
TIME INTERVAL MEASUREMENT

The function of a time interval measurement device is to
produce a quantitative measure to the length of a time in-
terval at the input of the device. Typically this interval is
presented by short, logic level start-and-stop pulses that
have a relation to some physical phenomena whose time
behavior is to be studied by the device. Its output is given
either by an analog quantity, such as a voltage change in a
capacitor or as a digital number, or an output of a counter,
for example (Fig. 1). Typically the final output of the de-
vice, independent of the method that is being used, is char-
acterized by a number, which gives the length of the time
interval as a multiple of the least resolvable time interval
of the device. This can be achieved by an analog-to-digital
converter (ADC) in case of analog realizations, for example.
The least resolvable time interval characterizing the mea-
surement system being used can be considered the value
of its least significant bit (LSB) analogically to ADCs. It
defines the resolution of the device. Accordingly, a time in-
terval measurement device is often called a time-to-digital
converter (TDC).

TDCs have manifold applications. It is one of the criti-
cal components of a pulsed time-of-flight laser radar, for
example, where the distance measurement accuracy is
directly dependent on the time measurement accuracy.
Pulsed time-of-flight laser radars can be used in geodesy,
space measurements, and various industrial inspection
applications (1, 2).

Another application area for TDCs is found in nuclear
science, e.g., dE/E and various time-of-flight studies. TDCs
are also used in measurement instruments and in the cal-
ibration of test equipment for electronic circuits. As in
high-speed LSI circuits propagation delays are reduced to
20–200 ps or even below, high speed and accuracy are re-
quired in automatic test equipment systems (ATEs). Test
timing control with an accuracy to the order of tens of
picoseconds is needed, and to maintain such timing per-
formance, the calibration hardware requires even higher
performance TDCs with picosecond resolution and accu-
racy (3–9).

The most straightforward method to realize a TDC is
to have an electronic counter counting the pulses of an ac-
curate oscillator during the start–stop time interval. The
resolution of this method, as shown later, is defined by the
period of the oscillator, which means that a resolution bet-
ter than in the range of nanoseconds is difficult to achieve
because of difficulties in the realization of high-frequency,
high-performance oscillators. The purpose of this article is
to describe this time interval measurement method with
its variations where its fundamental resolution limitation
is overcome with some kind of interpolation and where
accordingly picosecond-range time interval measurement
resolution can be achieved. Some of these interpolator
structures, such as time-to-amplitude converters of digital
delay lines, can also be used as stand-alone time interval
measurement units.

In the following chapters, first some important perfor-
mance parameters of a time interval measurement device
are given. Then the basic counting method is analyzed in

more detail. After this, interpolation methods to increase
the precision and accuracy of the counting method are de-
scribed. Next the performance of one interpolation tech-
nique, the Nutt method, is analyzed in more detail. This
method is selected as it is perhaps the most popular tech-
nique in high-performance time-to-digital conversion with
many practical realizations. As part of the presentation,
some practical realization aspects are also discussed.

PERFORMANCE PARAMETERS IN TIME INTERVAL
MEASUREMENT

The main performance parameters used in connection with
the time interval measurement method are resolution, pre-
cision, and accuracy.

The term “resolution” is used for the smallest time in-
terval that can theoretically be resolved by the TDC in a
single measurement, i.e., the quantization step (LSB). The
term (single-shot) “precision” is used for the standard de-
viation (σ) of the measurement result distribution around
the mean value (m) when a single time interval is mea-
sured repeatedly (Fig. 2). In a practical measurement, the
single-shot precision is influenced, besides the quantiza-
tion error, by nonidealities like jitter in timing signals and
power supply noise and especially by the nonlinearities of
the possible clock period interpolators. The single-shot pre-
cision can be used to estimate the smallest real time inter-
val that can be resolved in a single isolated measurement.
As precision is limited by quantization error and statisti-
cal error sources, it can usually be improved by averaging
(10).

Although precision gives the statistical variation of the
measurement result around a mean value, single-shot ac-
curacy is affected by both this statistical variation and any
systematic errors in the mean value. The statistical vari-
ation (sigma) can be reduced by averaging, but systematic
errors cannot; i.e., the precision of the average may be good,
but the accuracy may still be poor. Systematic errors in-
clude, for example, linearity and stability errors. Integral
linearity error (INL) is the deviation of the input–output
characteristics from the ideal, straight line input–output
characteristics (Fig. 2). Differential linearity error (DNL)
is the deviation of each quantization step from the ideal
value of the LSB. Note that DNL and INL are related so
that the INL of a particular TDC channel is just the sum of
the DNLs of all previous channels. The stability of a TDC
is defined as the sensitivity of its characteristics with tem-
perature, supply voltage, time, and so on. Clearly, to mea-
sure the systematic errors reliably, the statistical variation
should be reduced to a negligible level by averaging.

Other parameters that should be considered while
choosing time measurement techniques are, for example,
the measurement range of a TDC and the conversion time.
The range of the device defines the maximum time inter-
val that can be measured or digitized. Conversion time
is the time between the end mark of the input time in-
terval and the moment when the measurement result is
ready. Sometimes, especially with analog TDCs, a param-
eter called dead time that typically defines the period dur-
ing which the system is incapable of accepting a new start
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Figure 1. Input–output interfaces of a TDC. LSB is the least significant bit, for example, 10 ps to 10 ns. N × LSB is the length of the
start–stop interval.

Figure 2. Performance parameters of a time-to-digital converter.

after a registered start signal (conversion time + possible
recovery time) is also used. Dead time might be an impor-
tant parameter, especially in applications where the time
intervals to be measured are randomly distributed, which
often happens in nuclear measurements. For example, if
the start detector efficiency is high and the stop efficiency
is low, respectively, a long dead time may result in reduced
measurement efficiency because many start signals that
trigger the time interval measurement may not be followed
by a valid stop signal. In this case, it is important for the
TDC to recover from the useless start pulse as quickly as
possible.

Counting Method

Analysis of the Method. The counting method where
clock pulses are counted during the input time interval
is perhaps the most simple time measurement method
(Fig. 3). Provided that the reference clock is accurate, a
crystal oscillator, for example, the counter method has a
wide linear range and good stability. In asynchronous mea-
surement, i.e., when the measurement begins in a random
phase with respect to the clock, the maximum error in one
measurement is ± Tclk , where Tclk is the clock period. For
each input interval, the counter will measure either N or
N + 1 counts, and for this binomial distribution, it can be
shown that for an input interval of (Q + F) · Tclk , where Q
is an integer and 0 ≤ F < 1, the expected value of the mea-
surement result is Q + F (counter reading divided by the
total amount of measurement results) and the standard
deviation is (11)

σ =
√

F · (1 − F ) (1)

Thus, the measurement precision varies with the input in-
terval, and the worst case value for F = 0.5 is 0.5 Tclk . For a
1-GHz clock, for example, the maximum single-shot error
is ± 1 ns and the worst case value for σ is 500 ps.

To improve precision, averaging can be used in appli-
cations where several samples per measurement can be
taken. In asynchronous measurement and for Nav samples,
the precision is (11)

σ =
√

F · (1 − F )√
Nav

(2)

which is shown in Fig. 4.
In asynchronous measurement, the phase of the in-

put interval with respect to the clock is continuously dis-
tributed over the clock period or even several periods. It
means that the signal repetition rate is not coherent with
the counter clock, which is an essential requirement as the
time relationship between the signal and the counter clock
must be such as to sweep through the full range of the
N/N + 1 count ambiguity in a random manner to satisfy
the statistical requirement of averaging.

Synchronous measurement is also possible, which can
be realized if the start timing signal is repeated at a con-
stant rate and if the oscillator of the system is locked to
this rate. However, if the measurement is completely syn-
chronous with respect to the clock, averaging does not im-
prove precision. On the other hand, if the phase of the syn-
chronous measurement can be controlled, it is possible to
achieve a faster precision improvement rate than in asyn-
chronous measurement. For example, if the phase of the
start signal and oscillator has M discrete values evenly
distributed within the clock period, the measurement
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Figure 3. Basic counting method, where clock pulses are enabled to increment the counter during the input time interval. The gating
logic of (b) is preferable to the one in (a) because it allows only integral clock pulses to reach the counter. The method in (a) can produce
short pulses that may or may not be detected by the counter.

Figure 4. Precision of the counting method as a function of the fractional part F (by which the length of a time interval exceeds an integral
number of clock periods) and number of averaged samples Nav .

precision can be improved in averaging with a rate pro-
portional to 1/M (rather than to 1/

√
M as in synchronous

measurement), but the improvement is limited by factor
1/M. The synchronous method using discrete phase steps
is, however, more difficult to realize than the asynchronous
method (11).

The basic counting method has good accuracy, because
with a stable crystal oscillator reference, the linearity and
both the short-term and the long-term stabilities are good.
The measurement range can be increased simply by in-
creasing the number of bits in the counter. With standard
commercially available high-performance crystal oscilla-
tors, the maximum frequency is limited to a few hundred
megahertz, which corresponds to a single-shot resolution
of several nanoseconds. With advanced clock generation
techniques, single-shot resolutions of about 500 ps to 1 ns
have been achieved. Here the idea typically is to multi-
ply the clock frequency of a reference source by a phase-
locked loop, which includes a divider and a VCO in its loop.
In integrated time-to-digital converter realizations, a VCO
based on a ring oscillator is especially attractive, because
the measurement resolution can be further improved by
using all the clock phases of the ring oscillator (12).

Input Synchronization. In the counting method, the gat-
ing of the digitization clock may have a great impact on the
measurement accuracy. If the input interval (asynchronous
with respect to clock) is directly used for gating the counter,
short clock pulses appear frequently at the input of the
counter (Fig 3a). These may or may not be long enough to
increment the counter and cause an unpredictable error
in the averaged result. Therefore, a synchronizer, where
the input interval is synchronized to the clock is needed.
An example is shown in Fig. 3b, where only full-size clock

pulses are allowed to the counter. Note that because of the
use of edge-triggered flip-flop in the synchronization cir-
cuit, the clock becomes effectively a train of “zero-width”
pulses (impulses) (13). The advantages following are thus
that the measurement result will be unbiased, and that
time intervals much less than the clock period can also be
reliably measured.

Increasing Precision and Accuracy

The precision of the counting method can be improved by
averaging but at the cost of measurement time. In some
applications, however, averaging is not possible because of
the single-shot nature of the measured phenomena. Typi-
cally this is the case in the experiments made in nuclear
physics. The aim of this article is to discuss the variations
of the basic counting method, which enable one to achieve
an improved single-shot precision with realistic clock rates.
These methods typically use accurate clock generators in
connection with other time interval measurement tech-
niques, which enable a resolution markedly better than
the clock period to be achieved. In a way these methods
digitize the basic clock period so that the resolution of this
digitization (interpolation) defines the system resolution.

Vernier Method. In the vernier method (14), two
startable oscillators with slightly different frequencies are
used to achieve an LSB equal to the difference of the os-
cillator periods (dt in Fig. 5). The start mark of the input
interval enables the oscillator with a lower frequency f1

= 1/Tclk , and the stop mark enables the oscillator with a
higher frequency f2 = 1/(Tclk − dt). A counter records the
pulses from the oscillators until, since f1 < f2, at some
point the two oscillators will be in phase. Then, from Fig. 5,
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Figure 5. Principle of the vernier method in time measurement. Two oscillators with different periods are triggered by the timing pulses.
The counting is terminated at coincidence. The time interval txis effectively digitized with a resolution defined by the period difference.

tx = (N1 − N2) · Tclk + N2 · dt. If tx < Tclk , N1 = N2 = N and
tx = N · dt. The maximum value of N2 is Tclk /dt, so the
maximum conversion time (time from the stop mark to the
coincidence) is (Tclk /dt)(Tclk − dt). To measure input inter-
vals longer than Tclk, two counters recording both N1 and
N2 are needed; see Ref. 14.

Functionally the vernier method can also be considered
a time interval multiplier where the multiplication factor
is Tclk /dt. When the multiplied time interval is digitized
with a clock having a period Tclk , the effective resolution is
equal to dt. The accuracy and the resolution of this method
can be high if f1 and f2 are stable and dt is made small
(typically 1% of the period).

In the dual vernier method (Fig. 6), the startable start-
and-stop oscillators have an equal frequency f0 = 1/(Tclk

+ dt) and their phase crossover points with a third, con-
tinuously running oscillator with a frequency fclk = 1/Tclk

are detected (15). Similarly to the basic vernier method of
Fig. 5, the LSB of the measurement is dt and the maxi-
mum conversion time is (Tclk /dt)(Tclk + dt). Using the three
counter values Nc, N1, and N2, the input interval can be
calculated from

tx = Nc · Tclk + N1 · (Tclk + dt) − N2 · (Tclk + dt) (3)

Good single-shot resolution can be achieved with the
vernier techniques. In Ref. 15, the LSB is 20 ps with a
clock frequency of 200 MHz, and in Ref. 16, the measured
standard deviation is 2.3 ps in a 2-ns range with a clock
frequency of 500 MHz. The time measurement circuitry in
Ref. 15 is a discrete implementation for a commercial
counter, whereas the TDC in Ref. 16 is an integrated imple-
mentation, but the start-and-stop clock sources are exter-
nal. This circuit is used for tester timing calibration, where
the start input is the reference clock and the stop input is
a tester output.

Nutt Method

Analysis of the method. A powerful method for measur-
ing time intervals is to combine an accurate digital clock
and an analog or digital interpolation circuit as shown in
Fig. 7 (17). The input time interval is roughly digitized by
counting the reference clock periods during this interval.
The counter is enabled at the first clock pulse following
the start mark, and it is disabled at the first clock pulse
following the stop mark. The resulting time interval T12

is synchronized to the clock and is, therefore, accurately
measured. The fractions T1 and T2 are digitized separately
with interpolators to improve single-shot resolution. For
an n-bit interpolator, the LSB of the measurement is equal
to Tclk /2n and the input interval tx can be calculated from

the following equation:

tx = T12 + T1 − T2 = Nc · Tclk + N1 · Tclk/2n − N2 · Tclk/2n

(4)

Note that if the system clock is asynchronous with respect
to the time intervals to be measured, the length of time
fractions T1 and T2 change randomly in a repeated mea-
surement although their difference has only two discrete
values (dt if the main counter result is Nc − 1 or dt − Tclk

if the main counter result is Nc ). This means that in the
averaged results the nonlinearities of the interpolators are
also in a way averaged so that the accuracy of the system is
not limited by them. Note also that the drifts of the inter-
polators tend to cancel as it is the difference T1 − T2 that
counts in the final result (18).

The interpolators are generally based on analog time-
to-voltage conversion or on digital delay lines. These struc-
tures can achieve good single-shot resolution in a limited
dynamic range. Practically, they can be used for measuring
time intervals from tens to some hundreds of nanoseconds
with a resolution of 10 ps–1 ns depending on the measure-
ment range. The Nutt method can thus be considered a
technique that combines the inherently good single-shot
resolution of an analog time interval measurement method
such as time-to-amplitude conversion or of a digital delay
line, for example, with the accuracy and wide linear range
of the counting method.

Synchronization. For the Nutt method, it is typical that
the timing signals and the clock are deliberately asyn-
chronous, which produces a synchronization problem in
the generation of time intervals T1, T12, and T2. In Fig-
ure 8a, a simplified scheme of one possible control block of
a TDC based on the Nutt method and analog interpolation
is shown. The end mark of T1 (T2) is taken from the output
of the flip-flop D2a (D2b). However, in asynchronous mea-
surement, the start (stop) pulse arrives at a random phase
with respect to the reference clock. When the setup time
requirement of the flip-flop D2a or D2b is not fulfilled, the
propagation delay of that flip-flop will increase (Fig. 8b),
and in the extreme case, the flip-flop will enter a metastable
state. Thus, if the start (stop) pulse occurs near the rising
clock edge, an erroneous measurement is possible. Unlike
in the basic counting method, even a small excess delay af-
fects the measurement result directly through T1 and T2.

The probability of a synchronization error can be re-
duced by waiting before sampling the output of flip-flop
D2a (D2b). In the scheme of Fig. 9, the measurement will
be accurate if the flip-flop D2a (D2b) settles in less time
than Tclk . This comes from the fact that even though the
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Figure 6. Principle of the dual vernier method in time measurement.

Figure 7. Block diagram and operating principle of a TDC based on the Nutt method. The start–stop time interval is digitized coarsely
by the counter. In addition, time fractions from start and stop to the next following clock pulses (or next but one), respectively, are digitized
by interpolators.

Figure 8. (a) Synchronization of start and stop inputs in a TDC based on the Nutt method. Problems may occur when the clock edge and
output of first flip-flops occur within the set-up time of D2. (b) Propagation delay of a CML-flip-flop (current mode logic) as a function of
the data-clock edge time interval.

delay of the flip-flop D2a (D2b) might increase because of
coincident clock and data edges, this has no effect to the
length of T1 (T2) because the back edge of T1(T2) is defined
by the next following clock edge. Note also that even in the
case if the timing pulse would be completely missed with a
particular clock edge, the measurement is correct because
this simply means that T1(T2) would be longer by one Tclk ,
but on the other hand, T12 would now be correspondingly
shorter by one Tclk (18).

The scheme of Fig. 9 increases the measurement range
required of the interpolators, which is a disadvantage
in digital interpolators, where the integral nonlinearity
caused by delay element mismatch increases. In time-to-
voltage conversion, a short time offset is an advantage, be-
cause the nonlinear part of the characteristics from switch-
ing effects is then not used for measurement. It should
also be understood that the detailed construction of the
synchronization mechanism and circuitry used depends
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Figure 9. Improved synchronization of start and stop inputs in a TDC based on the Nutt method. Here the setup time violation in D2
does not produce error in T1 or T2.

largely on the particular interpolation method and archi-
tecture. The above example is shown just to demonstrate
the typical design challenges met is designing interpo-
lating, especially analog or double-level digital, time-to-
digital converters.

Analog Interpolators. A straightforward method to dig-
itize the start and stop time fractions T1 and T1 is to ap-
ply time-to-amplitude conversion (TAC) followed by an A/D
converter. In time-to-amplitude conversion, a capacitor is
discharged with a constant current during the input time
interval. A schematic diagram of a time-to-amplitude con-
verter is shown in Fig. 10. It consists of an accurate cur-
rent generator, a current switch based typically on a BJT
or MOS differential pair, a reference voltage source, and
the conversion capacitor. In the operation cycle, the capac-
itor floating in a reference voltage is discharged by a rate
defined by the current of the current source during the
time interval to be measured. The change in the capacitor
voltage is thus proportional to the input time and can be
converted into digital form with an A/D converter. After the
conversion, the capacitance is again charged to the refer-
ence voltage and the cycle can be repeated. Time-to-digital
converters based on this technique are presented in Refs.
18 and 19.

A fairly common choice for the analog interpolator is
the dual-slope converter (4,20–22). In the basic dual-slope
converter, a capacitor is first discharged with a constant
current (I) during the input time interval (tx ) and then
charged back with a smaller current (I/N). Clock pulses
are counted during the charging time (N · tx ), which gives
a measurement resolution equal to the case in which tx is
directly digitized with a clock frequency N times higher.
(Fig. 11).

Increasing the stretch factor N not only improves pre-
cision but also increases conversion time. To shorten the
conversion time of the TDC, dual interpolation or multiple
interpolation methods can be used (23). In multiple inter-
polation, a stretching operation with a stretch factor of Ks

is repeated N times to achieve an effective stretch factor of
Ks

N .
Interpolators based on an analog interpolation tech-

nique easily achieve sub-nanosecond single-shot resolu-
tion. With a clock frequency of 100 MHz and a 1-V dynamic
range in the time-to-voltage conversion, a time resolution

of 10 ps corresponds to a voltage resolution of 1 mV. How-
ever, lowering of the supply voltage has a direct impact on
the operation of these interpolators because it limits the
linear dynamic range and thus the single-shot resolution.
The power consumption and conversion time of the analog
interpolator depend on the chosen A/D conversion archi-
tecture.

The above analog interpolator devices can, of course, be
used as stand-alone time interval measurement units. The
TAC method is especially useful if good single-shot res-
olution is needed and the measurement range is modest
(less than about 100 ns). Typically they give an excellent
single-shot resolution in the picosecond range but suffer
from limited linearity (INL typically 0.1% of the range).
In connection with the Nutt method, the linearity problem
can, however, be avoided in averaging measurement as ex-
plained in detail later.

Digital Interpolators. An example of a digital delay line
is shown in Fig. 12. In a delay line, the time measurement
unit is the propagation delay of a logic gate,usually of an in-
verter. In Fig. 12, the start mark of the input interval trav-
els along the delay line. When the stop mark (clock edge)
arrives, it stores the status of the delay line into the flip-
flops. From this data, the time interval between the start
and stop can be coded as a multiple of one gate delay. The
delay of the element must be controllable to compensate
for the effects of process variations and temperature and
supply changes. Alternatively, digital calibration methods
can also be used. As shown in Fig. 13, the control parame-
ter can be the current or the number of the load elements,
for example. The control voltages (pbias, nibias, bias) are
commonly created in analog PLL or DLL control loops, but
also digital control has been implemented.

However, if the propagation delay of a logic gate is di-
rectly used as the measurement unit, the achievable res-
olution is limited by the minimum gate delay that, in
turn, depends on the technology and operating tempera-
ture range. This limitation can be avoided by using the
difference of two gate delays as the quantization step. The
delay difference can be implemented with two delay lines
having slightly different gate delays (24–26). A more com-
pact solution is the pulse-shrinking delay line presented
in Ref. 27. In a pulse-shrinking delay line (Fig. 14), the
time resolution depends on the difference between two de-
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Figure 10. A schematic diagram of a time-to-amplitude converter, which gives out a pulse whose amplitude is linearly proportional to
the length of the input pulse.

Figure 11. Operation principle of dual-slope converter, which discharges a capacitor with a constant current I and then charges back
with a smaller current I/N.

Figure 12. Delay line as a time measurement unit. The output of the flip-flops is latched by the stop signal. First flip-flop not set indicates
the length of the start–stop interval.

Figure 13. Controllable delay elements used in delay lines. In (a), the delay is controlled by adjusting the current of the inverter with
the bias voltages nbias and pbias. In (b), the delay is controlled by varying the number of load capacitances seen by the inverter.

lays of a single element. The input pulse tin propagates
in a chain of delay elements. The pulse shrinks by a con-
stant amount in each element until it disappears entirely.
The rs flip-flops are set by the propagating pulse until the

pulse vanishes, after which the following flip-flops are left
reset. The address of the first flip-flop not set is coded to
the output. The propagation of the rising edge of the in-
put pulse is slowed down by the current starving transis-
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Figure 14. Pulse-shrinking delay-line and schematic of the delay element.

tor N1, whereas the falling edge travels fast. Thus, in each
element, the pulse shrinks with an amount equal to the
delay difference. The amount of shrinking, i.e., the LSB of
the delay line is controlled by the bias voltage vbias at the
gate of the current starving transistor N1. Vbias is gener-
ated in the delay-locked loop, which stabilizes the length
of the delay line to be equal to the reference clock period.
Basically, the bias voltage is adjusted so that a pulse with
a width of one clock period, which is equal to the maximum
input time interval of the interpolator, just disappears in
the last delay element. Note also that the delay line method
where the difference of the two absolute delays defines
the resolution is equivalent to the vernier method where
resolution was defined by the difference of the oscillator
periods.

Delay line interpolators based on inverter gates are eas-
ily implemented in a CMOS process, have low-power con-
sumption, and can relatively easily be transferred to a low
supply voltage environment. Also, the conversion time of a
TDC based on delay line interpolators is short, because the
conversion time depends on the propagation delay of the
delay element chain and on the coding logic. The main fac-
tor limiting the performance is the nonlinearity caused by
random mismatch of the individual delay elements, which
determines the achievable precision. Several realization
variants of these kind of time-to-digital converters are pre-
sented in Refs. 28–38, for example.

At best published integrated CMOS time-to-digital con-
verters based on multilevel interpolation and reference re-
cycling give a single-shot precision of about 10 ps with in-
tervals of less than 200 µs and an external reference of
5 MHz (38). This performance is achieved in a 0.35-µm
CMOS technology by using a double-level interpolation
structure as shown in Fig. 15. The first interpolation stage
consists of a 16-element delay line that effectively mul-
tiplies the reference clock by 16 so that with a reference
clock of 65 MHz, for example, the internal clock frequency
is 1 GHz. Actually the frequency of the external reference
clock can be N times lower because the clock edge is cir-
culated N times within the delay line before accepting a
new “jitter-free” clock edge into the line from the external
clock. In this particular realization, the external reference
frequency is 5 MHz and N is 32. The time interval between
the edges of the virtual clock is interpolated with four par-
allel delay elements so that the delay difference between

the interpolated edges is about 100 ps. Fine interpolation
is achieved by hooking to the timing pulse (start, stop) ad-
ditional timing edges with a delay difference of about 10
ps. These edges are produced by parallel delay lines. The
position of the timing pulse with respect to the interpolated
edges of the virtual clock is determined by the coincidence
of these edges resulting in a single-shot resolution of 10 ps.
The precision of the device is shown in Fig. 16 as a function
of F (�T = NTclk + F). As shown by the figure, a precision
of about 8 ps can be achieved by using a look-up table to
correct the nonlinearities of the interpolators.

Characteristics of the Interpolation Method

Single-Shot Precision. Similarly to a counter, in asyn-
chronous measurement (i.e., the start pulse arrives at a
random phase with respect to the reference clock), the
worst-case single-shot precision of an ideal TDC based on
the Nutt method is, according to Eq. (1), 0.5 LSB and the
precision improves with averaging according to Eq. (2). The
maximum single-shot quantization error is ±1 LSB and
the measurement result distribution is binomial (N or N +
1 counts). In practice, however, several error sources from
the timing logic and interpolators deteriorate precision. In
asynchronous measurement, the precision is often limited
by gain error or, more generally, by the nonlinearity of the
interpolators.

In Ref. 22, the effect of interpolator nonlinearity on the
accuracy and precision of the TDC is analyzed. Assuming
a general form e(x) for the interpolator error (nonlinearity
and/or gain error),using subscripts 1 and 2 for the start and
stop interpolators, respectively, and by normalizing Tclk

to 1, the TDC measurement error for input time interval
Q + F (Q is an integer and 0 ≤ F < 1) in a single measure-
ment can be calculated as

e(x) = e1(x) − e2(x + F ), x + F < 1
e(x) = e1(x) − e2(x + F − 1), x + F ≥ 1

(5)

The maximum single-shot measurement error is now equal
to the maximum difference e1(x) − e2(x), and the measure-
ment result distribution is no longer binomial, but more
than two results are possible. Since in asynchronous mea-
surement x varies randomly and with equal probability be-
tween 0 ≤ x < 1, the mean value of the TDC measurement
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Figure 15. Architecture of a time-to-digital converter using reference recycling and dual-level interpolation with delay lines.

Figure 16. Precision of the TDC of Ref. 38 as a function of the fractional part of the time interval to be measured.

Table 1. Manufacturers of commercially available frequency/time-interval counters

Manufacturer Homepage

Agilent Technologies http://www.home.agilent.com
BK precision http://www.bkprecision.com
Blue Sky Electronics http://www.blueskyelectronics.com
CAEN S.p.A.
(Costruzioni Apparecchiature Elettroniche Nucleari) http://www.caentechnologies.com
EADS North America Defense Test and Services, Inc. (Earlier Racal Instruments) http://www.racalinstruments.com
FAST ComTec GmbH http://www.fastcomtec.com
Fluke Corporation http://us.fluke.com
Hameg Intstruments http://www.hameg.com
Highland Technology Inc http://www.highlandtechnology.com
Ortec http://www.ortec-online.com
Pendulum Instruments http://www.pendulum-instruments.com
Standford Research Systems http://www.thinksrs.com

error is

m =
1∫

0

e(x) · dx =
1∫

0

e1(x) · dx −
1−F∫

0

e2(x + F ) · dx

−
1∫

1−F

e2(x + F − 1) · dx

=
1∫

0

e1(x) · dx −
1∫

0

e2(x) · dx = m1 − m2

(6)

where m1 and m2 are the mean values of the start-and-stop
interpolator errors. Thus, the gain error or the INL of in-
terpolators reduces to a constant bias error independent of
the time to be measured. This result is extremely impor-
tant as it indicates that the error caused by the interpola-
tor nonlinearities is effectively averaged out in a repeated
measurement from the randomization process present in
the asynchronous measurement. This source provides the
excellent linearity of the method.
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The nonlinearities of the interpolators do have an effect
on the precision of the system, however. The variance (σ2)
of the TDC measurement result is

σ2(x) =
1∫

0

(e(x) − m)2 · dx

= e2
1rms + e2

2rms − (m1 − m1)2

−2

1−F∫

0

e1(x) · e2(x + F ) · dx

−2

1∫

1−F

e1(x) · e2(x + F − 1) · dx

(7)

The value of the two last terms in the above equation de-
pends of F, the fractional part of the time interval to be
measured, and thus, the standard deviation of the mea-
surement result is a function of the fractional part (F) of
the input time interval (Q + F). Since 0 ≤ F < T1, the mea-
surement precision caused by interpolator nonlinearity or
gain error has now a period of Tclk instead of LSB.

Nonlinearity of the interpolators can only be compen-
sated for by measuring the linearity error and using these
data for correction of the measurement result. However,
since this is technically more complicated than in the case
of gain error, minimization of interpolator nonlinearity is
important.

Also jitter in the input timing signals, clock, and timing
logic deteriorates precision with respect to the theoretical
value. Their effect is usually small compared with the non-
linearity of the interpolators. However, power supply noise
or other types of noise coupling can significantly increase
jitter.

Linearity. In asynchronous averaging, the linearity of a
TDC based on the Nutt method is basically as good as the
linearity of the counting method. Gain error or nonlinear-
ity of the interpolators increases the single-shot error from
the theoretical quantization error, but for averaged results,
their effect is a constant bias error offset independent of the
time to be measured (as shown above). Thus, interpolator
gain error and nonlinearity have no effect on the linear-
ity of the TDC, provided that enough samples are being
averaged. If the interpolators were exactly identical, their
errors would cancel completely (zero offset). In practice,
the magnitude of the offset depends on the matching of the
interpolators. If the nonlinearity is caused by systematic
errors, the interpolators usually have very similar nonlin-
earities and only a small offset error can be expected to
remain. However, if the nonlinearity is caused by random
mismatch (as in well-designed delay lines, for example),
similar cancellation cannot be assumed.

A prerequisite for the randomization of the systematic
errors in averaging measurement is that the system clock
and the time intervals are asynchronous; i.e., the length of
the time fractions T1 and T2 vary randomly in the operat-
ing range of the interpolator in a repeated measurement
(although their difference has only two values).

Stability. The stability error of a TDC based on the in-
terpolation method can be divided into two components.
The first component is an offset-type error that is indepen-
dent of the input time interval and arises in the control
logic (differences in delays) and interpolators (mismatch).
If the start-and-stop signal paths in the control block and
in the interpolators were identical, including the loading
and layout, then according to Eqs. (4) and (6), the mea-
surement results would have zero offset. However, random
mismatch cannot be avoided, and when this offset changes
with temperature, for example, stability error is created.
As a result to achieving highest possible stability, it is im-
portant to symmetrize the timing paths. The effect of the
mismatch in the interpolators can be minimized by using
interpolators alternately in the start and stop channels;
see Ref. 29.

The second error component arises from the tempera-
ture or time dependency of the reference oscillator. This
gain error is dependent on the input interval. For example,
a stability specification of ±25 ppm inclusive of tempera-
ture dependency (0 − +50◦C) and aging corresponds to an
error of < ± 25 ps in a measurement range of 1 µs.

As a summary, it can be the concluded that the non-
idealities of the interpolators to large extent cancel out in
averaged results. The difference between the nonidealities
of the interpolators remains, but in many cases (system-
atic error source), it can be expected to be smaller than
the nonideality itself. Furthermore, this error is constant
for all input intervals so it can be corrected simply by sub-
tracting it from the measurement results provided that it
does not change with temperature, supply voltage, and so
on. Single-shot accuracy, on the other hand, is affected by
all nonidealities.

Commercial Time-Interval Counters. Table 1 lists certain
manufacturers of universal frequency/time-interval coun-
ters and time-to-amplitude converters. The list is not ex-
haustive, but it contains devices having best promised
performance.
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converter for fast, accurate laser rangefinding,” SPIE Proceed-
ings of the International Congress on Optical Science and En-
gineering, 1010: 60–67, 1988.

20. B. Turko,“ A modular 125ps resolution time interval digitizer
for 10MHz stop burst rates and 33ms range,” IEEE Transac-
tions on Nuclear Science, 26(1): 737–745, 1979.
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