
ARTIFICIAL INTELLIGENCE IN SEMICONDUC-
TOR MANUFACTURING

INTRODUCTION

Fabrication of semiconductor devices and integrated cir-
cuits continues to be a profitable and extremely expensive
operation. The increasing usefulness of integrated circuits
in multimedia and video applications brings the total mar-
ket value of the semiconductor industry well above $200
billion. In fact, semiconductor manufacturing that includes
nanotechnologies has become so capital-intensive that only
a few very large companies participate. A typical state-of-
the-art, high volume manufacturing facility built to serve
one or two generations of technology today costs about $3
billion, which represents a 10 fold increase over the cost of a
comparable facility 20 years ago (Fig. 1). Furthermore, the
introduction of newer generations of more advanced chip-
making technology into a product line is as frequent as
every 18 months, which brings the estimated net-present-
cost (NPC) of building and operating a wafer fabrication
facility over the next 10 years amounts to $7 billion. If
this trend continues at its present rate, by the turn of the
next decade the semiconductor fabrication facility start up
and operation costs may exceed the yearly revenue for top
semiconductor companies.

As a result of rising start up and operation costs, the
challenge before semiconductor manufacturers is to off-
set an extremely large capital investment with a greater
amount of technological innovation, efficiency, and flexi-
bility in the fabrication process. In other words, the ob-
jective is to use the latest developments in computer
hardware and software technology to enhance the man-
ufacturing methods, which are becoming increasingly ex-
pensive and complex. In effect, this effort in computer-
integrated manufacturing of integrated circuits (IC-CIM)
is aimed at optimizing the cost effectiveness of inte-
grated circuit manufacturing as computer-aided design
(CAD) has dramatically affected the economics of circuit
design (2).

Under the overall heading of reducing manufacturing
costs, several important subtasks have been identified,
which include increasing chip fabrication yield, reducing
product cycle time, maintaining consistent levels of pro-
duce quality and performance, improving the reliability of
processing equipment, and forming solid interactions be-
tween design and manufacturing. Unlike the manufactur-
ing of discrete parts, such as electrical appliances, where
relatively little rework is required and a yield greater than
95% on sellable products is often realized, the manufacture
of integrated circuits faces unique obstacles. For example,
semiconductor fabrication processes typically include over
300 sequential steps after raw silicon wafers are released
into a manufacturing line that contains over 100 dedicated
manufacturing tools. At each step in the manufacturing
process, yield loss occurs. As a result, IC manufacturing
processes have yields as low as 20–80%. The problem of
low yield is particularly severe for new methodologies and
fabrication sequences and is expected to worsen as de-

vice features shrink and process integration become more
complex.

Manufacturing efficiency remains a top priority in the
semiconductor industry. Maintaining product quality in
an IC manufacturing facility requires strict control of lit-
erally hundreds or even thousands of process variables.
As devices become more complex, process integration is-
sues also add to the challenge of reducing semiconduc-
tor manufacturing costs and continually improving the
production process. The implementation of effective IC-
CIM systems offers the promise of overcoming such ob-
stacles. The interdependent issues of high yield, high
quality, and low cycle time have been addressed in part
by the ongoing development of several critical capabili-
ties in state-of-the-art IC-CIM systems: in situ process
monitoring, process/equipment modeling, real-time closed-
loop process control, and equipment malfunction diagnosis.
Each of these activities increases throughput and improves
yield by preventing potential misprocessing, but each also
presents significant engineering challenges in effective im-
plementation and deployment.

ARTIFICIAL INTELLIGENCE TOOLS

As semiconductor manufacturing grows increasingly com-
plex, so does the challenge of modeling semiconductor fab-
rication processes. Advanced modeling and process control
tools are required to resolve the subtle relationships be-
tween processing steps and output parameters and to pro-
vide adequate malfunction diagnosis in advanced manu-
facturing systems. Artificial intelligence tools of interest
include, but are not limited to, methodologies for advanced
learning, modeling, control, and prediction. Proper imple-
mentation of these tools will serve to continually improve
product yield and ultimately influence semiconductor man-
ufacturing costs.

Neural Networks

The use of artificial neural networks in various manufac-
turing applications has steadily increased (3)and the semi-
conductor manufacturing area has benefited as well. Neu-
ral networks have emerged as a powerful technology for
assisting IC-CIM systems in performing process monitor-
ing, modeling, control, and diagnostic functions. Because
of their inherent learning capability, adaptability, robust-
ness, and ability to generalize, neural nets are used to solve
problems that have heretofore resisted solutions by other
more traditional methods.

A neural network can be described generally as a ma-
chine that models the way in which the brain performs a
task or function (4). Such networks have found increas-
ing usage in computational tasks including modeling, sig-
nal processing, and pattern recognition. Although the term
neural network stems from the fact that these systems
crudely mimic the behavior of biological neurons, the neu-
ral networks used in semiconductor manufacturing appli-
cations actually have little to do with biology. However,
they share some of the advantages that biological organ-
isms have over standard computation systems. Neural net-
works are capable of performing highly complex mappings
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Figure 1. Graph of rising integrated circuit fabrication costs in thousands of dollars over the last several decades (1).

on noisy and/or nonlinear data, thereby inferring unassum-
ing relationships between diverse sets of input and output
parameters. Moreover, these networks can also generalize
well enough to learn from input data and provide a reason-
able output from data not encountered during the learning
process.

Several neural network architectures and training algo-
rithms exist for manufacturing applications. Hopfield net-
works, for example, have been used for solving combina-
torial optimization problems, such as optimal scheduling
(5). However, the back-propagation (BP) algorithm is the
most generally applicable and most popular approach for
semiconductor manufacturing (6, 11). Feed-forward neural
networks (Fig. 2) trained by BP consist of several layers
(input, hidden, and output) of simple processing elements
called neurons (Fig. 3).

These rudimentary processors are interconnected so
that information relevant to input/output mappings is
stored in the weight of the connections between them. The
basic elements of the neuron are the connection, the adder,
and the activation function. The connecting links between
the neurons are known as synapses. The synapses are char-
acterized by the weights assigned to them. The adder deter-
mines the weight or strength of a neuron by summing the
weights of its input signals, or synapses. As the network
learns the relationships between input and output data,
the weights of synapses are adjusted so that the network
output approaches the desired output. The activation func-
tion serves to limit or “squash” the amplitude of the output
of the neuron to some finite value. Together, the layers of
neurons in BP networks receive, process, and transmit crit-
ical information about the relationships between the input
parameters and corresponding responses. Unlike the in-
put and output layers, the “hidden” layers of neurons do
not interact with the outside world, but assist in perform-
ing nonlinear feature extraction on information provided
by the input and output layers.

In the BP learning algorithm, the network uses both
forward and backward computational passes. Initially, the
network weights are randomized. Then, an input vector is
presented and fed forward through the network, and the
output is calculated by using this initial weight matrix.
Next, the calculated output is compared with the measured
output data, and the squared difference between these two
vectors determines the system error. The accumulated er-
ror for all of the input–output pairs is defined as the Eu-
clidean distance in the weight space that the network at-
tempts to minimize. Minimization is accomplished via the

gradient descent approach, in which the network weights
are adjusted in the direction of decreasing error. It has been
demonstrated that, if a sufficient number of hidden neu-
rons are present, a three-layer BP network can encode any
arbitrary input–output relationship (12).

To begin the learning process, weights of the neurons
are randomized and a set of training examples is passed
through the neural network. The outputs of neurons in the
lth layer become inputs to the neurons in the next layer k.
The internal activity level s(1)

j (n) for neuron j in layer l is

s(l)
j (n) = i = 0

∑
w(l)

ji(n)o(l−1)
i (n) (1)

where o(l−1)
i (n) is the function signal of neuron i in the pre-

vious layer (l-1) at iteration n, w(l)
ji(n) is the synaptic weight

of neuron j in layer l that is fed from neuron i in layer l-
1, and p is the number of neurons in the lth layer. For i=0,
o(l−1)

0 (n) = −1 and w(l)
j0(n) = θ(l)

j (n), where θ(l)
j (n) is the thresh-

old applied to neuron j in layer l. Then, the output signal
of neuron j in layer l is

o(l)
j (n) = {

1

1 + exp[−s(l)
j (n)]

, 1l < L

yj(n), l = L

(2)

where xj(n) is the jth element of the input vector in the
first hidden layer (i.e., l=1) and L denotes the last layer.
The output of the network yk(n) is then compared with the
desired response dk(n), and the error signal is generated.
The error signal is mathematically expressed as

ek(n) = 1/2[dk(n) − y(n)]2 (3)

where ek(n) is the error of neuron k at time step n. After
a forward pass through the network, this error signal is
used to apply a corrective adjustment to the neuron. Learn-
ing occurs by minimizing error through modification of the
weights, one layer at a time. The error signal is minimized
using the generalized delta rule based on the gradient de-
scent approach. The expressions for the weight changes
(i.e., “deltas”) of the output layer and other layers are

δ(L)
j (n) = [ªy j − y(L)

j (n)]yj(n)[1 − yj(n)] (4)

δ(l)
j (n) = δ(l)

j (n)[1 − δ(l)
j (n)]k

∑
δ(l+1)
k (n)w(l+1)

k j (n) (5)

Once the outputs of the last layer are calculated, weights
are updated by the deltas for each node calculated from the
output layer and back-propagated to the input layer. The
generalized delta rule is

�w(l)
ji(n) = [w(l)

ji(n) − w(l)
ji(n − 1)] (6)
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Figure 2. Diagram of neural network.

Figure 3. Model of a neuron.

w(l)
ji(n + 1) = w(l)

ji(n) + ηδ(l)
j (n)o(l−1)

i (n) + α�w(l)
ji(n) (7)

where n is the number of iterations, η is the learning rate,
and α is the momentum. The learning rate is a constant
that represents the rate at which a weight will be changed
along its slope to the minimum error. The momentum coef-
ficient is a constant that includes a portion of the previous
weight change. The momentum coefficient which generally
ranges between 0 and 1, may have the benefit of prevent-
ing the learning process from terminating in a shallow local
minimum on the error surface. When the network is fully
trained, appropriate weights, wkj, are derived such that the
network output represents the relationship between the
inputs and outputs of the data set.

Genetic Algorithms

Genetic algorithms (GAs) are particularly promising for
the optimization of semiconductor manufacturing pro-
cesses (13). Theoretical analyses suggest that GAs quickly
locate high performance regions in extremely large and
complex search spaces and possess some natural insen-
sitivity to noise (14). In essence, GAs are a powerful opti-
mization tool that reduces the likelihood of getting stuck
at a local optimum and instead locates the global optimum
necessary for improving manufacturing yield. As GAs de-

termine multiple searching points for the next evaluation,
a slight disadvantage becomes evident: The convergence
time speed near the global optimum becomes slow. For-
tunately, the distinct searching and optimization perfor-
mance of GAs usually outweigh the lack of convergence
speed.

Genetic algorithms are essentially guided stochastic
search techniques based on the principles of genetics
(14, 15). They use three fundamental operations found in
natural genetics to guide their trek through the search
space: selection, crossover, and mutation. Using these op-
erations, GAs search through large, irregularly shaped
spaces quickly, requiring only objective function values
(detailing the quality of possible solutions) to guide the
search, which is an inviting characteristic, considering that
the majority of commonly used search techniques require
derivative information, continuity of the search space, or
complete knowledge of the objective function to guide their
search. Again, GAs take a more global view of the search
space than many methods currently encountered in engi-
neering optimization.

In computing terms, a genetic algorithm maps a prob-
lem onto a set of binary strings. Each string represents
a potential solution. Then the GA manipulates the most
promising strings in searching for improved solutions. A
GA operated typically through a simple cycle of four states:
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1) creation of a population of strings; 2) evaluation of each
string; 3) selection of best strings; and 4) genetic manipu-
lation to create the new population of strings. During each
computational cycle, a new generation of possible solutions
for a given problem is produced. At the first stage, an ini-
tial population of potential solutions is created as a starting
point for the search process. Each element of the popula-
tion is encoded into a string (the “chromosome”) to be ma-
nipulated by the genetic operators. In the next stage, the
performance (or “fitness”) of each individual of the popula-
tion is evaluated. Based on each individual string’s fitness,
a selection mechanism chooses “mates” for the genetic ma-
nipulation process. The selection policy is responsible for
assuring survival of the most-fit individuals.

Binary strings are typically used in coding genetic
searches. A common method of coding multi-parameter
optimization problems is concatenated, multi-parameter,
mapped fixed-point coding. Using this procedure, if an un-
signed integer x is the decoded parameter of interest, then
x is mapped linearly from [0, 2l ] to a specified interface
[Umin, Umax] (where l is the length of the binary string).
In this way, both the range and precision of the decision
variables are controlled. The precision (π) of this coding is
calculated as

π = Umax − Umin

2l − 1

To construct a multi-parameter coding, as many single-
parameter strings as required are simply concatenated.
Each coding has its own sublength (i.e., its own Umax and
Umin). Figure 4 shows an example of a two-parameter cod-
ing with four bits in each parameter.

The string manipulation process employs genetic opera-
tors to produce a new population of individuals (“offspring”)
by manipulating the genetic “code” possessed by members
(“parents”) of the current population. It consists of selec-
tion, crossover, and mutation operations. Selection is the
process by which strings with high fitness values (i.e., good
solutions to the optimization problem under consideration)
receive large numbers of copies in the new population.

In one popular method of selection, strings with fitness
value Fi are assigned a proportionate probability of sur-
vival into the next generation. This probability distribution
is determined according to

Pi = Fi∑
F

(8)

Thus, an individual string fitness n times better than an-
other’s will produce n times the number of offspring in the
subsequent generation. Once the strings have reproduced,
they await the actions of the crossover and mutation oper-
ators.

The crossover operator takes two chromosomes and in-
terchanges part of their genetic information to produce two
new chromosomes (Fig. 5). After the crossover point is ran-
domly chosen,portions of the parent strings (P1 and P2) are
swapped to produce the new offspring (O1 and O2) based
on a specified crossover probability.

Mutation is motivated by the possibility that the ini-
tially defined population might not contain all of the in-
formation necessary to solve the problem. The mutation

operation is implemented by randomly changing a fixed
number of bits in every generation according to a specified
mutation probability (Fig. 6). Typical values for the proba-
bilities of crossover and bit mutation range from 0.6 to 0.9
and 0.001 to 0.03, respectively. Higher rates disrupt good
string building blocks more often, and for smaller popula-
tions, sampling errors tend to wash out the predictions.

Fuzzy Logic

Fuzzy set theory, first initiated by Zadeh (18), is another
promising tool for control of semiconductor manufactur-
ing processes (19–21). This theory allows the treatment
of vague, imprecise, and ill-defined information in an ex-
act mathematical way. In essence, fuzzy sets facilitate rea-
soning in decision making without complete and precise
information. In a manufacturing environment, this tech-
nology can be used to solve problems that are complex
given various assumptions and approximations. For exam-
ple, the planning and scheduling of wafer production can
be a major undertaking. Understanding when to schedule
work that will satisfy production requests is very complex.
It involves management of man hours, production tools,
and cycle time, while at the same time considering man-
ufacturing goals and processing capacity. Fuzzy logic has
been implemented in this application and proven useful for
modeling the uncertainty that is characteristic of semicon-
ductor manufacturing challenges (22).

Let a classic set X (also called a crisp set) be defined
as a group of x elements or objects where x ∈ X. In this
explanation, X is also called a reference superset (universe
of discourse). Now, let A be a crisp subset of X. The set A
can be described as a set of pairs (x, µA(x)) in which x is the
element of interest and µA(x) is the membership function
of x in the subset A, where

µA(x) = { 1 if x ∈ A

0 if x /∈ A
(9)

Once the sets are defined, fundamental operations based
on the use of the membership function, µA(x), can be per-
formed. These oprations include section (eq. 10), union (eq.
11), and complement (eq. 12), which are defined as

C = A ∩ B = {(x, µC(x))|x ∈ X, µC(x) = min{µA(x), µB(x)}}(10)

C = A ∪ B = {(x, µC(x))|x ∈ X, µC(x) = max{µA(x), µB(x)}}(11)

Complement AC of A as

AC = {(x, µAC (x))|x ∈ X, µAC (x) = 1 − µA(x)} (12)

Through the use of fundamental operations, fuzzy set rea-
soning makes it possible to evaluate vague problems that
are less predictable (23–26).

Dempster–Shafer Theory

The ability to ascertain if and when severe process vari-
ations occur greatly influences product yield. Identifying
the onset of drift (or malfunctions) in fabrication processes
can be quite tedious without the use of advanced classifi-
cation schemes. One useful classification scheme for real-
time malfunction diagnosis involves the Dempster-Shafer
theory of evidence (developed by Arthur P. Dempster and
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Figure 4. Example of multi-parameter binary coding (16).

Figure 5. The crossover of two parent chromosomes resulting in two offspring (17).

Figure 6. Chromosome experience mutation (17).

Glenn Shafer) (27, 28). This theory can be used to combine
separate pieces of evidence (i.e., data offered by process
metrology and analysis) to determine the likelihood of a
specific event. Dempster–Shafer (D–S) theory allows one
to take into account the confidence in the probabilities that
accompany each possible outcome. Its implementation can
result in time-varying, non-monotonic belief functions that
reflect the current status of a diagnostic conclusion at any
point in time.

D–S theory uniquely uses functions to represent par-
tial belief (rather than a Bayesian probability distribution)
that can develop when the finite set is interpreted as the
degree of belief that the truth lies in a subset of the finite
set. D–S theory also allows belief about propositions to be
represented as intervals. The two bounded values in the
interval are belief and plausibility, where belief < plausi-
bility. Belief in a hypothesis is supported by the sum of the
beliefs of all sets enclosed by it. It is the degree of belief that
supports a hypothesis in part and forms the lower bound
of the interval. Plausibility, on the other hand, is the 1 mi-
nus the sum of beliefs of all sets whose intersection with
the hypothesis is null. It essentially represents an upper
bound on the possibility that the hypothesis could actually
happen. Therefore, the likelihood of a fault proposition A
can be expressed as a bounded interval [s(A), p(A)] that lies
in [0, 1], where the parameter s(A) represents the support
(or belief) of proposition A and p(A) is called plausibility of
A. Then, the uncertainty of A can be defined as u(A) = p(A)
− s(A), which is the difference between the evidential plau-
sibility and support. For instance, the evidence interval of
[0.3, 0.5] for proposition A indicates that the probability of
A is between 0.3 and 0.5 with an uncertainty of 0.2.

It is assumed that total belief can be divided into various
portions, each assigned to a subset of the frame of discern-
ment, �. Evidential intervals for individual faults are de-
rived from a basic probability mass distribution (BPMD).
A BPM is a function m satisfying

m(φ) = 0 (13)

A � �
∑

m〈A〉 = 1 (14)

The quantity m〈A〉 is called the proposition A’s basic
probability mass, which is the measure of belief committed
exactly to A, and not to any of its subsets, given a certain
piece of evidence. To obtain the measure of the total belief
committed to A, one must add to m〈A〉 the quantities m〈A〉
for all proper subsets B of A. The function assigning each
subset A of � the sum of all basic probability numbers for
subset of A is called a belief function, which is interpreted
as a measure of the total belief committed to A, or

Bel(A) = B � A
∑

m〈B〉 (15)

The belief function with the simplest structure is obtained
by setting m〈�〉 = 1 and m〈A〉 = 0 for all A �= �. In other
words,

Bel(B) =
{

0 if B does not contain A
s if B contains A but B �= �

1 if B = �

(16)

A subset A of a frame � is called a focal element of a
belief function if m〈A〉 > 0. The union of all the focal ele-
ments of a belief function is called its core. Other types
of belief functions are Bayesian belief functions, whose fo-
cal elements are singleton and simple support functions
that have only one focal element in addition to that of �.
Note that the belief in a proposition A and the belief in its
negation A does not necessarily sum to 1, which is a ma-
jor difference between Dempster–Shafer theory and tra-
ditional probability theory. According to Dempster–Shafer
theory, the belief of A can be expressed by the degree of
doubt: Dou(A) = Bel(A). A more useful quantity is plausi-
bility: P(A) = 1 − Bel(A), which defines to what extent one
fails to doubt in A or finds A plausible. It is straightforward
to show that

P(A) = B ∩ A �= φ
∑

m〈B〉 (17)

The quantity Bel(A) can be interpreted as a global measure
of one’s belief that proposition A is true, whereas P(A) may
be viewed as the amount of belief that could be placed in A
if further information of belief became available.

Two BPM’s m1 and m2 over the same frame of discern-
ment � can also be combined by Dempster’s rule of combi-
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nation to yield a new BPM, m = m1⊕m2, called the orthog-
onal sum of m1 and m2, which is defined by

m〈Z〉 =
∑

m1〈X〉m2〈Y〉
1 − k

(17)

where Z = X ∩ Y and

k =
∑

m1〈X〉m2〈Y〉 (18)

where X ∩ Y = φ.

PROCESS MODELING

Accurate process modeling is essential to semiconductor
manufacturing. However, first principle models must occa-
sionally be simplified because of environmental constraints
such as hardware limitations, cost, time, or limitations in
modeling methodologies. The ability of neural networks
to learn input/output relationships from limited data is
quite beneficial in semiconductor manufacturing, where a
plethora of highly nonlinear fabrication processes exist and
where experimental data for process modeling are expen-
sive to obtain.The use of artificial neural networks to model
semiconductor manufacturing process with limited fabri-
cation information has yielded very impressive results in
various applications including chemical vapor deposition
(CVD) processes (19–34), reactive ion etch (RIE) processes
(35–39), photolithography processes (40, 41), rapid ther-
mal process (RTP) (42), chemical and mechanical polish-
ing (CMP) processes (43), packaging processes (16–47), and
production scheduling (7, 48). In so doing, the basic strat-
egy is usually to perform a series of statistically designed
characterization experiments and then to train neural nets
to model the experimental data. The process characteriza-
tion experiments typically consist of a factorial or reduced
factorial exploration of the input parameter space, which
may be subsequently augmented by a more advanced ex-
perimental design. Each set of input conditions in the de-
sign corresponds to a particular set of measured process
responses. This input/output mapping is precisely what
the neural network learns. In general, standard BP neu-
ral networks are the most popular to model semiconductor
process.

Standard Modeling

As an example of the neural network-based process model-
ing procedure, Pratap et al. present modeling and sensitiv-
ity analysis of circuit parameters for flip-chip interconnects
using standard BP neural networks (47). Flip-chip technol-
ogy has emerged as an attractive interconnection scheme
for high frequency RF applications because flip-chip inter-
connect technology provides higher packaging density and
superior electrical, mechanical, and thermal performance
with lower package profile and cost. To enhance microwave
circuits, precise modeling and characterization of intercon-
nections as a function of layout parameters is essential
to optimize the performance of the flip-chip signal transi-
tion. To achieve this optimization, Pratap et al. developed
a standard BP-based model for the electrical performance
of flip-chip transition up to 35 GHz in terms of the physical

and geometrical parameters. In this work, system perfor-
mance was characterized by s-parameter measurements.
The data used to derive the equivalent circuit model, as
well as the s-parameters, was generated using a 25−1 frac-
tional factorial experiment. Data from these experiments
were subsequently used to train neural networks using the
back-propagation algorithm. Empirical analysis of the sim-
ple flip-chip configuration shown in Fig. 7 led to the selec-
tion of the following factors for experimental design and
model development:

o conductor overlap (bumps are always placed in the cen-
ter of the overlap area);
w CPW signal line width;
d distance from ground bump center to the edge of the
ground plane;
a bump diameter; and
h bump height.

The output variables for the experiments were S11 (dB)
(reflection coefficient) and S21 (dB) (insertion loss). As the
structure is symmetrical, S11 = S22 and S12 = S21.

The s-parameters obtained were then used to obtain the
inductance (L) and capacitance (C1 = C2 = C) values of
the π lumped element model shown in Fig. 8. Thus, all the
required components for the complete characterization of
the electrical behavior of the flip-chip transitions were ex-
tracted.

To model four electrical parameters (S11, S21, L, and C),
four separate neural networks were used for greater accu-
racy. Network training was accomplished using the Object-
Oriented Neural Network Simulator (ObOrNNS) a Java-
based software package developed by the Intelligent Semi-
conductor Manufacturing group at GeorgiaTech (49). Over-
all, 75% of the data was used to train the models and the re-
maining 25% of the data was used for validation. The mod-
eling results indicate prediction errors from 3-17%. This ac-
curacy is reasonable, considering the fact that the test data
set was at the boundary of the training data. The trained
neural networks were used to further study the impact of
various layout parameters on the electrical properties of
the flip-chip transitions.

J. Müller et al. of Robert Bosch GmbH in Germany,
DuPont Photomasks in France, and Infineon Technology
in Germany used another type of neural network, the self-
organizing map (SOM), for analysis of semiconductor man-
ufacturing parameters both in the front-end and back-end
part of the fabrication process (50). Based on production
data from two major European semiconductor manufac-
turing lines, layers of metallization processes were char-
acterized. Also, SOM was used to find correlation between
equipment and key process parameters. The authors con-
cluded that SOM has advantages in detecting small pro-
cess misalignments or process drifts.

In terms of a commercialized example, NeuMath, for-
merly known as IBEX Process Technology, provides ad-
vanced solutions to optimize process control and maxi-
mize yield in the semiconductor manufacturing industry
(51), for which they combine neural networks and ad-
vanced mathematical techniques to model the complex pro-
cesses used in semiconductor manufacturing. Using neu-
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Figure 7. (a) Schematic of bump configuration. (b) Side view (47).

Figure 8. Lumped element model of flip-chip transition (21).

ral network-based advanced analysis technology, NeuMath
has developed several solutions, including a yield optimizer
and a dynamic neural controller (DNC).

Hybrid Methods

As shown in previous neural process modeling examples,
implementation of the single standard neural network was
employed to perform process modeling tasks. However, in-
novative modifications of standard BP have also been de-
veloped for certain other applications of semiconductor pro-
cess modeling. In one case, BP has been combined with sim-
ulated annealing to enhance model accuracy. A second ad-
justment has been developed that incorporates knowledge
of process chemistry and physics into a semi-empirical or
hybrid model, with advantages over the purely empirical
black-box approach previously described.

Neural Networks and Simulated Annealing. Simulated
annealing (SA) is a popular combinational optimization
technique. SA is based on the physics of annealing and
is a process in which a material is heated and then cooled
very slowly to a freezing point, resulting in a highly or-
dered crystal lattice without any impurities such that the
system ultimately winds up in a state of very low energy.
This SA mechanism can be applied to neural network train-
ing by means of a stochastic weight update. For example,
at low temperature, the network is very sensitive to state
change,but has difficulty reaching the equilibrium state. In

contrast, at high temperature, the network ignores small
energy differences and rapidly approaches equilibrium. A
typical SA process starts with a very high temperature,
where the system state is generated at random.

Kim and May used neural networks and SA to model
the reactive ion etching (RIE) process. RIE in a radio fre-
quency (RF) glow discharge is one of the most effective
means of dry etching in semiconductor manufacturing (36).
For this reason, many researchers have been focusing on
development of accurate RIE process models. Due to the
limitations of plasma etch modeling from a fundamental
physical standpoint, adaptive learning techniques that use
neural networks combined with statistical experimental
design methods have been developed. To increase the mod-
eling performance, Kim and May developed an alternative
learning rule, the “K-step prediction” rule, and used it for
BP neural network training as an alternative to the gen-
eralized delta rule.

The rationale for this new rule is as follows: Neural net-
work training rules adjust synapse strengths to satisfy the
constraints given to the network. This new update scheme
is expressed as

wi jk(n + 1) = wi jk(n) + η�wi jk(n + 1) + 1
∑

γKwi jk(n − K)

(19)

where wijk is the connection strength between the jth neu-
ron in layer (k-1) and the ith neuron in layer k, �wijk is the
calculated change in that weight that reduces the error
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function of the network, and η is the learning rate. The
last term in the above expression provides the network
with a degree of “long-term memory” (52). The integer K
determines the number of sets of previous weights stored
and the γk factor allows the system to place varying de-
gree, of emphasis on weight sets from different training
epochs. This memory-based weight update scheme is com-
bined with a variation of SA to assist the BP algorithm in
minimizing the system error function. In neural network
training, the system error plays a role similar to the en-
ergy state of a system under cooling of annealing process at
thermodynamics. Applying the concept of SA in neural net-
work training is analogous to using the following “thermo-
squashing” function in place of the usual sigmoidal transfer
function:

1

1 + e
−(

netik+βik
λT0

)
(20)

where neti,k is the weighted sum of neural inputs and βik is
the neural threshold. Annealing the network at high tem-
perature early on leads to rapid location of the general
vicinity of the global minimum of the error surface. The
training algorithm will then remain within the attractive
basin of the global minimum as the temperature decreases,
preventing any significant uphill excursion.

To model the RIE process, pressure, RF power, and gas
flow of O2 and CHF3 were used as modeling inputs, and
etch rate, anisotropy, etch uniformity, and selectivity were
considered as modeling outputs. For the K-step prediction
rule, K was set to two and various values of (1, (2, T0, and (
were systematically investigated. Increased accuracy was
consistently obtained for larger values for (1 and smaller
values of (2, indicating the relative importance of more re-
cent training epochs. The best overall results for all four
etch response models were achieved for (1 = 0.89, (2 = 0.08,
T0 = 100, and γ = 0.999. A comparison of network predic-
tion results for SA-based K-step prediction and the con-
ventional generalized delta rule showed more than 50% of
improvement using the former.

Neural Networks and Principal Component Analysis.
Hong et al. used neural networks and principal component
analysis (PCA) to model RIE using optical emission spec-
troscopy (OES) data (38). Although OES is an excellent tool
for monitoring plasma emission intensity, a primary issue
with its use is the large dimensionality of the spectroscopic
data. To alleviate this concern, PCA was implemented as a
mechanism for feature extraction to reduce the dimension-
ality of OES data. PCA is a well-known statistical method
that can reduce the dimension of a multivariate data set
(53).

Consider a vector x that consists of p random variables.
Let � be the covariance matrix of x. Then, for k = 1, 2, . . . ,
p, the kth principal component (PC) is given by

tk = uT
k x (21)

where uk is an eigenvector of � corresponding to its kth
largest eigenvalue and T represents the transpose opera-
tion. Dimensionality reduction through PCA is achieved by
transforming the OES data to a new set of coordinates (i.e.,

selected eigenvectors), which are uncorrelated and ordered
such that the first few retain most of the variation present
in the original data set. Generally, if the eigenvalues are
ordered from largest to smallest, then the first few PCs
will account for most of the variation in the original vec-
tor x. A simplified example of PCA with two measurement
variables, x1 and x2, is presented in Fig. 9.

OES data were generated from a 24 factorial experiment
designed to characterize RIE process variation during the
etching of benzocyclobutene (BCB) in a SF6/O2 plasma,
with controllable input factors consisting of the two gas
flows, RF power, and chamber pressure. The OES data, con-
sisting of 226 wavelengths sampled every 20 seconds, were
compressed into five principal components using PCA. Se-
lected features by PCA were subsequently used to establish
multilayer perceptron neural networks trained using error
back-propagation to model etch rate, uniformity, selectiv-
ity, and anisotropy. Hong et al. applied autoencoder neural
networks (AENNs) to capture the features of OES data and
reduce its dimensionality in a similar manner to PCA (38).

An AENN is illustrated in Fig. 10. It usually has the
same number of inputs and outputs. The number of hidden
neurons can be adjusted to suit the problem at hand. The
autoencoder bottleneck structure, with n inputs, h hidden-
neurons (h < n), and n outputs, forces the network to form
a compressed representation of the data. Training a net-
work to reproduce its inputs seems pointless on the surface,
but in reproducing the input signals at the output, the au-
toencoder, after training, represents the input pattern in
compressed form in its hidden neurons. The hidden layer
is also called the “compression layer” because it represents
a compressed form of the input signals.

Hong et al. developed both PCA-based neural network
models and AENN-based neural network models, and their
prediction results are shown in Figs. 11 and 12. The perfor-
mance of the trained neural networks was evaluated with
seven vectors retained for testing purposes. Tests were re-
peated for three combinations of training and testing sets,
and the average testing errors are shown in Table 1. For
PCA-based neural network models, the models exhibited
an average RMS error of 3% in training and 4.61% in test-
ing, and the AENN-based neural network models showed
an average of 3% RMS error on training and 3.47% on test
data.

Semi-empirical Process Modeling. Brown and May devel-
oped a semi-empirical hybrid neural network to estimate
the parameters of the kinetic model of molecular beam
epitaxy (MBE) and analyze the microscopic processes oc-
curring at the interfaces of the mixed anion III–V het-
erostructures (55). The hybrid model was constructed by
characterizing the MBE growth of GaAs1−yPy/GaAs het-
erostructures using a statistically designed experiment.
These structures were formed by allowing a P2 flux to im-
pinge on a static As-stabilized (001) GaAs surface. The
phosphorus composition (y) at the interfaces of these struc-
tures is modeled as a function of substrate temperature
(Ts), phosphorus exposure time (texp), and arsenic stabiliz-
ing flux (PAs4).

The structure of the hybrid neural network designed
to predict anion intermixing for the GaAsP/GaAs het-
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Figure 9. An illustration of principal component analysis of two measurement variables: x1 and x2 indicated mean centered sample data,
ν1 and ν2 are eigenvectors, and σ1 and σ2 are corresponding standard deviations (53).

Figure 10. Bottleneck structure of an autoencoder neural network (AENN) (54).

Figure 11. Neural network model predictions for etch rate generated by: (a) a PCA-based neural network and (b) an AENN-based neural
network (54). (Note: Circles represent test data not used during network training.)
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Figure 12. Neural network model predictions for uniformity generated by: (a) a PCA-based neural network and (b) an AENN-based
neural network (38). (Note: Circles represent test data not used during network training.)

Table 1. Modeling Results for Etch Responses

% Error of PCA based NN % Error of AENN
Etch rate 1.72 1.774
Selectivity 13.6 1.536
Uniformity (%) 0.215 9.067
Anisotropy (%) 2.897 1.494

Table 2. Kinetic Parameters Obtained by the Semi-empirical Hybrid Neural Network Model

Kinetic Parameters – As4 = 4 × 10−6 Torr

s τ0d Ed D0’ Ea
(cm2) (s) (eV) (molecules/s) (eV)
0.358 6.412 2.985 17.358 0.11

Kinetic Parameters – As4 = 2 × 10−6 Torr

s τ0d Ed D0’ Ea
(cm2) (s) (eV) (molecules/s) (eV)
0.369 3.665 2.427 26.994 0.05

Table 3. Optimized Training Factors and RMSEs for Conventional BPNN Models

Etch Outputs TT NHN IWD gb gl RMSE

Profile Angle (◦) 0.11 4 0.4 0.8 0.4 2.85
Al Selectivity 0.12 2 0.2 1.2 1.2 2.26
DC Bias (V) 0.08 3 1.4 0.4 0.4 53.6
Al Etch Rate (Å/min) 0.12 4 0.8 0.4 0.4 434

Table 4. Optimized Training Factors and RMSEs for GA-BPNN Models

Etch Outputs TT NHN IWD gb gb RMSE % Improvement

Profile Angle (◦) 0.0820 3 1.2737 0.7682 0.5169 2.22 22.1
Al Selectivity 0.1126 5 2.7168 0.8891 0.5356 1.65 26.9
DC Bias (V) 0.6064 3 2.5601 1.5114 0.8019 48.3 9.9
Al Etch Rate (Å/min) 0.0803 3 2.554 1.8024 1.2685 142 67.3

Table 5. Experimental Results Comparison of Recipe Synthesis Methods

Method Film Thickness (µm) Via Yield (%) Via Angle (degree) Film Retention (%) Film Non-uniformity (%)

GA 7.09 96.7 34.6 77.6 1.48
Hybrid GA/Powell 6.93 96.7 38.7 76.3 0.49
Hybrid GA/Simplex 7.05 93.3 41.3 78.2 0.76
Target Value 7 100 75 100 0
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Table 6. Deviation Between Optimal Recipe Predictions and Experimental Results

A. Model Name Deviation of Predictions from Experiment

Individual Models Ablated Thickness 1.32%
Top Via Diameter 30 µm 1.92%

40 µm 2.22%
50 µm 0.90%

Via Wall Angle 30 µm 3.35%
40 µm 0.33%
50 µm 1.36%

Via Resistance 40 µm 400 �

50 µm 60 �

Via Diameter Via Wall Angle Via Resistance
Composite Model 40 µm 6.58% 1.88% 380 �

50 µm 0.76% 1.04% 150 �

Table 7. Supervisory Control Results (81)

Response Without Control With Control % Improvement

Film Thickness (µm) 7.533 7.190 64.4%
Via Yield (%) 84.667 97.333 82.6%
Non-uniformity (%) 1.931 1.596 17.3%
Film Retention (%) 73.297 72.888 −1.5%

Table 8. VCO Input Parameters with Normal and Nonnormal Distributions (97)

Input Parameter Range for Mean Distribution Type Standard Deviation

Low High

Emitter Length (µm) 2 10 Normal 0.4
Ibias (mA) 2 10 Uniform random 0.8
Cvardim (µm) 10 30 Normal 1
Lpackage 50 100 Uniform random 5

Table 9. VCO Desing Centering with Normal and Nonnormal Distributions (97)

Initial Value (Yield=0.01%) Final Value (Yield=71%)

Input Parameters Mean Std Mean Std

Emitter Length 5.22 0.4 4.14 0.4
Ibias 5.86 0.8 7.99 0.8
Cvardim 21.69 1 24.91 1
Lpackage 68.12 5 60.59 5
Output Parameters Mean Std Mean Std
Tuning Range 1.92 0.068 2.27 0.106
Phase Noise −92.58 0.912 −93.63 0.W70271
Output Power 56.64 0.218 54.94 3.885

Figure 13. Hybrid neural network used to estimate the kinetic parameters for growth of the As/P heterostructures (55).

erostructures is illustrated in Fig. 13. The neural network
component of the hybrid model has the MBE process con-
ditions as its inputs. The outputs of the neural network
component are the unknown parameters required to im-

plement the kinetic model. The neural network component
consists of two back-propagation neural networks in par-
allel.
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The forward and back-propagation phases of the BP al-
gorithm proceed in a manner similar to that of standard
neural networks. Network training occurs by means of a
modified error gradient that takes into account the error
contribution from each kinetic parameter determined by
the partial derivatives of the kinetic model (56). The for-
ward propagation phase begins by initializing the neural
network and presenting the input vectors. The outputs of
the neural network component are the kinetic parameters.
These unknown physical constants are used to compute the
predicted phosphorus composition at the interfaces of the
GaAsP/GaAs heterostructures.

Evaluation of the trained hybrid neural network model
is performed in terms of the root mean squared error
(RMSE), computed as the square root of the network pre-
diction error (E). The hybrid neural network implemented
for samples with an As-stabilizing flux PAs4 = 4 × 10−6 torr
demonstrated a training RMSE of 0.028% and a prediction
RMSE of 0.574%. And the kinetic parameters derived are
provided in Table 2.

Figure 14 is a comparison of diffusion coefficients pre-
dicted by the hybrid neural network with diffusion con-
stants for Sb and P diffusion and As self-diffusion in GaAs.
The hybrid neural network model accurately predicts the
contribution of each of the microscopic processes occurring
at the interfaces of the mixed anion III–V heterostruc-
tures.

As an another example of the application of semi-
empirical neural process modeling, Kuan et al. at the
Northern Taiwan Institute of Science and Technology de-
veloped hybrid neural network to the predict tempera-
ture distribution in semiconductor chips with multiple
heat sources (57). In general, computational fluid dynam-
ics (CFD) simulation is very popular for heat sink design
because it can reduce the cost and time of the design cycle,
but the thermal designers still need several trials to reach
acceptable results. To solve this problem, Kuan et al. used
CFD and standard BP networks. According to a compari-
son of the standard BP neural network and CFD results,
the maximum error was about 16.43% and the RMSE was
about 7.63%. After training and testing using CFD data,
the BPNN model provided a quick temperature distribu-
tion as well as maximum die surface temperature under
several heat sources at different locations.

OPTIMIZATION

In semiconductor manufacturing applications, neural
network-based optimization has been undertaken from two
fundamentally different viewpoints. The first uses statis-
tical methods to optimize the neural process models them-
selves. The goal here is determining the proper network
structure and set of learning parameters to minimize net-
work training error and training time and to maximize net-
work prediction capabilities. The second approach to opti-
mization focuses on using neural process models to opti-
mize a given semiconductor fabrication process or to deter-
mine specific process recipes for a desired response. Pro-
cess recipe optimization may be viewed as an example of
off-line process control where the objective is to estimate

optimal operating points (58). Recipe optimization is de-
signed to produce desired target output responses based
on the functional relationship between controllable input
parameters and process responses supplied by the pro-
cess model. To satisfy (often conflicting) process objectives,
search schemes are needed to find optimal process recipes.

Network Optimization

Kim and Bae developed a plasma process model using a
back-propagation neural network (BPNN) and GAs (59).
Constructing a BPNN model is complicated by the presence
of several training factors, including the hidden neurons,
training tolerance, initial weight distribution, and func-
tion gradients. In most applications, training factor effects
are typically optimized by experimentally tuning each fac-
tor individually. However, a better predictive model might
be achieved by adequately accommodating complex effects
among the training factors. In this work, GAs were used to
optimize training factors simultaneously as an extension
of previous work (60). Depending on the number of hid-
den neurons (NHN), the BPNN prediction performance can
vary significantly. The activation level (or firing strength)
of a neuron in the hidden layer was determined by a bipolar
sigmoid function denoted as

outi,k =
1 − e(− ini,k

gb
)

1 + e(− ini,k
gb

)
(22)

where ini,k and outi,k indicate the weighted input to the ith
neuron in the kth layer and output from that neuron, re-
spectively. The parameter gb represents the gradient of the
bipolar sigmoid function. The linear function adopted in
the output layer is expressed as

outi,k = ini,k · gl (23)

where gl represents the gradient of the linear function.
Apart from the three training factors (NHN, gb, and gl),
the initial weight distribution and the training tolerance
also influence BPNN prediction considerably. As a conse-
quence, the total number of training factors to optimize is
five. The size of the initial population of chromosomes was
set to 200. Each chromosome was coded with a real value,
resulting in a total chromosome length of five slots corre-
sponding to five training factors. In each slot, random val-
ues were generated within the given experimental ranges.
The performance of each chromosome was evaluated with
the fitness function

F = 1
1 + RMSETR

(24)

where RMSETR indicates the error calculated with nine
training experiments. A selection mechanism is subse-
quently activated to choose the best chromosome with the
highest fitness for genetic manipulation. The crossover
probability was specified as 0.9, and the mutation prob-
ability was 0.01. As the termination criterion, the number
of generation was set to 100.

As an illustration, this method was applied to profile an-
gle data for a semiconductor feature. At each generation,
one best model with the smallest RMSETR was determined,
and the corresponding RMSE and fitness are shown in Fig.
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Figure 14. Comparison of diffusion coefficients predicted by the hybrid neural network with diffusion constants for Sb and P diffusion
and As self-diffusion in GaAs (55).

Figure 15. Schematic diagram of etched pattern for measurements (59).

15 as a function of the generation number. The best model
was obtained at the 22nd generation, and the correspond-
ing RMSE and fitness were 2.22◦ and 0.405, respectively.

Compared with the RMSE for the same model in Ta-
ble 3, the GA-BPNN model demonstrated an improvement
of about 22% in predicting the profile angle. The GA was
applied to other etch outputs, and the results are shown
in Table 4. The improvements calculated over the BPNN
models in Table 3 are shown in the last column. As shown
in Table 4, all GA-BPNN models yield better prediction
performance than conventional BPNN models. More than
20% improvement was achieved for all etch outputs except
the DC bias. The improvement was most significant for the
Al etch rate model (more than 65%). These improvements
indicate that a simultaneous optimization of the training
factors is more effective in improving BPNN prediction
performance than a sequential optimization of individual
factor.

The percent improvement was calculated over the RM-
SEs for the conventional models contained in Table 3.

Process optimization

Process optimization is designed to produce desired tar-
get output responses based on the functional relationship
between controllable input parameter’s process responses
supplied by the process model. Kim and May presented a
process optimization approach for via formation in dielec-
tric layers composed of photosensitive benzocyclobutene
(BCB) for high density interconnect (HDI) in MCM-L/D
substrates (61). It is known that via formation is a criti-
cal process sequence in MCM manufacturing as it greatly
affects yield, density, and reliability. Therefore, to achieve
low cost manufacturing, optimization of the via formation
process to improve yield is crucial. For yield improvement,
accurate modeling of via formation is important because it
provides the basic information necessary for optimization.

In Reference (61), neural networks were used to model
via formation from experimental data. Process models
were developed to characterize film thickness, via yield, via
geometry, film retention, and film uniformity as a function
of various process parameters, including spin speed, pre-
bake time, pre-bake temperature, exposure dose, develop-
ment time, cure time, cure temperature, plasma de-scum
power, and plasma de-scum pressure. To reduce the num-
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Figure 16. Block diagram of sequential neural process modeling scheme (61).

Figure 17. Diagram of recipe synthesis procedure (61).

ber of experimental trials required for process characteri-
zation, the via formation process was divided into four sub-
processes (spin and pre-bake, exposure and development,
cure, and de-scum). Each sub-process was modeled indi-
vidually using neural networks. In each model, the input
layer of neurons corresponds to the process conditions for
each sub-process, and the output layer corresponds to the
response variable being modeled. These particular mod-
els are unique in that the outputs of each sub-process are
used as inputs to the next sub-process. For example, to
model film thickness after the exposure and development
sub-process, the sub-process outputs of the preceding spin
and pre-bake sub-process (i.e, the film thickness and re-
fractive index after pre-bake) were used together with ex-
posure dose and development time as model inputs. This
approach is illustrated in Fig. 16. Afterwards, the neural
process models were used for optimal recipe generation us-
ing hybrid genetic algorithms as shown Fig. 17 (62).

GAs are very useful in finding optimal recipes for semi-
conductor manufacturing processes (60), and global search
by GAs is very effective for recipe optimization problems
and much less dependent on the initial search point. How-
ever, GAs require long computational time. Therefore, hy-
brid combinations of genetic algorithms with the other two
algorithms (Powell’s and simplex) can offer improved re-
sults in terms of both speed and accuracy (63). Hybrid al-
gorithms simply consist of a global search by GAs, followed

by a local search by one of the other methods. In other
words, after some number of generations, the best point
found using the GA is handed over to the other algorithm
as a starting point. With this initial point, both Powell’s
algorithm and the simplex method can quickly locate the
optimum.

Optimal process recipes were found based on neural pro-
cess models. Five responses (film thickness, via yield, via
angle, film retention, and film uniformity) were used as
outputs, and the nine processing conditions are used for
process setting parameters.

To quantify the search performance, a performance in-
dex was defined, and it is expressed by

F = 1
1 + r

∑|Kr(yd − y)| (24)

where r is the number of process responses, Kr are the
weights of process responses, yd are the desired process
responses, and y are the process outputs dictated by the
current choice of input parameters. The process outputs
are predicted by the neural process models. For genetic
search, F was calculated, and strings in a given population
were chosen that maximized F in each generation. The GA
was stopped after 200 generations when used alone and af-
ter 100 generations when used in the hybrid methods. For
the other methods, optimization was stopped when F was
within a predefined tolerance. The performance of each ap-
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proach was compared by simulation and experiment, and
the hybrid GA/simplex algorithm showed superior results,
as shown in Table 5.

Setia and May developed the present modeling and opti-
mization via formation process for another type of material
and process: laser ablation for polyimide dielectrics (17).
Laser ablation is an effective process for forming vias in di-
electric layers during the fabrication of system-on-package
(SOP) multilayer substrates. Laser ablation is a material
removal process that uses localized thermal energy caused
by stimulated radiation. The laser ablation technique has
several advantages over other via formation techniques,
including the lowest number of process steps, the most de-
sirable via shape for subsequent metallization steps (i.e.,
trapezoidal), and the capability of tight control over the via
wall angle and production of vias with a high aspect ratio.
However, some uncertainty exists regarding the quality of
laser processing in via fabrication.This uncertainty is asso-
ciated with the complex interactions between the dielectric
polymer characteristics and those of the laser. To solve this
problem, Setia and May used neural networks technique to
model the ablation process and optimize the process using
GAs to achieve specific target responses. For laser ablation,
Anvik HexScan 2150 SXE excimer laser operating at 308
nm was used.

A 25−1 fractional factorial experimental design was con-
ducted to determine the significance of laser fluence, shot
frequency, number of pulses, and the vertical and horizon-
tal positions of a debris removal system. The first three
factors are quantitative, whereas the other two are qual-
itative. The responses were the top via diameter, via wall
angle, via resistance, and the ablated thickness of the di-
electric. The via resistance measurement was conducted on
the metal deposited in the ablated vias for test as shown
in Fig. 18, and the measured data was used to study the ef-
fect of the debris generated (in the form of carbon residue)
during the via fabrication.

Neural networks were then trained using the BP algo-
rithm to model the ablation process using the measure-
ment data collected from the experiment. The prediction
error for nearly all responses, with the exception of ab-
lated thickness and via resistance, was less than 5%. The
prediction error for the average value of the ablated thick-
ness was 5.5%, and that of via resistance was less than
15%.

The interrelationships between the process set points
and responses can graphically illustrated using neural net-
work models, and Fig. 19 shows the effect of laser fluence
and frequency on wall angle for 50-µm vias. For these vias,
steeper wall angles can be fabricated with fluence in the
range of 180–188 mJ/cm2/pulse and frequency in the range
of 128–140 Hz. As the via size is larger, the wall angle does
not vary as much.

Genetic algorithms were used to find optimal set points
that give the desired output from the neural network mod-
els. The quantitative input factors (i.e, laser fluence, shot
frequency, and number of pulses) were coded to a 10-bit
string, whereas the qualitative factors were encoded in a
single bit. Thus, 32-bit chromosomes were required to find
the desired value(s) for the individual response models (ab-
lated thickness and via resistance), as well as the combined

response model (top via diameter, via wall angle, and via
resistance) because all five inputs were significant in af-
fecting at least one response. In this study, the desired ab-
lated thickness, top via diameter, and via resistance were
set to 25 µm, 30/40/50 µm, and 0 �, respectively. After
recipes for the desired process set points were synthesized,
experimental verification of these optimized recipes was
conducted. The neuro-genetic approach adequately pro-
vided suitable process recipes. Table 6 summarizes devi-
ations between the experimental results and the neuro-
genetic model predictions. The improvement achieved from
the non-optimized recipes (i.e., those recipes used during
the designed experiment) and the optimized recipes was
as large as 40% for the ablated thickness response, 30%
for top via diameter (individual response and composite
models), 9% for via wall angle (individual and composite
models), and more than 100% for via resistance (individ-
ual and composite models). These improvements clearly
demonstrate the effectiveness of the genetic optimization
approach.

PROCESS MONITORING AND CONTROL

As consistent and cost-effective demands on semiconductor
manufacturers to produce integrated circuits with higher
density and complexity are prevalent, stringent process
control is an issue of growing importance. Efficient and
robust process control techniques require accurately mon-
itoring the ambient process conditions for a given fabrica-
tion step. Historically, statistical process control (SPC) has
been used to achieve the necessary level of control. This
method is designed to minimize costly misprocessing by
applying control charts to monitor fluctuations in critical
process variables (64). Although SPC techniques detect un-
desirable process shifts, they are usually applied off-line.
These techniques, therefore, cannot detect shifts until after
the process step in question is complete. This delay results
in fabricating devices that do not conform to specifications.

The objective of real-time SPC is to take advantage of
available on-line sensor data from semiconductor fabricat-
ing to identify process shifts and out-of-control equipment
states and generate real-time malfunction alarms, which
offers the benefit of on-line process monitoring for generat-
ing at the very onset of a shift. The application of real-time
SPC is complicated, however, by the correlated nature of
the sensor data. SPC is based on assuming that the data
to be monitored in controlling a process are identically in-
dependent and normally distributed (IIND). This assump-
tion is not valid, however, when applied to real-time data.
These data are often non-stationary (subject to mean and
variance shifts), auto-correlated (dependent on data from
previous time points), and cross-correlated (dependent on
the values of other concurrently measured parameters).

In previous research efforts, Baker et al. addressed
these difficulties by employing neural networks to de-
velop time series models that filter cross-autocorrelation
from real-time sensor data (65). Neural network-based con-
trol charts also previously demonstrated significant per-
formance improvement over traditional Shewhart control
charts in preventing Type II errors (i.e., missed alarms)
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Figure 18. Test structure diagram (cross-sectional view) (17).

Figure 19. Effect of laser fluence and frequency on wall angle for 50-µm vias (17).

and detecting small process shifts (66). Such superiority
was attributed to the ability of neural networks to learn
arbitrary mappings of complex nonlinear data sequences,
handle noisy and corrupted data, and simultaneously mon-
itor multiple process variables. Furthermore, neural net-
works have been applied to predict the behavior of chaotic
time series. Nelson et al. successfully employed ontogenic
neural networks (i.e., those that modify their own topol-
ogy during training) to predict continuously valued ape-
riodic functions, such as the Mackey–Glass equation (67).
Mori and Ogasawara showed that recurrent neural net-
works model time series in short-term load forecasting of
electrical power systems when statistically based models
prove inadequate (68). Finally, wavelet neural networks
(or “wavenets”) have been used as a modified version of
the wavelet transform to predict time series in signal pro-
cessing (69). In applying this methodology to semiconduc-
tor manufacturing, Baker et al. (65)developed a real-time
equipment monitoring system that transfers data from an
reactive ion etching (RIE) system to a remote workstation.

Since neural networks excel in modeling processes with
complex dynamics, they are also successfully applied to
closed-loop control of a diverse array of such processes, in-
cluding machining operations (70), lithographic color print-
ing (71), plasma ion source control (72), and linear acceler-
ator beam positioning (73). Recently, adaptive neuro-fuzzy
neural networks were used as a technique for run-to-run
process malfunction detection and diagnosis for an excimer
laser ablation process (74). Neural nets are well suited to
process control because they can be used to build predictive
models from multivariate sensor data generated by process
monitors.

In this section, the issues for process monitoring and
control are addressed from two different perspectives: 1)
monitoring the variation in manufacturing process condi-
tions for real-time SPC using time-series data; and 2) pro-

cess control schemes including run-by-run, real-time, and
supervisory control schemes, which use in situ process sen-
sors for on-line adjustments in process set points.

Time Series Modeling

Conventional SPC techniques are based on the assumption
that the data generated by a controlled process is IIND.
The IIND assumption, however, is not valid for applying
control charts directly to data acquired in real time, be-
cause real-time data are non-stationary, auto-correlated,
and cross-correlated. Time series modeling accounts for
correlation in real-time data. The purpose of a time series
model is to describe the chronological dependence among
sequential samples of a given variable. Passing raw data
through time series filters results in residual forecasting
error that is IIND. Therefore, once an adequate time series
model is developed, it can legitimately be used for SPC.
One of the most basic time series models is the univari-
ate Box–Jenkins autoregressive moving average (ARMA)
model (75).

Data collected from modern semiconductor manufactur-
ing equipment can also be represented by means of time
series models, and Baker et al. showed that neural net-
works may be used to generalize the behavior of a time
series (65). They referred to this new genre of time series
model as the neural time series (NTS) model. Like statisti-
cal time series models such as ARMA, once an NTS model
is developed, the forecast data can be used on conventional
control charts. However, unlike the ARMA family of mod-
els, the NTS model simultaneously filters both auto- and
cross-correlated data. In other words, the NTS model ac-
counts for correlation among several variables being mon-
itored simultaneously.

The neural network used to model the RIE process was
trained off-line on data acquired when the process was un-
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Figure 20. NTS network structure (65).

Figure 21. Measured BCl3 flow and NTS model predictions (65).

der control. The parameter of interest was BCl3, but the
same methodology could be extended to any other process
variable. The NTS network was trained to model BCl3 flow
by a unique sampling technique that involved training the
network to forecast the next BCl3 value from the behav-
ior of 10 past values. The network was trained on a sub-
set of the total auto-correlated data that consisted of the
first 11 of every 100 samples. It was then tested on 11
midrange samples (samples 51–61, 151–161, etc.) of every
100 to quantify the performance of the trained network.
Auto-correlation among consecutive BCl3 measurements
was accounted for by simultaneously training the network
on the present value of the BCl3 and 10 past values. Cross-

correlation among the BCl3 and the other six parameters
was modeled by including as inputs to the NTS network the
present values of the temperature, pressure, incident and
reflected RF power, chlorine, and BCl3 itself. The resulting
network topology, therefore, had 17 input neurons, 10 hid-
den neurons, and a single output neuron (see Fig. 20). The
future value of the BCl3 at time (t + T) was forecast at the
network output (where T is the sampling period). Figure
21 shows the measured and NTS model predictions of the
BCl3 data. Each point on the graph represents one out of
every 100 samples, beginning with sample 61. (Recall that
samples 51–61, 151–161, etc., were used as test data for
the trained network). The NTS model very closely approx-
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imates the actual value. Even when drastic changes in the
BCl3 occur, the NTS network quickly adapted. This tech-
nique yielded an excellent root mean square error (RMSE)
of 1.40 standard cm3/min. This small error indicates that
the sampling rate of 50 Hz was probably higher than ac-
tually required. In fact, because only 10% of this data was
needed to build very accurate NTS models, the sampling
rate could theoretically have been reduced as low as 5 Hz.

Run-By-Run Control

The main objective in run-by run control is to adjust fabri-
cation process conditions on a wafer-by-wafer basis. These
adjustments are made by comparing measured wafer char-
acteristics and a predictive model of these characteristics.
Smith and Boning integrated neural networks into the run-
by-run control of chemical-mechanical polishing (CMP), a
process in which semiconductor wafers are planarized us-
ing a slurry of abrasive material in an alkaline or acidic
solution (76). CMP exhibits unique characteristics (such as
drift in removal rate, memory effects, and varying amounts
of process noise) that make this process ideal for control
applications. Smith and Boning trained a neural network
to map CMP process disturbances to optimal values for
the coefficients in an exponentially weighted moving aver-
age (EWMA) controller (64). Statistical experimental de-
sign was used to generate a linearized multivariate model
of the form

yt = Axt + ct (25)

where t is the run number, yt is a vector of process re-
sponses, A is a constant gain matrix, xt is vector of pro-
cess inputs, and ct is an offset vector, which is calculated
recursively by an EWMA controller from the following re-
lationship

ct = α(yt − Axt) + (1 − α)ct−1 (26)

The coefficient α is dynamically estimated from the neural
network mapping according to the algorithm outlined in
Fig. 22. In designing this system, these researchers devel-
oped a self-tuning EWMA controller that dynamically up-
dates its parameters by estimating the disturbance using
the neural network mapping,which resulted in an adaptive
run-by-run controller that virtually eliminates the need for
an experienced engineer to provide EWMA tuning.

The neural network enhanced run-by-run control strat-
egy was also pursued by Wang and Mahajan of the Uni-
versity of Colorado, who similarly integrated neural nets
and SPC for the control of a chemical vapor deposition
(CVD) process (32). These authors also trained a neural
network to map the input–output relationships of this pro-
cess with data from a designed experiment. Then a con-
troller model was extracted from the neural network map-
ping by using the EWMA technique to filter process out-
put noise and detect process shifts or drift. The controller
used feedback to tune the CVD input settings to compen-
sate for the shift/drift detected. Wang and Mahajan showed
that this approach outperforms other run-by-run control
systems that do not involve neural networks, such as that
proposed by Butler and Stefani (77).

Real-Time Control

The next evolutionary step in neuro-control involves using
neural nets to continuously correct process conditions, as
opposed to making run-by-run adjustments. This real-time
control approach has been pursued by Rietman et al. of Bell
Laboratories, who designed a neural network to compute
in real time the over-etch time for a plasma gate etch step
(78). This time computation was based on a neural network
mapping of the mean values of fluctuations about control
variable set points and an in situ optical emission monitor.
By monitoring a single optical emission wavelength during
etching, these researchers inferred information about etch
rate, etch uniformity, pattern density, and cleanliness of
the reaction chamber. In neural network training, vectors
representing process “signatures” inherent in the emission
trace and set points were mapped to the ideal etch time for
a desired oxide thickness. This training procedure is illus-
trated in Fig. 23. The BP network for the control operation
consisted of 36 input nodes, five hidden neurons, and one
output.

This system was learning on-line from 1993 until about
1998. During this time, the network was trained on many
thousands of wafers. After months of close observation, the
network was eventually allowed independent control of a
production etcher, which eliminated the need for human in-
tervention in determining the proper over-etch time. In the
opinion of the Bell Labs engineers, in addition to reducing
process variation, increasing yield, and reducing manufac-
turing cost, this functional adaptive controller can poten-
tially extend the useful life of the processing equipment be-
cause design rules continue to shrink and greater demands
are constantly being placed on equipment performance.

Recently, May and Stokes at Georgia Tech developed a
real-time, model-based feedback control scheme for reac-
tive ion etching (RIE) using neural networks (9, 10). This
scheme was pursued to construct a predictive model for
RIE systems that can be approximately inverted to achieve
the desired control using indirect adaptive control (IAC)
strategy. The IAC structrure shown in Fig. 24 includes a
neural control (NC) and plant emulator (PE), which are
impementd as two separate back-propagation neural net-
works. In the IAC approach, the plant emulator is trained
off-line with experimental data, whereas the controller is
trained on-line with feedback from the plant emulator.
Conventional IAC schemes require direct feedback of pro-
cess variables from the plant to adjust the plant emulator.
The neural controller (NC) adjusts the PE’s inputs in real
time to optimally match the output of the PE (ye) to the
control target (y*).

To train the neural controller, the control target is first
fed through the neural controller to the plant emulator to
obtain the process output ye(t). Second, using the general-
ized delta rule, the error between the control target and
PE output [e2 = y∗(t) − ye(t)] is back-propagated through
the plant emulator to calculate the weight adjustments for
each layer of the PE. Next, the computed changes in the
plant emulator’s inputs are used to estimate the output er-
ror of the neural controller. Finally, the neural controller’s
weights are updated using the BP. This cycle is repeated
for each successive control target [y∗(t + 1), y∗(t + 2), etc.].
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Figure 22. EWMA controller with neural network weight estimator (76). .

Figure 23. Illustration of training method for wafer-to-wafer neural network control of a plasma gate etch (78).

Figure 24. Illustration of adaptive process control scheme using two back-propagation neural networks: a plant emulator (PE) and a
neural controller (NC) (9).

To evaluate this scheme, Stokes and May performed
real-time control simulations for a SiO2 plasma etch exper-
iment using a simplified IAC structure (9). It was shown
that the neural controller can be adjusted to quickly track
changes in target values, effectively inverting (or approx-
imately inverting) the model for the RIE plant. Based on

this previous success, the neural network controller was
applied to the etching of a GaAs/AlGaAs heterostructure in
a BCl3/Cl2 plasma by a Plasma Therm 700 SLR series RIE
system (10). A multiple-input, multiple-output (MIMO) ap-
proach to simultaneously control etch rate and DC bias was
investigated. Real-time sensor feedback in the form of pro-
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Figure 25. The performance of IAC scheme under variable dead-time: (a) plant output and (b) control signals (9, 10)).

cess conditions and residual gas analysis (RGA) was col-
lected to facilitate control over the etch depth. An example
of the performance of the IAC scheme under variable dead-
time is shown in Fig. 25. The results in Fig. 25 show that
a time delay of 1 second had very little effect on the per-
formance of the system, whereas a 2-second delay caused
only a slight delay in the recovery time. The control signals
from the IAC were nearly identical to those in the set-point
control case with some slight overshoot in the RF power as
it rises to return the DC bias to its target when a delay of
2 seconds was present. Overall, this neural network con-
troller exhibited improved set-point tracking, disturbance
rejection, response to changes in RIE dynamics, and re-
sponse to variable dead time. These results indicate that
in every case, the neural controller converges very quickly,
providing evidence that the dynamic characteristics of the
RIE process are indeed learned by on-line training. The
controller also adjusted the plant emulator’s inputs under
noisy conditions to approximately match the target. The
methodologies developed are generally applicable to semi-
conductor manufacturing processes.

Supervisory Control

A run-by-run control system that involves both feed-
forward and feedback control schemes is known as a super-
visory control system. Control of semiconductor processes
can be examined at several levels (79). Supervisory control
is the highest level of the hierarchy shown in Fig. 26. At this
level, the progression of a wafer is tracked from unit pro-
cess to unit process, and adjustments can be made to sub-
sequent steps to account for variation in preceding steps.
Both feedback and feed-forward adjustments are made in
a supervisory control system. As an example, Patel et al.
presented a scheme for supervisory control of deposition
time and temperature for low pressure chemical vapor de-
position (LPCVD) grown silicon nitride off product wafer
using a Kalman filter-based estimation (80). During the
response model was constructed, stability of the feedback
loop to modeling error was quantified and an iterative algo-
rithm was proposed for tracking batch data and updating
data from batch to batch. Finally, the controller is applied
for high volume 300-mm manufacturing on a TEL Alpha
3031 vertical furnace.

The concept of intelligent modeling techniques such as
neural networks can also be applied to supervisory control
systems. As an example of such a system, Kim has devel-
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Figure 26. Process control hierarchy (79).

oped a model-based supervisory control algorithm based
on computational intelligence techniques and applied this
approach to reduce undesirable behavior resulting from
various process disturbances in via formation in a pho-
tolithography sequence (81). Kim and May (45)presented
a modeling approach for via formation in dielectric layers
composed of photosensitive benzocyclobutane (BCB) based
on the mapping capabilities of neural networks. A series
of designed experiments were performed to characterize
the complete via formation workcell (i.e., each unit pro-
cess step for via formation). Using the sequential modeling
scheme described earlier, each workcell sub-process is mod-
eled individually, and each sub-process model is linked to
previous sub-process outputs and subsequent sub-process
inputs (see Fig. 16). The goal in this study was to develop
a supervisory process control system for via formation to
maintain system reliability in the face of process distur-
bances. Supervisory control can reduce variability in two
ways. The first involves reducing the variability of each
contributing step by feedback control. The second requires
accounting for the variation of consecutive steps so that
their deviations cancel each other by feed-forward control.
In this system, dielectric film thickness and refractive in-
dex were used as process monitors for each sub-process,
and via yield, film retention, and film non-uniformity were
added as the final response characteristics to be controlled.
Based on appropriate decision criteria, model and recipe
updates for consecutive sub-processes were determined.

Figure 27 shows the general flowchart of the supervi-
sory control scheme. Nine neural networks were required:
one global process model for optimal process recipe syn-
thesis, four models for each sub-process model, and four
for recipe updates to realize the supervisory algorithm. To
construct the process supervisor, recipe update modules
were developed individually for each sub-process. The neu-
ral networks for recipe update modules are trained off-line
and updated on-line as necessary. Based on the neural net-
works used for recipe updates, genetic algorithms generate
optimal process recipes for the next sub-process.

When the supervisory control algorithm was applied to
a real via formation process, experimental results showed
significant improvement in film thickness and via yield
control as compared with open-loop operation. Table 7 com-
pares the final responses of the process with and without
control. The “% improvement” column in this table is cal-

culated using

% Improvement = (RWOC − RWC)
(RWOC − T )

× 100 (5-3) (27)

where RWOC, RWC, and T represent process response with-
out control, process response with control, and control tar-
get value, respectively. These results showed that the su-
pervisory control system significantly increased via yield
and the final film thickness was very close to the control
target compared with the result of the experiment without
control.

PROCESS DIAGNOSIS

Product quality assurance throughout a semiconductor
manufacturing facility requires the strict control of liter-
ally thousands of process variables. These variables serve
as input and output parameters for hundreds of distinct
process steps. Individual process steps are conducted by
sophisticated and expensive fabrication equipment. A cer-
tain amount of inherent variability exists in this equip-
ment regardless of how well the machine is designed or
maintained. This variation is the result of numerous small
and essentially uncontrollable causes. However, when this
variability becomes large compared with background noise,
significant performance shifts may occur. Such shifts are
often indicative of equipment malfunctions. When unreli-
able equipment performance causes operating conditions
to vary beyond an acceptable level, overall product qual-
ity is jeopardized. Consequently, fast and accurate equip-
ment malfunction diagnosis is essential to the success of
the semiconductor product process.

This section presents several approaches for the mal-
function detection and diagnosis of IC fabrication equip-
ment. The methodologies discussed here include quantita-
tive malfunction detection and diagnosis using standard
methods as well as neural network-based malfunction de-
tection and diagnosis using pattern recognition. The use of
malfunction detection and diagnosis in equipment, process,
and circuit level can allow us to maintain consistent man-
ufacturing processes, increasing the probability of identi-
fying faults caused by equipment malfunction, and ulti-
mately leading to yield improvement.
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Figure 27. Flowchart of supervisory control algorithm (81).

Figure 28. Chlorine and CHF3 flow rates for Al etch step just before an equipment malfunction (65).

Malfunction Detection

The NTS model (see time series modeling section) is used
to generate a real-time alarm signal when sampled process
data do not conform to their previously established pattern,
indicating a possible equipment malfunction or other out-
of-control state. This capability was demonstrated on an
actual RIE malfunction (61). In this case, aluminum was
etched in a CHF3 and chlorine gas mixture. The malfunc-
tion consisted of an unstable feed condition in the CHF3

mass flow controller. Figure 28 is a plot of the gas flows
during the period leading up to the malfunction. Although
the Cl2 flow appears to fall out of compliance at the 200th
sample, it was not the cause of the malfunction. The true
cause may be discerned by observing the behavior of the
CHF3 several samples earlier and comparing the instabil-

ity of its flow with the more stable and consistent readings
exhibited by the Cl2 during the same time span. A careful
study of this situation reveals that the CHF3 mass flow con-
troller was not able to regulate the gas flow correctly, and
consequently the RIE control circuitry aborted the process,
thus causing the Cl2 to shut off.

The on-line application of the NTS model was used to
generate an alarm signal warning of the impending out-of-
control condition of CHF3 flow even before the RIE aborted
itself. Recall that the NTS model acts as a filter to remove
auto-correlation and cross-correlation from the raw process
data. Thus, the residuals that result from computing the
difference between NTS model predictions and the mea-
sured values of the CHF3 flow are IIND random variables.
As a result, these residuals can be plotted on a standard
Shewhart control chart to identify process shifts, in which



Artificial Intelligence in Semiconductor Manufacturing 23

case alarm generation was based on the well-known West-
ern Electric Rules, summarized here (64).

1. One data point plots outside of the 3-sigma control
limits.

2. Two of three consecutive points plot beyond the 2-
sigma warning limits.

3. Four of five consecutive points plot 1-sigma or beyond
from the center line.

4. Eight consecutive points plot on one side of the center
line.

Although this malfunction eventually broke all of these
rules, the violation of Rule 4 was invoked to generate the
malfunction alarm.The data from the RIE malfunction was
fed into the NTS network with CHF3 as the forecast pa-
rameter. Figure 28 demonstrates that once again the NTS
model closely resembled the actual data sequence until the
malfunction occurred, at which point the CHF3 instability
became too great and the NTS model predictions diverged
from the measurements. Figure 29 shows the measure-
ment residuals resulting from the difference between the
NTS model predictions and the actual sensor data. When
eight consecutive points in the data sequence plotted on
one side the center line (which occurred at the 18th sam-
ple), the NTS network immediately responded by signaling
an alarm.

At the point where the NTS alarm is generated, the
value of the mean shift in CHF3 flow is merely 0.25σ, which
indicates that the NTS model is quite sensitive to small
shifts. For the same malfunction, the internal RIE process
control circuitry did not respond until significantly later
(at about the 170th sample). The rapid NTS response time
can be instrumental in identifying incipient equipment
faults and preventing subsequent misprocessing, which
illustrates an important tradeoff that occurs when the
proper data sampling rate is chosen. Although the chosen
rate of 50 Hz proved unnecessary to build an accurate NTS
model, this high rate ensures that malfunction detection is
nearly immediate.

Malfunction Diagnosis

Neural networks have been widely used in process monitor-
ing and diagnosis (82), primarily in mechanical machining
operations, such as cutting or injection molding. For exam-
ple, Burke and Rangwala discussed a neural network ap-
proach for tool conditioning in metal cutting (83). Wasser-
man et al. used neural networks to detect and measure
small cracks in rotating machine shafts (84). Recently, neu-
ral nets have also begun to find use in electronics systems
diagnosis. Murphy and Kagle used the pattern identifica-
tion capabilities of neural networks to recognize electronic
malfunctions (85). Using neural nets for process diagnosis
in semiconductor manufacturing has also started to gain
attention. The approaches undertaken by researchers in
this area include diagnosis at three distinct levels of the
manufacturing process: 1) the equipment level, 2) the pro-
cess level, and 3) the circuit level.

Equipment Level. Kim and May successfully employed
a hybrid scheme that involves neural networks in tan-
dem with traditional expert systems to develop a work-
ing prototype for real-time, automated malfunction diag-
nosis of IC fabrication equipment. Hybrid techniques ef-
fectively offset the weaknesses of each individual method
by itself (86). Traditional expert systems excel at rea-
soning from previously viewed data, whereas neural net-
works extrapolate analyses and perform generalized clas-
sification for new scenarios. Kim and May’s system has
been implemented on a Plasma Therm 700 series RIE
to outline general diagnostic strategy applicable to other
rapid single-wafer processes. Diagnostic systems that rely
on post-processing measurements and electrical test data
alone cannot rapidly detect process shifts and also identify
process faults. As unreliable equipment jeopardizes prod-
uct quality, it is essential to diagnose the root causes for
the malfunctions quickly and accurately. May and Spanos
have previously developed a real-time diagnostic system
that integrates evidence from various sources using the
Dempster–Shafer rules of evidential reasoning (87).

Extending this work, Kim and May integrated neural
networks into this knowledge-based expert system (88). Di-
agnosis is conducted by this system in three chronological
phases: the maintenance phase, the on-line phase, and the
in-line phase. Neural networks were used in the mainte-
nance phase to approximate the functional form of the fail-
ure history distribution of each component in the RIE sys-
tem. Predicted failure rates were subsequently converted
to belief levels. For on-line diagnosis of previously encoun-
tered faults, hypothesis testing on the statistical mean and
variance of the sensor data was performed to search for
similar data patterns and assign belief levels. Finally, neu-
ral process models of RIE figures of merit (such as etch
or uniformity) were used to analyze the in-line measure-
ments and identify the most suitable candidate among po-
tentially faulty input parameters (i.e., pressure, gas flow,
and so on) to explain process shifts. Hybrid neural expert
systems offer the advantage of easier knowledge acquisi-
tion and maintenance and extracting implicit knowledge
(through neural network learning) with the assistance of
explicit expert rules. The only disadvantage in neural ex-
pert systems is that, unlike other rule-based systems, the
somewhat non-intuitive nature of neural networks makes
it difficult to provide the user with explanations about the
way diagnostic conclusions are reached (3). However, these
barriers are lessening as more and more successful systems
are demonstrated and become available. It is anticipated
that the coming decade will see neural networks integrated
firmly into diagnostic software in newly created fabrication
facilities.

More recently, Hong and May explored a methodology
for real-time malfunction diagnosis of RIE employing op-
tical emission spectroscopy (OES) and residual gas anal-
ysis (RGA) data (89). Based on this metrology data, time
series neural networks (TSNNs) were trained to generate
evidential belief for potential malfunctions in real time,
and Dempster-Shafer theory was adopted for evidential
reasoning. Modeling using the TSNN was accomplished
in two steps: fault detection for a single faulty component
and fault detection on multiple components (39). The struc-
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Figure 29. Measurement residuals from NTS model before RIE malfunction plotted on 3-sigma control chart (65).

Figure 30. A schematic structure of the TSNN for fusion and prediction of data from OES and RGA sensors (39).

ture of the TSNN is shown in Fig. 30. The TSNN models
trained using OES and RGA sensor data were shown to
be effective for monitoring and diagnosis for RIE systems.
This approach contributed to maintaining a consistent RIE
process by successfully detecting faults with only a single
missed alarm and a single false alarm occurring out of 21
test runs when both sensors were used in tandem.

Process Level. In another diagnostic application, Sikka
of Intel’s Artificial Intelligence Laboratories in Santa
Clara, California used BP neural networks for wafer map
analysis (90). To do so, a technique was developed to de-
tect and characterize spatial features on gray-scale cumu-
lative wafer maps acquired at the final wafer sort step.
These cumulative maps are obtained by summing the con-
tents of several individual wafer maps, each consisting of
the pass/fail status of each tested die on the wafer. Defects
from certain process steps produce characteristic spatial
features on the cumulative maps. The Intel wafer map an-
alyzer (WMA) software combines standard image process-
ing (to enhance features and extract specific attributes)

with neural networks (to determine categories and loca-
tions of the extracted attributes) to reduce the need for im-
practical and lengthy visual wafer inspection. In so doing,
this system, accurate to nearly 100%, assists with diagnos-
tic troubleshooting by providing warning signs of potential
equipment failures in key process steps.

Recently, Setia and May investigate in-line fault detec-
tion and diagnosis of excimer laser ablation process using
computational intelligent methodologies such as a com-
bination of feed-forward neural networks and Dempster-
Shafer theory and adaptive neuro-fuzzy networks (73).
Both methodologies employ response data originating di-
rectly from the laser equipment and characterization of
microvias formed by the ablation process, which serves as
evidence of equipment malfunctions affecting process pa-
rameters. The system based on neural networks operating
in conjunction with Dempster–Shafer theory performed
more accurately in the failure detection task (i.e., 100%
detection in 19 possible scenarios9) as compared with the
neuro-fuzzy networks, which generated one false alarm.
Furthermore, both neural networks in conjunction with
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Dempster–Shafer theory and neuro-fuzzy networks thus
achieve approximately 95% and 90% success in diagnosis,
respectively.

Circuit Level. At the integrated circuit level, Plummer
has developed a process control neural network (PCNN)
to identify faults in bipolar operational amplifiers (or op-
amps) based on electrical test data (91). The PCNN exploits
the capability of neural nets to interpret multidimensional
data and identify clusters of performance within such a
data set, which provides enhanced sensitivity to sources
of variation that are not distinguishable by observing tra-
ditional single-variable control charts. Given a vector of
electrical test results as input, the PCNN can evaluate the
probability of membership in each set of clusters, which
represent different categories of circuit faults. The network
can then report the various fault probabilities or select the
most likely fault category.

Representing one of the few cases in semiconductor
manufacturing in which back-propagation networks are
not employed, the PCNN is formed by replacing the output
layer of a probabilistic neural network with a Grossberg
layer (Fig. 31). In the probabilistic network, input data is
fed to a set of pattern nodes. The pattern layer is trained
using weights developed with a Kohonen self-organizing
network. Each pattern node contains an exemplar vector
of values corresponding to an input variable typical of the
category it represents. If more than one exemplar repre-
sents a single category, the number of examples reflects the
probability that a randomly selected pattern is included in
that category. The proximity of each input vector to each
pattern is computed, and the results are analyzed in the
summation layer.

The Grossberg layer functions as a lookup table. Each
node in this layer contains a weight corresponding to
each category defined by the probabilistic network. These
weights reflect the conditional probability of a cause be-
longing to the corresponding category. Then outputs from
the Grossberg layer reflect the products of the condi-
tional probabilities.Together, these probabilities constitute
a Pareto distribution of possible causes for a given test re-
sult (which is represented in the PCNN input vector). The
Grossberg layer is trained in a supervised manner, which
requires that the cause for each instance of membership in
a fault category must be recorded beforehand.

Despite its somewhat misleading name, Plummer ap-
plied the PCNN in a diagnostic (as opposed to a control)
application. The SPICE circuit simulator was used to gen-
erate two sets of highly correlated input/output operational
amplifier test data, one representing an in-control process
and the other a process grossly out of control. Although the
second data set represented faulty circuit behavior, its de-
scriptive statistics alone gave no indication of suspicious
electrical test data. Training the Kohonen network with
electrical test results from these data sets produced four
distinct clusters (representing one acceptable and three
faulty states).

With the Kohonen exemplars serving as weights in the
pattern layer, the PCNN then was used to identify one of
the three possible out-of-control conditions: 1) low npn β; 2)
high npn β and low resistor tolerance; or 3) high npn β and

high resistor tolerance. The summation layer of the PCNN
reported the conditional probability of each of these condi-
tions and the probability that the op amp measurements
were acceptable for each input pattern of electrical test
data. The PCNN was 93% accurate in overall diagnosis,
and correctly sounded alarms for 86% of the out-of-control
cases (no false alarms were generated).

YIELD MODELING

Yield modeling is of the highest importance in semiconduc-
tor manufacturing. The technical metrics of manufactur-
ing performance typically include product yield, functional
performance, parametric performance, facility throughput,
and average cycle time. Continuous improvements in man-
ufacturing yield require a strong commitment to quality
management as well as equipment maintenance. Optimiz-
ing each of these creates a benchmark for properly exe-
cuting complex manufacturing processes. However, model-
ing each also brings corresponding technical and scientific
challenges.

Parametric Yield

Declining manufacturing yields have been attributed to
increasing complexity and stringent process restrictions.
With newly developed or highly specialized processes,
parametric yield loss, which can be attributed to defects,
foreign particles, and random variations in the fabrication
process, is particularly important. Parametric yield, or the
percentage of devices that meet a set of reasonable con-
straints, can be challenging to improve even in a defect-
free manufacturing environment. Although subtle process
fluctuations may not always cause catastrophic failures,
they often prevent devices from meeting certain perfor-
mance specifications. ICs are often categorized according to
specific performance criteria. Therefore, it remains critical
to develop methodologies for modeling parametric perfor-
mance (92). Methodologies that take advantage of artificial
intelligence tools offer promising solutions to key manufac-
turing issues.

The Monte Carlo method has been a common approach
for evaluating parametric yield. It uses a large number of
pseudo-random sets of values of circuit parameters that
are generated according to the distribution drawn from
measured data. Using the Monte Carlo approach, a sim-
ulation is performed for each set of parameters, and infor-
mation is extracted regarding the predicted performance
of a circuit. Then, the performance distribution from the
set of simulations can be determined. Unfortunately, the
Monte Carlo approach has several drawbacks. The most
obvious shortcoming is the large number of simulations it
requires, which makes this approach computationally ex-
pensive. In a purely random Monte Carlo simulation, each
device parameter is varied independently, which subse-
quently ignores the correlated nature of device parameters.
Monte Carlo simulations also assume a specific statistical
distribution a priori to randomly generate sets of device
and/or process parameters. Although it may be suitable
for a large, well-characterized fabrication process, newly
developed processes can exhibit nonstandard statistical be-
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Figure 31. Process control neural network from Reference (91).

havior. In fact, the distribution of parameters from newly
developed processes can possess significant skew or ex-
treme deviations, or may not be normal at all (93).

An alternative systematic methodology that allows de-
vice yield prediction before high volume manufacturing to
evaluate the impact of both design decisions and process
capability has been demonstrated (92). This methodology
computes the circuit parametric yield numerically from in-
tegrals of the form

∫
p(y)dy (31)

where y is a particular device performance characteristic
and p(y) is its probability density function (pdf). This pdf is
derived by: 1) measuring or simulating a significant sam-
ple of device parametric data; 2) using neural networks
to encode the probability density function of all marginal
pdfs of the measured parameters; and 3) computing p(y)
directly from the joint pdf using a standard mathematical
transformation.

Yun and May used this technique to model parametric
yield for avalanche photodiodes (APD) grown by MBE. The
input factors were the following variables: device diame-
ter, mean doping, standard deviation of doping, and bar-
rier width. The performance parameters were APD gain
and noise. The input factors were chosen because of their
potential for variation in a manufacturing setting leading
to possible impact on yield. For example, device diameter
could vary because of photolithographic variations includ-
ing misalignment, and the other input factors can fluctuate
in the molecular beam epitaxy system used to synthesize
the APD structures.

In this study, two BP neural networks were used to train
and predict APD gain and noise. Inputs to the neural net-

work models were the four manufacturing process vari-
ables. Afterward, the functional form of the overall joint
parameter distribution directly from measured data was
determined using neural networks. In this case, the net-
work inputs were the manufacturing parameter values,
and the network output was their corresponding relative
frequency. As neural networks are useful for input–output
mapping, the functional form of the joint pdf was encoded in
the neural network. Once the pdf of the device parameters
was computed, the joint pdf for functions of these parame-
ters were derived. The systematic methodology is detailed
below.

Let us consider two sets of random variables Xj (repre-
senting the manufacturing parameters) and Yi (represent-
ing the performance metrics), where the Yis are functions
of the Xjs

x1 = A; x2 = B; y1 = G; y2 = N (32)

The functional relationship between the manufacturing
process variables and performance parameters can be ex-
pressed as

y1 = H1(x1, x2)
y2 = H2(x1, x2)

(33)

where H1 and H2 are continuous, differentiable functions.
Now x1 and x2 can be solved in terms of y1 and y2 to obtain

x1 = G1(y1, y2)
x2 = G2(y1, y2)

(34)

where G1 and G2 are also continuous and differentiable.
The joint pdf of random variables Y1 and Y2, u(y1, y2) is
given by

u(y1, y2) = f (x1, x2)|J(x1, x2)| (35)
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where is the joint pdf of x1 and x2, and is the Jacobian
transformation. The Jacobian is given by the following de-
terminant:

J(y1, y2) = [

dx1

dy1

dx1

dy2
dx2

dy1

dx2

dy2

] (36)

Once u(y1, y2) was calculated, the marginal densities of the
device performance parameters (noise and gain) can be cal-
culated as follows:

I1(y1) =
∫

u(y1, y2)dy2 ≈ y2

∑
u(y1, y2)

I2(y2) =
∫

u(y1, y2)dy1 ≈ y1

∑
u(y1, y2)

(37)

where I1(y1) and I2(y2) are the marginal pdfs of the per-
formance characteristics and the numerical integration is
performed by the trapezoid rule.

Using this methodology, the parametric yield of gain and
noise in APD was predicted based on the variation of the
manufacturing parameters. The results from this method
were compared with Monte Carlo results (see Figs. 32 and
33).

The Monte Carlo method performed without consider-
ing that the variety of the input parameter distributions
could not accurately predict the parametric yield. Alterna-
tively, the results from this alternative approach employed
by Yun and May were comparable with results achieved us-
ing the Monte Carlo method that does consider different in-
put distributions and were also obtained with significantly
fewer simulations.

Design Centering

Design centering is essentially an approach to optimize
yield (94). In a production line with severe process vari-
ations, the number of unqualified circuits is great, which
is disadvantageous for the foundry and the consumer. The
obvious goal is to maximize the number of qualified cir-
cuits whose performance meets the specifications of the
customer. As circuits get smaller, design centering requires
tighter control in the manufacturing process, which means
precise tool alignment and nominal values and tolerances
of layout parameters.

In an effort to maximize yield, it is beneficial to ex-
plore the parameter space for the optimum designed lay-
out. However, devices are smaller and more complex; there-
fore, the budget for exploring the large parameter space is
expectedly inadequate. Monte Carlo simulations (95)and
geometric methods (96)have been previously employed,
and each has it benefits. As described above, Monte Carlo
simulations are computationally intensive and require a
large number of simulations. Geometric methods become
a major undertaking as the dimension of the problem in-
creases. Given the time constraints and other restrictions
at a production facility, alternative approaches that quickly
located optimal layouts are essential. For example, Pratap
et al. (97)employed a two-stage neuro-genetic design cen-
tering scheme: 1) parametric yield estimation through the
use of neural networks and 2) design centering using ge-
netic algorithms.

In stage 1, the parametric yield estimation was per-
formed using Monte Carlo simulations based on neural net-
work models,which began with a random sample generator
that used Monte Carlo runs to generate a large number of
input vectors based on the mean, variance, and distribution
of the input variables (i.e., heterojunction bipolar transis-
tor emitter length, collector doping, base doping, and emit-
ter doping). Neural network models were used to calculate
output parameters: maximum gain (β) and peak cutoff fre-
quency ( f T ). Once the output values are determined for
each run, the yield was determined using a yield calcula-
tor. Parametric yield was calculated based on the upper
and lower specifications for each output. The yield for each
individual output is defined by

Y1 = {y|y1min ≤ y1 ≤ y1max}
Y2 = {y|y2min ≤ y2 ≤ y2max}
...
Yi = {y|yimin ≤ yi ≤ yimax}
...
Yn = {y|ynmin ≤ yn ≤ ynmax}

(38)

where Yi is the partial yield of the ith output, Yimin and
Yimax are lower and upper specifications, respectively, and
n is the number of output values. The total yield of the
device is defined by

Y = Y1 ∩ Y2K∩ YiK∩ Yn (39)

Here, fixed mean values, variances, and distribution types
of each process variable are provided to the parametric
yield calculator along with desired specification limits of
the outputs.

The second stage of the algorithm used the parametric
yield estimator in conjunction with GAs to determine the
means and variances of the input parameters that result in
the maximum yield. In this step, 1) the distribution of the
input variables is assumed to be independent of its mean
and variances; 2) the input parameters are assumed to be
statistically independent; and 3) the variance is assumed
to be independent of means. The GA begins with an initial
population of means and variances of input parameters.
The parametric yield estimator calculates the yield for each
member of the population. If the yield of any population ex-
ceeds the desired maximum yield, that particular sample
is deemed the design center, and the algorithm ceases. Al-
ternatively, the population of means and variances is pro-
vided to the GA block along with the corresponding para-
metric yield values, and the algorithm performs genetic
manipulations to obtain a new population of means and
variances. During genetic manipulation, the samples with
higher yield are assigned greater fitness values, leading to
a higher probability of survival in the new population set.
The process continues iteratively until a suitable design is
achieved. Results from this methodology are illustrated in
Figs. 34 and 35.

Figure 34 shows the yield histogram of f T before design
centering, and Fig. 35 illustrates the improvement in para-
metric yield for 30-GHz devices (from 25% to 75%). The
maximum gain improved in a comparable manner. Simi-
lar results (Figs. 36 and 37) were also obtained for 30-GHz
voltage controlled oscillators (VCO). In Fig. 36, a large pro-
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Figure 32. Comparison of yield calculations of gain index obtained from Monte Carlo and method employed by Yun and May (92).

Figure 33. Comparison of yield calculations of noise index obtained from Monte Carlo and method employed by Yun and May (92).

Figure 34. Yield histogram of peak cutoff frequency before design centering (97).
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Figure 35. Yield histogram of peak cutoff frequency after design centering (97).

Figure 36. Yield histogram of tuning range before design centering (97).

portion of the devices exhibited a tuning range below 2.15
GHz before design centering. After design centering, para-
metric yield improved from 8% to 85%.

Although the distribution of input parameters and the
electrical performance parameters for those devices (Figs.
34–37) were normal, Pratap et al. demonstrated using
VCOs that the neuro-genetic design centering method was
also effective when the distributions of process and layout
parameters are non-normal (97). To test the effectiveness
of the neuro-genetic scheme on nonnormal distributions,
design centering was performed using the values in Table
8, and results are summarized in Table 9.

After design centering for the non-normal case, the yield
improved from 0.01% to 71% in just 38 iterations. This
neuro-genetic approach demonstrates the advantages of
artificial intelligence tools in yield maximization modeling.

CONCLUSION

In semiconductor manufacturing, process and equipment
reliability directly influence cost, throughput, and yield.
Significant process modeling and control efforts are re-
quired to reach projected targets for future genera-
tions of microelectronics devices and integrated circuits.
Computer-assisted methods will provide a strategic advan-
tage in undertaking these tasks, and among such methods,
neural networks, genetic algorithms, expert systems, and
fuzzy logic have certainly proven to be viable techniques.

Thus far neural networks have impacted semiconduc-
tor manufacturing at the process engineering level. In fact,
the use of neural networks now is probably at a point in its
evolution comparable with that of statistical experimental
design or Taguchi methodology a decade or two ago, and
now statistical methods such as these have become perva-
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Figure 37. Yield histogram of tuning range after design centering (97).

sive in the industry. The outlook for neural nets is therefore
similarly promising. New applications are appearing and
software is constantly being developed to meet the needs
of these applications. The overall impact of neural network
techniques in this field depends primarily on awareness of
their capabilities and limitations, coupled with a commit-
ment to their implementation. With each new successful
application, neural networks are coupled with other intelli-
gence tools and continue to gain acceptance, and thus their
future is bright.
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