on production wafers is es-
sential. A stable baseline must be established, and any devia-
tion upward from the baseline must be investigated. This
adds cycle time to the material being investigated but is cru-
cial in order to drive to the root cause of the defects. Figure 8
shows the desired response action to an out of control (OOC)
condition (i.e., when a defect SPC chart alarms). If detailed
analysis of the current out-of-control lot does not conclusively
give the location of the defect source, the next material com-
ing into the suspect process loop must be partitioned by in-
specting at many nonstandard inspection steps in order to iso-
late the offending process/equipment. Such partitioning of
process loops is essential for any baseline reduction effort. At
any given inspection step, the defects could be originating
from many different defect sources. In order to make steady
improvements in the baseline defect levels (and so improve
the yield), much effort and analysis must be expended to un-
derstand the pareto of defect types and their sources. After a
critical or high-level defect can be attributed to a particular
process and/or process equipment, teams of experts including
process/equipment engineers, tool vendors, and yield en-
hancement engineers can be chartered to address the issues
and implement fixes.

Data Management and Analysis

The primary goal of in-line defect detection and review, espe-
cially in a manufacturing fab, is to collect reliable information
about defects on the wafers, compile this information quickly
and concisely, and use it to manage the (defect-limited) yield
in the fab effectively. Information needed includes defect den-
sity, spatial layout, process level first detected, size, and clas-
sification type. The end goal is to identify which defects and
tools/processes need appropriate attention to prevent an ex-
cursion from causing significant yield loss (SPC control), or to
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concentrate limited resources on the top defects in a pareto in
order to maximize the impact of such efforts (baseline defect Figure 8. Defect or contamination SPC chart OOC response pro-
reduction). Increasingly it is crucial to have an integrated sys- cedure.
tem to hold all this historical data for easy access, provide
automatic data summary and report generation, track histori-
cal performance of inspection steps, and apply SPC methodol- ber the random defects across the wafer. If this is the case,
ogies to control the line. Newer analysis systems are emerg- the SPC chart for that inspection will show a very large spike
ing with the capability to be proactive and search for in defect count, indicating an unstable line with an inordinate
correlation and patterns without human intervention. The number of defect excursions. In reality, these large defect
main idea of data management systems (DMSs) is to turn all spikes may be only one or two clusters of large numbers of
the collected data from wafer processing into useful informa- defects affecting only a few die and all originating from the
tion for the process engineer. Figure 7 highlights the various same mechanism. The confidence of maintaining a stable
sources of data that can be used. manufacturing line is greatly increased with clusters of de-

All defect coordinate information should be fed to a central fects removed from random defect SPC control charts. A soft-
database. Defects can be clustered if they are spatially ware algorithm performing spatial signature analysis (SSA)
grouped. If clustering is not done, the groups of defects from on defect counts can prove quite beneficial. SSA can be

trained to recognize process signatures such as scratches, ra-mechanisms like scratches or corrosion can greatly outnum-
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dial arms, repetitive defects from the mask, or nuisance pro- difficult. Besides bit mapping, another method for trying to
determine the source of yield loss is based upon correlation ofcess variations from the total defect count. This procedure

then reports only the random defects that occurred at that abnormal yield wafers with their processing position in each
piece of equipment. This method of control is known as waferstep. If manual review and/or ADC are being used, the num-

ber of defects needing review or ADC is also greatly reduced position tracking (28). It is also known as ‘‘Wafer Sleuth,’’ al-
though Wafer Sleuth is a brand name copyrighted byusing SSA.

Planning and a well-thought-out methodology can max- SleuthWorks (29–31). Use of wafer tracking first gained visi-
bility because of work done at SEMATECH, but it is now com-imize data collection and correlation. In order to drive toward

the source of defects in-line quickly, the same wafers should mon in many fabs around the world.
In order to do the correlation, the following componentsbe inspected at all steps. After the data are fed to the central

database, level-to-level defect overlay can be performed. Be- and operational practices are required:
cause the defect coordinates are also saved in the database,

• Readable wafer identification scribes, either character orsome position overlay tolerance (on the order of 50 to 300 �m,
bar codedepending on the position accuracy of the inspection tools)

can be applied, and maps from all previous inspections can be • Readers to read the wafer identifications for a lot
overlaid with the current inspection. Defects from previous • Sorters to randomize the wafers in a lot periodically
levels that fall within the tolerance bounds of currently de-

• A database to store the positional order of each wafer at
tected defects can be attributed to the previous levels, and so each reading and notes the routing and which equipment
indicate the true added defects detected on the wafer since was used
the last inspection point. Additionally, knowing which defects

• A database that stores yield data identified for each wa-carry over to subsequent levels will also give some indication
feras to whether the defects are likely to cause electrical fails or

• An analysis package that uses the data from the data-not. In addition, the images themselves (both optical and
base(s) and identifies abnormal wafers and determinesSEM) are often saved electronically and linked to the individ-
their positional and equipment commonality; preferablyual defect positions on the wafer map. From the data manage-
the analysis occurs automaticallyment user’s interface, a simple click on the marked defect can

then bring up the image. A picture can truly be worth a thou-
Scribe readers are required to ensure quality of data andsand words because defect shape, color, morphology, and in-
speed of tracking. Randomization is required to achieve fewteraction with the surrounding circuit can give many clues as
correlations where each correlation identifies a possible rogueto the defect’s origin.
machine. Wafers do not change position frequently, other
than to reverse order, as they proceed through their routing.Bit Map Matching. One very powerful use of this central
Thus, a wafer is likely to be nth or 24 � nth for its entiredefect management system is correlation of in-line defects
processing life. (Note that some tools obtain wafers in groups,with end-of-the-line electrical fail information. This is most
such as 8, so that there is some randomization, but it is notuseful in matching the coordinate position of defects with the
great enough.) The randomization is critical to break this con-bit/row/column fails in a memory structure (DRAM, embed-
sistency and create a situation where a wafer can be in anyded SRAM, flash memory, etc.). Memory fail testing, by its
position in the boat. In addition, because all the lots are ran-nature, gives the exact spatial address of the failing capaci-
domized, the chance that all wafers with a particular yieldtors, often in patterns of failed rows or columns or clustered
loss have the same position in more than one piece of equip-bits. By knowing the spatial positions of both physical and
ment is small. Thus, correlation between yield loss behaviorelectrical defects, matching can be done using an overlay tol-
and the processing position in a given piece of equipment iserance (again, depending on the particular system), and as-
used to identify rogue equipment. The processing positionsuming that a physical defect that occurs very close to an elec-
also provides assistance in determining the source of the faulttrical defect is probably the root cause of that electrical defect.
in the equipment. For example, if the first wafer in a furnaceThis technique works best with high-yield and low-defect pro-
is suffering yield loss, then the technicians know to focus onduction lines with relatively few fails and therefore a rela-
that end of the furnace. If it is the third wafer in an im-tively low chance of random matching of physical/electrical
planter, then the rotation pattern of the equipment is suspectdefects. After this has been done for many wafers, a Pareto
(some implanters rotate the wafers in groups of three).can be developed to identify which defects (by inspection level,

size, classification) are causing the highest number of electri-
cal fails or have the highest kill ratio (probability of causing DATA MINING AND DATA WAREHOUSING
an electrical fail). By using bit mapping to correlate defects,
killer defect properties are identified for future use in in-line The importance of using all sources of data to maximize abil-
defect control and optimization of the recipes on the defect ity to locate sources of yield loss and customer disruptions
detection tools. In other words, bit map correlation is used to has been highlighted by several of the previous methods.
increase power (1 � �) for a control method that has a shorter However, traditionally, data from various sources are in dif-
response time than end-of-line testing. ferent databases. For example, final yield at assembly/test

may be in one database, design information may be in an-
other database, in-line process data may be in another data-WAFER POSITION TRACKING
base, and defect data may be in yet another database. Thus,
the first need is to get the data into one database. This com-As mentioned in the discussion of Control in Depth, identi-

fying the source of yield loss from yield numbers alone is quite bining is typically called data warehousing. Looking for the
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correlations in this massive amount of data is called data inflated. As a result, limits based on standard deviations be-
come too large and will not detect the outliers.mining. Data warehousing and mining have been common in

other industries, and these techniques are now being applied Unfortunately, the Tukey method for determining outlier
limits for yield data does not work well directly because ofto the semiconductor industry. See the Reading List for refer-

ences. the distribution of yield data. Because yield data are bounded
between 0% and 100%, using Tukey statistics directly could
possibly result with limits defined outside of the 0% to 100%

PARAMETRIC AND YIELD OUTLIER CONTROL boundaries. As a result, no serious outliers would be identi-
fied. The Tukey method works on normally distributed (un-

The use of parametric and yield data in SPC charts is com- bounded) data. The yield data can be transformed so that Tu-
mon for product engineers to track the performance of their key limits can then be applied to the transformed data. The
devices. However, a new control method that uses parametric logit transformation is recommended in these situations when
and yield data is being driven by the customer. Outlier con- using proportion data, such as yield data. The logit transfor-
trol, also known as maverick control, is a method for identi- mation is defined to be
fying wafers or lots whose performance is outside of the fab’s
normal distribution. Today many IC customers want consis- logit( p) = log[p/(1 − p)] (6)
tent delivery of devices whose performance matches those
that were used for their initial system qualification rather For yield data, which is between 0% and 100%, logit (yield) is
than only being compliant to specifications. There is also a given as
correlation between outlier material with low yield and prod-
uct with poor reliability in the customer’s application. Many logit(yield) = log[yield/(100 − yield)] (7)
customers require that outlier material not be shipped to
them or that expensive burn-in be used on outlier material. Logit(yield) will then range from negative infinity to positive
Therefore, the control of outlier material at the wafer fab infinity. Tukey limits can be determined based on the
level must be done to initiate corrective action rapidly and to quartiles of the logit distribution. The logit limits can then be
reduce the cost of further testing and burn-in of deviant mate- transformed back into yield units using the inverse transfor-
rial. It is important to note that although outlier material mation:
may be within test specifications, it is deviant to the normal
population of material. p = 1/[1 + exp(−logit)] (8)

The identification of outlier material may be determined
or for yield data:by either outlier parametric values or by yield—the first be-

ing variable type data and the later being attribute data. For
yield limit = 100/[1 + exp(−logit)] (9)a true Gaussian distribution, either normal statistics or Tu-

key statistics could be used to define outlier controls. How-
ever, Tukey statistics develop more realistic limits because of WAFER LEVEL RELIABILITY CONTROL
insensitivity to the presence of outliers in the data set used
to derive the control limits. Wafer level reliability (WLR) is an important method to moni-

In the Tukey method, limits are determined by ordering tor the reliability performance of devices, materials, and their
the data from smallest to largest. The data are then divided interactions prior to packaging (32). Typically, product quali-
into four equal parts or quartiles. The first quartile (Q1) oc- fication occurs at the package level prior to full-scale produc-
curs at the 25% percentile, the point below which 25% of the tion to verify the product’s robustness for operational life, re-
data fall. The third quartile (Q3) is the point below which 75% sistance to corrosion, and tolerance to mechanical stress.
of the data fall. The interquartile range (IQR) is defined as These tests are conducted under dynamic operation at ele-
IQR � Q3 � Q1. Two sets of limits are then defined. vated temperatures and voltages, in high humidity and tem-

perature, and under conditions of temperature cycling. Al-Inner Limits: Q1 − 1.5 × IQR and Q3 + 1.5 × IQR (4)
though such stress tests are effective in projecting failure
rates for similarly processed units, the entire qualificationOuter Limits: Q1 − 3.0 × IQR and Q3 + 1.5 × IQR (5)
process represents only a snapshot in time (i.e., the process
could deviate in the future from that used for the qualificationThe inner limits are defined such that any data beyond these

limits may be considered as possible or near outliers from the lots). Even though an intentional ‘‘major’’ process change is
strictly forbidden without requalification, unintentional pro-central distribution. The outer limits are defined such that

any data beyond these limits may be considered to be serious cess changes may occur, or a series of ‘‘minor’’ process changes
may effectively add, unknowingly, to a cumulative ‘‘major’’or far outliers.

As stated earlier, the determination of the Tukey limits is process change. At the wafer level, WLR detects uninten-
tional changes and process drifts that change the intrinsicinsensitive to the presence of outliers in the data set used to

calculate the limits. This is a result of the fact that the limits reliability of the device from its initial qualification. Because
WLR is done in the fab, failures detected can be quickly ad-are calculated using quartiles. Because outliers usually ap-

pear beyond the first and third quartiles, their presence does dressed as opposed to discovering a failure at packaging.
WLR testing is a series of accelerated tests, done at thenot significantly change the values of Q1 and Q3. Thus the

Tukey limits remain the same. On the other hand, the stan- wafer level, which can be performed rapidly to assess the in-
trinsic reliability of the IC technology/process. Because thedard deviation of a sample is very sensitive to the presence of

outliers. Their presence causes the estimate of  to become acceleration is normally achieved through the use of elevated
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voltage, current, and/or temperature, the essential elements tinuous product improvement efforts. By using this reliability
fingerprinting methodology, the reliability of the process canof a WLR probe station should include a high voltage source,

a high current source, and a rampable, hot temperature be continuously controlled.
If the WLR data become ‘‘out of control,’’ then efforts muststage. The hot probe chuck should permit a temperature ele-

vation of 300�C for mobile-ion testing; the high voltage unit be taken to contain the affected material, to determine the
root cause, and to implement corrective actions. To determineshould permit up to 100 V for interlevel dielectric leakage

measurements; the high current module should permit up to the affected lots, all the lots at risk must be sampled for WLR
testing. The lots at risk are those lots processed since the last200 mA for electromigration testing of leads, contacts, and

vias. Several key reliability parameters of an IC technology normal WLR test. In a parallel effort, a root cause analysis of
all the factors that could contribute to the failure signature ofthat can be accelerated in order to obtain a real-time monitor-

ing of the reliability robustness at the wafer level are listed the WLR test is performed. For example, there are many fac-
tors that can affect gate oxide reliability. These include in-in Table 7. Table 7 also provides corresponding issues with

respect to these parameters. trinsic factors such as starting wafer quality, preoxidation
cleanups used for silicon surface preparation, furnace growthBecause WLR testing is done under highly accelerated con-

ditions (stress times must be kept short so that sufficient sta- conditions, poly deposition, and annealing. There are also
many extrinsic factors such as particles, implantation dam-tistics can be gathered), extrapolation of such greatly acceler-

ated data, to precise failure rate prediction for the field, age, and wafer charging during processing that can have an
impact on the reliability of the gate-oxide after it is grownrequires many time-decades of extrapolation. For this reason,

it is better to use WLR for ‘‘reliability fingerprinting’’ of the and fabricated into devices. To illustrate the processing vari-
ables that can have an impact on the gate oxide reliability,qualification lots rather than absolute failure rate prediction.

Reliability fingerprinting simply means that the individual an Ishikawa (or fishbone) diagram is useful and is shown in
Fig. 9. Each of the bones on this diagram can, of course, becomponents of reliability (metallization, contacts, vias, gate

oxide, transistors, etc.) are stressed for the qualification lots, further expanded and detailed. It soon becomes obvious that
tracing a gate oxide issue back to its ‘‘root cause’’ is a complexand the shifts (in metal resistance, contact resistance, via re-

sistance, gate oxide breakdown strength, transistor Vt, etc.) and time-consuming task. Even though WLR control provides
high-quality information on the interaction of the processingare carefully documented. This documented shift becomes the

reliability fingerprint that is used as a ‘‘benchmark’’ to detect variables, controlling the variation of variables and conditions
at the lowest level possible which may impact reliability per-deviations of the process in the future and to support the con-

Table 7. Definition of Key Reliability Parameters Tested Using WLR with Associated Issues

Junctions For a CMOS technology, both n	/p and p	/n junctions must show low leakage, good kinetics, low defect
density, and good stability under voltage, current, and temperature stressing.

Gate oxide The gate oxide for the MOSFET must have low leakage at use electric fields, high breakdown electric fields,
high charge-to-breakdown values, and good VT stability under gate stressing at high voltage for both low
and high temperatures.

Mobile-ions Device isolation depends on the thick field or shallow trench oxide film being relatively free of mobile-ions
so as to prevent surface inversion during high-temperature and high-voltage stressing.

Channel hot-carriers N-channel short channel devices must be stressed under the conditions of maximum substrate current and
the transistor parameters (e.g., VT , gm , IDS) monitored for shifts. P-channel short channel devices must be
stressed under the conditions of maximum gate current and the changes in off-state leakage monitored.

Metal integrity All metal levels should be tested for electromigration robustness under the conditions of high current den-
sity and high temperature. Prior to electromigration testing, some of the electromigration samples should
be baked at �175�C/1000 h so as to induce any stress migration effects. Both NIST-type and via-fed elec-
tromigration test structures are recommended.

Contact and via integrity Contacts to diffusions and metal-to-metal contacts (vias) should be tested at high-current and high-tempera-
ture conditions. The electromigration performance should be determined in both current-flow directions.

Interlevel dielectric integrity Both intralevel and interlevel dielectric leakage should be measured at high voltage and high temperature.
Etching residues or side-hillock formations can present leakage or breakdown issues for the intralevel di-
electric. Interlevel dielectric issues can develop because of top-hillocks on the metallization or poor planari-
zation.

Passivation integrity Passivation over the final metal level should be planarized so as to minimize the thermomechanical interac-
tion with the plastic package and must be pin-hole free to prevent corrosion. The passivation pin-hole den-
sity determination can be accelerated by an exposure to a simple metal etch.

Corrosive residues No corrosive residues should be left on the wafer after metal etching and photoresist removal. Also, no corro-
sive residues should be left on the bonding pads after back-grind cleanup. A simple water-box storage test
(24 h/100% RH) can be used to accelerate the detection of corrosive residues.

ESD/latchup The ESD robustness should be assessed by measuring the high current–voltage characteristics of the n-
channel output transistor [e.g., the trigger and snapback voltages and It

2
(the second breakdown current)].

The latchup robustness can be assessed by measuring the trigger current and holding voltage of a four
terminal pnpn device.

SER robustness The soft-error-rate (SER) robustness of the process and/or design can be assessed by measuring single-event
upsets using an accelerated alpha-particle source such as thorium or americium.
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Figure 9. Fishbone diagram showing the
areas of the process that can impact gate
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formance is extremely important to guarantee disruption-free tions. However, using many univariate charts does suffer
from two major problems:delivery of product. For example, for gate oxide integrity,

some of these lower-level control methods are careful preven-
1. Unacceptably high overall error rate for false positivestive maintenance of furnaces, sensitive equipment monitoring

for uncorrelated variableswith real-time traces, and the use of high-purity chemicals for
surface preparation and oxide growth. This enforces the con- 2. Unexpected false positive and false negative rates when
cept of control in depth. the variables are correlated

In this section, we will describe the different methods for per-MULTIVARIATE SPC, ESPECIALLY FOR
forming SPC on multiple variables that solve these two prob-EQUIPMENT SIGNAL MONITORING
lems. We will first address the case for uncorrelated variables
and then examine the case of correlated variables. Many ofTypically only a single measurement is taken in-line, such as
the issues that arise in practice will be discussed and theirthickness. If more than a single thickness measurement is
common solutions given. Note that many of these issues alsotaken on a wafer or across a lot, then multivariate statistical
arise in univariate SPC charts, and some of the solutionsprocess control (MSPC) would be applicable. Multiple mea-
have been extended from the univariate case. The focus insurements across a wafer and within a lot are gathered at
this section is only on the comparison/expectation part of thefinal probe. These data are obviously highly correlated (33).
control model of Fig. 2. The rest of the components that wereThus, multivariate SPC would be of significant value. How-
discussed in the section on univariate SPC, such as correctiveever, currently, it is rare to see MSPC applied to final probe,
procedure, are still required. However, no special changes arealthough application is expected to increase as customers de-
required for multivariate SPC except the additional step ofmand increased quality, and the business environment re-
isolating which few variables, of the many variables charted,quires less unnecessary scrap and reduced burn-in. There
are involved in the fault. This isolation is necessary becausehave been discussions about replacing the univariate outlier
in univariate SPC, the faulty variable is intrinsically iden-Tukey method with MSPC, but that has not occurred yet. The
tified.most common application of MSPC is to equipment and sen-

sor signals. Using the semiconductor equipment communica-
Controlling Overall False Positive Error Rate

tion standard port, it is easy to collect 50 different variables
(signals, traces) once per second on many machines. Because Although equipment signals are usually correlated, it is possi-

ble to have a reduced set of equipment signals that are uncor-most of the focus of MSPC is for equipment signal and sensor
applications, the discussion will focus mainly on the mathe- related. Such an uncorrelated set of variables may occur be-

cause a fab is trying to reduce the amount of data it collects,matics necessary for such applications.
Methods that examine only a single variable are called and so they eliminate any redundant variables (i.e., variables

that are correlated with other variables). The correlated vari-univariate. Use of multiple univariate SPC charts for the case
of multiple variables has been cited as being too cumbersome ables are assumed to provide no additional information about

the process, but, as will be discussed later, monitoring thefor a human to handle. However, with the advent of comput-
ers, such an issue is irrelevant because computer technology correlation provides very sensitive and robust fault detection.

However, business situations may require a few variables,can be used to set up many charts and perform all calcula-
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and the focus will become the use of those variables that in of y1 and y2. However, the univariate charts would not detect
X as abnormal. Thus, a method is needed which will detect atotal contain the most information. Even if the variables are

uncorrelated, traditional univariate SPC chart set-up proce- change in the system that considers the correlation structure
of the system. The most common and well-known test statisticdures can lead to increased false positives.

There are two different approaches to handle the issue of for MSPC is the Hotelling’s T 2 (35–38). This statistic de-
scribes an ellipsoid in p-dimensional space that has a proba-error rates. One approach is based on changing the control

limits of the univariate charts, and the other approach is to bility 1 � � of containing all the data sample of p variables.
This ellipsoid is shown in Fig. 10. Solid ellipsoids satisfy theuse multivariate methods. We will discuss the former ap-

proach first. The best known of the adjustment methods is following equation with probability 1 � � if both the popula-
tion covariance matrix and mean vector are known (35,36):Bonferroni inequalities. The method is easy to employ. Let �

be the desired Type I error (i.e., rate of false positives). For
example, the traditional Shewhart univariate chart set up n(XXX − µ0)T�−1(XXX − µ0) ≤ χp

2 (α) (10)
with limits set at 3 has an � of 0.27%. With Bonferroni lim-
its, for p tests on p variables, the limits are set at Type I where
values of �/p. Thus, the overall Type I rate is kept at p*�/p
� �. To demonstrate the problem of increased Type I error, X is vector (p � 1) of sampled means of each of the p vari-
suppose a typical fab with 40,000/month wafer starts and ables
with 30 day fab cycle time has a process on which Shewhart �0 is vector (p � 1) of population means of each of the p vari-
charts with 3 limits are used. If each run is 24 wafers and ables
only one variable per run is monitored, a false positive will � is population variance–covariance matrix
occur approximately once per week for that process. In other p is number of variables
words, the SPC chart will indicate a fault has occurred when n is sample size used to calculate X
no fault has occurred. Even though time is wasted investigat- � is chi-squared statistic
ing the alarm, such false positive rates are acceptable in order
to ensure that a real fault will be detected. However, if 10 This equation can be used for MSPC in that it is based upon
variables are monitored each with Shewhart charts with 3 the probability that the sample mean will lie within a certain
limits, then approximately 1.5 false alarms occur per day! range. In other words, assume a hypothesis (H0) of
This rate is unacceptable. Another method is Roy and Bose IIDMN(�0, �) where IIDMN is identically independently dis-
intervals, which some prefer because Bonferroni may give a tributed multivariate normal with a multivariate mean of �0slightly shorter average run length (34). A third method is to and covariance �:
use a technique for correlated variables that naturally handle
the overall Type I error. Such methods will be discussed next. Null hypothesis H0: µ = µ0

Alternative hypothesis H1: µ �= µ0
(11)

Hotelling’s T 2: The Traditional MPSC Chart

To test this hypothesis, a test statistic and limit is needed:The preceding discussion on false positive rates assumed that
the variables are independent. When the variables are corre-
lated, the false positive and negative rates for using univari-
ate charts can be quite different than expected (35–38). For
example, a change in correlation may go undetected. This con-
cept is shown in Fig. 10. Two variables (y1 and y2) are plotted

If test statistic ≤ test limit, then H0 is accepted

i.e., the means are not statistically different)

If test statistic > test limit, then H0 is rejected

(i.e., the means are statistically different)

(12)

against each other. Upper control limits (UCLs) and lower
control limits (LCLs) for each variable are shown as if univar-

Using Eqs. (10) and (12), but substituting estimates for �0iate charts were set up. The dots represent typical variation.
and �, Alt has shown (34,35,37):As can be seen, the points all lie within a well-defined ellip-

soid. In other words, y1 and y2 are correlated. X represents an
unexpected point in that it violates the correlation structure Test statistic = T2

α = n(XXX − XXX )TSSS−1(XXX − XXX )

Test limit = p(m + 1)(n − 1)

(mn − m − p + 1)
Fα,p,mn−m−p+1

(13)

where

S is estimated variance–covariance matrix by pool-
ing m samples of size n � �m

i�1 Si

SSSi = 1
n − 1

(XXX i − XXX i)
T(XXX i − XXX i )

F�,p,mn�m�p	1 is Fisher’s F statistic with degrees of freedom p,
mn � m � p 	 1

UCL

LCL

LCL

x

UCL

y 2

y1 T 2
� is Hotelling’s T 2 (39)

X is estimated mean of each of the p variables withFigure 10. How correlation changes go undetected with univariate
charts. (X is a fault.) sample size n
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m is number of sample sets of size n used for esti- Issues with T 2 in Practice
mation

Even though T 2 is the most commonly seen and the oldest
n is sample size

multivariate technique, it suffers from several problems.

Thus, if T 2
� 
 test statistic of Eq. (13), then the hypothesis of

• Even though Eqs. (13) and (14) give theoretical limitsEq. (11) is rejected, and the system is assumed to be no longer
that produce a Type I error of �, these limits are foundthe same. Equation (12) is one sided (i.e., there is only an
in practice to yield a much greater Type I error. Crosierupper control limit) because T 2 can only be positive. However,
gives figures for out-of control average run lengthsothers have used nonzero lower control limits (40).
(ARLs) based upon size of shift, number of variables, andHotelling’s T 2 is the multivariate analog of the univariate
in-control ARL (45). In practice, simulations, boot-strap-t2 statistic. Consequently, it has also been called the multivar-
ping, and actual data are used to set the control limits.iate Shewhart chart, although Shewhart personally had no
Tracy et al. discusses the issue of limits and providesassociation with its development or use. It has several useful
alternative equations (40).properties:

• The values used to calculate S and XX must be ‘‘good’’ data
(i.e., data from when the system is in control). A large• It has a quadratic form.
data set (
100 lots) is required to calculate variances,

• T 2 is unaffected by changes of units or shifts of origins of preferably a data set with greater than a 1000 lots would
the response variates, but it is also invariant under all be used. Thus, manually identifying bad data points is
affine transformations (Wx 	 b) of the observations and impossible. Use of automatic outlier rejection (e.g., test-
hypothesis (affine equivariant) (34,41). Thus, the test is ing the data, removing data outside the control limits,
unaffected by scaling of individual measurements in x and recalculating the tests) is easy with today’s comput-
(34). ers. However, the resulting test limit may be overly sen-

• It is the optimal affine invariant test statistic for a shift sitive because extreme, but expected, data points were
in the mean vector of the single observation vector removed from the data set by this method.
X(n � 1) or for a shift in the mean in all n observations • Although Eq. (11) assumes that the variance is constant,
of group size n (34). dispersion (variance) and mean shifts are confounded in

T 2 (40). Several people have used T 2 failure to signify a
Test for Individuals. The preceding equations are for sam- change in the variance (44,46).

ples of size n. In semiconductor manufacturing, it is rare to • Sample size needed to detect shifts in the process means
take from a batch more than one sample that meets the nec- does not always decrease as the magnitude of the shifts
essary requirement that the within-sample and sample-to- increase (35). For a relatively large positive correlation,
sample expected variation is the same. Thus, a statistic is the needed sample size increases with increasing positive
needed for single sample sizes, also known as an individuals shifts.
test. If a large sample size is taken to estimate parameters,

• For the bivariate case, when the two variables are posi-then the following equation holds (37):
tively correlated, the probability of detecting a shift,
known as power, is not a monotonically decreasing func-
tion of the standard deviation, as it is in the univariate
case. Thus, a smaller noise level does not necessarily
translate to a higher probability of detecting shifts.

Test statistic = T2
α = (XXX − XXX )TSSS−1(XXX − XXX )

Test limit = p(n + 1)(n − 1)

n(n − p)
Fα,p,n−p

(14)

• Single-test optimality does not imply optimality in re-
where peated use, which is the case for univariate charts (34).

• If the variables are highly correlated, then S is singular
n is sample size used to calculate S and X (i.e., it is not invertable and therefore S�1 does not exist).
S is estimated covariance matrix from sample size n In such a case, data reduction methods, such as principal

F�,p,n�p is Fisher’s F statistic with degrees of freedom p, n � p component analysis, must be employed. Such methods
will be discussed in a later section.

Tests for Dispersion • Even though single sample sizes are common, if more
than one sample can be taken, the issue of sample sizeIn the univariate case, the chart used in combination with
should be carefully investigated. Aparisi does such athe individuals is a moving range chart. Unfortunately, the
study and shows the answer depends on the particularmultivariate analog of moving range chart is intractable
situation (47).(35,37). Thus, no equivalent exists for a moving range chart

to be used in the multivariate individuals case. However,
Smith has proposed an analog to the range chart when dis- Note that T 2 may still be used even if the data are not corre-

lated. It provides an easy way to overcome the overall Type Icussing the calculation of T 2 for groups (38), as have Prins
and Mader (42). Other types of charts to monitor dispersion error problem instead of using Bonferroni limits. However,

sometimes the result is decreased sensitivity to a fault that(variance) are reviewed by Alt and Bedewi (43). Healy showed
the CUSUM of T 2 (COT2) is an appropriate test statistic for appears in only one variable. It is very difficult to achieve

simultaneously sensitivity for all variables and yet not haveinflation of the covariance matrix (44) (i.e., to test for a scalar
multiplication of the covariance matrix). an unacceptable Type I rate.
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Applications. As mentioned in the introduction to this sec- output. Another way to view the use of a model is that it
predicts the value of X in Eq. (14). In other words, models aretion, the most common application of MSPC is to equipment

and sensor signals. Using the SECS port, it is easy to collect used to adapt the null hypothesis H0 of Eq. (11) by adapting
�0 to match the expected changes. Thus, faults are changes50 different variables (signals, traces) once per second on

many machines. Because of equipment aging and chamber that occur faster or larger than expected. In summary, auto-
correlation models are implemented in one of two ways:build-up, these signals change over time (i.e., they are auto-

correlated run to run). Within a run, one would expect the
signals to be autocorrelated because of within-process dynam- 1. �0 in Eq. (11) is approximated by X in the equation
ics and the result of real-time controllers. Within a lot has a D � 0; X in Eq. (14) � Residual � Measured (trans-
particular autocorrelation because of the first wafer effect formed) Value � Predicted Value.
(48,49) which is associated with chamber warm-up and de- 2. �0 in Eq. (11) is approximated by X in the equation
gassing. Further explanation of the autocorrelation and varia- D � Model Prediction; X in Eq. (14) � Measured (trans-
tion time scales can be found in Ref. 50. formed) Value.

When discussing Eqs. (10) and (11), the assumptions of
normality and IID were noted. IID also assumes indepen- The equivalency between the two methods can be seen by sub-
dence (i.e., that each data point is not autocorrelated with the stituting either implementation into Eq. (14), which yields
next one). Autocorrelation is shown to have an impact on the
Type I, Type II errors (51–62). Another assumption is con-
stant variance over the entire space, also known as homosce-

(XXX − XXX ) = Measured (transformed) Value − Predicted Value)
(15)

dasticity. Nonconstant variance is known as heteroscedastic-
ity. The correlation structure is also assumed to be constant. The Correlation matrix (S) is the same in both cases as well,
While a changing correlation structure is uncommon, nonnor- using Eq. (15) for its calculation [see Eq. (13)].
mality, autocorrelation, and heteroscedasticity are encoun- By accounting for the autocorrelation, heteroscedasticity,
tered frequently. Thus, a method for ‘‘removing’’ the nonnor- and nonnormality, increased sensitivity (power, reduced Type
mality, autocorrelation, and heteroscedasticity are needed for II error) becomes possible while simultaneously reducing the
Eqs. (10)–(14) to be valid. Type I error (�). Note that even though new variables are

used for analysis to detect faults, the system itself is not
Models and Transformations for Application

changed. To improve the signal-to-noise ratio even more,
of MSPC to Equipment Signals

feedforward variables may also be used in the model, such as
to account for the impact of wafer state upon sensor signals,One way to ‘‘remove’’ the nonnormality, autocorrelation, and

heteroscedasticity is to create new variables. These IIDN such as the optical emission intensity decreasing with in-
creasing percent open area during etch. Different devicesvariables are the residuals of a model that predicts the auto-

correlation for a transformed variable. The transformation ac- have different percentages of open area for the same step in
the flow (routing), and the same device may have differentcounts for the nonnormality and heteroscedasity, whereas the

model accounts for the autocorrelation. This concept is shown percentages of open area for different steps in its flow. Thus,
the percentages of open area can be used as a feedforwardin Fig. 11. For model residuals, the X in Eq. (14) has the value

of 0 because the model is expected on average to predict the variable to predict the change in intensity resulting from the

Figure 11. Purpose of process state model.

Variable = Raw data
• Nonnormal
• Heteroscedasticity
• Autocorrelation
• Varying cross-correlation
• Poor signal to noise

Variable = Residuals
• Normal
• Homeoscedastic
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  Monitor dynamic behavior
  Check cross-correlation
  Check univariate behavior
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changes in the open area and then data from different devices and within run. The lot average is used as the lot data, the
wafer average is the within lot data, and the within run is acan be analyzed together.

Logarithm and square root are the transformations most single sample or a group of samples. Transformations are
used as needed on any of the signals. A separate T 2 is usedcommonly used to create new variables that are normally dis-

tributed and homoscedastic (63). Time series models are the for each of the three time scales. The three T 2 values are plot-
ted in a single plot. The use of time-series models for real-most common model form for predicting autocorrelation (64–

70). The most common time series model representation is time signals was termed real-time SPC (64–69). Note that
even though some authors call the longer time scale lot to lot,known as an ARIMA (p, d, q) model where p is the order of

the autoregressive part, d is the integration order, and q is others call it within a maintenance cycle (50). This is because
the aging really occurs across the entire maintenance cycle.the order of the moving average part. The most well-known

ARIMA order is the (0, 1, 1) order. The IMA model (it has no There is also a lot-to-lot effect generally caused by the incom-
ing material (i.e., due to the lot itself).autoregressive part) is equivalent to a first-order digital filter.

It is also equivalent to the EWMA metric used in an exponen-
tially weighted moving average (EWMA) chart, a common Trace Analysis Using Dynamic Time Warping

or Step Number to Generate Metricsunivariate SPC chart. An ARIMA (p, d, q) of time series yt is
represented as

The cause of the most significant variation that occurs during
the processing of a single wafer is generally caused by switch-
ing chemistries, ramping of power, or switching betweenwt = −

p∑

k=1

φkwt−k +
q∑

i=0

θiat−1 (16)
films. Thus, these changes denote significant regions. Many,
but not all, of these regions correspond to steps within a rec-

where ipe. Thus, metrics could be generated for each signal during
a particular step to handle the within-wafer autocorrelation.

�0 � 1 Another way is to generate metrics for these significant re-
at � forecasting error � wt � ŵt � N(0, ) gions found by decomposing the signal using dynamic time
ŵt � prediction of w at time t warping (73,74). Such metrics can include average, standard
wt � Differenced data � �dyt deviation, coefficients from a curve fit through the data, the
yt � Variable being modeled with time series (may be a maximum, or the minimum. These metrics can be used to-

transformation of raw data) gether in a single T 2 with the mean predicted from a run-to-
�d � dth order of differencing operator run autocorrelated model. Thus, the autocorrelation within a

�1yt � yt � yt�1 wafer is handle by treating it as cross-correlation. However,
�2yt � �1yt � �1yt�1 � yt � yt�1 � (yt�1 � yt�2) � yt � 2yt�1 	 autocorrelation between wafers must still be treated. Instead

yt�2 of a formal creation of time-series models, a simple first-order
filter (i.e., an EWMA) can be used with the filter factor picked

Rearranging Eq. (16) by expanding the right term for i � 0 using heuristics. In other words, the mean is adapted using
yields an equation to solve for ŵt: an EWMA to account for wafer-to-wafer autocorrelation. The

biggest issue found in a 7-month study of MSPC (75,76) using
the preceding techniques was that the biggest change in the
system occurred whenever maintenance was performed. How-

ŵt = −
p∑

k=1

φkwt−k +
q∑

i=1

θiat−i (17)

ever, this variation is not a fault. Thus, a method was needed
Thus, Eq. (17) can be used to predict the value for w for the to adapt the system to changes caused by maintenance. The
next sampling period. The preceding equations will work best EWMA adaptation of the mean was found to be almost ade-
if the y values are homoscedastic and normally distributed; quate after maintenance. In other words, the correlation
consequently, transformations of the variables may be used structure only changed slightly. However, the slight change
for variable y instead of the raw data itself. The prediction required an exponentially weighted moving covariance
residuals of a time series model of the transformed variables (EWMC) to account for maintenance-to-maintenance changes
should produce IID Normal homoscedastistic variables (at). and within maintenance aging. In addition, a large number
Consequently, at becomes the variable to be monitored by a of variables were being analyzed. This study also examined
MSPC chart as shown in Fig. 11. data reduction methods and found them to have fewer

The main challenge with respect to use of time series is problems.
that data across a SECS port is not at a constant sampling
rate. Variations of plus or minus 20% of the sampling rate are Data Reduction Methods, Such as
not uncommon. However, time-series models assume constant Principal Components Analysis
sampling rates. Thus, techniques may need to be used to cre-

To illustrate the usage of principal component analysisate a model that works on nonconstant sampling (71,72).
(PCA) for MSPC, a two-dimensional example will be given.
However, in practice, it is the reduction of several hundred

Real-Time SPC
dimensions to a couple of dimensions where PCA finds its
strengths. Figure 12 is similar to Fig. 10, but now the heightTrying to use a single autocorrelation model for each 1-second

sample across all wafers and lots has been shown not to work of the ellipse has been shrunk. The data now fall in approxi-
mately one dimension defined by a vector p1. Good data would(64–69). Thus, Spanos et al. have decomposed the problem

into three models representing the three dominant time be expected to lie along dimension p1 within the UCL and
LCL drawn on vector p1; faulty data are expected to lie alongscales over which the variation occurs: lot to lot, within lot,



80 SEMICONDUCTOR FACTORY CONTROL AND OPTIMIZATION

In the study it was found that the covariance needed to be
adapted for the full-model case, as described in the section on
dynamic time warping. However, even though improvements
were seen in the PCA case if the covariance was adapted, the
improvements were so small as to not justify the effort. The
overall result was that PCA provided more robustness (de-
creased false positives) and more sensitivity (decreased false
negatives) than the full model case. This study, partially
funded by SEMATECH, has led to increased emphasis on the
use of PCA in the industry.

y2

y1

p1

X
LCL

UCL

Within model variation

Outside of model variation
(lack of fit)

Data Reconstruction Methods with
Figure 12. Dimensionality reduction—use of PCA for MSPC. p1 is Regression Adjusted Variables
the principal component describing direction of expected (typical)
variation; — is good data; X is a fault within the model; � is a fault Another methodology for multivariate monitoring is to recon-
outside the model. struct (i.e., predict, the value for each variable from a model

based upon all other variables). These predicted variables
have also been called regression adjusted variables (34). Athe dimension perpendicular to p1 (outside the model) or to lie
quick review will be given of the various modeling techniquesalong p1 (within the model) but be outside the control limits.
used for the predictions.Thus, the original data in dimensions (y1 and y2) can be trans-

Projection to latent structures (PLS), also known as partiallated into data in one dimension (p1). p1 is the eigenvector of
least squares, is a technique for estimating the modelY and translating the original data into the p1 space produces

scores (t1) as ‘‘data.’’ Thus, the scores are expected to lie
y = BXBXBX (18)within the control limits similar to a univariate chart. If more

than one eigenvector is required to describe the reduced di-
when the data are correlated. PLS attempts to maximize co-mension, each eigenvector will be perpendicular to all the oth-
variance by decomposing the X and Y matrices into vectorsers. Thus, univariate charts are still valid because PCA not
that are highly correlated. Thus, it is related to principal com-only reduces the dimensionality of the data but also trans-
ponent analysis. PLS can be used for monitoring by creatinglates it into uncorrelated variables 5. However, note that the
a model for every variable as a function of all other variables:scores many times will be highly autocorrelated. Thus, a

method to deal with the autocorrelation will be necessary. In
practice, a T 2 chart is used in order to address the issue of x̂i = fi(xall k �=i) (19)
inflated overall Type I error. To check for variance not cap-
tured by the PCA model, a Q statistic is used. Q is the sum producing p PLS models, one for each of the p variables. The
of the squares of the residuals for each original variable yi. set of x̂i are also called regression-adjusted variables (34,78).
Note that if the PCA model uses ALL eigenvectors (i.e., the The residuals, xi � x̂i, can be monitored in much the same
full model is used and no data reduction occurs) then the orig- way that the residuals in PCA are monitored. Again, the re-
inal T 2 MSPC chart results, and there is no Q chart. One siduals may be autocorrelated and require a technique for ad-
benefit of PCA is that it reduces the directional dependency dressing this autocorrelation. This technique provides in-
of fault sensitivity compared to the full model (77). For more creased sensitivity but is more cumbersome as a result of the
details on the mathematics and additional tests, such as on number of models needing to be generated.
variance, see Ref. 78. Hawkins applied the preceding technique but used linear

A 7-month study was performed to compare the full model regression to fit the model in Eq. 19 (34). The resulting vari-
versus a reduced model (PCA) (75,76). For both PCA and the ables are still correlated (79). However, if the fault direction
full model, autocorrelation was present so that the mean is known a priori, this method provides increased sensitivity
needed to be adapted using a EWMA [i.e., a (0, 1, 1) time to faults.
series]. Two scenarios will occur if a model for autocorrelation Triant (80) uses a similar concept with a modeling tech-
is not used: nique similar to k-nearest neighbors. Triant calls their tech-

nique universal process modeling (UPM). An overall ‘‘health’’
• A data set that covers considerable aging and mainte- metric is provided based upon the residuals. In addition, a

nances is used to develop the model (full or reduced) re- ‘‘bulls-eye’’ plot is used to designate which variables have a
sulting in almost no sensitivity to real faults because the problem.
faults are much smaller than the normal aging or main-
tenance-induced changes

Multivariate CUSUM and Other Methods
• A data set that covers very little aging and no mainte-

Other methods based upon a multivariate extension of thenances is used to develop the model (full or reduced),
cumulative sum chart (CUSUM) have been developed to trywhich results in almost constant false positives caused
to address some of the issues with T 2 (34,38,43,45,63,77). Oneby normal aging or maintenance-induced changes
difficulty with CUSUM is that it requires the specification of
the direction of the shift. In the univariate case, that amountsNeither scenario is acceptable. By adapting the mean, normal

variations are tracked, and faults then are detectable, as to testing plus or minus. However, in the multivariate case,
as the number of variables increases, the number of possibleshown in Fig. 11.



SEMICONDUCTOR FACTORY CONTROL AND OPTIMIZATION 81

directions grows dramatically. Crosier developed a method control based on multiple equipment traces is neural nets.
The neural nets can be used to predict a wafer result as athat considers the size of the fault but attempts to be indepen-

dent of the direction of the fault (45). Besides direction, the function of the traces. If the prediction is outside of acceptable
Type I and II errors of different techniques may be sensitive regions, then a fault is declared. The inputs to the neural net
to the number of variables and the correlation structure. can include previous values to provide a method of handling
Thus, the issues of the impact of the number of variables, autocorrelation (82–86). The neural net can also be used to
correlation structure, variance level, size of fault, and direc- predict in-control and out-of-control conditions (i.e., a go/no-
tion of fault on the Type I and II errors have not been solved. go type of sensor).
In addition, the issues of normality, homoscedasticity, and au-

Isolating the Faulttocorrelation must also be addressed for CUSUM techniques,
although theoretically the sequential probability ratio test, One additional issue is true for any of the multivariate detec-
upon which some CUSUMs are based, is valid for any distri- tion methods. Fault detection is only one step of a three-step
bution. Another technique that can be used for finding outli- process:
ers in multivariate data is described by Rocke and Woodruff
(79). Their paper also examines the difficulty of increasing • Detection (identification)—to detect the occurrence of a
dimensionality (i.e., number of variables). A multivariate ex- fault
ponentially weighted moving average control chart is exam- • Isolation—to isolate which variables have changed (e.g.,
ined by Lowry et al. (81). All these alternatives to T 2 can be throttle valve variable is different)
used with time-series model residuals and data reduction

• Classification (diagnosis)—to assign a cause of the fault
techniques, too. (e.g., a malfunction has occurred in the pump)

Neural Net Methods Another component is prognosis, which is to predict that a
fault will occur in the future. Prognosis may or may not in-The methods described previously are based upon statistical

methods. Another method being used for fault monitoring and clude isolating and classifying the fault.

Table 8. Overview of Constructing MSPC

1. Obtain data set representing in-control conditions with all sources of expected variation
2. Determine transformations to make all variables normally distributed and homoscedastic

Logarithmic
Square root

3. Select method for within-wafer autocorrelation
Time series model
Metrics from Dynamic Time Warping

4. Select method for run-to-run and higher autocorrelations
Time series model for mean
EWMC for Co-variance matrix
Neural nets

5. Select method for monitoring dynamic behavior (autocorrelations)
SPC charts on amount of change total and single time period

6. Determine if data reduction will be used
PCA

7. Determine if data reconstruction will be used
PLS
Regression-adjusted variables
K-nearest neighbors
Neural nets

8. Select MSPC chart if monitored variables are correlated (within-model variation)
T 2

MCUSUM
MEWMA

9. If data reduction is used, select method for outside model variations
Q
Univariate charts for each residual

10. Select MSPC chart for monitoring dispersion
COT2

No widely accepted chart for monitoring dispersion
11. Select method for controlling overall Type I error

Roy and Bose intervals
Bonferroni
MSPC Chart (T 2, MCUSUM, MEWMA)

12. Use data to calculate control limits for various charts
13. Determine method for isolating fault

Contribution plots
Data reconstruction (PLS, regression-adjusted variables, universal process modeling)
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Thus, T 2 detects only out-of-control situations, but it does GLOSSARY OF FACTORY CONTROL TERMS
not identify which variable is out of control. There are two
methods used for isolation. The first method is to also use �. Type I error rate
univariate charts to try to assign the problem to a variable ADC. Automatic defect classification
(35–37). However, the problem may appear in the univariate Analysis of Variance (ANOVA). One of the statistical
or in the multivariate chart; it is not required to appear in methods used to evaluate the data from an experimental de-
both. Limits from the Bonferroni inequalities or Roy and Bose sign to determine sources of variability
intervals should be used to set up the univariate charts.

Assignable Cause. A source of variation that is nonrandom;The second method is the single-sample variant of the lin-
a change in the source will produce a significant change ofear discriminant function coefficient vector a:
some magnitude in the response

Attribute. A characteristic that may take on only one valueaaa = SSS−1(XXX − XXX ) (20)
(e.g., 0 or 1)

Autocorrelation. Correlation between samples of the sameThis variable arises in the derivation of the quadratic form
variables; implies a dynamic processfor T 2. It provides an indication of the contribution of each

response to T 2. If the standard deviations of the variables are �. Type II error rate
nearly equal, it has been proposed to use this variable to de- Capability Index. The index of the process spread versus
termine which response variable is responsible for the failure specification width; the potential process capability (Cp is the
(41). It was suggested to make it dimensionless by scaling index used to measure the process capability with respect to
each ai by its standard deviation (si). centering between the specification limits.)

This concept is similar to the contributions plot of principal
Cause. That which produces an effect or brings about acomponents-based MSPC. In PCA, the contribution of each
changevariable to the T 2 are presented in a single plot (i.e., each
CFM. Contamination-free manufacturing; generic term usedvariable’s ‘‘contribution’’ is plotted). Variables with large con-
for the practices to control contamination and reduce defectstributions are most likely to be involved in the fault. In addi-

tion, the residual (Qi) for each variable is also used to identify Change Control. The process of managing changes through
variables that may be involved. One item to note is that appropriate documentation, validation and notification
‘‘smearing’’ has been cited as a possible problem with contri- Common Cause. The combined effect of multiple sources of
bution plots (i.e., a fault in one variable is smeared to other variation that are inherent in a process. These causes define
variables for which it is highly correlated). the natural fluctuation of the process.

Methods based on data reconstruction naturally provide
Containment Control. The prevention of moving abnormalisolation. The variable most likely at fault is the one whose
or out-of-specification material to the next process or shippingresidual is biggest. Again note that correlation can result in
to the customersmearing (i.e., a faulty variable may produce a poor prediction
Control Chart. A graphical method for evaluating whetherin models for which it is heavily weighted giving a residual
a process is in a state of statistical control (The decisions arelarger than the residual for its own prediction).
made by comparing values of some statistical measure calcu-Methods for fault classification are beyond the scope of this
lated from the data with control limits.)article. However, many times, bright engineers and techni-

cians can guess the cause of the fault given the variables re- Control Limits. Lines on a control chart that serve as a ba-
sponsible for triggering an alarm. Determining the cause of sis for judging whether a set of values is in a state of statisti-
the fault is part of the corrective procedure of Fig. 2. Thus, cal control (These limits are calculated from process data.)
classification is also a necessary step in univariate SPC. Control System. A set of closed loop activities that provide

instructions to processes and detects and responds to nonex-
Summary of Steps to Create MSPC pected conditions

Corrective Action. Integral part of a control system thatAll the various aspects and options are listed in Table 8. The
responds to information generated by a monitoring systemtable shows the steps that must be addressed to produce ro-

bust and sensitive MSPC. Note that many of the same steps Customer Disruption. Any event caused by a supplier that
are needed for univariate SPC, although the issue of which interrupts the normal economic cycle of business (e.g., late or
variable to isolate in the fault is not an issue for univariate missed deliveries, customer production line fall outs, con-
SPC. For neural nets, the resulting required steps might be sumer recalls due to reliability failures)
quite different depending upon the output of the neural net. If Design of Experiments (DOE). The process of planning
the output is a go/no-go value, many of the steps are skipped. and analyzing experimental data to derive statistically valid
However, if the model’s output is a prediction of each vari- conclusions (The objective of the experiment is to discover the
able, then most steps apply. cause-and-effect relationship between control factors and re-

sponses.)

EDS. Energy dispersive spectroscopy, a type of X-ray analy-ACKNOWLEDGMENTS
sis used on SEMs to perform composition analysis of
particles/defectsThe concepts of control in depth and breadth to achieve fac-

tory control were developed by the TI Semiconductor Division Failure Analysis. The process to determine the failure mode
and mechanism of a product or process0.72 �m Factory Control Team.
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Failure Control. The process to detect, contain, analyze root NTRS. National Technology Roadmap for Semiconductors,
the roadmap, created by the Semiconductor Industry Associa-cause, and implement corrective actions to problems past the

concurrent control methods to prevent reoccurrence of the tion (SIA), that predicts what device technology will be in pro-
duction and what will be needed to allow manufacturing ofsame problem
devices is a cost-effective mannerFault Tree Analysis. The technique of ‘‘top-down’’ methodi-

cal analysis depicting the interrelationship between an unde- Out of Control. The condition describing a process from
which all the special causes of variation have not been elimi-sired system state and its subsystem states (It begins with

an assumed undesirable event at the top or system level and nated (This condition is evident on a control chart when a
point falls outside a control limit or a nonrandom pattern isidentifies the events at subsequent lower levels in the system

that can cause the undesirable top event.) produced.)
OOC. Out of control (i.e., to fail a SPC chart test), usuallyFDC. Fault detection and classification, used currently to re-

fer to monitoring and SPC using real-time equipment traces used as percent of all SPC charts in factory which have
‘‘alarmed’’ in a certain period of time (i.e., 3% OOC for all of(signals)
last weekFMEA. Failure mode and effects analysis, a structured pro-

cedure for identifying and minimizing effects of as many po- Outlier Control. Control methods that detect material that
is outside a predetermined distribution for one or more criti-tential failure modes as possible
cal parameters and that applies appropriate actions to correctHeteroscedasticity. Nonuniform variance (i.e., the vari-
the assignable cause responsible for the eventance of a variable is a function of the value of that variable

or conditions) Outlier Material. Material that is within specification but
outside a predetermined distribution for one or more criticalIn Control. The condition describing a process that is only
parametersbeing influenced by common causes.
Pareto Chart. The graphical depiction of data in bar chartISPM. In situ process monitor; traditionally had meant in
format that identifies the major contributors in an analysissitu particle monitor
Percent GRR. The percent of the specification tolerance con-Machine Capability. The measure of the ability of a ma-
sumed by the measurement system repeatability and repro-chine to meet specification limits with a controlled set of con-
ducibility variationsditions
Prevention Control. Actions or designed in system used toMeasurement Bias. The difference between the observed
prevent potential problemsaverage of measurements and the standard sample for which

the ‘‘true standard’’ value is known Process. A set of interrelated work activities that are char-
acterized by specific inputs and value-added tasks that pro-Measurement Linearity. The systematic differences in the
duce a set of specific outputsbias values of a measuring system throughout the expected

operating range of the gage Process Capability. The measure of process variation re-
sulting from common causes; has a spread of plus or minusMeasurement Repeatability. The variation of a measure-
three standard deviationsment system obtained by repeating measurements on the

same sample back-to-back using the same measurement con- Qualification. The methodologies to demonstrate the inher-
ent quality and reliability of the process or product that meetsditions
qualification objectives and customer requirementsMeasurement Reproducibility. The variation among the

averages of measurements made at different measurement Quality Function Deployment (QFD). A method for
translating user requirements into the appropriate technicalconditions (e.g., different operators, different environments,

and possibly different laboratories) requirements for each stage of marketing, product planning,
product design, manufacturing engineering, production, andMeasurement Stability. The total variation in the mea-
sales and servicesurements obtained with a measurement system on the same

master or parts when measuring a single characteristic over Reliability Monitor. A set of stresses and tests performed
on partial or fully assembled product to identify potential re-an extended time period
liability problemsMeasurement System. The process for gauging a parame-

ter (The inputs for this process are the gauge, the operator, Root Cause. The condition that is the origin or source of a
fault/failurespecification procedures, and management methods.)

Methods. Procedures, processes, techniques, or evaluations Run to Run (RtR) Control. Control by changing the recipe
as needed to keep the process output on target (See alsoused to monitor and control a particular aspect of a business

operation Model-Based Process Control.)
SEM. Scanning Electron Microscope, used both for criticalMetrology. Measurement science and the application of

measurement science dimension measurement as well as a high-resolution micro-
scope with chemical analysis capabilityModel-Based Process Control (MBPC). A specific form of

feedback/feedforward control using process models (See Run Shewhart Chart. Most common SPC chart
to Run Control.) Special Cause. The variation that is not inherent in a pro-

cess (It is a source of intermittent variation that is unpredict-Multivariate. Statistics with more than one variable
able or unstable.)Normal Distribution. A bell-shaped curve that extends in-

definitely in both directions (It also may be referred to as SRAM. Static random access memory, type of memory chip
and also used to perform bit mappingGaussian.)
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