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more important because they provide real-time feedback
to the equipment/process control and also obviate further
processing of the wafer if faults are detected.

• Third, the in-line measurement data obtained after com-
pleting a process step, such as the thickness of a film
after deposition or the uniformity of a process profile
after etching. During a short-loop process involving one
or more pieces of equipment or multichamber equipment,
in-line measurement data can clearly indicate the health
of the process. They can also be used to correlate to the
in situ monitoring data.

• Finally, the wafer probe or functional test data, which
provide the final check point for the success of the pro-
cessing. Electrical/functional testing can easily include
tens of tests (IDDQ, open–short, etc.), which, when corre-
lated with in-line measurement data, can help identify
which process step caused the failure of the test(s).

Other sources of information, such as spot defect density and
layout density, are also important in helping diagnose theDIAGNOSIS OF SEMICONDUCTOR PROCESSES
process.

This article focuses on the working algorithms and existingIn very deep-submicron semiconductor manufacturing
systems for equipment/process monitoring and diagnosis dur-(VDSM) technologies (i.e., 0.18 �m or below), the cost of set-
ing ramp-up and manufacturing. The disciplines involved in-ting up a fabrication facility is about 3 to 4 billion dollars, and
clude statistical process control techniques, expert systems,the equipment cost for each stage is easily a million dollars
reasoning methods, neural networks, web/Java technologies,or more. According to one study (1), if the production of an
networking, distributed systems, quantitive process/equip-Intel Pentium chip were delayed by four months in 1997, it
ment/device modeling, and semiconductor manufacturing.would cost Intel about 400 million dollars. In other words, if

General methods for process diagnosis and yield improve-a one-day delay were caused by a malfunction in any one of
ment in semiconductor manufacturing are selectively illus-hundreds of pieces of processing equipment (process flow
trated in the next section. The section after describes tech-should have been fully functioning during the pilot fabrication
niques used in monitoring and diagnosis for the unit processphase and have had no problem during manufacturing), the
step and equipment levels in several systems. It is followedcost for the malfunction would be about 3.3 million dollars on
by a summary of the algorithms and systems used in monitor-average. Therefore, timely diagnostic capability for equip-
ing and diagnosis of the process flow level during ramp-upment/process malfunction during manufacturing is required.
and manufacturing. Finally, conclusions and future work areProcess diagnosis is important not only during mass manu-
outlined.facturing, but also in the ramp-up phase of the manufacturing

line (2). However, during the ramp-up phase, little manufac-
turing information or equipment/process diagnosis history is

GENERAL METHODS FOR YIELD IMPROVEMENTknown; therefore the key during this phase is the modeling
IN SEMICONDUCTOR MANUFACTURINGand simulation of the equipment/process and development of

predictive models for mass manufacturing. The resulting
models can therefore be used for diagnosis during mass man- In this section, we overview the general methods for yield di-
ufacturing. agnosis in semiconductor manufacturing. In semiconductor

Semiconductor processing of a functional chip usually con- manufacturing terms, the die yield is the fraction of dies on
sists of several hundreds of steps and can be divided into five the yielding wafers that is not discarded before reaching as-
distinct operations: wafer preparation, wafer processing, wa- sembly and final test (3). There may be further classification
fer probe test, packaging, and final test. Wafer processing is of performance bands with respect to the functional dies. The
usually considered the most important step for yield improve- following list includes the ones we think important for today’s
ment. Therefore, most monitoring and diagnosis focuses on very deep-submicron semiconductor manufacturing technolo-
the wafer processing stage. In this stage, four sources of infor- gies. The list is by no means complete and is in random
mation can be obtained for diagnostic purposes: order.

• First, the equipment maintenance history, which con-
Correlation between Defect Localizationtains the preventive maintenance and repair records that
and In-Line Wafer Inspectioncan help correctly diagnose malfunctioning equipment.
Defect localization can be obtained from functional testing,• Second, the in situ monitoring data, which are read di-
such as Boolean, scan, or IDDQ. This correlation used to berectly from the embedded sensors or gauges that are con-
rarely made in practice, but it is getting more and more im-nected to the equipment, such as pressure, gas flow, and

temperature sensors. These data are becoming more and portant.
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Correlation between Defect Sensitivity Contribution of Process Variation to Interconnect Performance
and Integrated Circuit Layout

The process variation directly affects the variations in multi-
level interconnect geometry. This in turn directly affects theAlthough defect sizes are decreasing as clean-room technology

and equipment contamination control techniques improve, performance of the circuit, due to the different delay charac-
teristics caused by the variation in the interconnect. Since in-the sizes of device/interconnect features are decreasing

equally rapidly. The effects of defect size and spot defect loca- terconnect delay dominates the total delay for a global route
signal in very deep-submicron technologies, more attentiontions on functioning of the chip have a lot to do with the lay-

out. The denser the features on the layout, the more suscepti- should be paid to the modeling, simulation, monitoring, and
control of the processes, such as the CMP (chemical mechani-ble the circuit is to defects. This subject has been covered in

Refs. 4–6. cal polishing) process, that have direct influence on the varia-
tion in interconnects.

Statistical Monitoring, Diagnosis,
and Control of Equipment/Process Use of Short-loop Electrical Measurements

for Yield ImprovementA major force behind the evolution of statistical process moni-
toring, diagnosis, and control is the recent availability of au- Short-loop electrical metrology can be used to carefully char-
tomated in situ data collection and real time data processing acterize and decouple wafer-level variability of critical pro-
capabilities. This is one of the major subjects covered in this cessing steps (9). This technique, if widely applied to all criti-
article. cal processing steps, can help reduce the systematic variation

from processes and therefore increase the process error
Minimization of Die-to-Die Variation, Wafer-to-Wafer margin.
Variation, and Lot-to-Lot Variation

This information highlights different aspects of how controlla-
MONITORING AND DIAGNOSIS AT THEble a process is. Modeling and simulation of these variations
UNIT PROCESS AND EQUIPMENT LEVELhave been carried out in Refs. 2 and 7.

IntroductionSimultaneous Correlation between Defect, Testing, and Layout
During the manufacturing phase of a process, the process flowFrom data obtained from a functional test (a test that does
is fixed and must have few problems. Low yield or low perfor-not stop when a fault is discovered), one can identify the loca-
mance in the circuit may be due to spot defects from contami-tion of a fault. From in-line wafer monitoring data, one has
nation, malfunction, or drift, or recalibration in the equip-information on where the defects land and what their shapes
ment level may be needed. Traditionally, in-line measure-are. From layout information, one knows the probability that
ments have been used to diagnose the failures or drift in thea fault will occur. By correlating these three data, one should
unit process/equipment. However, with the advent of distrib-have a fairly clear picture of how a defect grows (in-line wafer
uted measurement technology, more in situ measurementsinspection in different steps reveals the growth history of the
are taken to help monitor the health of the equipment. Thedefects), how killing defects are formed from layout and defect
systems described below exploit both in situ and in-line mea-localization, how effective the functional test is, etc. Much
surement data to monitor and diagnose using different diag-more work is needed on identifying defects directly from func-
nostic algorithms.tional tests. This in turn can save a lot of money spent in

layer-by-layer stripping for wafer failure analysis. Each wafer
Integrated Monitoring and Diagnosis using Evidential Theorystripping can cost about $10,000.

The Berkeley computer-aided manufacturing system (10) uses
Correlation between Contamination and Faults in-line, maintenance, and real time monitoring data that are

collected and stored in an integrated relational database. SixMonitoring the contamination history can possibly map to
functions that contribute to the profitable operation of manu-faults.
facturing equipment have been identified and implemented:
real time monitoring, statistical process control (SPC), equip-Equipment Drift Detection given Functional-Test Data
ment maintenance record keeping, fault diagnosis, the effi-

Since wafers may traverse different pieces of equipment in cient development of new recipes, and the development and
the process, one needs to correlate the functional-test data maintenance of equipment models. Among these, the BCAM
with the path a wafer takes. Using this correlation, drifting (Berkeley computer-aided manufacturing) diagnostic system
equipment can be identified. Of course, another way is to have supports both qualitative and quantitative information for
a better equipment monitoring system. diagnosis based on the Demster–Shafer model for fault in-

ference (11,12). This method provides for consistent and un-
Contribution of Process Variation to Device Characteristics

ambiguous evidence combination. This is accomplished by
combining evidence originating from equipment maintenanceDevice characteristics should be modeled to reflect the statis-

tical variation in a process. If the measured device character- records, from real time equipment data, and from measure-
ments on the finished process step. Using this information,istics do not match the predicted ones, one may be able to

locate the process step that caused the problem using simula- the causes of equipment malfunctions are inferred through
the resolution of qualitative and quantitative constraints. Thetion. The simulation package pdDiagnosis from PDF Inc. (8)

provides such a capability. qualitative constraints describe the normal operation of the
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Figure 1. The three stages of diagnosis for low-pres-
sure chemical vapor deposition (LPCVD) reactors.

equipment. The quantitative constraints are numerical mod- records of the reactor. During the deposition, sensor readings
are interpreted and the belief of the various faults is plottedels that apply to the manufacturing step in question. These

models are specifically created and characterized through ex- in real time. Finally, after the in-line wafer measurements,
the final beliefs are displayed on the right side of the sameperimentation and statistical analysis. The violation of these

constraints is linked to the evaluation of continuous belief diagram. For the example in Fig. 2, the system first conducted
maintenance diagnosis and found that there was a slightfunctions for the calculation of the belief associated with the

various types of failure. The belief functions encapsulate the chance for excessive deposition during the next run. The sys-
tem reached this conclusion by analyzing the tube cleaningexperience of many equipment maintenance specialists, real-

time in situ data monitoring via SPC, and the deviation of in- history. Since the belief given to this problem was small (0.13
on the scale from 0 to 1), no action was taken, and the pro-line measurement from semiphysical equipment models. Once

created, the belief functions can be fine-tuned automatically, cess continued.
At the start of deposition, the system examined the timedrawing from historical maintenance and diagnosis records.

These records are stored in symbolic form in order to facilitate needed to reach a stable deposition temperature. This was
found to be longer than usual and contributed to the beliefthis task.

The three stages of diagnosis for low-pressure chemical va- associated with the following faults: thermocouple out of cali-
bration and temperature-controller problem. During deposi-por deposition (LPCVD) reactors are shown in Fig. 1. Figure

2 shows the output of an example that uses this method to tion, however, the pressure readings were consistently higher
than expected. So the belief in the pressure-controller prob-detect an emerging pressure controller problem in the reactor.

On the left side of this graph we start with the beliefs associ- lem quickly reached a high value (0.76), overshadowing all
other faults. Finally, after the wafer measurements, some be-ated with the various faults after examining the maintenance

Figure 2. Existing pressure-controller problem. Belief in top
faults is shown for the maintenance, real time, and in-line di-
agnostic stages from a process run on an LPCVD reactor.
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Some commercial vendors, such as Verity Instruments,
Inc., have developed neural-network-based tools for plasma
etch endpoint detection, which at present is often done by op-
erators. The endpoint is the point at which one would like to
shut off the plasma when the etch of a layer is finished. It is
known that if the shutoff time is not controlled well, the wafer
may be underetched or overetched. Neither of these condi-
tions is acceptable. Verity’s tool has a graphical user interface
(GUI) that selects normal samples for training on neural net-
works and then uses the network to detect the endpoint. Ver-
ity claims a 99.5% success rate.

Another successful commercial application of neural net-
work technology is in detecting meaningful wafer bin patterns
from electrical test parameter systems and defect databases,
and then correlating these patterns with process equipment.
NEDA of DYM Inc. features NeuralNet�, a custom-designed,
class-sensitive neural network engine that learns a fabrica-
tion’s specific bin patterns and then correlates similar pat-
terns on production wafers with various in-fabrication pro-
cesses, thereby suggesting a corrective course of action (18).

Other techniques, such as directed-graph classifier (19) or
Figure 3. FFEBP neural network, showing input, hidden, and out- ID3 (20) (a class of classification algorithms), can be used to
put layers. detect the malfunctioning wafer-test patterns. These sets of

techniques classify the failure patterns for incoming wafers
on a wafer map and look for similarity of patterns for diagnos-

lief was assigned to thermocouple out of calibration, while the ing problems automatically. Using the processing history, a
pressure-controller problem stayed at the top of the ranked correlation can be established between the failure patterns
fault list. These inferences were later verified by the mainte- and possible process/equipment faults.
nance technician.

Similarly, this method has successfully been applied to Application of Fuzzy Logic in Equipment Diagnosis
plasma etching diagnosis (13).

Fuzzy logic is quite popular in diagnostics and control appli-
cations (21,22). In essence, fuzzy logic transforms a quantita-Application of Neural Networks in Equipment Diagnosis
tive space into a qualitative one, which facilitates the fuzzy

Neural networks have been studied for quite some time, but reasoning method. For example, a temperature between �12	
not until recently have they been successfully applied to the and �1	C can be classified as ‘‘very low,’’ with a membership
modeling of semiconductor fabrication processes, such as function u assigned to the range. The rest of the assignments
plasma etching and LPCVD (14–17). In these applications, are shown in Fig. 4. With other relevant parameters similarly
neural networks have been shown to exhibit improved accu- expressed in terms of fuzzy membership, a set of fuzzy rules
racy, compared with statistical approaches to modeling the (22) can then be applied to derive the outcome. This approach
highly nonlinear behavior of the processes in question. The avoids defining infinite combinations of expert system rules in
neural network architecture is determined by the number of a quantitative space, thereby producing humanlike reasoning
layers and the number of neurons per layer. In general, the such as is used in parking a car (21).
numbers of input- and output-layer neurons is uniquely de- In Ref. 23, a self-learning fuzzy logic system was developed
termined by the number of process inputs and responses in for in situ and in-process diagnosis of a mass flow controller
the modeling application (14). The trick to building a good (MFC) that controlled the flow of gas into a process chamber.
neural network application depends on the selection of the Mainly, the unacceptable drift in its calibration was diag-
optimal number of hidden-layer neurons based on the criteria
of learning capability, prediction (or generalization) capabil-
ity, and convergence speed. A popular neural network train-
ing algorithm applied in semiconductor process diagnosis is
the feedforward, error backpropagation (FFEBP) algorithm
(Fig. 3), for which the important design parameters are learn-
ing rate, initial weight range, momentum, and training tol-
erance.

For example, in Ref. 16, the goal is to design an optimal
neural network for a specific semiconductor manufacturing
problem: modeling the etch rate of polysilicon in a CCl4-based
plasma under the variation of chamber pressure, RF power,
electrode spacing, and gas composition. The effects of network
structure and FFEBP learning parameters, as mentioned
above, were optimized by means of an efficient statistical de- Figure 4. Description of temperature in a fuzzy membership

mapping.sign-of-experiment technique (i.e., D-optimal design).
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nosed, and accordingly, an automated calibration procedure lates one of the most basic assumptions underlying the design
of standard SPC schemes, namely, that all samples are IINDwas invoked before processing any wafer. Malfunctioning

arising out of catastrophic failure was also addressed. Fuzzy random variables. In order to cope with this problem, the
monitored parameter might be modeled by means of an ap-logic was used in the diagnostic system to detect the problem

while a self-learning system automatically built the knowl- propriate time series model. Time series models, such as the
well-known autoregressive integrated moving average (AR-edge base consisting of fuzzy rules used for diagnosis.
IMA), can be used to forecast each measurement and deduce
the forecast error (28). This error can then be assumed to beDetecting Faults using Real Time Statistical
an independently distributed random variable, and it can beProcess Control on Plasma Etching
used with traditional SPC schemes. The other problem during

Plasma etch is considered a very important step in integrated real time monitoring of multiple parameters with equipment
circuit (IC) processing because the density of the IC depends such as plasma etcher is that these parameters (or residuals
on how fine a pattern one can etch. Therefore, there has been of these parameters after ARIMA modeling) are cross-corre-
a lot of interest in better control of plasma etch processing lated. If we look at a number of independent control charts
and diagnosis. of these parameters, the overall risk due to cross-correlation

The recent trend in plasma etch diagnosis is to install cannot be correctly evaluated.
more in situ sensors for monitoring. These may include opti- A good multivariate scheme that alerts the operator to
cal emission spectrum (OES) tools for chemical process emis- changes in the mean vector or the covariance matrix of a
sion; quadrupole mass spectrum analyzers for gas analysis; group of controlled parameters is the Hotelling’s T 2 statistic.
residual gas analyzers for residual chemical component anal- This statistic is sensitive to the collective deviations of a num-
ysis; and monitoring for RF, pressure, temperature, flow, etc. ber of cross-correlated IIND parameters from their respective
So, for a typical plasma etcher, there can be from 15 to 25 targets. In practice, the T 2 statistic presents a far clearer pic-
waveforms (including spectra) one can monitor. The problem ture of the process status and is much less likely to introduce
is how to determine faults by looking at these waveforms si- false alarms. Data streams include pressure (P), ratio (R),
multaneously in real time. power (W), gap (G), total flow (T), and/or OES. This approach

Traditional SPC is based on the application of either has successfully been applied in a couple of real world plasma
Shewhart or cumulative sum (CUSUM) charts. Shewhart etchers. The reason to use Hotelling’s T 2 technique is that
charts can monitor large shifts efficiently, while CUSUM using SPC for each waveform may cause too many false
charts are more applicable when small continuous drifts are alarms, which makes waveform correlation difficult. Ho-
present (24,25). However, these techniques look at only one telling’s T 2 approach can be tuned to different sensitivities for
parameter at a time and also assume that the parameters each faulty waveform pattern to reduce false alarms. How-
are not cross-correlated and are independently and identically ever, the problem is that Hotelling’s T 2 can only signal the
normally distributed (IIND). Under the IIND assumption, the existence of a fault, not point to a specific cause. This is still
arithmetic average can be shown to be distributed according an active research topic.
to another known distribution given as

Factorywide Monitoring and Diagnosis

To make effective the diagnostic techniques discussed in thex ∼ N
(

µ,
σ 2

n

)
(1)

previous sections, there is a need for a distributed factory-
wide equipment/process monitoring system that provideswhere � is the mean and � is the standard deviation of one
data collection, management, and analysis. The followingparameter. However, during real time monitoring of in situ
functionalities have been identified for such a system (29):parameters in plasma etcher, these parameters are typically

cross-correlated and non-IIND. One effective approach to de-
• Automated in situ (i.e. sensor) data acquisition from pro-tecting faults by monitoring these parameters, called real

cess equipment in real timetime SPC, was developed at the University of California at
• Real time distributed and remote data display, if desiredBerkeley. They achieved great success in applying this

method to plasma etcher (26,27). Their approach is shown in • Performance of SPC, real time SPC, or real time fault
Fig. 5 and is described below. classification on the data

During the rapid and continuous monitoring of in situ pa- • Disabling of the machine upon alarm (alarm manage-
rameters, a problem often arises that each new value tends ment)
to be statistically related to previously measured values. The

• Data analysis and interpretation
existence of autocorrelation in the controlled parameters vio-

• Central management of factory-wide process data
• Performance of arbitrary correlations across the process,

such as correlation to test, WIP, or parametric data
• Display of real time data from real time database, with

storage of essential information in relational database
• Building of causal models (such as FMEA) across the

process based on the data
• Maintenance of 2000� charts across a typical fabrication
• Keeping track of alarm explanations given by operators

and engineersFigure 5. Summary of the real time SPC scheme.
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• Provision of a versatile I/O-to-equipment interface, such AESOP System Overview. The goal of the AESOP system is
to automatically diagnose process problems on the basis of theas a scan-module-to-SECSII-protocol interface, which

most process equipment has readily available end-of-line electrical test (e-test) data used
extensively in semiconductor manufacturing. These e-test• Ease of application of various diagnostic algorithms (di-
data contain measurements on specially designed electricalagnostic tool box) for monitoring the data in question
test structures.• Provision of feedforward and feedback control based on

The AESOP system is developed in three stages: knowl-the real time monitoring (can be done after the above
edge generation, knowledge representation, and diagnosticare done)
reasoning. The development is done in a expert system engi-
neering environment called HyperClass.The functionality listed above is generally missing from

the fabrication, but is becoming more and more important for
AESOP Knowledge Generation. AESOP’s general methodol-rapid yield learning and process/equipment diagnosis. Pro-

ogy for generating a process diagnostic knowledge base hascess faults need to be detected as early as possible. The time
been applied to a 2-�m CMOS process at Stanford University.of final testing is too late. In this way, the testing data can
The prototype AESOP system restricts its knowledge base toalso be correlated to real time process sensor data. Current
basic transistor data only. The process variables used in thesystems with some of the functionalities listed above include
knowledge base are the effective channel length (Leff), p-sub-MonitorPRO 97 and ControlPRO 97 from Real-time Perfor-
strate concentration, n-well ion implant dose, and gate oxidemance Inc., and a distributed measurement and control plat-
thickness. Each of these four parameters is varied over aform called Vantera from Hewlett-Packard.
range of fixed values or percentages of its nominal value. The
selected electrical measurements included in the knowledge
base are extrapolated threshold voltage (VT), maximum trans-MONITORING/DIAGNOSIS AT THE PROCESS FLOW LEVEL
conductance (Gm), saturation current (IDSAT), an intermedi-
ate 3 V gate voltage current (IDS35), and the subthresholdWhile the current practice is to use equipment-level monitor-
currents at a voltage of 0.4 V for both n and p long-channeling whenever possible for early process diagnosis, in-line and
and minimum-length transistors.end-of-line physical and electrical measurements are being

TCAD process and device simulation tools are used to cap-used within the process flow as monitors for process diag-
ture the physical relationships between the process deviationsnosis.
and the resultant electrical measurements on the test struc-Three computer systems that provide process diagnosis at
tures. AESOP is one of the first diagnostic systems that gen-the process flow level are described in detail below. The char-
erated its knowledge base using quantitative physical processacteristics of these systems are:
and device simulators. The simulator SUPREM III is used for
process simulation. SUPREM III is a one-dimensional (1-D)• the use of technology computer-aided design (TCAD) pro-
process simulator that provides the necessary doping concen-cess and device simulation tools in order to correlate pro-
tration profiles for the device simulator PISCES IIB. PISCEScess parameters and in-line physical and end-of-line elec-
IIB is a two-dimensional (2-D) device simulator developed fortrical measurements (TCAD simulators provide the
the selected e-test measurements described above.physical models that describe the process and devices)

Given the complexity of the process and device simulators,• the use of expert systems, statistical methods, and/or
a very long simulation time is required to fully characterizeneural network techniques to facilitate process diagnosis,
the entire CMOS process flow. As a result, special analyticalespecially when the physical simulators cannot fully
response surface models (RSMs), which correlate the processmodel the actual process
variables directly to the end-of-line electrical test measure-
ments of the devices, are built. Statistical design of experi-With much information correlated at the process flow level,
ment (DOE) technique (32) is used to pick the simulation runsthese systems are especially useful during early process yield
efficiently in order to construct these RSMs. A standard frac-learning, such as determining unstable unit processes or
tional factorial experimental matrix, which contains rowsequipment. However, compared with equipment-level moni-
with the appropriate simulation levels for the input processtoring/diagnosis, significant time delays can occur if problems
variables, is generated. The experimental matrix is aug-are left undetected and are not diagnosed until end-of-line
mented with additional simulation levels at twice the variablemeasurements.
settings, as well as settings that accommodate quadratic
terms in the RSMs. For each row in the experimental matrix,

The Expert System Approach
a SUPREM process simulation run is performed. Four rele-
vant regions (pn gates and source–drain regions) of theExpert systems, also known as knowledge-based (KB) sys-

tems, were developed as an early attempt to provide diagnosis CMOS transistor are simulated by SUPREM. Simulated dop-
ing profiles based on the input process variables are thenat the process flow level. Whereas the early systems usually

employed more heuristic artificial intelligence (AI) qualitative used by PISCES to compute the e-test measurements under
the several bias conditions described above.techniques (30), later systems have integrated quantitive

physics-based process/device models with qualitative knowl- The resulting RSMs are quadratic regression models.
These models provide the direct cause-and-effect relation-edge. AESOP (31), developed at Stanford University, is such

an integrated system. This system, which has been success- ships between the process variables and the final e-test mea-
surements. In addition, these analytical models allow charac-fully transferred and deployed in an industrial environment,

is described in the following sections. terization of the process flow to be performed easily, due to
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the short computation time as compared with the full process/
device simulators.

The last step in the knowledge generation methodology in-
volves the use of RSMs to characterize the process excursions
in the process flow. Given the format of the system knowledge
representation, the quantitative results of running the RSMs
have to convert into qualitative relationships. For example, a
low value of oxidation time will give a low value of oxide
thickness. To convert the quantitative relationships to the in-
ternal qualitative representations, various very low, low, nom-
inal, high, and very high values are chosen appropriately for
the input process variables. For example, a high description
was 12.5% of the nominal implant dose, and a very high de-
scription is twice the high value. Similarly, windows are also
chosen for the qualitative descriptors for the e-test measure-
ments. Once the rules for the qualitative descriptors are de-
termined for both the process variables and e-test measure-
ments, Monte Carlo simulations are then performed, based on

Figure 6. Fault taxonomy: fault concept and causal links.the RSMs. The causal relationships that represent the specific
process flow is then constructed after converting the quantita-
tive RSM simulation results into qualitative descriptors.

A qualitative attribute, association strength, is used to
‘‘measure’’ the causal correlation between fault concepts. ThisAESOP Knowledge Representation. Process diagnostic
attribute has five qualitative levels: must, very likely, likely,knowledge in AESOP is based upon the knowledge of a typi-
probably, maybe.cal semiconductor process engineer. Many primitive units for

Two types of causal links are possible:two basic categories—fault concept and causal link—make up
the AESOP knowledge base. These primitive units are mod-

• Interlevel causal links represent causality between faulteled as software objects in the object-oriented (OO) environ-
concepts in two consecutive causal levels. This type ofment HyperPIES. Each of these objects has attributes that
causal link captures most of the relationships for processdescribe the object properties.
diagnosis. For example, a long oxidation time at the pro-Fault Concepts. In AESOP, a fault refers to an anomalous
cess fault level causes a thick gate oxide at the physicalprocess condition induced by failures/problems within the
fault level.semiconductor process. For example, the process fault of very

thin gate oxide can be caused by a failure/problem in the oxi- • Intralevel causal links represent causality between fault
dation step. concepts in the same causal levels. This type of causal

Faults are represented by a fault concept object in the link captures the more detailed relationships within the
AESOP OO environment. Faults are organized according to same causal level. For example, an n-well implant pro-
semiconductor knowledge into four related conceptual levels cess fault can cause both low substrate concentration and
called causal levels: high well concentration.

• Root Fault. The root faults usually happen at the equip- User Interface. In order to facilitate knowledge creation
ment level, human and/or environment levels. and maintenance by the process engineers themselves, easy-

to-use user interfaces were developed for AESOP. Specifically,• Process Fault. Root faults manifest themselves as pro-
two kinds of knowledge editors are used:cess faults. One example of a process fault is an out-of-

control oxidation temperature due to a furnace tempera-
ture control problem. 1. Fault Concept Editor. This editor allows users to add or

delete new fault concepts, as well as their respective• Physical Fault. Process faults manifest themselves as
cause-and-effect lists.physical faults on the wafer. For example, a high oxida-

tion temperature results in a thick oxide. 2. Causal Link Editor. This editor allows users to define
the cause, causal level, effect, effect level, link type, as-• Measurement Fault. Physical faults on wafer device
sociation strength, etc. for the causal links.structures manifest themselves as test measurement

faults, where the electrical or physical device measure-
ments have abnormal results. AESOP Diagnostic Reasoning. AESOP uses a backward

chaining (33) strategy for process diagnosis. The diagnosis
starts from the measurement fault level and ends in the rootA full configuration of these causal levels is known as a
fault level:fault taxonomy in AESOP, as shown in Fig. 6.

Causal Links. Causality, represented as causal links, de-
scribes the cause-and-effect relationships between the fault 1. Measurement Fault. The user selects measurement

data sets for analysis. Electrical measurement devia-objects in the fault taxonomy. The casual links are mapped
into causal link objects within the AESOP HyperPIES devel- tions serve as initial symptoms to infer device physical

faults.opment environment.
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2. Physical Fault. Physical structure deviations are used System Overview. The statistically based process diagnosis
system (2) described here was developed in the early 1990s atto hypothesize potential process faults.
CMU by Kibarian et al. This system is novel in its combina-3. Process Fault. A set of likely process anomalies are
tion of powerful statistical techniques and numerical simula-then used to search for the root causes.
tors. Like AESOP, the system performs diagnosis at the pro-4. Root Fault. Root faults are then identified for the diag-
cess step level. The system was developed in the followingnosis.
stages:

A strategy of hypothesis and verification is used to isolate fail-
• Feature Selection. Principal component analysis (PCA),ures at each causal level:

a direct statistical method of data analysis, is used to
extract specific features from the raw measurement data.1. At each causal level, a set of initial symptoms is identi-
This step also reduces the dimension of the measurementfied, based on either the test data or the diagnostic rea-
data. This step has two substeps: computation of eigen-soning from the previous causal level.
values and eigenvectors from the measurement correla-

2. During the hypothesis phase, the candidates that pos- tion matrix, and dimension reduction.
sess the strongest correlations to the symptoms are

• Feature Interpretation. The interpretation step consistsidentified.
of two major substeps:

3. During the verification phase, the candidates are then
1. Process Sensitivity Analysis. TCAD simulators werematched against the expected symptoms in the knowl-

used to provide the process sensitivity information, es-edge base.
pecially when historical data were lacking. The pro-

4. The candidates are then sorted and clustered according cess sensitivity information is expressed as sensitivity
to their matching scores. The cluster with the best vectors, which are used in the feature matching
matching score is then passed to the lower causal level. phase. This is similar to the AESOP knowledge repre-
The reasoning process is repeated until the root cause sentation stage.
for the symptom(s) is diagnosed.

2. Feature Matching. The diagnostic reasoning stage is
performed here. The system tries to match the se-Result and Summary. An expert system, AESOP, for semi-
lected features (eigenvectors) from the measurementconductor process manufacturing has been described. The
data with the sensitivity vectors from the simulations.system was developed in three stages: knowledge generation,
Once a match or multiple matches are found, the un-knowledge representation, and diagnostic reasoning. The
derlying process steps that caused the process prob-knowledge base was generated with the use of TCAD process/
lems can be identified. Using this technique, the CMUdevice simulators, whose simulation values were determined
system can handle multiple faults.through the use of statistical design of experiment (DOE).

Both qualitative and quantitative knowledge are represented
A flowchart outlining the process diagnostic steps is shown inin a fault taxonomy with causality links and fault concept
Fig. 7.objects. The diagnostic reasoning was done using backward

The CMU system is developed with the capability to diag-chaining and the hypothesis-and-verification approach.
nose intrawafer process problems, which are becoming domi-At the time of publication (31) AESOP was able to diag-
nant in those process technologies using larger wafer sizes.nose single-fault test cases successfully. These test cases were

artificially generated using the RSMs described in the previ-
ous subsections. The AESOP system was later extended and
deployed in a major semiconductor manufacturing company,
where it successfully diagnosed real life manufacturing
problems.

However, diagnosing multiple faults, e.g. when both gate
oxide and channel length exceed their normal ranges, still
presents a challenge to the AESOP system.

Statistical-Based Systems

With a better understanding of the process technologies, as
well as improved TCAD numerical process/device simulators,
quantitative-based process diagnosis systems were developed.
These systems combined statistical techniques with informa-
tion from the process/device models to perform the automated
diagnosis. As a result, the approaches are more systematic
and rigorous, with better diagnostic results, than the qualita-
tive heuristic approaches used in AI expert systems.

A very successful statistical-based system (2) from Carne-
gie-Mellon University (CMU) is described below. This system
was later commercialized as PDFAB, a product of PDF Solu-
tions, which is now widely used in the industry. Figure 7. CMU process diagnostic flow.
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Feature Selection. As many different electrical and physical structed with TCAD numerical process/device simulators.
The TCAD simulators provide a mapping from the settings ofmeasurements are taken from the devices on the processed

wafers, the number of measurement data can become very process variables (also known as disturbances) to the device
measurements (also known as performances):large. In order to reduce the dimension of the data analysis,

as well as to extract the salient features of the data set, the
PCA technique is used in the CMU system. PPP = FFF(DDD)

The feature selection involves the following steps:
where P is the vector of measured performances, F( ) is theComputation of the Correlation Matrix. Many different phys-
vector function that maps process variables to measured per-ical and electrical measurements are taken for the device
formances, and D is the vector of process variables.chips on silicon wafers. These measurements indicate the

From this relationship, the means, variances, covariances,physical/electrical performance of the processed device chips
and correlation matrix of the measured performances can beon the silicon wafers. All these measurements are statistically
computed. Since the relationship above is not in closed ana-correlated, since they all relate to the same common set of
lytical form, numerical simulations are needed to perturb theunderlying process variables (or conditions). As a result, a
process variables; then the sensitivities of the device perfor-correlation matrix can be computed from the measurement
mances are estimated with respect to the process variables.samples. In the CMU system, the matrix is computed using

Based on further derivations using Taylor series approxi-the maximum likelihood estimate of pairwise correlation.
mations, the correlation matrix Rp can be computed using thePrincipal Component Analysis. Once the correlation matrix
simulation data:is computed, eigenvectors and their associated eigenvalues an

be computed as follows:
Rp = LPSTBD−1�D D−1BSPL

R = ATLA
where L is the diagonal scaling matrix with 1/�i on the diago-
nal, in which �i is the standard deviation of the measuredwhere R is the correlation matrix, A is the matrix of eigenvec-
performance i; P is the matrix with the nominal values of thetors, and L is the diagonal matrix of eigenvalues. The PCA
performances on the diagonal; S is a sensitivity matrix scaledyields a set of independent latent variables described by the
so that the rows are of unit length; B is a diagonal matrix ineigenvectors. These latent variables are functions of the origi-
which the ith diagonal element equals ��m

j�1J2
ij, where J isnal independent process variables. Note that PCA is a direct

the Jacobian matrix evaluated at the nominal values of thedata analysis technique to which a priori knowledge of the
process variables; D is the diagonal matrix with the nominalprocess relationships is not required.
values of the process variables on the diagonal; and �D is theThe associated eigenvalue for each eigenvector represents
diagonal matrix of the process-variable variances.the sum of percentages for the variances of each kind of mea-

Note that the correlation matrix derived has a structuresurement (i.e., performance) that is accounted for by the cor-
similar to the Rp derived from the PCA. Specifically, the sensi-responding eigenvector.
tivity matrix S is scaled so that the rows are of unit length.Feature Reduction. Once the independent set of eigenvec-
Based on this special property of the sensitivity matrix, thetors and their values are determined, another filtering step is
process/device simulators do not have to be tuned to have theperformed to yield the minimum set of data features to be
exact same variances as the actual manufacturing process. Inused for process diagnosis. This minimum set of features is
addition, the matrix S can be used as a matching targetdefined to be the set that contributes a certain amount (e.g.,
against the eigenvector matrix derived from the measurement95%) of the total variance of each performance measured. The
data PCA. In essence, the knowledge required for process di-problem of determining the minimum set can be cast as an
agnosis is encoded in this matrix S.integer linear programming problem:

Feature Matching. As described above, the correlation ma-
trix Rp can be derived both from the sample measured perfor-
mance through the PCA and from the linearized model that

min
φ

n∑
i=1

φi

maps the process variables (disturbances) to the device per-
formances. Based on further matrix manipulations, the lin-subject to A�L0.5 � �, where A is a matrix in which each row
early independent features represented by the eigenvectorsis a sample eigenvector; �i has the value of 1 if the ith feature
can be extracted from the PCA. Likewise, the linearly inde-is significant, 0 otherwise; � is a diagonal matrix with the �i
pendent sensitivity vectors representing the effects of processon the diagonal; L0.5 is a vector of the square roots of the sam-
disturbances on the device performances can be extractedple eigenvalues; and � is the desired percentage of the total
from the process sensitivity analysis.variance contributed by the minimum set.

A feature is characterized by its eigenvectors and eigen-
values:Feature Interpretation. Once the important features are ex-

tracted from the measurements, the next step is to interpret
fi : li, eithe extracted features with respect to the specific process

technology used to manufacture the devices. The two steps for
where f i is the ith feature, li are its eigenvalues, and ei are itsfeature interpretation are:
eigenvectors. A disturbance is characterized by its sensitivityProcess Sensitivity Analysis. Before the extracted measure-
vector:ment feature can be interpreted, a knowledge base of the spe-

cific manufacturing process technology must be constructed.
As in the case of AESOP, such a knowledge base is con- dj : nj
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where dj is the jth disturbance, and nj is the sensitivity vector
of the performances to the jth disturbance.

Given that the features are linearly independent, their ei-
genvectors can be matched one at a time against the unit-
length sensitivity vectors. The matching is done by taking the
appropriate inner product between the feature and sensitivity
vectors. A match occurs when the inner product is larger than
a preset number, as determined by the hypothesis-testing
confidence interval. Once a match occurs between a feature
and a sensitivity vector representing the particular process
variable or disturbance, the process variable or disturbance is
a possible explanation for the process variation feature.

Result and Summary. A statistically based process diagnosis
system from CMU has been described. The diagnosis was
done in two stages—feature selection and feature interpreta-

Figure 8. Neural network system data flow.tion—using powerful statistical techniques and process/de-
vice simulators. Feature selection was done using PCA to ex-
tract specific features from the raw measurement data and
to reduce the dimension of the measurement data. Feature

As in AESOP, a special statistical sampling technique isinterpretation was done by performing process sensitivity
used to generate the process disturbance values for use as theanalysis and feature matching. TCAD simulators were used
simulation inputs. This technique is described in the nextto provide the process sensitivity information in process sensi-
sub-subsection. Once the input samples are generated, thetivity analysis. In the final feature matching, the system tried
output measurement data are simulated by the TCAD simu-to match the selected features (eigenvectors) from the mea-
lators. The data are then fed into a backpropagation NNsurement data with the sensitivity vectors from process sensi-
model for training.tivity analysis. Once a match or matches were found, the un-

Prior to being input to the NN, however, the data are digi-derlying process steps that caused the process problems could
tized into special patterns using a special coding techniquebe identified. Using this technique, the CMU system can han-
and a thresholding algorithm. The coding technique speedsdle multiple faults.
up the NN training. In addition, a special fault observabilityThe system was developed to handle intrawafer process
algorithm is developed to select the appropriate measurementvariations as described in Ref. 2. The system has been com-
data in order to maximize fault observability. After these ma-mercialized (8) and deployed in actual manufacturing envi-
nipulations, the process knowledge is now represented in theronments. The commercial system is being enhanced to inte-
NN model.grate qualitative knowledge that is not available in TCAD

Once the NN is trained, the actual measurement data cansimulators.
be fed into the NN in search of faults in the process distur-
bance. The number of NN input nodes depends on the number

Neural-Network-based System of measurements. The number of NN output nodes depends
on the number of process disturbances. There are severalThe last system described here is a process diagnosis system
middle layers within the NN model. Once the NN is trained,based on a neural network (NN) (34). Its system function is
diagnosis can be performed in real time.very similar to that of the two systems studied earlier in that

the process diagnosis is based on the electrical/physical test
Training-Data Generationmeasurements. One unique feature of this system is the use
Fault Observability. Before any training data can be gener-of a backpropagation NN model to represent the process

ated, it is necessary to determine a sufficient set of measure-knowledge. All three systems use the TCAD simulators as vir-
ments that will make as many process disturbances distin-tual processes to generate the required knowledge base and
guishable and observable as possible during the diagnosistraining data.
process. The selection of this measurement set can be accom-
plished with a novel fault observability algorithm, which has

System Overview. The NN system data flow, which outlines the following steps:
the relationships between different simulation/measurement
data and the different systems, is shown in Fig. 8. The NN

1. Generate a Fault Matrix. The fault matrix is an n � mprocess diagnosis system uses TCAD process/device simula-
encoded matrix where each element f ij represents thetors to generate the simulated physical/electrical test mea-
effect of an out-of-control process disturbance di on asurements from the input process variables (disturbances).
measurement yj:Then the same set of process disturbance and test measure-

ment data is used to train the NN model, which represents
the process knowledge. During training the data switch roles:
the simulated output measurement data become the input to
the NN model, and the simulation input process disturbance
data become the output from the NN model.

fi j =




1, si j > Tj

−1, si j < −Tj

0,
∣∣si j

∣∣ < Tj
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where sij is the shift from measurement yj’s nominal In the NN system, the distribution functions for the input
process variables are usually selected with high probabilitiesvalue resulting from the shift from process disturbance

di’s nominal value (e.g. 3�), and Tj is a prescribed at the 3� control limits. This kind of distribution function will
ensure that more samples are selected near the out-of-controlthreshold value for each measurement yj. The computa-

tion of Tj will be described later. limits. The definition of the out-of-control limits is discussed
in the next section.2. Check Fault Observability. For a given set of measure-

ments, check that each process disturbance d1, d2, . . .,
Neural Network Model Representation. Before the sets ofdn is observable. If not, try to eliminate the nonobserv-

simulation input–output data, which represent the values ofable process disturbance from the set or add appro-
process variables and test measurements, can be incorporatedpriate measurements to make the process disturbance
into the neural network for training, these data sets are digi-observable. A process disturbance di is unobservable if
tized by thresholding and coding techniques to facilitate the
NN model training and construction.

Thresholding. Threshold levels are assigned to both the in-

m∑
j=1

∣∣ fi j

∣∣ = 0

put process disturbances and the output test measurements.
The threshold levels for the input process variables are the3. Check Fault Ambiguity. Faults di and dj are not guaran-
control limits in the process control charts (32). These controlteed to be uniquely diagnosed if they are in the same
limits represent the mean value and the �3� values of eachambiquity group. Two faults are in the same ambiquity
process variable. For the output test measurements, thegroup when rij � 0 under the two conditions described
threshold levels are determined by the combined effects of thebelow. First,
significant process variables. The test measurement threshold
levels may or may not align with the control limits (the mean
and �3� values). Figure 9 shows the definitions and relation-ri j =

m∑
k=1

∣∣ fik − f jk

∣∣
ships of the threshold levels.

Coding. Once the threshold levels are determined, the
The above condition checks if in the fault matrix two training sets of inputs and outputs can be encoded according
rows i and j are identical. Another condition is satisfied to the defined threshold levels. (See Fig. 10.) The code a1 is
when the two faults have large and opposite effects on assigned to disturbance 1, since its value falls in the range of
the measurements: a1 (above the 	3� range), while the code a2 is assigned to

disturbance 2, since its value falls in the range of a2 (below
the 
3� range). For output measurements, output 1 is en-ri j =

m∑
k=1

∣∣ fik − (−1) f jk

∣∣
coded with cmn, since its value is between thresholds tm and
tn, while output 2 is encoded with cij, since its value falls be-

Sampling Strategy. Once the sets of measurements and pro- tween thresholds ti and tj. The unique input–output encoding
cess variables are determined from the fault observability al- pattern for the inputs and outputs can be generated as
gorithm, the NN system uses the Latin hypersquare (LHS)
sampling technique to generate the simulation input data.
The simulation input data consist of process variables/distur-
bances sampled at appropriate values. TCAD simulators are
then used to generate the simulation outputs, which consist
of the device physical/electrical performance data. This set of
input–output data is then used to train the NN model.

LHS sampling is a stratified sampling technique such that
given a sampling space S of the set of random variables X,

• S can be partitioned into independent disjoint strata Si;
• ni random samples can be selected from each stratum

Si.

The sum of the samples taken from all the strata equals the
final desired sample size N.

For a set of random variables X � �X1, . . ., Xk, . . ., XK�,
it is possible to assign a stratum probability distribution func-
tion for a random variable Xk with N strata. For example, in
order to ensure that Xk has values sampled uniformly across
the range of all its values, it is reasonable to assign the proba-
bility 1/N to all its N strata. With appropriate stratum distri-
bution functions assigned to the random variables in X, sam-
ples are then selected from each stratum, and then matched
in a random fashion to form the final sampled set that con-
sists of all the random variables. Figure 9. Thresholding of process disturbances and measurements.
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Testing and Fault Diagnosis

The systems described perform process diagnosis for the para-
metric deviations of the input process variables, based on
mostly electrical test measurements. there is another type of
system that handles diagnosis of castatrophic faults that are
mostly due to particle contamination. Such systems construct
relational mappings between process particle contamination,
circuit physical layouts, and final electrical test measure-
ments. The reader is referred to the Carafe (5) and CODEF
(35) systems.

Future Directions

Process level diagnosis systems are moving from the use of
qualitative to quantitative techniques, such as statistical,
NN, and numerical TCAD simulators. Commercial systems,
such as the one described in Ref. 8, have demonstrated the
use of both qualitative and quantitative techniques for pro-
cess diagnosis.Figure 10. Encoding of process disturbances and measurements.

Equipment and unit-level process diagnosis systems are
gaining importance, as they can diagnose problems much ear-
lier than process-level diagnosis systems.

[a1a2. . .] and [cmncij. . .]. Using encoding, the NN training is
based on the digitized data instead of the actual numerical
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