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POWER TRANSMISSION LINES

Generating Stations

Although it is possible to harness the wind, tides, and solar energy to produce electrical power, these renewable
energy sources represent a small portion of the total electrical energy required. Conventional power plants are
still the only cost-effective means of generating large amounts of electrical power. Most electrical generating
stations convert the stored natural energy of fuels into kinetic energy of a rotating shaft. The main sources of
electrical energy are fossil fuel (coal, oil, and natural gas), water power (elevated water supply), and nuclear
energy (uranium). There are three main types of generating stations: thermal generating stations, hydroelectric
generating stations and nuclear generating stations. While thermal stations provide the bulk of the electrical
energy (72%), the hydroelectric (10%) and nuclear power stations (18%) provide a good portion of electrical
energy.

Thermal Generating Stations. Thermal generating stations utilize the heat released by the combus-
tion of coal, oil, or natural gas to heat water in a boiler, which delivers steam at a high temperature (600◦C)
and very high pressure 30 MN/m2 to a steam turbine. The mechanical energy at the turbine’s shaft drives
an ac generator, which converts it into electrical energy. Steam that exhausts from the turbine is directed to
a condenser where it is cooled, distilled into water, and returned to the boiler. Thermal stations are usually
located near large bodies of water such as rivers, lakes, and oceans, where an ample quantity of cooling water
is available.

A schematic diagram of a thermal station is shown in Fig. 1(a). The fuel, in the form of crushed coal,
gas, or atomized oil, is burned in the furnace. To increase combustion, fans provide a large quantity of hot
air. The heat generated increases the temperature of high-purity water in the boiler, changes the water into
steam, and boosts the temperature and pressure to operating levels. The hot emission gases are first passed
through electrostatic precipitators before being discharged into the atmosphere via the cooling stack. The steam
generated by the boiler passes through nozzles, which convert its thermal energy into kinetic energy. After the
steam exits the nozzles, it passes over the rotor blades of the turbine. The exhaust steam from the turbine is
moved to the water-tube condenser, which cools and condenses it. The water is then recycled to the boiler.

Oil was the most widely used fuel, until its shortage justified the use of coal. However, the harmful
environmental effects of coal-fired plants diminished their use. Now the most acceptable fuel is natural gas,
which reduces atmospheric pollution to a minimum, and is available in large quantities. The conversion
efficiency of a thermal generating station is always low (typically ranging from 30% to 40%), because of the
inherent low efficiency of the steam turbines. The maximum efficiency of any machine in which heat energy is
converted to mechanical energy is given by η= (T1 − T2)/T2, where T1 is the temperature of the steam entering
the turbine and T2 is the temperature of the steam leaving the turbine. The temperature T1 is limited by
the characteristic of readily available metals to about 900 K, while the temperature T2 is the normal ambient
temperature, which is usually about 293 K. The maximum possible efficiency of the turbine is, therefore, 67%.
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Fig. 1. Basic schematic diagram for power plants. (a) Thermal; (b) Hydroelectric; (c) Nuclear.

Hydroelectric Generating Stations. Hydroelectric generating stations convert the energy of falling
water into electrical energy by means of water turbines coupled to an ac generator. The theoretical power in
kilowatts that can be extracted from a waterfall is given by P = 9.8 HQ. Where H is the pressure head (the
height of water intake above discharge level) measured in meters and Q is the flow rate of water measured in
cubic meters per second. In modern hydroelectric stations, the losses in the system reduce the actual output
15% to 20% below the theoretical. The efficiency of conversion of the energy available from the water to
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electrical energy is quite high (about 80% to 90%). Although a hydroelectric station has high capital costs, its
running costs are very low. Also, a hydroelectric station can be started up and brought to full power within a
few minutes, as compared with a thermal plant, which can take hours to deliver power.

The basic components of the hydroelectric station are shown in Fig. 1(b). It consists of the dam (water
reservoir), the penstock (a means of delivering the water), the hydraulic turbine, the synchronous generator,
and associated auxiliary equipment.

Hydraulic turbines are classified as reaction type or impulse type. The selection of a particular type
depends on experience with the turbine at the planned speed and the lowest water pressure in the water path.
Reaction turbines are preferred when the water flow rate is high (high specific speed) and the pressure head
is low (<150 m). Impulse types are suited for low flow rates (low specific speed) and high pressure head (≥300
m).

A hydro scheme usually includes pumped storage, in which water is pumped from a lower to an upper
reservoir during off-peak periods, or when the flow is more than that required for power generation. For this
purpose, pumps are connected to generators, which run as synchronous motors during pumping operations.
During the periods of peak load, when the main water flow is insufficient, water flows from the upper to the
lower reservoir to drive the generator to produce electrical power.

Nuclear Generating Stations. Nuclear generating stations generate power from the energy released
by nuclear fission of uranium and similar metals in a reactor. When the nucleus of an atom splits into two, a
significant amount of energy is released. The heat energy thus released is converted to steam, which is used to
rotate the steam turbine that drives the generator. Figure 1(c) shows the basic schematic diagram of a nuclear
station.

The nuclear reactor is the main component of a nuclear station. It is where the fission chain reaction
takes place, and where the heat is generated to be picked up by the cooling medium. The nuclear fuel elements,
in the shape of rods, are placed into fuel tubes in the reactor core. The nuclear reaction takes place in the rods,
and a large amount of heat is released in the process. The reaction is controlled by moving the control rods in
and out of the reactor core. The control rods, made of a neutron-absorbing material, will vary the number of
neutrons available to maintain the chain reaction, thereby controlling the rate of fission. The nuclear fission
process is accompanied by intense radioactive radiation, requiring a special protective shielding arrangement.
A coolant (water, steam, or fluid) flows through the reactor and carries off the heat from the core to generate
steam. The heat generated in the core must be continuously removed, to keep the core temperature from rising
too high. The coolant flows over the surface of the fuel rods, where it is heated by convection. As the coolant
exits, it brings with it the heat.

Network Analysis

An electric power system consists of three major sections: (1) the generating system, (2) the transmission
system, and (3) the distribution system. Electrical power is generated as three-phase alternating current at
central power stations. Generation of electrical power at the same place it is utilized is not feasible, because
of environmental, economic, technological, and reliability considerations. Operation of the power system also
requires that proper attention be given to the safety, not only of the utility personnel, but also of the general
public. Therefore, electrical power generated at one location is transmitted through an extensive system of
transmission lines to the various load centers, located many miles away.

The voltage of large generators ranges from 13 · 8 to 12 kV. The generator voltage is then transformed to
higher voltage levels, from 69 to 765 kV, using step-up transformers. The high-voltage network of transmis-
sion lines transmits this power over long distances to lower voltage subtransmission networks. This network
transports power over shorter distances to low-voltage distribution networks. Each of these networks is cou-
pled to the others through step-down transformers. Therefore, the power system is a complex network of
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Fig. 2. One-line diagram of a simple power system.

Generators 1 and 2: SG, VG, XG%
Synchronous motor 3: SM, VM, XM%
Transformers T1, T2: ST, VP/VS, XT% referred to the high-voltage side
Transmission line: Z1 = R1 + jX1
Load: ZL = RL + jXL

interconnected lines. This network is responsible for transmitting power from the points of generation to the
points of utilization. The significance of this function requires analysis of important network parameters under
various conditions. These parameters consist of voltages, power flows, and power losses. This section discusses
one-line diagrams used to simplify the representation of three-phase power systems. We then introduce deter-
mination of impedance diagrams, and finally per-unit quantities, which are used to simplify calculations for
power systems, will be discussed.

The One-line Diagram. The components of a typical power system include synchronous machines,
transformers, transmission lines, and static and dynamic loads. A practical three-phase system involves the
interconnection between many generating stations connected to several load centers, where the power is
distributed to the customers by a mesh of distribution lines and transformers. These interconnections are
simply called nodes or buses. A three-line diagram can be used to represent each phase of a three-phase system.
However, for large systems, it becomes impractical to show in detail all three phases of each component and
their respective models in a diagram. Therefore, some simplifications have been adopted, where three-phase
power systems are studied using per-phase analysis. For balanced operation, the system is represented by a
diagram of a single phase, to represent all three phases. The elements are represented by standard symbols,
and their interconnections are shown using a one-line diagram. Figure 2 shows a simple one-line diagram
of a power system. On the diagram, ratings of the generators and transformers, reactances of the different
components of the system, and information about the loads is often given.

The symbols used in one-line diagrams to represent various components vary somewhat among
different electric utility companies. However, ANSI (American National Standards Institute) and IEEE
(Institute of Electrical and Electronic Engineers) have standardized them. Some common symbols are shown in
Fig. 3.

The complexity of representation on the one-line diagram depends primarily on the type of analysis to be
performed. A comprehensive one-line diagram should include the following components and specifications:

Generators: kVA ratings, voltage ratings, % impedance and grounding methods
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Fig. 3. Symbols of some power system components.

Transformers: kVA ratings, primary and secondary voltage ratings, % impedance, connections, and ground-
ing methods

Loads: Large motors and impedances
Conductors and Cables: Size and type
Protective devices: Fuse, relays and circuit breakers
Instrument transformers: Current and potential transformer, ratios
Relays: Types and settings
Surge arrestor and capacitors

Impedance Diagrams. Impedance diagrams are used to calculate the performance of the power sys-
tem under various conditions. These diagrams, showing the impedance data of generators, transmission lines,
transformers, regulators, capacitors, cables, and the like, are used for voltage drop calculations, short-circuit
studies, power flow analysis, economic operation, load transfer, and unit loading calculations. It is very impor-
tant that these data be updated as system condition changes.
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Fig. 4. Impedance diagram per phase.

The one-line diagram is used to build the impedance diagram, where the symbols are replaced by single-
phase equivalent circuits of the elements. The generators, transformers, transmission lines, and electrical loads
are represented by their models in the impedance diagram. The model chosen depends on the analysis to be
performed. Figure 4 is an impedance diagram of the one-line diagram of Fig. 2. Transformers are represented
as series impedances. Transmission lines are represented as a resistance and inductive reactance in series.
Synchronous machines are replaced with voltage sources and reactances in series.

The Per-Unit System

Electric power systems can be analyzed using actual units of volts, amperes, ohms, and voltamperes. However,
it is more convenient to express these quantities in terms of per unit (pu) or percent value of some base chosen
for that quantity. The per unit system is extensively used in electrical power system calculations, where the
various electrical quantities are normalized, with respect to a chosen base value.

By definition, the per unit value of any electrical quantity is the ratio of the actual value to some chosen
base value of that quantity.

Single-phase System. In an electrical network, usually four quantities are of interest: Voltage—V,
current—I, impedance—Z, and apparent power—S. Generally, it is sufficient to specify the base values for any
two of these quantities, then the base values for the other two can be calculated. Usually, base voltage Vbase and
base apparent power Sbase are specified. Base current Ibase and base impedance Zbase may then be calculated.
When using per unit analysis, all relationships among the four quantities must be maintained.
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The per-unit electrical quantities are calculated as follows:

Three-phase Systems. Most power systems are composed of balanced three-phase circuits. These
systems can be solved on a per-phase basis. In that case, the equations that were developed for single-phase
systems can be used here as long as per-phase values are used. The direct application of Eqs. (2) and (3) to the
solution of three-phase circuits requires that phase voltage (Vphase) and single-phase power (Sphase) bases be
chosen.

The per unit voltage and voltamperes can be calculated as follows:

However, it has been customary in three-phase system analysis to give data and seek results in terms of line
voltages and total three-phase power. It should be noted that the denominator of Eq. (4) is the line equivalent
of the base phase voltage.

Similarly, the denominator of Eq. (5) is the three-phase equivalent of the base single-phase voltamperes.
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Therefore, Eqs. (4) and (5) can be written in terms of line voltage base and three-phase power base as:

Although three-phase voltamperes and line voltages are used to calculate the per unit values, single-phase
calculations must be used in the per unit analysis of three phase circuits.

In order for the per unit currents and per unit impedances to have the same values with the line voltages
and three-phase bases as they had with the phase voltage and single-phase bases, the base current and base
impedance calculated from each set of voltage and voltamperes bases must be the same. Starting with Eqs. (2)
and (3), these quantities are derived for line voltage base and three-phase apparent base:

Also,

The base quantities given by Eqs. (6)–(9), can be used to convert line voltages, three-phase apparent power,
line currents, and per phase impedances to per unit quantities without first converting to phase voltages and
single-phase values. The line values and three-phase set of bases is the most frequently used system for
three-phase circuits. In fact, when a voltage and apparent power are given as bases for three-phase circuits,
they are assumed to be line values and three-phase quantities, unless otherwise stated.

Changing the Base. The impedances of most power system components are usually given in per unit
or percent, based on their own power and voltage rating. If these devices are incorporated in various places of
a power system, the bases chosen for the power system may be different from the device’s ratings. Therefore, it
becomes necessary to express each device in terms of the system base values. Assume that Z1pu is the per-unit
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impedance of a device based on its own power base Sbase1 and voltage base Vbase1; then, its base impedance is
given by:

This device is used in a system where the base quantities are Sbase2 and Vbase2. Then, its base impedance is:

To obtain the per-unit value of the impedance Z1, on the new bases, we first change the per-unit impedance on
base1 to the actual value of the impedance

Next, we convert the actual value of the impedance to a per unit value on base 2,

Substituting Eq. (10) into Eq. (11), we get:

Per-unit Impedance of Transformer. The ohmic value of the resistance and reactance of a single-
phase transformer is dependent on whether it is measured on the high-voltage side or the low-voltage side of
the transformer. The per-unit impedance of the transformer may be determined by choosing its apparent power
rating as the base power. If impedance is measured from the low-voltage side, then the low-voltage side rating
of the transformer must be used as the base voltage. Similarly, if impedance is measured from the high-voltage
side, then the high-voltage side rating of the transformer is used as the base voltage. It is important to note
that the per-unit impedance of a transformer has the same value, regardless of the side used for measurement.

An important advantage in making per-unit calculations is realized by the proper selection of different
bases for circuits connected to each other through a transformer. The only requirement is that the voltage
bases used on each side of a transformer have the same ratio as the ratio of transformation (turns ratio) of the
transformer.

With such a selection of voltage bases and by choosing a common voltampere base, the per unit value of
an impedance will be the same on either side of a transformer. Therefore, if voltage and voltampere bases are
chosen for one part of a system, the bases are fixed for the rest of the system. When this practice is employed,
the per unit impedance values calculated on different bases in different parts of the system can be collected
and used on a single-impedance diagram for the whole system.
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The per unit impedance of a three-phase transformer bank is not affected by the way in which the
transformers are connected. However, the relationship between the voltage bases on each side of the bank is
determined by the connection.

Power Flow Analysis

Various computational methods have been developed to assist power system engineers in system planning and
operational studies. These methods are used to determine:

• The magnitude and phase angle of the voltage at each bus in the system
• Flow of active and reactive power through the system
• Generating units, transmission lines, transformers, and other equipment loading
• Transformer tap settings

The type of study used to determine these quantities under normal steady-state operating conditions is
called power flow (also called load flow) analysis. A load flow solution requires formulation of the network
equations describing the power system. Since these equations are nonlinear, a straightforward solution is not
possible. Therefore, load flow calculation often use trial-and-error iterative techniques to provide approximate
solutions of the equations. At each iteration, the results converge toward the final solution. The two main
techniques commonly used are the Gauss–Seidel and Newton–Raphson methods. Almost all commercial load
flow computer programs are based on one or both of these methods.

Nodal Analysis and Bus Admittance Matrix. The model of the electric power system that is used
in a power flow analysis consists of all the nodes (buses) in the system, the generating units and load ele-
ments connected to these buses, and the transmission lines that interconnect the buses. When the system is
represented in per unit quantities, a solution can be found for the unknown parameters of that system using
well-known circuit techniques.

One of the most useful methods of analysis for power systems is the application of Kirchhoff’s current law
to write node voltage equations. This method will be developed with reference to the simple three-bus power
system network shown in Fig. 5. A generator is connected to each of the first two buses, and an electrical load
is connected to the third bus. Using the system impedances, a per-phase impedance diagram for Fig. 5 can be
drawn. However, using admittances is more convenient for writing nodal equations. Therefore, the equivalent
node-voltage network using admittance is set up as shown in Fig. 6. This admittance diagram is basically an
electrical network containing four nodes. The voltages at nodes 1, 2, and 3 can be expressed with respect to the
fourth node 0, which is chosen as the reference.

Using Kirchhoff’s current law, the nodal equations can now be written for the system. The sum of currents
entering a node is equal to the sum of currents leaving that node through all other system elements. The
current fed to node 1 from the generator at that node is

The current entering node 2 from its generator is:
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Fig. 5. A simple three-bus power system.

Fig. 6. Admittance diagram.

The current entering node 3 from the load at node 3 is:

Since loads usually draw current from the system instead of supplying it, I3 would be negative. V1, V2 and V3
are the voltages of nodes 1, 2, and 3, respectively, with respect to the reference node. If I1, I2 and I3 are known
or can be calculated, Eqs. (13) to (15) are three independent equations with three unknowns. These equations
can be solved to get the node voltages V1, V2 and V3, from which all branch currents can be obtained. Note that
the number of nodal equations required to solve a circuit is one less than the number of nodes in that circuit.

Equations (13) to (15) are rearranged to get
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If the following admittances are defined as

Y11, Y22, and Y33 are called self-admittances at the nodes, that is, the sum of all admittances connected
to that node. Y12, Y13, Y21, Y23, Y31, and Y32 are mutual admittances at the node, that is, the negative of the
sum of all admittances common to the nodes identified by their subscripts.

Then Eq. (16) is reduced to the form

Equation (17) can be written in the nodal-matrix equation form as follows

where,

IBUS is the bus current vector, VBUS is the bus voltage vector, and YBUS is the bus admittance matrix. The bus
admittance matrix is a symmetric matrix of self- and mutual admittances.

General Form of the Power Flow Equation. One can extend Eq. (18) to a network with N buses.
Where IBUS becomes an N × 1 vector with general entry Ii, VBUS is an N × 1 vector with general entry Vi =
Vi ∠ δi and the bus admittance matrix YBUS becomes an N × N matrix. The general expression for the current
injected into the ith bus is given by:
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where

Once the bus admittance matrix for a system is determined, calculation of bus voltages requires values
of bus currents. In practice, the bus currents are not known directly. However, if the bus power Si is specified,
the currents can be calculated from:

or

where ∗ denotes the complex conjugate of the quantity. The net active and reactive powers, that is, P and Q,
being generated at a bus minus the P and Q of any loads at that bus, being injected into the system at bus i, is

or

Solving for Ii,

From Eq. (21) it is apparent that, if the net active and reactive powers being injected into a bus are
specified, then the current is a function of the voltage at that bus. If these currents as a function of voltage are
substituted in Eq. (19), the entire equation becomes a function of voltages only.

By rearranging Eq. (22), the voltage at any bus i, where Pi and Qi are specified, is given by

These are the static power flow equations. Although there are six variables at each bus, that is, voltage
magnitude and its phase angle, current magnitude and its phase angle, and active and reactive powers, the
currents have been eliminated. Also, each equation is complex, therefore, there are 2 N real equations in all,
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with 2 N unknowns relating 4 N quantities. Since these equations are nonlinear, the power flow analysis
becomes the solution of sets of nonlinear algebraic equations requiring special numerical techniques.

Bus Classification. Power flow analysis involves the solution of an electric power system for the static
operating conditions. The static operating state of the system is defined by the constraints on power and voltage
at the network buses. As discussed in the previous section, in a power system each bus is associated with four
quantities, bus voltage magnitude and its phase angle, and active and reactive powers. In a power flow analysis,
two of the four quantities are specified, and the remaining two are calculated by solving the equations. Based
on which quantities are specified, the buses are categorized as follows:

The Load Bus. At buses where there is no generating source, the active and reactive powers drawn by
the load are specified. It is required to find the voltage magnitude and phase angle through the power flow
analysis. These kinds of buses are known as load buses, or P–Q buses.

The Generator or Voltage Controlled Bus. At those buses where generating units are connected, the
voltage magnitude corresponding to the generation voltage and net active power injected into the system are
specified. It is required to find the reactive power generation and the phase angle of the bus voltage. These
buses are called the generator or voltage-controlled buses (P–V buses). Since the reactive power generated is
not known at this bus, an approximation of Q must be used in Eq. (23). Generator buses can be treated as load
buses in those cases where reactive power is specified at that bus instead of a voltage magnitude.

Slack or Swing Bus. The total active power flow supplied to the system cannot be specified in advance
at every bus, since the losses in the system will not be known until the power flow study is complete. Therefore,
it is usual to specify one of the available generator buses as the slack or swing bus, and to consider its active
power generation as the unknown. Instead, at the slack bus both the magnitude of the bus voltage V and phase
angle δ are specified and all other bus voltage angles are referenced to it. The slack bus supplies or demands
power to or from the system to maintain the total system power generation and consumption in balance.

The three types of buses and the status (known or calculated) of the quantities at each type of bus
are summarized in Table 1. At the load buses, the active and reactive powers of the loads are specified and
voltages are to be determined. At the generator buses, the active power output of the generators and the voltage
magnitudes are known, therefore, the unknowns are the reactive power generated and the voltage phase angle.
The phase angle of the slack bus is set to zero or any arbitrary value, so its voltage becomes the reference point
for other voltages of the system. Therefore, the active and reactive powers are the unknowns at the slack bus.

Each bus is modeled by two equations, so there are 2N equations in all. It should be noted that it is not
necessary to solve the 2N equations simultaneously. One can reduce the number of equations so a complete
solution requires only two equations for active and reactive powers at the load buses. With Vj specified, only
one equation for reactive power is required at the generator bus. Solutions for the primary unknowns Vi and δi
at load buses and δi at the generator buses is therefore possible. This is followed by evaluating the secondary
unknowns Pi and Qi at the slack bus and Qi at the generator buses, using the active and reactive equations for
the slack bus and the reactive power equations for the generator buses.
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Solution of Nonlinear Equations. The power flow equations are nonlinear; therefore, the solution is
obtained by an iterative procedure. Two methods have gained popularity, these are the Gauss–Seidel method
and the Newton–Raphson method. The Gauss–Seidel method, introduced in the late 1950s, found widespread
application due to its simple procedure and relatively good performance. However, for systems with a large
number of buses, it converges very slowly toward a solution and, in some cases, even fails to converge. The
Newton–Raphson iterative technique was introduced to overcome the slowness of the Gauss–Seidel iterations.

The Gauss–Seidel (GS) Method of Solution. The Gauss–Seidel method uses an iterative process by
specifying estimated values for the unknown bus voltages and calculating a new value for each bus voltage
from the estimated values at the other buses. As each new set of voltage values becomes available, it is used
to calculate still another set of bus voltages. The method is designed to progressively compute more accurate
estimates of the unknown until results are obtained to any desired accuracy in a finite number of iterations.

The magnitude and angle of the voltage are specified at the slack bus. Therefore, the equation correspond-
ing to the slack bus can be eliminated from Eq. (23). So, for an N bus system, only N − 1 equations must be
solved to determine all the system voltages. The solution, based on expressing the voltage of a bus as a function
of active and reactive power delivered to a bus, the latest computed value of the voltages at the other buses,
and the admittance matrix of the nodes, will be examined.

Equation (23) is rewritten in general form to illustrate the method.

where c represents the iteration count. The values for the voltages on the right side of the equation are the
most recently calculated values (or estimated values if this is the first iteration) for the corresponding buses.

For a load bus, Eq. (24) gives a corrected value for Vi based upon scheduled Pi and Qi when the values
estimated originally are substituted. As the corrected voltage is found at each bus, it is used in calculating the
corrected voltage at the next bus. The process is repeated at each bus consecutively throughout the network
(except at the swing bus) to complete the first iteration. The iterative process is repeated until the difference
between any two consecutive iterations is less than a prespecified tolerance ε (i.e., 0.00001 per unit). When this
is possible, the solution is said to have converged.

At the generator bus, where voltage magnitude rather than injected reactive power is specified, the real
and imaginary components of the voltage for each iteration are found by first computing a value for the reactive
power. From Eq. (24),

where j �= i. If j is allowed to equal i,
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Therefore, Qi can be evaluated from

where Im means the “imaginary part of” the expression in the bracket. Using this estimated value of Qi, Vi is
recalculated from Eq. (24). However, voltage Vi is reset to its specified magnitude; only the angle calculated
from Eq. (24) is retained.

The Gauss–Seidel method of solution requires an excessive number of iterations before the voltage correc-
tions are within an acceptable tolerance. The number of iterations required can be reduced somewhat by using
an accelerating factor α, optimally a complex number, but normally chosen as real. The difference between the
newly calculated voltage and the best previous voltage at the bus is multiplied by the appropriate acceleration
factor, to get a better correction to be added to the prior value,

The acceleration factor for the real component of the correction can be different from that for the imaginary
component. The optimum value of accelerating factor to be used exists for a given system, and a poor choice of
α can result in less rapid convergence or no convergence at all. Typical values for α are in the range of 1.3 to
1.6, with 1.6 generally considered a good choice, for both the real and imaginary components.

Newton–Raphson (NR) Method of Solution. The Newton–Raphson method is an iterative procedure
widely used in the power industry for solution of the load flow equations. It transforms the original set of
nonlinear equations into a set of linear equations whose solutions approach the solution of the original problem.
The method can be applied to a system of simultaneous equations with as many unknowns as equations.

The method employs the preliminary terms in the Taylor series expansion for a function of two or more
variables. First the mathematical background of this method will be discussed and then the procedure to solve
the load flow equations will be applied.

Consider the equation of a function of unknown variables (x1, x2, . . ., xn) related to the specified quantities
y1, y2, . . ., yn, by a set of nonlinear equations:

Assume the solutions of these equations to be (x0
1, x0

2, . . ., x0
n). The superscript 0 denotes that these assumed

values are initial estimates. It is to be noted that the initial estimate for the equations should not be very far
from the actual solution. Otherwise, the solution may diverge instead of converging and it may not be possible
to arrive at a solution. One chooses some corrections (�x0

1, �x0
2, . . ., �x0

n) which, when added to (x0
1, x0

2, . . .,
x0

n), respectively, produce the next better solution.
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So Eq. (29) can be written as

One can now solve for (�x0
1, �x0

2, . . ., �x0
n) by expanding Eq. (30) as a Taylor series to get:

where the higher order of �xs and higher partial derivatives in the series of terms of the expansion can be
neglected. The term

indicates that the partial derivative is evaluated for the values of
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If one linearizes and arranges all the Eq. (31) in matrix form,

In matrix notation

Here the square matrix of partial derivatives is called the Jacobian matrix and denoted by J. We observe that
f 1 (x0

1, x0
2, . . ., x0

n) is the computed value of y1 for the estimated values of (x0
1, x0

2, . . ., x0
n). However, y1 is not

the value indicated by Eq. (29), unless the estimated values (x0
1, x0

2, . . ., x0
n) are accurate. If the difference

between the specified value of yn and the calculated value of yn is designate as �y0
n, one obtains

Here the Jacobian matrix J0 indicates that the initial estimates (x0
1, x0

2, . . ., x0
n) have been used to calculate

the numerical value of the partial derivatives. By finding the inverse of the Jacobian matrix, one can solve the
equations to determine (�x0

1, �x0
2, . . ., �x0

n),

However, since the higher derivatives were neglected, these values added to the initial guess will not give the
correct solution, and the next better solution must be obtained by assuming new estimates as follows:
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The better solution thus obtained is

With these values, the process is repeated until the corrections (�x1, �x2, . . ., �xn) become less than ε, a
preselected tolerance.

Now apply the Newton–Raphson method for solving the load flow equations. One can specify bus voltages
and the elements of bus admittance matrix, in either polar or rectangular form. The polar form of the equation
is most usually employed, so

Substituting the relations of Eq. (35) into Eq. (26), one obtains

Separating Eq. (36) into its real and imaginary parts yields,

Equations (37) and (38) are solved to determine the unknown bus voltage magnitudes and phase angles.
The slack bus is excluded from the solution, since both the voltage magnitude and angle are specified (1.0∠0
per unit) at the bus. For each bus i, except the slack bus, specify P and Q at all buses and estimate the voltage
magnitude and angle. The specified constant values of P and Q correspond to the y constants in Eq. (32). The
estimated values of voltage magnitude and angle correspond to the estimated values for x1 and x2 in Eq. (32).
These estimated values are used to calculate values of Pi and Qi from Eqs. (37) and (38) and to define

which corresponds to the �y values of Eq. (33).
The Jacobian matrix includes the partial derivatives of P and Q, with respect to every variable given in

Eqs. (37) and (38). The column matrix elements �δ0
i and �|Vi|0 correspond to (�x0

1, �x0
2, . . ., �x0

n) and are
the correction vectors to be added to the original estimates δ0

i and |Vi|0 to obtain updated values for computing
�P1

i and �Q1
i.
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Write the matrix equation for a power system with bus number 1 designated as the slack bus. Start
calculations at bus 2, in matrix form:

The superscripts that show the iteration count are excluded in Eq. (39), since they vary with each iteration.
The elements of the Jacobian matrix are determined by taking the partial derivatives of the equations for Pi
and Qi and substituting in them the updated voltages from the previous iteration. In abbreviated form, Eq.
(39) can be written as

The Jacobian matrix has been partitioned to emphasize the different general types of partial derivatives
appearing in each submatrix. For example, the off-diagonal elements of J11 from Eq. (37) are

and the diagonal elements of J11 are
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In the above summation j �= i, because when j = i, δi drops out of Eq. (36). Similar general forms of the partial
derivatives can be determined from Eqs. (37) and (38) for calculating the diagonal and off-diagonal elements
in the other submatrices.

Equation (39) is solved by inverting the Jacobian matrix. For any set of estimates of the voltage, the
elements of the Jacobian matrix are evaluated and the set of equation solved for �δi and �|Vi| using sparse-
matrix programming techniques. These calculated values are added to the prior values of voltage magnitude
and angle to acquire new values for P1

iold and Q1
iold to be used in the next iteration. The process is repeated

until the precision index applied to the quantities in either column matrix is less than the specified value. For
most networks, convergence is achieved in a few iterations. However, to achieve convergence the initial voltage
estimates must be reasonable.

Generator buses are taken into account easily, since the bus voltage magnitudes are already known. In the
Jacobian matrix, we therefore neglect the column of partial differentials with respect to the voltage magnitude
of the bus. At the generator bus, the reactive power is not specified, so we neglect the row of partial differentials
of Q. The value of Q at the bus can be determined after convergence by Eq. (38).

Reactive Power Flow Control

In a power system, one must not only consider the active power required by the load, but also the fact that
loads consume reactive power. In addition, reactive elements are included throughout the network, which,
themselves, generate or absorb reactive power in significant quantities. The VAR requirement, therefore,
varies with system loading and network configuration. The flow of active power is determined by the difference
in phase angle of the terminal voltages, while the flow of reactive power is determined by the difference in
magnitude of terminal voltages. If a power system is to operate efficiently, some control is required, in order
to realize specified voltage levels, as well as specific values of reactive power at each generator bus. Under
normal operating conditions, all VAR requirements of the load can be supplied from the generators. However,
in practice, this may not be within the operating capabilities of the generators, or it may not be the most
economical method. Reactive power and, therefore, bus voltage magnitudes, can be controlled by the following
five methods:

(1) Generator field excitation
(2) Shunt capacitor banks
(3) On-load tap-changing transformers
(4) Synchronous compensators
(5) Static VAR compensators (SVC)

Synchronous Generators. Consider a synchronous generator supplying power to a large grid with
several other generating stations. The system is so large and strong that every bus appears to be an infinite bus.
That is, neither the voltage nor the frequency at the generator bus can be altered by changes in the generator’s
operating conditions. The single-phase equivalent circuit of the generator is shown in Fig. 7(a).

If the generator is operating at a constant speed, the induced voltage E0 is a function of the dc excitation
Ix. If the active power output is held constant while the dc excitation is varied, VtI cos θ must remain constant,
where Vt is the voltage at the system bus. As illustrated in Fig. 7(b), if the magnitude of E0 is changed, the
magnitude of I and the phase angle θ also changes. With the phase angle θ equal to zero the generator supplies
only real power to the bus. But we can see that as E0 is increased, angle θ starts lagging, causing the generator
to supply reactive power to the bus. Accordingly, an overexcited generator supplies reactive power to the bus,
and an underexcited generator absorbs reactive power from the bus. Therefore, flow of reactive power between
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Fig. 7. Synchronous generator. (a) Equivalent circuit; (b) Phasor diagram showing the effect of varying Eo.

the generator and the system can be controlled by varying dc excitation of the generator, while maintaining a
constant active power output.

Active power output of the generator is given by

where, δ is the load angle between Vt and Eo.
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Equation (43) shows that if Vt and Eo are held constant, the active power output is directly dependent
on δ. In steady-state operation, active power output can only be increased by an increase of mechanical power
input. Therefore, δ is also directly dependent on the mechanical power input.

The reactive power output is given by

In Eq. (44), if Vt and Eo are held constant, the reactive power will apparently be affected by changes in δ or
changes in mechanical power input. However, the normal operating range for δ is quite small (<15◦). For small
changes of δ, sin δ changes significantly but cos δ changes by only a small amount. Therefore, from Eqs. (43)
and (44) one can see that an increase in δ causes a larger change in P than in Q.

In Eq. (44), with P held constant, both an increase in Eo and decrease in δ means Q will increase if
already positive or decrease in magnitude and become positive if Q was negative before the field excitation was
increased.

One concludes that the reactive power output of a generator can be controlled by changing the dc excitation,
and the active power output can be controlled by varying the mechanical power input. By controlling the amount
of active and reactive power generated at each generating station, the general power flow in the system can be
controlled.

Equations (43) and (44) can be generalized for a network where bus 1 is connected to bus 2 through a
reactance X. Resistance can be neglected, since in most power circuits X � R. Bus voltages are V1 and V2 and
δ is the angle by which V1 leads V2. Assuming V1 > V2, the active power transferred from bus 1 to bus 2 is

Similarly, the flow of reactive power from bus 1 to 2 is

Q is thus determined primarily by V1 − V2. The direction of reactive power flow can be reversed by making
V2 > V1. Therefore, if a voltage difference exists across a largely reactive link, the reactive power flows toward
the lower voltage bus. In other words, if there is a reactive power deficit at a point in an electric system, this
shortage must be furnished from the rest of the network. So the voltage at that point falls. On the other hand,
a surplus of reactive power generated will cause a voltage rise.

Specification of Bus Voltages. In a power flow study, it is necessary to specify voltage magnitude or
reactive power at every bus except the slack bus, where voltage is specified by both magnitude and angle. At
the generator bus, the voltage magnitude and active power supplied by the generator is specified. The reactive
power is then determined by solving the power flow equations. Let us study the effect of the magnitude of the
specified bus voltage on the value of reactive power supplied by the generator to the power system.

Figure 8(a) shows a generator represented by its equivalent circuit. The power system, including any local
load on the bus, is represented by its Thévenin equivalent circuit. For a fixed power delivered by the generator,
Eth I cos θ must remain constant. The voltage specified at the bus is:
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Fig. 8. Generator connected to a power system. (a) Equivalent Circuit; (b) Phasor diagrams for different values of bus
voltage.

and

The phasor diagram with three different values of bus voltage is shown in Fig. 8(b). With constant power
input to the bus, larger magnitudes of bus voltage Vt require a larger Eo, which is obtained by increasing
the dc excitation of the generator. As shown in Fig. 8(b), increasing the bus voltage by increasing Eo causes
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Fig. 9. A capacitor across a system. (a) Circuit diagram; (b) Phasor diagram without the capacitor; (c) Phasor diagram
with the capacitor added.

the current to become more lagging. When performing a load flow study, increasing the voltage specified at
a generator bus means that the generator feeding the bus will increase its reactive power output to the bus.
From the viewpoint of operation of the system, by adjusting the generator excitation we are regulating the bus
voltage and reactive power generation.

Shunt Capacitor Banks. Generally, the loads on a power system are inductive in nature. Reactive
power must, therefore, be generated to supply these loads. For a given active power, a reactive load draws more
current than a purely resistive load. Larger currents mean greater voltage drops along transmission lines and
more power losses.

A method of controlling the bus voltage is by adding shunt capacitor banks at the buses at both trans-
mission and distribution levels. Essentially capacitors are used to supply leading VARs to the system at the
point where they are connected. When they are in parallel with a load having a lagging power factor, the
capacitors can supply some or all of the reactive power required by the load. Thus, capacitors reduce the line
current necessary to supply the load and reduce the voltage drop in the line. Since capacitors lower the reac-
tive requirement from generators, greater active power output is available. Capacitor banks can be energized
continuously, but, as regulators of voltage, they are switched on and off during load cycles. Switching may be
manually or automatically controlled in response to voltage or reactive power requirements.

In performing load flow analysis, voltage magnitude can be specified only if there is a source of reactive
power generation. Therefore, at load buses where there are no generators, capacitor banks must be assumed
to specify the value of Q required.

Figure 9(a) shows a simple system, in which capacitors are applied at a point in the circuit supplying
a lagging power factor load. The phasor diagram serves to explain the increase in voltage at the bus where
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Fig. 10. Regulating transformer for control of voltage magnitude.

capacitors are installed. With the switch open, the line current I is the same as the load current IL. Figure
9(b) shows the phasor diagram for this condition. When the switch is closed, the line current is the sum of the
capacitor current IC and the current drawn by the load. From the phasor diagram shown in Fig. 9(c), it is clear
that the line current is decreased and the source voltage V1 is reduced with the insertion of shunt capacitors.
The power factor of the source is also improved. One can add proper size capacitor banks at the load, so that
all the reactive power required by the load reactance is supplied by the capacitors.

Synchronous Compensators. Synchronous motors can provide continuously adjustable reactive
power, in addition to their main driving duty. In industrial settings, where large synchronous motors are
installed, they are normally used in this way for correcting the power factor of the load. Depending on the
value of field excitation, synchronous motors absorb or generate reactive power. A synchronous compensator is
a synchronous motor running without a mechanical load, which can be used anywhere in the system to generate
or absorb reactive power. A synchronous compensator has the disadvantage of slower speed response, higher
losses, and higher maintenance requirements. In addition, the installation cost of synchronous compensators
is quite high, compared with static capacitors.

Control by Tap-Changing Transformers. Transformers, besides changing voltage from one level to
another in a power system, provide an additional means of controlling the flow of both real and reactive power.
Transformers that provide a small adjustment of voltage magnitude, usually ±10%, and others that shift the
phase angle of the line voltages, are important components of a power system. Some transformers regulate
both the magnitude and phase angle.

The variables that control the flow of active and reactive power on a transmission line are voltage angles
and voltage magnitudes, respectively. These variables can be controlled by using regulating transformers.
Regulating transformers do not transform between voltage levels, but are designed for small adjustments
of voltage from one side to the other. These transformers provide taps on windings to change the ratio of
transformation by changing taps. A tap change tap can be made while the transformer is energized. Such
transformers are called tap changing under load (TCUL) or load tap changing (LTC) transformers. The tap
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Fig. 11. Regulating transformer for control of phase angle.

changing is automatic and operated by motors that respond to relays set to hold the voltage at the prescribed
level.

Figure 10 shows a regulating transformer for controlling voltage magnitude, and Fig. 11 shows a regu-
lating transformer for phase angle control, also known as phase-shifting transformer. In the phase shifting
transformer, each of the three windings to which taps are made is on the same magnetic core as the phase
winding, whose voltage is 90◦ out of phase with the voltage from neutral to the point connected to the center of
the tapped winding.

Figure 10 shows that a voltage �Van in phase with Van is tapped off the Y-connected autotransformer.
This voltage is then summed to Van through the transformer in the line of phase “a.” Since �Van is in phase or
180◦ out of phase with Van, only the magnitude of Van changes. In Fig. 11, the coils at each point of the � are
wound on a core with the � phase coil they parallel.

If the voltages of Fig. 11 have “abc” phase sequence, the corresponding phasor diagram is illustrated in
Fig. 12. As long as �Van is small, the voltage Van is shifted in phase angle with very little change in magnitude.
With these types of transformers voltage magnitudes and angles can be adjusted to help control the flow of
active and reactive power on transmission lines.

Static VAR Compensator SVC. A static VAR compensator or controller combines a Thyristor Con-
trolled Inductor (TCI) and a Thyristor Switched Capacitor (TSC). It is useful in applications requiring rapidly
varying reactive power requirements to perform quick and precise control of reactive power. The leading VAR
necessary for VAR compensation is supplied by connecting TSC across the ac lines. Figure 13 shows a scheme
in which the capacitor banks are connected or disconnected, using SCR, to correct the load power factor. For
loads with varying VAR requirements, a TCI is placed in parallel with TSC. The capacitor banks are switched
in and out, to provide a fixed amount of leading VAR. Using phase control, the inductor absorbs a variable
amount of lagging VAR, depending on the delay angle of the SCR. If the lagging VAR drawn by the TCI is
equal to the leading VAR supplied by the capacitors, the net reactive power will be zero, and the load power
factor will be unity. From this point, if the load power factor becomes lagging, the lagging VAR of the TCI
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Fig. 12. Phasor diagram for phase-shifting transformer.

Fig. 13. Static VAR compensator.

can be decreased by adjusting the delay angle, thereby increasing the net leading VAR. If more leading VAR
are required, another capacitor bank can be switched. In this way, the TSC provides leading VAR in discrete
steps, while the TCI provides precise continuous control between steps. The same technique can be applied to
three-phase circuits.


