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�t. In order to interact with a permanent rather than an oscil-
lating force, the electron must maintain constant phase rela-
tive to the ponderomotive potential. This is called ‘‘synchro-
nism condition.’’ Then the electron must have a velocity
approaching the ‘‘resonant velocity’’FREE ELECTRON LASERS

The free-electron laser (FEL) is a device that uses part of the vr = ν

kL + kw
(1)

kinetic energy of nearly-free electrons (not bound in atoms
or in condensed matter) to generate coherent electromagnetic

Without a wiggler (kw � 0) in vacuum (� � kLc) the resonantradiation, see Refs. 1–3. The electrons are supplied in the
velocity is equal to the speed of light c, unattainable by elec-form of a beam accelerated to relativistic velocities. The elec-
trons. Due to the presence of a wiggler or of a refractive index,tron beam can either pass through the gain medium only
the resonant velocity is less than the speed of light and theonce, or be recycled in a storage ring, which can then allow
laser operation is then possible.the electrons to circulate many times through the FEL. Elec-

Perhaps the most salient feature of FELs is their tunabil-trons are not entirely free: as will be explained here, free elec-
ity. Velocity v of the electron (with mass m) is related to itstrons cannot interact efficiently with radiation in vacuum.
energy E � �mc2 via the Lorentz factor � � (1 � (v/c)2)�1/2.Thus, they will interact with radiation in two types of
Definition of the resonant velocity from Eq. (1) results a roughstructures: (1) a device in which electrons are accelerated in
determination of the wavelength of the laseran inhomogeneous (periodic) magnetic or electromagnetic

field, called a wiggler or an undulator; and (2) a device in
which electrons are unperturbed but the laser wave is subject
to dispersion (as in Čerenkov transition radiation or Smith-

λL = λW (1 + a2
w)

2γ 2 (2)

Purcell devices). Because the FEL is a laser, it is based on
where aw is a parameter depending on the wiggler field (seestimulated emission in which radiation is mostly emitted co-
below), usually of the order of unity. Electron energy fromherently, that is, with the same phase as already existing ra-
MeV to GeV corresponds to Lorentz factors ranging from ap-diation. For this, the interaction region is enclosed in a laser
proximately 2 to 2000. For the wiggler period of the order ofcavity (see CAVITY RESONATORS) to allow the emitted light to
a centimeter laser radiation can, in principle, have a wave-be fed back and to stimulate further emission. If the light
length that ranges from microwave to hard X-ray. Anotherpasses many times through the gain medium, FEL can oper-
important feature of FELs is their ability to yield large peakate even in a small-gain regime. Because mirrors with suffi-
power, which scales up with the electron peak current, up tocient reflectivity are not available for the ultraviolet (UV) and
hundreds of amperes for electron pulses produced by present-shorter wavelength range, FELs in this range are designed
day accelerators. On the other hand, average power output iswithout mirrors on the principle of amplified spontaneous
much lower.emission, such that radiation from one part of the electron

The FEL was first proposed on the basis of quantum elec-beam or an injected signal stimulates radiation from other
trodynamics (6). It was later understood that, for FELs emit-parts, passing them only one time. The large-gain regime of
ting in the visible and shorter-wavelength range, quantuma FEL is necessary for this kind of operation (4). Sometimes
effects play a negligible role and their operation could be ex-SPONTANEOUS EMISSION of free electrons is used (termed indu-
plained within a classical theory (7,8).lator radiation) (5).

In the quantum description (9), FELs owe their gain to theLet us consider, as an example, a FEL with a static mag-
fact that an electron recoils in opposite directions, dependingnetic wiggler (Fig. 1). The laser has frequency � and wave-
on whether it emits or absorbs a photon with a given wave-length �L with the corresponding wavevector kL � 2�/�L. The
vector kL; hence, the resonant electronic momentum �ker for thewiggler has spatial period �W and wavevector kW � 2�/�L.
emission of such a photon differs from the resonant momen-Then the combined wave of the laser and the wiggler field
tum �kar for its absorption. Probabilities of emission and ab-(called ‘‘ponderomotive potential’’) has the phase (kL � kW)z �
sorption of a photon as functions of the initial electron mo-
mentum (lineshapes) are centered at ker and kar, respectively
[Fig. 2(a)]. Spontaneous emission has the same lineshape as
stimulated emission. The quasiclassical limit holds when
ker–kar is much smaller than the inverse length of the wiggler,
and the photon energy �ckL is much smaller than the electron
energies E(ke(a)r). In this limit, the gain curve is antisymmetric
about the mean resonant momentum k� � �(ker � kar)/2 [see
Fig. 2(b)], which corresponds to resonant velocity vr. In this
limit, the quantum expression for gain coincides with its clas-
sical counterpart.

In the classical description (1–3), the wiggler field will pe-
riodically deflect the electrons perpendicular to their direction
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of travel (along the wiggler axis). The small-gain regime oc-
curs whenever it is possible to neglect the amplification of theFigure 1. Schematic of the wiggler and laser fields (top), and the
field when considering the motion of electrons. In this limit,momentum change in the processes of emission and absorption

(bottom). the oscillations of the electrons in the ponderomotive poten-
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the beam and the velocity angle spread.) These requirements
stem from the antisymmetric dependence on the small-gain
standard gain Gst being dependent upon the deviation of the
electron velocity v from the resonant velocity vr. [This is re-
lated to the Madey theorem, which states that gain lineshape
is proportional to the derivative of the spontaneous emission
lineshape over the velocity (12)]. Electrons initially below res-
onance contribute to absorption and electrons above reso-
nance contribute to emission. Therefore this gain lineshape
allows for net gain only if the initial momentum distribution
is centered above vr, which we call momentum population in-
version. It also restricts the momentum spread, at which gain
is significant, to values comparable to the width of the posi-
tive (gain) part of Gst. This width decreases significantly with
laser wavelength, thereby limiting severely FEL gain perfor-
mance at short wavelengths.

A variation of a FEL having two wigglers and a drift region
between them (called optical klystron) was realized (13). In
this device, the first wiggler serves to ‘‘bunch’’ the electron
phases, which then acquire favorable values in the drift re-
gion between the wigglers, and finally yield enhanced gain in
the second wiggler. Its gain lineshape has a higher maximum
value, which is an advantage for electron beams with small
energy spread. However, the width of the gain region is pro-
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portionally narrower, which makes the restrictions for the en-
Figure 2. Gain in a FEL for large recoil results from resolved profiles ergy spread even more severe.
of emission and absorption (a). For small recoil, gain is the difference

In search of shorter-wavelength sources, researchers con-of overlapping emission and absorption and is antisymmetric.
sidered the stimulated Čerenkov radiation by quasi-free elec-
trons in a refracting medium, or Čerenkov transition radia-
tion (TR) in a periodic dielectric structure, see Refs. 14,15.tial are described by the pendulum equation. It turns out that

in such a potential electrons having a velocity higher than vr The Čerenkov TR can exist even above the plasma frequency
(corresponding to �30 eV) where the refractive index n � 1on the average give energy to the laser, thus contributing to

gain; electrons having a velocity lower than vr absorb the en- and the usual Čerenkov effect is impossible, because TR oc-
curs when an electron crosses a boundary between differentergy from the laser, thus contributing to loss. This results in

a gain curve, as in Fig. 2(b), which we designate Gst. refractive indices. In a structure with a spatially periodic in-
dex of refraction, the Čerenkov effect results from the con-The combined effect of the wiggler field and the laser field,

i.e., the ponderomotive potential, causes ‘‘axial bunching’’ of structive interference of TR from different layers. The period
of these layers (which plays the role of kW) can be shortenedthe electrons. The electrons injected at random times are

forced into periodically spaced bunches separated by approxi- much more than in magnetostatic wigglers. The pursuit of
shorter wavelengths has also led to the proposal of a FELmately the laser wavelength. This bunching is associated

with the gain or loss of energy by electrons, or, equivalently, in which the magnetostatic wiggler is replaced by an intense
electromagnetic wave (the Compton-scattering FEL) (11,16).their axial acceleration or deceleration, depending on the

phase between their transverse motion and the laser wave. If Its wavelength (�w � 1 	m and thus �L � 1 nm) would be
much shorter than in existing lasers. In all of the precedingbunching is significant, so is the change of both laser field

amplitude and phase. This change promotes further bunch- schemes, electron momentum spread and beam emittance
have been concluded to be major obstacles in the realizationing. This process is a rare example of useful instability. As a

result of their bunching, electrons radiate in-phase and their of X-ray FEL.
In an attempt to overcome the adverse effects of electronemitted fields add up coherently, so that the total emitted in-

tensity is proportional to the electron current squared, rather spread on short-wavelength gain, the notion of lasing without
inversion (LWI) (17) in atomic systems, namely, the cancella-than being proportional to the current, as in the case of ran-

domly distributed electrons. When the radiation of electrons tion of absorption by interference in the gain medium, has
recently been proposed for FELs (18). These proposedis essentially collective, this is called a ‘‘large-gain regime.’’

In this large-gain regime, the gain lineshape is no longer anti- schemes involve a two-wiggler FEL, which bears a limited re-
semblance to an optical klystron (13). Unlike an optical kly-symmetric.

The first FEL (10) was operated in 1977. A variety of FELs stron, bunching resulting from the first wiggler is reversed
and the electrons are given a shift of their phase relative to(1–3) now operate successfully over a spectral range of from

millimeter- down to ultraviolet wavelengths. On the other the ponderomotive potential so as to cancel absorption. In the
resulting gain curve, the absorption part below resonance ishand, FEL operation in the X-ray and extreme ultraviolet

(XUV) domains (11) is still facing considerable difficulties, eliminated, whereas the gain part remains intact. Whereas
in an ordinary FEL population inversion of electrons in theprimarily because of the stringent requirements FEL poses

on the allowed electron beam energy spread and emittance. momentum domain is required to ensure net gain from a mo-
mentum distribution, in the proposed schemes the net gain is(The beam emittance is the product of the transverse size of
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obtainable even from a very broad (‘‘inhomogeneous’’) momen- approximate the dispersion curve by a straight line with the
slope equal to the initial z-component of the electron velocity vtum distribution without population inversion. This creates

new possibilities for development of X-ray FELs.

�(0)
a = �(0)

e = �0 = ν

v
− kLz − kW (7)

ELECTRON KINEMATICS: RESONANCE AND
SYNCHRONISM CONDITIONS In this quasi-classical approximation the detunings for emis-

sion and absorption coincide, where emission and absorption
Quantum kinematics gives a more intuitive view of the FEL cancel each other and there is no gain. The condition of zero de-
gain. An electron enters the interaction region in the initial tuning correspond to resonance, at which momentum is con-
state �ki� and energy (the curve in Fig. 3) served precisely. It coincides with the synchronism condition,

that v � vr.

For a magnetostatic wiggler it generalizes the expression (1)Ei ≡ γimc2 =
p

p2
i c2 + m2c4 (3)

by replacing kL to kLz . For a Čerenkov wiggler, it yields the
usual condition for Čerenkov radiation.where the momentum p � �k.

After absorption (emission) the electron has momentum
�ka (�ke), which is related to the energy Ea (Ee) as in Eq. (3). c/v = n cos θ (8)
There is a mismatch of the longitudinal projection of these
momenta from the ones obtained from the momentum conser- This is the usual condition for Čerenkov radiation.
vation (see Fig. 3) To obtain a nonzero contribution to gain, we need to

take into account the curvature of the dispersion curve, to
second order in the longitudinal momentum variation �(kaz

�e = kiz − kez − kLz − kW (4)
� kiz). As the laser light propagates at an angle � with the�a = kaz − kiz − kLz − kW (5)
axis, there is a corresponding transverse variation of mo-
mentum �(kax � kix) which must be taken into account inAs the interaction is considered to be stationary, i.e., not
the same order in the expansion. Upon combining the twobounded in time but happening in a finite region of space, the
contributions, we obtain unequal values of detunings forenergy is conserved precisely Ea,e � Ei � ��, but the momen-
emission and absorption (9)tum admits some uncertainty given by the wiggler length LW

�a = �0 − �R, �e = �0 + �R (9)
��L ∼ �

LW
(6)

�R = �ω2

2mv3γ 3 + n2 sin2
θ�ω2

2mγ vc2 (10)

Momentum and energy transfer kL and � � kLc from light in
vacuum (tilted line in Fig. 3) do not bring the final state to This difference between the emission and absorption detun-
the dispersion curve of kinematically allowed states and, ings is proportional to the recoil of the electrons due to the
thus, cannot even approximately satisfy the conservation photons. The first term in Eq. (10) comes from the longitudi-
laws because the speed of light is larger than the electron nal variation of momentum; the second comes from the trans-
group velocity v. Therefore, a wiggler with kW or a medium verse variation. In general they have the same order of mag-
with refractive index n, which modifies the light dispersion nitude. Note that the effective mass for the longitudinal
to n� � ckL, is needed for either emission or absorption to motion M � � m�3 is different from that for the transverse
happen. motion M � � m�.

We decompose the variation of energy �� with momentum The ratio of the shift between the centers of the emission
in terms of a Taylor series in �(kaz � kiz). To this end we first and absorption curves, given by �R, to their width �L, see Eq.

(6) is

�R

�L
= ε

2π2c3

v3

�
1 + n2 sin2

θγ 2v2

c2

�
(11)

ε = λcL
λ2γ 3 (12)

Here �c � �/(mc) � 4 � 10�13 m is the Compton wavelength
of electrons. The regime of operation of the FEL is quantum,
if � � 1, or classical if � � 1. The parameter � reaches unit at
wavelength �q of the order of several nanometers. Thus, be-
cause all FELs currently operate in the classical regime, clas-
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sical theory is sufficient for their description. The quantum
limit will be reached only by X-ray lasers. Examples of gainFigure 3. Energy and momentum of an electron after emission or
lineshapes in the quantum and classical regimes are shownabsorption: the wiggler momentum kW brings them close to the disper-

sion curve of a free electron. in Fig. 2a and b, respectively.
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CLASSICAL ELECTRON DYNAMICS From now on we consider ultrarelativistic electrons (� � 1,
i.e., v 
 c). There are terms of interaction with the fields hav-

The classical dynamics of electrons in a FEL (1) is described ing various dependences on the time and the coordinates. Of
those, following a standard procedure (19), we drop (in an an-by the Hamiltonian
alog of the rotating wave approximation) the terms that are
rapidly oscillating in the frame of reference of an electronH ≡ γ mc2 = c

p
(p − eA)2 + m2c2 (13)

moving with the injected velocity vi close to c. The remaining
(‘‘near-resonant’’) terms oscillate slowly in this frame of refer-where m is the mass of an electron, e is the charge of an
ence. Sometimes lasing occurs at frequencies correspondingelectron, c is the velocity of light, � is referred to as the Lo-
to higher harmonics of the electron wiggling motion. This cor-rentz factor, p is the canonical momentum, and A � AW � AL

responds to the wiggler field into higher powers, see (1). Inis the vector potential of the combined field of the wiggler,
this way we obtain the equations of motion for the energy andoriented along the z-axis (designated by subscript W), and the
momentalaser field (designated by subscript L), which propagates at

an angle � to the axis of the wiggler, i.e., has the wavector
kL � (kL sin�, 0, kL cos�), as in Fig. 1. Both fields are y polar-
ized, and � is the phase of the laser field at the instant of the

dγ

dt
= N sin(−νt + qzz + qxx + φ) (22)

electron entry into the wiggler. mc2

ν

dγ

dt
= 1

qz

dpz

dt
= 1

qx

dpx

dt
(23)

AW = ŷAW cos(kWz) (14)

AL = ŷAL cos(−νt + kLz cos θ + kLx sin θ + φ)] (15)
where

The magnetic field of the wiggler and the electric field of the
laser are N = e22AWALν

m2c2γr
(24)

BW = ∇ × AW , EL = − ∂

∂t
AL (16)

The argument of the sine in Eq. (22) is the phase relative
to the ponderomotive potential,

and ŷ is the unit vector along the y-axis, and � is the phase
of the laser field at the instant of the electron entry into the

ψ = −νt + qzz + qxx + φ (25)
wiggler. Dimensionless potentials (with j � L, W) are

Equation (23) expresses the relation between the momentum
transfer to the ponderomotive potential (qx � kL sin �, qz �aj = eAj√

2mc
(17)

kL cos � � kW) and the corresponding energy transfer (� �
kLc).Just like any other laser, FEL can operate in multimode re-

The dynamical equations simplify in the case in whichgime. Here we consider only a single-mode field. For details
electron energies � do not differ much from either the injectedabout the mode competition see (19).
energy �i or the resonant energy �r and the longitudinal coor-Hamilton equations determine the derivatives of energy
dinate and velocity differ by a small amount from uniformand momenta
motion with the injected velocity, z � vit � �z and vz � vi �
�vz. The equation of motion becomesdγ mc2

dt
= ∂H

∂t
,

dpx

dt
= −∂H

∂x
,

dpz

dt
= −∂H

∂z
(18)

The Hamiltonian does not depend explicitly on y; therefore,
dγ

dt
= N sin(�t + qzδz + qxx + φ) (26)

if the initial value of the momentum along y is py(0) � 0, it
remains zero at all times py(t) � 0. Then the wiggling motion Here
in this direction is described by the y component of the veloc-
ity � = qzvzi − ν ≡ qz(vzi − vr) (27)

is the detuning of an electron from the resonance with the
dy
dt

= ∂H
∂ py

= −eAy

γ m
≡ vy (19)

ponderomotive potential, and

For the other coordinates
vr = ν

qz
(28)

dz
dt

= ∂H
∂ pz

= pz

γ m
≡ vz,

dx
dt

= ∂H
∂ px

= px

γ m
≡ vx (20)

is its velocity corresponding to the resonant energy �r. Ne-
glecting the lasing field compared to the wiggler field, we ob-In the Hamilton equations substituting these equations back
tain that the average square of the transverse velocity isinto Eq. (13) we obtain a useful relation

〈v2
y〉 = a2

Wc2

γ 2
(29)1 = v2

c2 + 1
γ 2 (21)
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The equations for the velocity components are To first order in the lasing amplitude, the coordinates are
from Eq. (25)

dν2

dt
≈ (1 + a2

W )
qzc2

νγ 3
r

dγ

dt
(30)

δz(1)(t) = qzc2

νγ 3
r

∫ t

0
�γ (1)(t ′) dt′ (38)

dvx

dt
= qxc2

νγr

dγ

dt
(31)

x(1)(t) = qxc2

νγr

∫ t

0
�γ (1)(t ′) dt′ (39)

These equations demonstrate that there is a one-to-one Expansion of Eq. (26) around the solution of Eq. (37) with the
correspondence between the increment of each velocity com- forementioned coordinates gives
ponent and the change of energy. These equations, although
describing a two-dimensional motion, result in the one-dimen-
sional pendulum equation for the phase �

dγ (2)

dt
= PW cos(�t + φ)

∫ t

0
�γ (1)(t ′) dt′ (40)

When integrated over interaction time T and averaged overψ̈ = P

N
sinψ (32)

the injection phases, the change of energy and, consequently,
gain, is nonzero in this orderψ(0) = φ (33)

ψ̇ (0) = � (34)

P = c2

γ 3
r ν

(γ 2
r q2

x + q2
z )(1 + a2

W ) (35)

〈�γ (2)〉 = PW 2

2�3 [�T sin�T + 2 cos �T − 2]

≡ T3PW 2 1
8

d
dα

(sinc2α)|α=�T/2 ≡ −Gst (�, T )

(41)

This gives a gain lineshape similar to that in Fig. 2b. TheSmall-Signal Small-Gain Regime
relative width of the gain curve is

In general, gain produced by electrons with a well-defined ini-
tial energy or longitudinal velocity vz (homogeneous gain) �ν

ν
= �γ

γ
≈ 1

2NW
(42)

where NW is the number of wiggler periods, LW � NW�W. TheGhom(vz) = − Jmc2

eILSL
〈�γ 〉 (36)

derivative over the detuning parameter in Eq. (41) is the
manifestation of a more general Madey theorem (12)

where J is the current in the electron beam, IL � �0c�2A2
L/2 is

the intensity of the laser, SL is the effective area of the laser
mode, and the average over the uncontrollable injection phase 〈�γ (2)〉 = ∂

∂γi
〈(�γ (1))2〉 (43)

is designated by 	. . .�. In the small-signal approximation,
one assumes the laser vector potential being much smaller where the left-hand side is proportional to gain and the ex-
than the wiggler vector potential. For the effects of a large pression under the derivative in the right-hand side is propor-
laser field amplitude (‘‘large-signal gain,’’ or ‘‘saturation’’) see tional to the energy spread; �i is the initial Lorentz factor.
(2). In the small-gain approximation one disregards the effect The theorem holds for the Hamiltonian motion of a particle
of the change in the laser field as it propagates through the in a weak oscillating perturbation (i.e., small-signal, small-
wiggler on the electron dynamics. In the case of electrons dis- gain regime for FELs). It can be shown that the energy spread
tributed over vz with a normalized distribution function f (vz), is proportional to the power of spontaneous emission. The Ma-
the inhomogeneous Ginh(vv) gain is the convolution of f and dey theorem simplifies the calculation of gain in nonuniform

wigglers.Ghom.
A compact expression for gain per pass is obtainable forAn analytical expression for the gain in the small-gain

� � 0 by combining Eq. (41) with Eqs. (2) and (28)small-signal regime for a uniform wiggler can be obtained by
solving the foregoing equations in a perturbation series in the
laser amplitude (in the small parameter N 2T). The travel
time in the wiggler T � LW/vr. For the effects of a large laser

Gst = −π2N3
W a2

W

γ 3
r

λ2
W

SL

J
JA

d
dα

(sinc2α) (44)

field amplitude (‘‘large-signal gain,’’ or ‘‘saturation’’), see
Ref. 2. Here JA � ec/r0 is the Alfven current and r0 is the classical

electron radius. We see that gain rapidly decreases with theTo zeroth order the coordinates �z and x vanish, which
increase of �r, which adds difficulty to achieving short-wave-yields
length lasing.

dγ (1)

dt
= N sin(�t + φ) (37)

DYNAMICS AND GAIN IN INTERFERING TWO-WIGGLER FELS

When averaged over injection phases, the net change of the To focus on the effects of interference of coherent radiation
processes, we will consider the interaction in two identicalenergy (and consequently gain) is zero to this order.
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and, with or without the magnetic field in the drift region, the
change of phase grows with velocity, d�/dvz � 0. Gain of an
optical klystron for �� � 5�T is shown in Fig. 5. The peak
gain can greatly increase compared to that of the usual FEL,
but the width of the peak decreases and the whole curve re-
mains an odd function of �.

N S N S N

S N S N S S N S N S

N S N S N
Drift

Region

kL
kW kL

Wiggler I Wiggler II

kW
E-beam

The problem with conventional classical interference in an
optical klystron, is that it does not distinguish between elec-Figure 4. A scheme of realization of a two-wiggler FEL with a drift

region between wigglers. trons that emit or absorb energy. The total phase delay, from
the entrance to the first wiggler to the entrance to the second
one, remains strongly dispersive (velocity-dependent) and the

wigglers of length LW with a dispersive drift region of length resulting gain is sensitive to the initial velocity spread. In
Ld between them (20) (Fig. 4). Electrons can be guided in the Ref. (20) we have pursued the following radically new ap-
drift region by magnetic field; light can be deflected by mir- proach to classical interference: (1) the electron beam is sepa-
rors. The effect of the drift region is an addition of phase de- rated after the first region into two components whose veloci-
lay �� in the second wiggler relative to the first one, which, ties correspond to either absorption or emission (on the
on examining Eq. (25), is seen to be average) in the first region; and (2) each of the separated com-

ponents is given different phase delays that compensate for
the velocity spread in �. These phase delays ensure both the�ψ = kL

�
sL − se(v)c

v
+ xII sin θ̃ − xI sin θ

�
(45)

cancellation of the absorption contributions in the two regions
and the doubling of the emission counterparts over a widewhere se(v) denotes the velocity-dependent electron paths and
range of velocities.sL denotes the lightwave paths in the drift region, �̃ is the

To compensate for velocity dispersion, we wish to imposeangle of propagation of the laser in the second wiggler and �
the following phase delay on the beam component, which con-is the angle in the first wiggler, xI and xII are the transverse
tributes to emission (with � � 0, i.e., viz � vr), up to the mo-coordinates at the exit from the first wiggler and at the en-
ment it enters the second regiontrance to the second wiggler, and v is the absolute value of

the electron velocity, which is not changed in the drift region.
�ψ(� > 0) = 2πN − qz(vz − vr)T (51)The electron oscillates coherently in the ponderomotive po-

tential and, therefore, its oscillations in the two sequential
where N is an integer. The electrons with � � 0 that havewigglers exhibit interference that depends on the path (or
absorbed (on the average) energy in the first region must un-time) difference between the two regions.
dergo the same function of the phase shift as in Eq. (51), ex-Then the change of energy in the second wiggler is given
cept for an extra phase �by

�ψ(� < 0) = (2N + 1)π − qz(vz − vr)T (52)dγ (1)

II

dt
= N sin(�t + φ + �ψ) (46)

Note that �� depends on the velocity at the entrance to the
first wiggler rather than the exit from it. For such a situation,
the Madey theorem applies only in a modified form.

dγ (2)

II

dt
= PW cos(�t + φ + �ψ)

∫
�γ (1) dt ′ (47)

To implement such a delay function, let us examine more
Application of Eqs. (40) and (47) yields the phase-averaged closely the velocity changes in the first wiggler. From Eqs.
energy change in the whole FEL (30) and (31) we find

dvx

dvz
= qxγ

2
r

qz
≈ γ 2

r sin θ (53)
〈�γ (2)〉 =PW 2

2�3 [2�T sin�T + 4 cos �T − 4

+ 2�T sin(2�T + �ψ) − 2�T sin(�T + �ψ)

+ 2 cos �ψ + 2 cos(2�T + �ψ) − 4 cos(�T + �ψ)]

(48)

For the case of a usual FEL (�� � 0), this gives the well-
known expression �Gst(�, 2T).

In the case of the optical klystron, the propagation angle
in the first wiggler � � 0, and the light goes straight sL � Ld.
If there is just a transverse magnetic field Ay in the drift re-
gion, the slope of the electron trajectory is

dy
dz

= eAy

γ mvz
(49)

Then for a small slope

0.4

0.2

0

–0.2

–0.4

G
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Figure 5. Gain in an optical klystron as a function of detuning. Peak
gain is higher.

dse

dvz
≈ Ld − se

vz
(50)
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ing to �qz(vz � vr)T, the smooth part of the delay function [see
Eq. (51)]. In addition, the electrons with vx of that in Eq. (55)
will be sent to a region of magnetic field with sharp bound-
aries, where they travel on additional path corresponding to
the phase �. This implements the step-like part of the phase
delay of Eq. (52).

When the selective phase delay, determined by Eqs. (51)
and (52), is used in the expression for gain Eq. (48), it results
indeed in cancellation (destructive interference) of the absorp-
tive contributions from the two regions and addition (con-
structive interference) of their emission counterparts

1

2

3

vz

vx

GFELWI(�,2T ) = 4Gst(�,T )�(�) (56)

Figure 6. Changes of the transverse and the longitudinal velocities
where � is the Heaviside step function.are proportional. Open dots—initial states, closed dots—final states.

This gain function, which is positive nearly everywhere,
essentially does not require population inversion and yields
gain even from broad inhomogeneous distributions (Fig. 7).the approximate equality corresponding to a small angle �
We therefore designate it as FEL without inversion (FELWI).and kL � kW.

The amount of velocity change is determined by the detun-
Field Dynamics in Large-Gain Regimeing and the injection phase, but the changes of the vz and vx

velocity components are proportional to each other. Inte- Up to now only the small-gain regime (neglecting the change
grating Eq. (53), we see that of laser field) of FEL was considered. We describe the varia-

tion of the laser field by Maxwell’s equations for the trans-
vx = γ 2

r sin θ(vz − vzi) (54) verse part of the field

Hence the transverse velocity after the first wiggler is corre-
lated to the change in the longitudinal velocity. It is thus pos-

�
∇2 − 1

c2

∂2

∂t2

�
Ay = −µ0Jy (57)

sible to distinguish by their vx value those electrons that expe-
rienced net emission from those that experienced net

where the transverse current density isabsorption.
As seen from Fig. 6, electrons with initial velocity below

resonance (vzi � vr) end up in the half-plane above the line Jy = e
∑

j

vyδ(x − x j (t)) (58)

vx = γ 2
r sin θ(vz − vr) (55)

Here the sum runs over all electrons and vy is obtained from
(19). We write the equations only for phasors of the vectorElectrons with initial velocity higher than the resonant one
potentials(vzi � vr) are now below this line. Then the step-like change

in the phase delay from 0 to � needs to be arranged along this
line, as it is shown in Fig. 7. AWy = AW (z)exp(ikWz) (59)

The electrons will enter the drift region at different angles ALy = AL(z′, t) exp(−iνt + ikLz′ + iφ) (60)
depending on their transverse velocity. By their deflection in
a magnetic field, they will receive a phase delay correspond-

We make the slowly-varying envelope approximation, i.e., as-
sume that AL(z�, t) varies little over a wavelength or the time
period of optical oscillations in the direction of propagation
z� � z cos� � x sin�. In this approximation one neglects the
second derivatives of the envelope. Besides, the right-hand
side should also be averaged (designated by 	. . .�) over sev-
eral wavelengths, which reduces to the above averaging over
� for a constant envelope. Thus (57) becomes

�
∂

∂z′ + 1
c

∂

∂t

�
AL = ω2

p

2icν

[
AW

〈
e−iψ

γ

〉
+ AL

〈
1
γ

〉]
(61)

where the plasma frequency
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Figure 7. The implementation of FELWI using both longitudinal
and transverse components of the velocity (upper right-hand corner);
numerical result for the gain; N 2T � 0.03. and n is the density of electrons.
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Figure 8. Motion of electrons in the coor-

0.5

0

0 3 6

–0.5

ψ
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dinates �, �̇ of the pendulum.

If the density is high, we need to correct the equation of and calculate the space dependence of the field and beam pa-
rameters. We will vary the dimensionless size of the wigglermotion for the electrons for the electric field created by a non-

uniform charge distribution, following (4) L̃W � 2kW�LW (which corresponds to either the change of the
current of electron beam or the length of the wigglers).

Numerical results for the monoenergetic beam can be
checked against the available analytical ones in the small-

dγ

dt
= 2ω2

p

ν
(〈cos ψ〉 sinψ − 〈sin ψ〉 cos ψ) (63)

signal small-gain regime. Figure 9 shows the comparison of
the results obtained by a computer simulation for the ordi-The dimensionless parameter (4)
nary FEL and for the FELWI.

For a small a current (L̃W � 0.5) the results practically
coincide with analytical calculations (20), namely, the inte-ρ = 1

γ

�
aWωp

4ckW

�2/3

(64)
gral over detunings equals to zero for the ordinary FEL, but
is nonzero for the FELWI. At a slightly higher current (L̃W �

is the indicator whether the plasma effects due to Coulomb 1) the nonzero integral over detuning appears for an ordinary
interaction between electrons are important (� � 1, called FEL as well due to a nonlinear synchronization of the electron
‘‘Raman regime’’) or whether one can consider electrons inter- bunching and the phase of the ponderomotive potential. We
acting directly with the field only (� � 1, called ‘‘Compton see that the peak gain for an ordinary FEL is higher than for
regime’’). FELWI, but this situation is reversed in the large-signal

One can see from the pendulum Eqs. (32–35) that if the regime.
change of the laser field is small, the gain will saturate when
the electrons will make about one cycle in the pendulum coor-
dinates, i.e., P N T 2 � �2. To offset this effect, tapered wig-
glers (with variable wiggler wavelength and/or field) are
used (2).

Even in the Compton regime, light emission can be collec-
tive. If the gain is large enough, the electrons bunch in the
pendulum coordinates and correspondingly in space over the
length of order of �L, see Fig. 8. This is expressed as a non-
zero average phase factor 	ei��. The field adjusts its phase so
as to cause the bunched electrons to give even more energy to
the field. Thus the gain is much larger than expected from a
small-gain analysis in Section III. This collective effect corre-
sponds to superradiant emission. Description in terms of col-
lective variables, such as bunching, is sometimes possible (4).

FELWI Versus Ordinary FEL in the Large-Gain Regime

We can solve numerically the set of Eqs. (32–35) together
with Eqs. (61) and (63) to investigate the electron beam be-
havior and the gain in a large-gain FEL. They will be com-
pared to their counterparts in a large-gain FELWI, using the
scheme of Sec. IV.

To this end, we substitute

2.6
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G
a

in
 m

a
x

2.6
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G
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in
 m

a
x

IFEL

IFEL

FEL

FEL
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Laser intensity

0 5 10

∆Ω

Figure 9. The dependence of maximum gain on the laser field inten-
sity (a) and on the width of electron spread (b) for the ordinary FEL
(solid line) and for the FELWI (dashed line). Wiggler length, L̃W � 1.

d
dt

→ vr
∂

∂z
+ ∂

∂t
(65)
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The dependence of gain on the laser field intensity is very and after emission or absorption are as in Section I. The sec-
ond term in the brackets is applicable in a magnetostatic wig-important because it determines maximum laser intensity. As

the laser intensity grows, the electrons perform more than gler, and the first term in a Čherenkov wiggler.
Gain is proportional to the difference between the squaresone revolution in their pendulum-like phase space, and start

contributing negatively to gain. This decrease of the net gain of the foregoing two expressions. The emission amplitude in
an interaction region of length LW is given by the integralis referred to as saturation. In Fig. 9(a), we present the de-

pendence of maximum gain on the laser intensity for the (which we take to extend to infinity in the transverse direc-
tions)IFEL and the FEL. It is clearly seen that only for small inten-

sities of the laser field does the FEL gain exceed that of the
IFEL. As the laser intensity grows, the IFEL gain exceeds
that of an ordinary FEL. That means that an IFEL promises
a higher saturated laser intensity.

Let us assume that the electron momentum distribution in
Gaussian with mean value �c and variance ��el. In Fig. 9(b),
we present the dependence of the maximum gain on the
width ��el of the electron momentum spread. The maximum
gain for an ordinary FEL dramatically drops with the in-
crease of ��el, and we can remark that even for a large L̃W

Te = eA∗
L

mγV

∫ LW

0
exp(−iker) exp(−iq jr)�ê · ki exp(ikir) d3r

= eA∗
L j�ki sin θ

mγ L
δ(kix − kex − qx)δ(kiy − key − qy)∫ LW

0
exp[i(kix − kez − qjz )z] dz

∼ C∗ exp(i�eL) − 1
�eL

(70)

small-gain regime conditions are valid. The maximum gain
drops much faster for the ordinary FEL, namely,

and, analogously, the amplitude for absorption is given by

(Gmax)FEL ∼ 1
��2

el

(66)
Tu ∼ C∗ exp(i�aL) − 1

�aL
(71)

than for a FELWI
Here we introduced the detunings and the coupling constant

�e = kiz − kez − qjz,�a = kaz − kiz − qjz (72)(Gmax)FELWI ∼ 1
��el

(67)

The coupling constantThus we can conclude from the preceding considerations that,
due to absorption cancellation at negative detunings, the
FELWI has a higher gain for the electron beam with a spread
of momentum; this gives us a powerful way to extend the FEL C = eAL1�ki sin θ

mγ
(Čerenkov) (73)

to the short-wavelength region up to VUV and X-ray.

For the magnetostatic wiggler, only the coupling constant
changesQUANTUM REGIME OF FEL

In order to calculate the emission and absorption amplitudes
quantum mechanically, the phasor of the vector potential in

C = e2ALAW

mγ
(magnetostatic) (74)

the magnetostatic wiggler (59,60), is used in its time-indepen-
dent form. Likewise, in the Cerenkov wiggler, where the in- Hence, the probabilities of emission and absorption are
dex of refraction periodically changes along the axis, we use
the time-independent electromagnetic vector potential

Me(�e) = |C|2sinc2
�

�eL
2

�
(75)

AL = ê
∞∑

j=0

AL j exp[i(kL + jkW )r] (68)
Ma(�a) = |C|2sinc2

�
�aL

2

�
(76)

where ê � (cos �, 0, �sin �), and the harmonics are deter-
wheremined by the inverse period of index variation kW, with ampli-

tudes ALj. We will consider only the first harmonic for sim-
plicity. sinc(x) = sin(x)

x
(77)

The amplitudes for emission and absorption can then be
written in the general form (9)

The standard homogeneous quantum gain Gqst is propor-
tional to the difference between the emission and absorption
rates,

Gqst ∝ sinc2(�eL/2) − sinc2(�aL/2) (78)

Te = 〈ke| − eA∗
L

mγ
(p − eA∗

W )|ki〉

Ta = 〈ka| − eAL

mγ
(p − eAW )|ki〉∗

(69)

Here �ki� is a quantum state of an electron normalized in the where �e(a) is determined by Eq. (4) and Fig. (3). In the limit
of small recoil (small difference beween �a and �e) it has thevolume V, and the momenta and energies of electrons before
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Table 1. Parameters of Some of the First FELs

Location Type �W, cm N aW � I, W �L, 	m

Stanford Superconducting, RF linac 3.3 160 0.71 85 2.6 3.4
TRW/Stanford Permanent, RF linac 3.6 153 0.97 130 2.5 1.6
Novosibirsk Klystron, storage ring 6.9 22 2.7 686 7 0.62
Orsay Klystron, storage ring 7.8 17 2 432 1.3 0.463–0.655
Santa Barbara Permanent, electrostatic 3.6 160 0.11 6.8 1.25 400
Livermore Permanent, induction linac 9.8 30 2.5 6.9 850 8700
Frascati Electro-pulsed, microtron 2.4 50 1 42 2.4 10.6
Los Alamos Permanent, RF linac 2.73 37 0.56 43 50 10
Boeing Permanent, RF linac 2.2 229 1.3 223 100 0.5

same lineshape as in Fig. 2b. The gain can be approximated are used in precision and nonlinear spectroscopy (especially
by in infrared (IR) and UV regions) for the purposes of condensed

matter physics and chemistry. Other uses include medical
and surgical applications, microcircuit fabrication, materialGqst ≈ ∂

∂�
M(�) (79)

processing, and directed energy weapons. For a review see
Refs. 1–3.which is a restatement of the Madey theorem. The gain pro-

file in Eq. (78) is almost antisymmetric about � � 0, resulting
PERSPECTIVESin a very weak gain for a broad, nearly symmetric electron

distribution f (�).
The main direction of further development of FELs will prob-
ably be in the achievement of an X-ray wavelength via theFEL EXPERIMENTAL PARAMETERS
large-gain regime (4). As a result, the problems of electron
energy spread and emittance will have to be solved. Theoreti-Parameters for a set of early experiments on FELs are col-
cal constructs of a collective atomic recoil laser (21) are ex-lected in Table 1. Here IW is the average output power of the
pected to bridge the gap between the usual lasers and FELs.laser. Other parameters are defined in the text. The second
Studies on optimization of a conventional FEL design (see, forcolumn in Table 1 shows the type of the wiggler and the
example, Ref. 22), including the effects of saturation and FELsource of electrons. Usual sources of the electron beam are a

linear accelerator (RF linac), Fig. 10, or a storage ring. Some- geometry, are also underway at this time.
times RF recovery is used in a storage ring to restore the
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