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POWER SYSTEM STATE ESTIMATION

Today’s power systems need to be monitored in real time so that system conditions can be monitored at the
energy control centers as closely as possible and proper operation and control actions can be taken in a timely
manner. Utilities install Supervisory Control and Data Acquisition systems (SCADA) to bring the real-time
monitoring data to their control centers. As illustrated in Fig. 1, typical real-time data include status of devices,
especially the circuit breakers (CB), power generation from the power plants, load at important substations,
and power flows at important lines. Since it is not possible to monitor every quantity in the system, and
since the telemetered data may contain errors from time to time, one of the challenging tasks at the control
center becomes “estimating” the current operating conditions of the system based on these telemetered data
as reliably as possible.

Fred Scheweppe, who introduced state estimation to power system in 1968 (1), defined the state estimator
as “a data processing algorithm for converting redundant meter readings and other available information into
an estimate of the state of an electric power system.” As this definition indicates, the state estimator (SE) helps
to track the real-time state of the system as reliably as possible. The real-time system data provided by the SE
is used in many of the on-line applications at the control center, such as security analysis, economic dispatch,
and study of possible supervisory control strategies, like switching operations. Today, the SE is an essential
tool in real-time monitoring of power systems.

The SE acts as a filter for cleaning up the errors in telemetered data. The real-time data obtained through
the SCADA are contaminated due to various reasons, such as inaccurate transducer calibration and noise in
communication channels. The filtering done by the SE is achieved mainly by making use of the relationship
between the measurements and the state of the system. Several references on state estimation have been
published (2,3,4). The basic introduction to SE in the next three sections draws heavily from these sources.
Then new developments on state estimation are reviewed.

Problem Formulation

The SE estimates the state of the system based on a set of real-time measurements. The state of the system
defines the operating conditions of the system and is usually chosen as the bus voltage magnitudes and angles.
Thus, for a system of N buses, the state of the system x contains N bus voltage magnitudes and N − 1 bus
voltage angles (one of the bus voltage angle is chosen as the reference). That is,

Note that once the state of the system is determined (in this case all the bus voltages), then any quantity in
the system, such as line flows and power injection at any bus, can be calculated.

Since it is not feasible to measure and telemeter the system state directly (especially the relative phase
angles of the bus voltages), in practice, other variables—mostly the ones that are important for the monitoring
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Fig. 1. Real-time system monitoring through SCADA.

Fig. 2. A small system with measurements for SE.

of the system, such as power generation from generation plants, load at important substations, and power
flows at important lines—are telemetered to the control center. Let z denote the set of such measurements.
As indicated before, the SE estimates the system state x based on these measurements by making use of the
relationships between the measurements and the state variables. Consider, for example, the measurements on
the small system in Fig. 2.

If we represent the line by its total series impedance per phase y12, then the system model for state
estimation becomes the one shown in Fig. 2(b), and thus the measurements can be expressed in terms of the
state variables x = [θ2V1V2]T as

where the function hi(x) is called the measurement function corresponding to the measurement zi. For example,
the measurement functions for the measurements of the system in Fig. 2 are

Note that the equality in Eq. (2) would hold if the measurement and the model were perfect. However,
the actual measurements and the model may contain errors. Assuming that we can have an accurate system
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model, Eq. (2) can be modified to include the measurement errors as

where ei represents the error in measurement i. Hence, for the general case, we have a set of m equations
relating m measurements to n states:

Note that the assumptions underlying this SE model are: (1) the system is 3-phase balanced, (2) system topology
is known, (3) system model (parameters of lines and transformers) are known, and (4) all the measurements
are made at the same time (no time-skew).

State estimation involves estimating the system state x̂ by using the preceding set of nonlinear equations.
These equations are usually overdetermined (more measurements than number of states; i.e., m > n) to
improve the accuracy of the estimation and to accommodate cases in which some of the measurements become
unavailable due to meter loss. Also, the error terms are assumed to be varying randomly with some known
statistical properties. There are various approaches to solve this type of problem. The conventional approach
adopted for the power system state estimation—the weighted least squares (WLS) method—is presented first
in the next section; other approaches are summarized later.

WLS Estimator

The basic approach of the WLS method is to find an estimate of the system state x̂ that minimizes the
measurement residuals

by solving the following optimization problem:

where wi represents the weight associated with measurement zi. Weights are chosen in proportion to the
accuracy of the measurements; the higher the accuracy of a measurement, the greater its weight. Note that
this approach corresponds to the solution of the overdetermined system of equations

which tries to find a state x̂ that fits the data as closely as possible.
The solution of the optimization problem of Eq. (7) gives the estimated state x̂ that must satisfy the

following necessary optimality condition:
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where

is the Jacobian matrix of the measurement function h(x). The solution of the nonlinear equation [Eq. (9)] is
usually obtained by an iterative method derived by linearizing h(x) about xk. The iteration starts with an initial
guess for the state x0, and at each iteration k, a set of linear equations of the following type, called the normal
equations of the WLS problem, is solved to calculate the correction �xk:

where G(x) is called the gain matrix and is usually chosen as

Then the state is updated:

If this updated state makes the mismatches [optimality condition of Eq. (9)] sufficiently small, then it is accepted
as the solution x̂; otherwise the iteration is repeated.

To illustrate this procedure, consider the small system in Fig. 2, and let the line admittance be y12 = g12 +
jb12 = 0.01 + j0.05 p.u. (per unit) and the measurements be z = [Pm

gQm
gVm

1] = [1.0 0.9 1.0]pu. Starting from a
flat starting point for the state x0 = [θ2V1V2]T = [0.0 1.0 1.0] and letting the weights ωi for the measurements be
1 for the power measurements and 10 for the voltage measurement (assuming that the voltage measurement
is more accurate than the power measurements), the iterative procedure yields

If we calculate the measurement residuals r = z − h(x̂) for this example, they will be all zero. This will
indicate that the data (the measurements) fit the model perfectly, which is a result of the fact that there is no
measurement redundancy (i.e., the number of measurements are equal to the number of states), and therefore
the SE will not filter the noise in measurements, in this case. The ability of SE to filter measurement noise is
a very important feature and will be explored further later in a section entitled “Bad Data Processing.”

Fast Decoupled WLS Estimator. Since the SE is expected to run as fast as possible (today the typical
execution time is about 1 to 3 min), the early efforts toward decreasing the computational burden of the WLS
SE led to the development of fast decoupled WLS estimators (5,6). These methods, as the fast decoupled power
flow methods, make use of the well-known weak coupling between real and reactive power: that the real
power flows mainly affect the bus phase angles, while the reactive power flows mainly affect the bus voltage
magnitudes. To make use of this feature in WLS estimation, partition the measurement set z into two groups:
one containing mainly the real power measurements zp and the other reactive power and voltage magnitude
measurements zq, z = [zpzq]. Let the corresponding measurement vector be h = [hphq], and partition the state
vector into two parts as x = [θV]. The weak coupling implies that the sensitivities of hp(x) to bus voltages are
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much smaller than to angles and, similarly, sensitivities of hq(x) to bus angles are much smaller than to bus
voltages. That is,

Therefore, the measurement Jacobian matrix can be partitioned and approximated as follows:

This approximation is used to simplify the normal equations of Eq. (11) in various ways. In the so-called
algorithm decoupled version, the right-hand side of the normal equations, the mismatch terms, are calculated
exactly at each iteration, but the gain matrix is decoupled by using the decoupled H as

Furthermore, these matrices are constructed and computed once at the beginning of the iterations and then
are kept constant in the rest of the iterations. Thus, the normal equations to be solved at iteration k become

where

A further approximation and decoupling on the normal equation is done in the model decoupled version.
In this approach, the decoupled H is used in calculating the mismatch terms as well as the gain matrix. This
leads to the total decoupling of the normal equations into the following two sets of equations:

To keep the computations to a minimum, in this case both the gain matrices and the Jacobian matrices are
calculated once at the beginning of the iterations and then they are kept constant. This last approximation
leads to an approximate solution, since the mismatch terms are not calculated exactly in this case.
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Fig. 3. Main components of a state estimation program.

In practice it has been observed, and later investigations have showed, that the performance of the
decoupled estimators is sensitive to the approximations in the construction of the gain matrix (4,6). It is
also shown that certain system and measurement conditions degrade the performance of these estimators
significantly, as they cause the gain matrix to be ill conditioned (6). The well-known examples are the presence of
a large number of injection measurements in a system, connection of a long transmission line (large impedance)
with a short line (small impedance), and large disparity between the measurement weights. New numerical
methods have been adopted to address these problems, and some of them will be outlined in the following
sections.

Implementation Issues

There are various issues that need to be addressed for the SE to be successfully implemented in practice. First,
the approach assumes that we know the exact network model [so that we can write the measurement functions
h(x)]. To achieve this, in practice, a preprocessor program, called a topology processor, is used to mainly to
determine the network connectivity and to gather the device model parameters from the database. The second
preprocessor program, called the observability analysis, is used to see if the available measurements are enough
for state estimation. Implementation of the WLS algorithm to solve practical cases is also an important issue;
the method should be as computationally efficient as possible, and robust enough to handle various cases and
provide accurate solutions. Finally, after the state estimation, a postprocessing procedure is needed to check
how good the data fit the system model and then to detect the bad measurements (measurements with major
errors), if necessary. This last phase is called the bad data processing. An SE implementation involving these
stages is illustrated in Fig. 3.

A brief review of the various issues is provided in the following sections.
Network Topology Processor. The topology processor determines the current topology of the system

(i.e., the way the devices are connected in the system) based on the circuit breaker status data obtained from
SCADA. Since, as illustrated in Fig. 1, a power system mainly consists of substations interconnected by power
lines, topology of the network is determined on a substation basis. As illustrated in Fig. 1, in a substation, most
of the devices, such as generators, loads, shunt capacitors, transformers, and transmission lines, are connected
to the bus sections. By opening/closing the CBs at a substation, different bus sections can be connected to
form a common bus at a voltage level. For example, in Fig. 1, the two buses in the generation substation are
separated by opening CBs on the de-energized side of the bus. The topology of a network is therefore mainly
determined by the status of the CBs.

In the system database, connectivity of all the devices is defined in terms of bus sections. The network
processor’s task then becomes to use this description together with the status of CBs received from the SCADA
to determine the network topology. Note that for the SE, and other analysis purposes, the network model is
defined in terms of buses and branches, as illustrated in Fig. 2. Thus, the output of the topology processor is the
data that describes a bus-branch-oriented network: each of the buses and the devices connected to these buses
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(such as generators, loads, and shunt devices) and the connectivity between the buses by the transmission
lines and the transformers. In addition, the topology processor identifies the network islands and discards
the unenergized devices from the network description or those branches that have no power measurements
associated with them.

A widely used approach to construct the network topology is based on a tree search method (3,7). The
search consist of three passes. In the first pass, the bus sections of the same voltage level at the substations
are processed to determine if they are connected together by closed CBs. In the second pass, all the energized
network islands are identified. The search starts from a generator bus, and all the buses connected to this
generator through the transmission lines and transformers are identified and numbered. When no more buses
can be found to be added to the first island, a search is made for an unprocessed generator. If one found, it is
used to start the search for the next island. Otherwise, all the energized islands are found. In the final pass, two
tables are constructed: a bus list indicating all the devices connected to the buses; and a branch list indicating
the buses the lines are connected to.

Observability Analysis. As pointed out previously, the observability analysis involves determining
if the available set of measurements is enough and are evenly distributed across the network so that the
state of the system can be estimated. If the measurement set is not enough, the problem in WLS estimation
arises in the gain matrix of Eq. (12); it becomes singular. The system in this case is said to be unobservable.
Because measurement availability as well as network topology may vary with time, it is necessary to perform
an observability test each time there is a change in the available measurements or network topology. When the
system becomes unobservable, it is necessary to identify the parts of the network that are unobservable (which
are called unobservable islands). These islands either have to be removed from the system representation or
pseudo measurements must be added at the unobservable buses to render the system observable. A recent
survey of observability techniques and issues is given in Ref. 8.

The preceding introduction indicates that there are two possible ways to determine observability: by
examining how much of the system the measured variables cover, or by checking the singularity of the gain
matrix G (alternatively, by checking the rank of the measurement Jacobian H). These two approaches are
called topological and numerical observability, respectively.

The topological observability approach was pioneered by Clements, Davis, and Krumpholz (9,10). They
showed that the network can be represented by a graph, and this graph should contain at least one “observable
spanning tree” for the system to be observable. A tree of a graph is observable if every one of its branches can
be assigned to a measurement incident to it and each measurement is assigned only once. A spanning tree is a
tree that covers all the nodes of a graph. This approach is combinatorial in nature in that it requires search of
all possible trees. However, algorithms developed to minimize the search and thus reduce the computational
burden of the approach (10,60).

The numerical observability approach was pioneered by Monticelli and Wu (11,12). Since the gain matrix
is factored (using LDU decomposition, for example) for use in the SE algorithm, its rank can be checked during
this factorization. If the gain matrix is singular (as indicated by one of the diagonal entries, called pivots,
becoming zero during the factorization), then the system is unobservable. Monticelli and Wu showed that by
introducing pseudoinjections at the nodes corresponding to the zero pivot locations, the unobservable buses
and islands of the network can also be identified by this approach. Later, an alternative approach based on a
symbolic reduction of the measurement Jacobian matrix was proposed for observability analysis (13).

Both the topological and numerical observability methods have been adapted in practice. The topological
methods use mostly symbolic manipulations but are algorithmically more complex. The numerical methods are
algorithmically simpler and employ numerical routines used in WLS estimation. By checking the singularity
of the gain matrix, they provide a necessary and sufficient condition for observability (see the discussion of
Slutsker and Monticelli in Ref. 60). They are, however, prone to numerical errors and hence may need more
numerically robust factorization algorithms (8).
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Note that the observability of a system depends on the amount of real-time measurements and how they
are geographically distributed in the system. The distribution of the meters in the system also has a direct effect
on the performance of the SE. Therefore, placing meters properly in a system for state estimation is another
important issue for SE; enough meters must be placed to cover the entire system so that the system remains
observable even when a few of the meters are lost occasionally. Also, the meters should be uniformly distributed
in the system to retain local (bus level) redundancy as well as global redundancy. Various approaches have
been proposed for this important problem (8,14).

Other Implementation Issues. There are two main challenges in successful implementation of state
estimators in practice: preparation of the data and model for the SE, and performance of the SE. Some utility
experience with SE is reported in literature (15,16). These experiences indicate that data and model preparation
is the most critical challenge, especially in the first installation phase of the SE. Once this challenge is met,
then the performance of the SE—the accuracy and reliability of SE—takes precedence.

Creating and maintaining a real-time database that contains as accurate and up-to-date a network model
as possible is crutial because WLS SE assumes that the network model is accurate. Efforts have been made to
determine network model parameter errors by tracking the SE solutions (17), and also topology errors (61,62).

Maintaining adequate amounts of real-time measurements is another challenge in practice. As indicated
before, the minimum amount of measurements needed for state estimation is n, the number of states of the
system. However, in practice the typical measurements should be on the order of 1.5 n to maintain observability
of the system and reliability of the SE. To increase the number of available measurements for state estimation,
there are two types of measurements that may be included in z, in addition to the telemetered measurements.
Virtual measurements are the perfect measurements known in the system, such as the zero injections at buses
with no load and generation. High-voltage transmission systems usually have a large amount of zero injection
buses (typically 60%). Pseudomeasurements are not actual but rather guessed quantities, such as the output
of generators that are not telemetered or the tab loads on a transmission line that are not telemetered. The tap
values of the tap-changing transformers are also treated as pseudomeasurements if they are not telemetered
or if there is not enough telemetered data for SE to estimate the tap.

The selection of weights for the SE is also an important implementation issue. If we assume that all
the measurements are coming from meters operating normally, then we can assume that the measurement
errors ei in Eq. (4) are normally distributed random variables with zero mean and that they are statistically
independent. The accuracy of the measurement zi can then be related to the variance σ2

i of the random variable
ei; a large variance indicates that the measurement is not very accurate (18). If we choose the weights as the
variances

where R is called the covariance matrix of the error vector e (i.e., R = E[eeT]). Then the WLS estimator becomes
the so-called the maximum likelihood estimator, which tries to find an x̂ that maximizes the probability density
function of the measurements z (2). Thus, the weights of the telemetered measurements are usually chosen
based on the accuracy of the corresponding meters. Methods have been proposed to characterize and check
the accuracy of analog measurements (58,59). The weights for the virtual and pseudomeasurements are then
chosen relative to these actual measurements; virtual measurements are assigned with large weights, whereas
the pseudomeasurements are assigned with small weights since they are the least accurate measurements. The
assignment of very large and very small weights for these measurements should, however, be avoided, since
big differences between the weights may cause convergence problems, as big disparities between the weights
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causes the gain matrix G to become ill conditioned (4). Alternative approaches that avoid ill-conditioning
problems are described later in this article.

BAD Data Processing

Measurements that are inaccurate due to meter, telemetry, or other types of errors will deteriorate the state
estimate if they are not detected, identified, and eliminated (or corrected). When using the WLS estimation
method, bad data detection and identification are done after the estimation of the system state by processing
the measurement residuals.

One commonly used method of detecting and identifying bad data is the largest normalized residual (rN)
test (1,6,19,39). In this test, measurement residuals are calculated and normalized by using their estimated
standard deviations. This test can best be described by first reviewing some statistical properties of the
measurement residuals. Consider the linearized measurement model:

The WLS state estimate will then be

and the estimated value of �z is

where K = H(HTR− 1H)− 1HTR− 1 is called the hat matrix.
The measurement residuals can be expressed as follows:

where S is called the residual sensitivity matrix. Each entry Sij represents the sensitivity of the residual for
measurement i to an error in measurement j. The residual covariance matrix � can then be written as

Hence, the normalized value of the residual for measurement i will be given by

Assuming that the ith measurement residual has a normal distribution with zero mean and �ii variance, its
normalized value, rN

i, will have a standard normal distribution.
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The measurement set will be suspected to include bad data if any of the normalized residuals is above
the detection threshold ε. This threshold is chosen based on the desired level of confidence in the hypothesis
that none of the measurements are in any significant error. For example, a choice of 2.58 as ε will correspond
to a confidence level of 99.0% in the standard normal distribution table.

Largest Normalized Residual Test. It can be shown that if there is a single bad data in the mea-
surement set, then the largest normalized residual will correspond to bad data. This also applies to multiple
bad data cases as long as none of the bad measurements interact. The following are the steps of the largest
normalized residual test for identification of single and noninteracting multiple bad data:

(1) Solve the WLS estimation and obtain the elements of the measurement residual vector:

(2) Compute the normalized residuals:

(3) Find k such that rN
k is the largest among all rN

i, i = 1, . . ., m.
(4) If rN

k > ε, then the kth measurement will be suspected as bad data. Else stop, no bad data will be suspected.
Here, ε is a chosen identification threshold (e.g., 2.6).

(5) Eliminate the kth measurement from the measurement set and go to step 1.

Classification of Measurements and Their Properties. Measurements can be broadly classified as
critical and redundant (or noncritical) with the following properties:

• A critical measurement is the one whose elimination from the measurement set will result in an unobserv-
able system.

• The row/column of S corresponding to a critical measurement will be zero.
• The residuals of critical measurements will always be zero, and therefore errors in critical measurements

cannot be detected.
• Only noncritical measurements will have nonzero measurement residuals, allowing detection and identifi-

cation of their errors.

Types of Bad Data and Their Identification. When there is single bad data, the largest normalized
residual will correspond to the bad measurement, provided that the measurement is not critical. Multiple bad
data may appear in three ways (20):

• Noninteracting: If Sik ≈ 0, then measurements i and k are said to be noninteracting. In this case, even if
bad data appear simultaneously in both measurements, the largest normalized residual test can identify
them sequentially, one pass at a time.

• Interacting, nonconforming: If Sik is significantly large, then measurements i and k are said to be inter-
acting. However, if the errors in measurement i and k are not consistent with each other, then the largest
normalized residual test may still indicate the bad data correctly.

• Interacting, conforming: If two interacting measurements have errors that are in agreement (that is, they
satisfy power flow equations), then the largest normalized residual test may fail to identify either one.
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Fig. 4. A small system with measurements to illustrate the bad data processing capabilities of WLS SE.

A small test system given in Fig. 4 will be used to illustrate the performance of the largest normalized
residual test for the aforementioned types of bad data. In Fig. 4, all branches have identical reactances, xi =
0.1, and all measurements have the same error variance, σi = 0.01. Note that all measurements are assumed
to be zero except for the bad data. A dc model is used, and therefore the true solution should yield zero
phase angles at all buses and zero flows along all branches. Single, multiple interacting nonconforming and
multiple interacting conforming bad data are introduced into the measurements, and the results are given in
the following table. The largest normalized residual for each case appears in boldface in Table 1. As the results
in the table indicate, the main difficulty in the bad data processing scheme arises due to the smearing effect of
gross errors on the residuals.

Other Bad Data Identification Methods. Failure of the largest normalized residual technique to
identify interacting conforming bad data motivated the development of alternative methods that attempt to
overcome this deficiency. Hypothesis testing identification (HTI) is one such technique suggested by Mili, Van
Cutsem, and Ribbens-Pavella (21,22). In this technique, a suspected set of measurements are initially set
aside based on their normalized residuals. Then a hypothesis testing is done based on the estimated errors
of the chosen suspect set of measurements. This technique works well as long as all bad measurements are
included in the suspect set. Another approach is introduced by Monticelli and Wu (23). This approach uses the
framework of decision theory to formulate the bad data identification problem as a combinatorial optimization
problem, where there are 2m possibilities for m measurements, each one having a possibility of being bad or
good. An efficient branch and bound method is developed to search the decision tree leading to the optimal
solution. A geometric approach to detecting and identifying multiple bad data is presented by Clements and
Davis (24). A procedure for selecting the suspect set of measurements and carrying out the identification tests
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based on the projection of the residual vector on the subspace determined by these suspect measurements is
introduced.

Numerically Stable Estimators

The standard weighted least squares formulation of the state estimation problem yields the so-called normal
equations as given in Eq. (11). The gain matrix G(x) shown in Eq. (12) is known to be numerically ill conditioned.
Ill conditioning may be due to the following reasons:

• Existence of very long and very short lines terminating at the same bus
• Assigning very high weights to some measurements in order to enforce equality constraints
• Existence of a large number of injection measurements

The ill-conditioning problem has been addressed by two categories of methods. One is based on orthogo-
nalization of the matrix H. The other category includes methods that formulate the state estimation problem
with equality constraints. These are briefly described next.

Orthogonalization Methods. The WLS estimator minimizes the following objective function at each
iteration:

where H′ = W1/2 H and �z′ = W1/2 �z.
Choosing an orthonormal matrix Q (i.e., QTQ = I) such that QH′ = U (U being an upper triangular

matrix), the objective function can be rewritten as (25,26)

where �y = Q �
′
z. Let

where R is a square upper triangular matrix and

Then the minimum of J will be found by solving

and the minimum value of J will be given by (�y0)T(�y0). Q is usually much denser compared to H and found
using the Given transformations (27). An efficient implementation of this method is developed in Ref. 28.
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A hybrid version of the preceding method was introduced in Ref. 29, where storage of Q is avoided. It is
based on the observation that the upper triangular factor R in Eq. (22) is the same as the upper triangular
factor of the original gain matrix G. Hence, after the orthogonal factorization of H, �x can be solved using the
following equation:

Normal Equations with Constraints. As stated earlier, use of very large weights for certain mea-
surements is one of the reasons for ill conditioning of the normal equations. Zero injections are examples
of such measurements. Instead of trying to enforce these measurements by introducing large weights, exact
enforcement of equality constraints can be achieved by using the method of Lagrange multipliers (30). The
WLS estimation problem to be solved at each iteration can be rewritten as

where H and C are the Jacobians for unconstrained measurements and equality constraints respectively, �z
= z − h(x), and −c(x) is the equality constraint vector evaluated at the current iteration. The solution of the
preceding constrained optimization problem will be given by solving the following linear equation (30):

where λ is the Lagrange multipliers vector and x is the value of the state at the last iteration.
The preceding equation can be rewritten in sparser form by using µ = W(�z − H�x) as an additional

unknown:

This method is known as Hachtel’s augmented matrix method (31). Even though the number of unknowns
is increased by the introduction of µ, the overall matrix remains sparse and the explicit formation of HTWH
is avoided. This improves the condition number of the matrix, yielding a numerically more robust system of
equations.

One of the drawbacks of this method is the fact that the coefficient matrix in Eq. (7) is symmetric but
indefinite. Hence, an ordering based strictly on sparsity considerations may fail. Block pivoting with blocks of
1 × 1 or 2 × 2 may have to be used, ensuring numerical nonsingularity of pivot blocks during factorization of
this indefinite matrix (32,33,34).



14 POWER SYSTEM STATE ESTIMATION

Alternative State Estimation Methods

All bad data processing methods discussed so far share a common shortcoming: the fact that the detection
decisions are based on the measurement residuals. In the case of multiple bad data, masking the effect of these
bad measurements on their residuals may prohibit identification of bad data using residual based methods.
Starting with Schweppe (35), several methods have been proposed to address this shortcoming and improve
the robustness of state estimators. Robustness of an estimator refers to its insensitivity to such errors in the
measurements when solving for the state estimate (36,37).

State estimators that downweight measurements having large residuals are thus proposed in Refs. 38,39,
40, and 57. More recently, state estimators that minimize the sum of the absolute values of the measurement
residuals have been introduced. These estimators are referred to as the least absolute value (LAV) estimators.

Least Absolute Value State Estimation. Least absolute value estimation is an alternative method
that can be used to estimate the state of the system. Use of the LAV state estimation in power systems was
initially proposed in Refs. 41 and 42, motivated by the automatic bad data rejection property of these estimators.

The formulation of the LAV estimation problem is based on minimizing the sum of the absolute values of
the measurement residuals:

where H is the m × n measurement Jacobian, c ∈ Rm is the vector of measurement weights (which may all be
set equal to 1 for equal weighting of measurements) and r ∈ Rm is the vector of measurement residuals.

Solution of the optimization problem given by Eqs. (28) and (29) interpolates n out of m available measure-
ments, where n and m are the number of state variables and measurements, respectively. Those measurements
that are not exactly satisfied (having nonzero residuals) by the LAV estimator are referred to as rejected mea-
surements. In the absence of leverage measurements, if there are any bad data in the measurement set, they
will be rejected automatically by the LAV estimator. This characteristic is attractive in dealing with bad data.
Leverage measurements are discussed within the context of robust estimators in the next subsection.

Alternative solution algorithms for solving the LAV estimation problem exist. These can be broadly
classified as follows:

(1) Simplex-based algorithms
(2) Interior-point-based algorithms

Simplex-Based Algorithms. Several variations of the well-known simplex method of solving linear
programming (LP) problems can be applied to the LAV estimation problem. In applying the simplex method,
the special structure of the LAV estimation problem can be exploited for numerical efficiency (43,44,45). This
can be accomplished both at the initialization and the actual optimization stages of the algorithm.

Interior-Point-Based Algorithms. A new algorithm for solving LP problems was introduced by N. K.
Karmarkar in 1984 (46). Several variants of the original Karmarkar’s algorithm have been introduced since
then. The collection of these methods constitutes what is referred to as the interior point methods for linear
programming. The distinguishing feature of these algorithms, as compared to the simplex algorithms, is the
way they reach the solution. While simplex algorithms trace the extreme points of the feasible region along
its exterior, interior point methods trace a path interior to the feasible region. There are three variants of the
interior point algorithm (47):
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(1) Affine-scaling primal algorithm
(2) Affine-scaling dual algorithm
(3) Primal-dual algorithm

Interior point methods typically perform better than their simplex-based counterparts when the problem
size increases. Details of the three algorithms can be found in Ref. 47, and their applications to power system
state estimation are discussed in Refs.48 and 49.

Leverage Measurements and Other Robust Estimators. Leverage measurements are those mea-
surements that have a very strong influence on the estimated states (50,57). Leverage measurements in power
systems can be identified based on the measurement Jacobian H, whose rows correspond to individual measure-
ments. It has been observed that the following conditions usually lead to creation of leverage measurements
(51):

• Having flow measurements along relatively short lines
• Having injection measurements at either terminal of a short line
• Having injection measurements at buses with several incident lines

The main motivation behind the application of LAV estimation methods to the power system state es-
timation problem has been their expected robustness against bad data in the measurement set. However,
LAV estimators were shown to be susceptible to leverage points in the measurements (51,52,53,54). A new
estimator that minimizes the least median of squares of the measurement residuals is proposed in Ref. 55 and
applied to the power system state estimation problem in Refs. 51 and 56. More recently, a method of identifying
leverage measurements based on a measure called projection statistics was introduced, and a robust iteratively
reweighted least squares estimation algorithm was presented in Ref. 57.

New State Estimation Applications

Recently, the use of global positioning systems made it possible to obtain accurate synchronized measurements
over a transmission system. This technology made possible the use of phasor measurements in state estimation
(63), and even in harmonic state estimation (64,65). At the power distribution level, efforts to introduce
automation at the distribution level led the extension of state estimation to distribution systems. Methods
have been proposed (66,67) to address, and make use of, the special features of distribution systems such
as system unbalance, radial topology, lack of enough real-time measurements, availability of mostly current
measurements, and so on.
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