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new observation tools for the study of the basic phenomena
associated with the interaction between atoms and electro-
magnetic radiation.

The main goal of this article is to introduce in the simplest
possible way some fundamental processes of atomic excitation
and spontaneous emission of radiation. Following a presenta-
tion of basic definitions, we trace a succession of elementary
concepts beginning with classical rate equations and conclud-
ing with the quantum mechanical description of the two-state
atom excited by quantized fields and atomic excitation in cavi-
ties. The final section introduces a description of the mechani-
cal effects of spontaneous emission on atom dynamics.

The elementary processes described here are concerned
SPONTANEOUS EMISSION only with single-photon atomic transitions. More complex pro-

cesses may occur in which the number of photons involved
Atomic systems can interact with electromagnetic radiation may increase or decrease in several units. Such processes are

called multiphoton processes and their description is beyondin different ways. Atoms can absorb photons from the radia-
tion field making transitions from a lower state to a higher the scope of this introductory article. A detail description

could be found in Refs. 11–13 and references therein.state of energy. Atoms can also emit photons under the influ-
ence of an applied radiation field. This process is called stimu- Over the recent years the research into spontaneous emis-

sion of radiation has progressed rapidly. Nowadays, the fieldlated emission. There is a third elementary process in which
atomic systems can make spontaneous transitions from an ex- is so wide that it is totally impossible to make a complete

review of the achievements. A general review of the situationcited state to a state of lower energy with the emission of
photons even in the absence of any externally applied radia- can be found in Refs. 11–13. A presentation of the theoretical

and experimental situation and a discussion of future pros-tion field. This process is called spontaneous emission. Sponta-
neous emission is a remarkable manifestation of the interac- pects are given in Refs. 14–16.
tion between an atom and vacuum radiation fields. Figure 1
sketches the three processes described here. CLASSICAL ASPECTS OF SPONTANEOUS EMISSION

The development of coherent sources of electromagnetic
fields has generated considerable interest in the interaction In the classical electrodynamics picture any accelerated
of matter and radiation. Soon after tunable lasers became charged-particle emits radiation. Indeed, the classical radia-
widely available, atom-radiation interaction turned into a tion theory treats changing charge and currents as the source
very active topic of study allowing for high precision spectros- of all electromagnetic radiation. Spontaneous emission fits
copy measurements, including spontaneous emission rates. this criterion since it can occur in the absence of any applied
However, the recent development of high quality techniques radiation as opposed to stimulated emission. A simple esti-
to fabricate microcavities (1–8) and new methods to confine mate of the spontaneous emission rate can be obtained as-
and observe a small number of atoms (9,10) have provided suming a semiclassical description of a moving charge. The

average power emitted by an electron of charge �e excited by
an oscillating radiation field can be derived from the Larmor
formula (11)

P = 4e2〈a2
e〉

3c3 = 4e2ω4
0〈r 2

e〉
3c3 (1)

where ae(t) � ��2
0 re(t) is the acceleration of the electron pro-

duced by a harmonic field of frequency �0, and re(t) is the am-
plitude of the electron oscillation. Assuming that the emitted
radiation is quantized in units of ��0, the rate at which radia-
tion is emitted results

�̃ = P
�ω0

= ω3
0e2〈r 2

e〉
3c3�

(2)

This radiation emission rate is similar to the spontaneous
emission rate for atoms (11) when frequency �0 coincides with
the natural frequency of an atomic transition.

Although the existence of spontaneous emission can be re-
garded as a consequence of classical electrodynamics, it

Absorption

Stimulated emission

Spontaneous emission should be emphasized, however, that a complete picture of
spontaneous emission requires a description of atoms and ra-Figure 1. Basic processes of atomic excitation outlined in the text.
diation in terms of quantum theory. Such a description is pro-Photon absorption, stimulated photon emission and spontaneous

emission. Photons are represented by arrows. vided in later sections.
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In the following a statistical description of the interaction The temporal changes in population as they approach to
equilibrium from an arbitrary initial condition follow the ra-of atoms and radiation is introduced. The method, developed

by Albert Einstein (17) before the advent of quantum mechan- diative rate equation
ics, relates the transition rate for spontaneous emission to
those for absorption and stimulated emission. dP1(t)

dt
= −dP2(t)

dt
= A21

[
(n + 1)P2(t) − n

h(E2/�)

h(E1/�)
P1(t)

]
(5)

Radiative Rate Equations
Here we introduced P1(t) and P2(t), the excitation probabili-

The fundamental radiative processes remain those first pos- ties, and n, the mean photon number of a radiation field of
tulated by Einstein (17), who identified absorption, spontane- energy density u(�0)ous emission, and stimulated emission as the elementary
events by which atoms interact with radiation.

Let us review the elementary description of these pro-
cesses. Consider an ideal two-level atomic system with popu-
lations N1 and N2 and energies E2 � E1. Let us denote �0 �
(E2 � E1)/� (Bohr frequency) and assume the two states to be
nondegenerated.

Our discussion of populations must distinguish between

P1 = N1

N1 + N2

P2 = N2

N1 + N2

n = u(ω0)

�ω0h(ω0)
= u(ω0)

B21

A21

(6)

energy states and energy levels. An energy state is the most
elementary of distinguishable states of motion; no further Spontaneous emission appears in Eq. (5) as a contribution in-
subdivision of attributes is possible within the constraints of dependent of the photon number n. The vacuum energy den-
quantum mechanics. An energy level is a set of states with sity uv � A21/2B21 associated with this term is present even in
common energy (a set of degenerate states). A nondegenerate the absence of any applied radiation field.
level consists of a single state. Note that in this two-level model each loss of population

The following description of radiative processes presumes from one level exactly balances gain to the other level. There-
that atoms initially unexcited become exposed to a broadband fore, the dynamics of both levels can be completely described
isotropic radiation field. Radiation is in thermal equilibrium by a single variable. A convenient variable is the population
at an absolute temperature T. The energy density of radiation inversion P(t) � P2(t) � P1(t) which, for the case of constant
at any frequency is given by the Planck distribution for black- number of photons, reduces Eq. (5) to
body radiation (11,18).

As time elapses populations move to the excited state, un-
til a steady-state equilibrium is reached in which the number

dP
dτ

= −P −
[

n(1 − h(E2/�)/h(E1/�)) + 1
n(1 + h(E2/�)/h(E1/�)) + 1

]
(7)

of atoms being excited by the radiation field just balances the
number of being de-excited. where � � A21 [n(1 � h(E2/�)/h(E1/�)) � 1] t. Note that sponta-

Einstein postulated that the rate at which atoms absorb neous emission fixes the response time of the system and pro-
energy from the radiation field is proportional to N1, the num- duces the exponential decay of the population inversion.
ber of atoms in the lowest energy level, and to u(�0), the en-
ergy density of radiation at the resonant frequency �0. The Coherent Excitation
rate at which atoms in the high energy level undergo stimu-

In writing rate equations we assume that the excitation radi-lated emission is proportional to N2, the population of level 2,
ation is broadband and isotropic and that the absorption andand to the radiation energy density u(�0). Finally, spontane-
emission of photons are uncorrelated events. When near-reso-ous emission from level 2 to level 1 occur at rate proportional
nance monochromatic excitation radiation is used the atomonly to the excited population N2. The coefficients of propor-
has no time to fully randomize behavior between absorptiontionality (termed B12, B21, and A21 respectively) are not inde-
and emission, and the two events become correlated.pendent of each other. The connection between them may be

Now let us consider a two-level atomic system interactingestablished by considering thermodynamic equilibrium. Un-
with a monochromatic radiation field of frequency �. Underder this circumstance, the rate at which population arrives in
the continuous action of a monochromatic radiation field, pop-a level must equal the rate at which population leaves that
ulation moves out of the initial concentration in the groundlevel (11,18).
state into the excited state. As more population moves out of
the ground state, fewer atoms are available to absorb radia-B12N1u(ω0) = B21N2u(ω0) + A21N2 (3)
tion, and absorption becomes less frequent. In contrast, stim-
ulated emission becomes increasingly important and popula-Taking the high-temperature limit of the Planck radiation
tion begins to flow back to the ground state. The cycle ofdistribution u(�) � �2/�2c3kBT, the following relation (11,18)
excitation and de-excitation between the two states can con-can be obtained for the two emission coefficient A21 and B21
tinue as long as the radiation remains steady. The frequencyand the absorption coefficient B12
of the excitation cycle �f (known as the Rabi flopping fre-
quency) is given in terms of the coupling strength between
the radiation field and the electric dipole moment of the atomA21 = �ω0h(ω0)B21 B12 = h(E2/�)

h(E1/�)
B21 (4)

(Rabi frequency) (11,13).

where the continuum density of states h(�) � �2/�2c3 counts
the number of electromagnetic modes having frequency �. 
f =

√
(ω − ω0)2 + 
2 
 = d · εE /� (8)
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Here d is the atomic dipole moment, � and E are the polariza- there were no interruptions before interval t is
tion and strength of the radiation field respectively. The Rabi
frequency plays a fundamental role in coherent excitation. p(t + dt) = (1 − γ dt)p(t) (12)
Note the contrast between the oscillatory behavior presented
here with the approach to equilibrium produced by rate equa- Therefore the probability of an uninterrupted interval � is
tions.

Note also that there are three frequencies associated with p(τ ) = e−γ τ (13)
coherent excitation: �, �0, and �. The radiation frequency �
is set by appropriate choice of a laser or radiation source. The The relevant quantity for describing this random process
excitation frequency �0 (Bohr frequency) depends upon the is the autocorrelation function of the electric field. The partic-
atomic system. Finally, the Rabi frequency, �, depends upon ular weighting described produces the normalized autocorre-
the radiation field strength and upon the atomic dipole lation function
moment.

A monochromatic wave of intensity I[W/cm2] creates an
electric field whose magnitude is g(τ ) = 〈E(t + τ )E(t)〉

〈E(t)E(t)〉 = e− jω0τ−γ τ (14)

E = 5.33 × 10−9
√

I[W/cm2]EAU (9) The Fourier transform of this autocorrelation function pro-
duces an area normalized spectral density

Here E AU � e/a2
0 is the atomic unit of field strength and a0 is

the Bohr radius. Notice that low intensity laser excitation
acts as a very minor perturbation on the internal atomic dy- G(ω − ω0) = 1

π
Re

∫ ∞

0
e jωτ g(τ ) dτ = γ

π[(ω − ω0)2 + γ 2]
(15)

namics. By expressing the field strength in terms of laser in-
tensity the Rabi frequency reads This line profile, sketched in Fig. 2, is known as the Lorentz

profile. It describes a spectral line that is broadened because
of memory-erasing phase interruptions. The exponential na-
ture of the correlation function g(�) is a reasonable model for


 = 35.12
√

I
|d · ε|
ea0

MHz (10)

the behavior of light from an atom undergoing spontaneous
An atomic-unit dipole moment exposed to a laser intensity of emission. Thus, the Lorentz profile describes the spectrum ex-
1 MW/cm2 has a Rabi frequency of about 35 GHz. This value pected from spontaneous emission. When applied to this situ-
is much smaller than the characteristic frequency of optical ation, it is customary to parameterize the decay of the radia-
transitions �100 THz. tion intensity rather than the field amplitude replacing � by

�/2, where ��1 is the radiative lifetime of the atom.
Note that the intensity of the spectral line is concentratedIncoherence and Spontaneous Emission

around the central value �0. The width � of this distribution
Monochromatic radiation, expressible as an ideal wave train, gives a measure of the spread in frequencies (bandwidth) that
provides a convenient idealization of electromagnetic radia- are present in the radiation. Interruptions of monochromatic
tion. However, no real source of radiation fits this ideal ex- wave trains decrease coherence and thereby increase the
actly. Deviations from this ideal may occur as result of fluc- bandwidth.
tuations in phase, frequency, or in amplitude. The spectrum Typical radiative lifetimes ��1 � 1 ns � 100 ns are much
of an atomic radiation source, or alternatively the autocorre- longer than the period of 2�/�0 � 1 fs associated with an exci-
lation function of the field, provides a simple description of tation frequency in the optical range. Thus, we can regard
the distribution of frequencies within the radiation. spontaneous emission as a weak perturbation of atomic or-

Consider a wave train characterized, at a fixed point in bital motion.
space, by the positive-frequency part of the electromagnetic
field

E(t) = E e− jω0 t+ jφ(t) (11)

where j � ��1.
Let the frequency �0 be fixed but let the phase 	(t) fluctu-

ate stochastically with time. More precisely, suppose the
phase 	(t) remains constant until a chance event interrupts
the phase and reassigns it a random value. During the inter-
val between interruptions the phase shift is �	 � 0. After
the random interruption the new phase value is completely
uncorrelated with the previous value. Thus we require a zero
phase shift between interruptions weighted by the probabil-
ity p(�) that the interval � has passed without interruption. If
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interruptions are independent and the mean time between
phase interruptions is ��1, then the probability p(t � dt) that Figure 2. Spectral density expected from spontaneous emission as

function of the normalized frequency (� � �0)/�.the interval t � dt passed without interruptions provided that
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THE ORIGIN OF SPONTANEOUS EMISSION In the Heisenberg picture operators �(n, m; t) evolve in
time from the basic operators �(n, m, 0) in accord with the

Spontaneous emission does not fit completely within classical equation (11,13)
electrodynamics. Quantum mechanical properties of the elec-
tromagnetic field play an essential part in the quantitative
explanation of spontaneous emission. More precisely, quan-

�
d
dt

�(n,m; t) = i[H(t),�(n,m; t)] (18)

tum theory predicts that spontaneous emission occurs as a
The equal-time product of a pair of � operators remains at allconsequence of coupling between the atom and a continuum
timesof unpopulated field modes (11–13).

In the following we introduce a Heinserberg picture of the
�(n,m; t)�(p,q; t) = δ(m, p)�(n,q; t) (19)conventional quantum-mechanical description of spontaneous

emission. In this picture it is the operators which evolve in
Using these operators we can write Eq. (16), the Hamilto-time and the state vector remains fixed and equal to its initial

nian of the perturbed atomic system, asvalue. The Heisenberg picture of the atom-radiation system
provides a straightforward approach that reveals the quan-
tum mechanical origin of spontaneous emission (11–13).

The description of atomic systems poses a very difficult

H(t) = E1�(1, 1, t) + E2�(2,2, t) + V12(t)�(1,2, t)

+ V21(t)�(2,1, t)
(20)

theoretical problem in practice because, except for single elec-
The expectation values of the two diagonal operators �(1,tron atoms, the motion of each electron affects that of all oth-

1; t) and �(2, 2; t) yield the probability that the two-stateers. Neither classical dynamics nor quantum mechanics pro-
atom will be found in energy state 1 or 2vides exact solutions for complex atomic systems interacting

with radiation. For practical purposes, one introduces simpler
models of atomic dynamics. This section examines some of the
most elementary processes of excitation of an ideal two-level

P1(t) =< �(1,1; t) >= Tr(ρ�(1,1, t))

P2(t) =< �(2,2; t) >= Tr(ρ�(2,2, t))
(21)

atom. The atom is assumed to be infinitely heavy and at rest,
which allows us to study the evolution of just the internal Here � is the statistical operator, which describes the statisti-
degrees of freedom. A discussion of the mechanical effects on cal mixture of atomic states (11,22). The off-diagonal opera-
the translation degrees of freedom of the atom is presented in tors �(1, 2; t) � �(2, 1; t)† act as transition operators. Their
the last section. The simplicity of the two-level atom makes expectation values (termed coherence) are complex conju-
the model popular as a description of atomic excitation in- gated of each other.
duced by coherent radiation. A more detailed description of Next, let us examine the dynamics of the two-level atom
the atomic excitation caused by quantized radiation fields can interacting with a quantized electromagnetic field. The Ham-
be found in Refs. 19–21 and references therein. iltonian of the atom-radiation system is

The idealized excitation of a two-level system provides a
deep insight into the origin of spontaneous emission. How- H(t) = HA + HR + HI (22)
ever, it is important to keep in mind the limitations of such a
model of atomic excitation. Here

By definition a two-level system can exist in only two pos-
sible states and its state vector must be expressible as an
element in a two-dimensional abstract vector space. The dy-
namics of a perturbed two-level atomic system is determined
by a Hamiltonian with a structure

HA = 1
2
�ω0(�(2,2; t) − �(1,1; t))

+ 1
2

(E2 + E1)(�(2,2; t) + �(1, 1; t))
(23)

is the Hamiltonian operator of a free atom, and
H(t) =

(
E1 V12(t)

V21(t) E2

)
(16)

HR =
∫

λ

(
�ωλa†

λ
aλ + 1

2

)
(24)

where V12(t) and V21(t) are the perturbations to the atomic lev-
represents the radiation-field Hamiltonian described in termsels 1 and 2.
of creation and annihilation operator a†

� and a� of normal-To ensure that the Hamiltonian retains real-valued eigen-
modes of frequency �� � ck�, where k� is the magnitude of thevalues (energies) the diagonal elements of H should be
wave-vector in mode �. Integration over � encompasses allreal, and the off diagonal elements must have the property
allowed normal modes (continuous and discrete spectrum).V12(t) � V*21(t). The Hamiltonian operator of Eq. (16) can be
Radiation field operators a� evolve with Heinsenberg equa-conveniently expressed as the combination of independent el-
tions similar to Eq. (18) where a�(t) replaces �(n, m; t). Theementary operators �(n, m; t) whose initial values are
evolution of the radiation field is entirely determined by that
of the operators a�(t) and their adjoints. The coupling between
the atom and the radiation field is represented by HI.

Our primary interest is with excitation by frequencies near
the fundamental frequency �0 because such tunings produce
great excitation. Let us define the detuning of the excitation
frequency as � � � � �0. If ��� � � (so the excitation is always

�(1,1; 0) =
(

1 0
0 0

)
�(1,2; 0) =

(
0 1
0 0

)

�(2,1; 0) =
(

0 0
1 0

)
�(2,2; 0) =

(
0 0
0 1

) (17)
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close to resonance) then terms in Eq. (18) with frequency by the applied radiation field, but those modes of the field
� � �0 � 2� (counter-rotating terms) can be averaged out that become populated after a time because of coupling to the
because they oscillate rapidly. This is known as the rotating atom. These latter modes represent the field that is radiated
wave approximation or RWA (11,23), and is a near-resonance as a result of the time varying atomic dipole moment, and
weak-field approximation in which we explicitly recognize the incorporate the spontaneous emission field.
dominance of population oscillations and ignore high-fre- Since we are mainly interested in the atomic dynamics,
quency oscillations. The RWA exhibiting Rabi oscillations is we proceed to eliminate reference to the field dynamics. After
the basis for much of the analysis of coherent excitation of integration of the equations of motion for the operators a�, the
atomic systems. radiation field can be decomposed as (11,13)

The occurrence of Rabi oscillations requires special condi-
tions that are not always encountered in practice. Basically,
such population oscillations occur when the excitation is co-
herent and monochromatic, sufficiently intense that the Rabi
period is shorter than possible relaxation times, yet not so

aλ(t) = aλ f (t) + aλs(t)

= aλ(0)e− jωλ t + j
2


∗
λ

∫ t

0
e− jωλ (t−t ′ )�(1, 2; t ′) dt ′ (31)

intense that the Rabi frequency exceeds the Bohr frequency
or the driving frequency The first part of this operator represents the field in absence

of the atom (source-free field) composed of vacuum field to-|
| � ω or ω0 (25) gether with any incident radiation field. The second contribu-
tion to the field operator represents the field generated by

In our discussion of resonance excitation we shall be inter- the atom (source field). This field can only be found after the
ested in cases for which the detuning is comparable (same dynamics of the atomic operators is known.
order of magnitude) to the Rabi frequency Typically thousands of Bohr oscillations periods pass dur-

ing the course of a spontaneous emission lifetime. It is there-|�| ∼ |
| (26)
fore justified to assume observation times t much longer than
a Bohr period, and that the atomic operators primarily oscil-and, therefore, also in the case for which the detuning is
late at the Bohr frequency �0. Introducing these approxima-much less than � or �0
tions into Eq. (31) yields (11,13)

|�| � ω or ω0 (27)

For radiation within the optical region of the spectrum,
wavelengths are much larger than the atomic dimensions.

�(1, 2; t + τ ) 	 �(1,2; t)e− jω0 τ

�(t)aλs 	 −1
2


∗
λ�(1, 2; t)ζ (ω0 − ωλ)

(32)

Therefore, the coupling between the excitation radiation and
the atom can be approximated by a spatially uniform, but

Here �(x) is the Heaviside function and �(x) � P (1/x) �time varying, electric field interacting with an atomic dipole
moment. j��(x) is composed of the principal part of function 1/x and the

Within the rotating-wave approximation and dipole inter- contribution of the delta function. Note that these approxima-
action approximation, the coupling between the atom and the tions [based on the Wigner–Weisskopf approximation (11,24)]
radiation field is represented by the interaction Hamiltonian assume that spontaneous emission is a small perturbation
(11,13) upon otherwise stationary behavior.

Introducing the results of Eq. (32) into the equations of
motion Eq. (18) for the atomic operators, and retaining only
those operators that are consistent with the RWA, we obtain

HI = −d(t) · E(t) = −1
2

∫
λ

(�
∗
λa†

λ
�(1,2; t) + �
λ�(2, 1; t)aλ)

(28) the following equations for the atomic operators (11)

Here the strength of the coupling between the two-state atom
and the radiation in mode � is given by the single-photon Rabi
frequency


λ = d21 · ελEλ/� (29)

where E � is the electric field strength in mode �, and �� its
polarization. In this description the dipole moment operator

d
dt

�(1,2; t) = − jω0�(1, 2; t) − j
2

�(t)
∫

λ


λaλ f

− (γ + jωs)�(t)�(1,2; t)

d
dt

�(t) = j
∫

λ

(
�(2,1; t)
λaλ f − 
∗

λa†
λ f �(1,2; t)

)
− 4γ�(2,1; t)�(1,2; t)

(33)

is expressed in terms of the elementary atomic operators
where we introduced the population inversion operator

d(t) = d12�(1, 2; t) + d21�(2,1; t) (30)

�(t) = �(2,2; t) − �(1,1; t) (34)where dmn � �n�d�m�.
From Eq. (22), together with commutation properties of the

Note that the above approximations (11,13) introduce a fre-elementary atom and radiation-field operators, it is possible
quency shift �s and a rate (or width) �.to deduce some properties of a two-state atom system inter-

The preceding equations all follow from the RWA. This ap-acting with an infinite set of radiation modes.
proximation neglects counter rotating terms although theirThe fields that appear in Eqs. (22)–(24) include not only

those modes of the fields that are initially highly populated inclusion is straightforward. When these terms are included
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a complete description of �s and � can be obtained teration of the field boundary conditions is a single reflecting
surface (28). For illustration purposes, let us assume an
atomic system emitting radiation close to a mirror. The atom
is considered to be a dipole oscillator responding to its own
field reflected from the mirror. If the reflected field is in phase
with the dipole then the decay rate will be enhanced. In con-

γ = π

4

∫
λ

(|
λ|2δ(ωλ − ω0) + |
C
λ |2δ(ωλ + ω0)

)
ωs = 1

4
P

∫
λ

( |
λ|2
ω0 − ωλ

+ |
C
λ |2

ω0 + ωλ

) (35)

trast, if the reflected field is out of phase the emission rate
will be reduced. The phase of the reflected field depends onHere �C

� � d12 � �� E �/� is the Rabi frequency of the counter
the distance between the atom and the surface. Thus, therotating terms. For the particular case of an atom in free
emission rate oscillates with increasing distance as the phasespace, a description of field modes in terms of plane waves
of the reflected field changes. Figure 3 sketches the depen-yields (11)
dence of the spontaneous emission rate as a function of the
distance between the atom and the mirror assuming a classi-
cal description of the radiation field. A detailed description ofA21 = � = 2γ = 4ω3

0|d21|2
3�c3

(36)
this phenomenon can be found in Refs. 28 and 29.

Because cavities have a more complex structure than sin-which is similar to the semi-classical result described in Eq.
gle mirrors, they can have a dramatic effect upon the dynam-(2).
ics of the radiation-atom system (15). If the atom is in freeThe frequency �s, related to the Lamb shift, is a shift of
space, the emitted radiation travels away and is irreversiblythe original Bohr transition frequency as a result of the mode
lost. In contrast, if the atom is in a cavity, then the radiationstructure of the radiation field. The spontaneous emission
may be reflected from the walls and may be reabsorbed by therate � � 2� occurs as a consequence of coupling between the
atom. The discreteness of modes and the presence of cavityatom and the radiation field. Both �s and � are independent
walls can thus prevent purely exponential decay and give riseof field occupation numbers and they must be viewed as vac-
to sustained oscillations. In the case of strong coupling to theuum effects.
cavity the atom may exchange its energy many times withThe physical interpretation of the emission process de-
the cavity before a photon is finally emitted into the vacuumscribed in the preceding equations follows immediately. When
field. The cavity capability of modifying the radiative proper-an atom in a radiation field makes a spontaneous transition
ties of atoms led to proposals for new efficient lasers (15,30).between states, the system cannot be described only as an

Cavities with dimensions on the order of one wavelengthideal two-level atom because the final state of the system is
are commonly referred to as microcavities. The simplest ofcomposed of the atom in a low energy state together with an
these cavities may be the planar dielectric Bragg-mirror cav-emitted photon which may be of any frequency � and direc-
ity. Planar structures are simple to fabricate. However, sincetion, although the chance of finding a value of � outside a
there is no lateral confinement of electromagnetic modes, thenarrow region about �0 is very small. The initial states are,
transverse modes of the cavity may be poorly defined. A typi-in fact, coupled to a continuum of final states. These states
cal planar dielectric microcavity emits most of its spontane-are incoherent and cannot act cooperatively to build up the
ous emission into radiation continuum modes. Recently, manyreverse transitions. The exponential decay of population asso-
different microcavity geometries, such as post, disk, droplet,ciated with spontaneous emission occurs as a consequence of
and hemispherical (1–8) have been proposed to achieve highcoupling between the atom and a continuum of unpopulated
coupling between the atom and the radiation field. Radiativefield modes.

SPONTANEOUS EMISSION IN CAVITIES

The rate of spontaneous emission is not a fixed property of
the emitter, but depends on the density of electromagnetic
modes and the field intensity of vacuum fluctuations. Under
most circumstances the enclosure surrounding an atom is suf-
ficiently large that there is no significant error in treating the
mode structure of the radiation field as forming a continuum
appropriate to free space. However, when the atom is confined
to a cavity the radiation field no longer forms a continuum of
modes but a set of discrete modes. Choices of the cavity geom-
etry may either enhance or diminish the number of modes at
the Bohr frequency. Thereby, the radiative properties of an
atom can be altered by modifying the structure of the radia-
tion field modes. Spontaneous emission rate can be increased
when the cavity is resonant with the atomic transition and
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inhibited when it is out of resonance and subtends a large
solid angle at the atom (13,25–27). Figure 3. The excited state lifetime of atoms (��1) as function of the

The modification of the free-space radiation modes could distance from (1) a thin mirror (14 nm) and (2) a thick mirror (200
be produced by changing the boundary conditions of the elec- nm). Both curves are based on the classical dipole model outlined in

Ref. 28.tromagnetic field in the vicinity of the atom. The simplest al-



276 SPONTANEOUS EMISSION

properties of semiconductors embedded in microcavities have ond order differential equation yields (11,26)
also been reported (31,32).

In general, the efficiency of the coupling between a cavity
and an atom is measured in terms of its spontaneous emission

d2�

dt2 = −
̃2
f � − �

(
2

H
�

− ω(2N − 1)

)
(39)

factor. This factor is defined as the ratio between the sponta-
neous emission radiated into a mode and the total spontane- Here
ous emission radiated by the atomic system. It is important
to realize that the value of the coupling factor is the result of
the interaction between the cavity and the atomic system.
The same cavity will generate different spontaneous emission


̃2
f = �2 + |
|2N

N = a†a + 1
2

� + 1
2

(40)

coupling ratios depending on the radiating system that is put
in it. Calculations of spontaneous emission rates in microcavi- The operator �̂f is the operator equivalent to the flopping fre-
ties of simple geometry can be found in references (1–8). quency of population excitations given in Eq. (8). The excita-

The development of new sources of electromagnetic radia- tion number operator N combines the photon number opera-
tion spanning the range of frequencies from microwave to op- tor a†a(t) with the population inversion �(t). This operator
tical frequencies has generated considerable interest in the commutes with the Hamiltonian and its expectation value re-
radiative properties of atoms in microcavities. Unfortunately, mains constant. The constancy of N means that each change
alteration of the spontaneous emission rate at optical fre- of photon number accompanies a balancing change of atomic
quencies is much more difficult than at microwave frequen- excitation.
cies because of cavity losses. A metal-clad optical cavity has Note that Eq. (39) is the operator counterpart of the equa-
large absorption loss. Dielectric structures have been pro- tion of motion of a forced harmonic oscillator. Let us study
posed to alter the radiation field but they would involve diffi- the expectation values of the solutions of Eq. (39) by assuming
cult microfabrication technologies (33). that, initially, the atom is in a well-defined excitation state

(��(1, 2; t)� � ��(2, 1; t)� � 0 ), and that there are n photons
in the radiation field. There are two limit cases which showAtomic Excitation in Cavities
the effects introduced by the cavity: (1) an initially unexcited

Rather than considering the most general situation of atomic atom interacting with the cavity mode, and (2) an initially
excitation in cavities the present discussion will be limited to excited atom interacting with the cavity mode.
a sufficiently simple model so that formalism will not be a First, consider the dynamics of an atom that is in its lowest
major obstacle. More precisely, we present an elementary de- energy state and enters the cavity. Then the expectation
scription of atomic excitation in a cavity without losses, hav- value of the initial population inversion is ��(0)� � �1, the
ing only one mode (Jaynes–Cummings model) (11,22). This expectation value of the excitation number is �N� � n and
model cannot, of course, include all the details of atomic exci- ��̂� � ��2 � n ���2. In this case, the expectation value of the
tation in cavities, but it will allow us to point out some essen- population inversion evolves in accordance with the expres-
tial features of spontaneous emission. The frequency of the sion
field mode in the cavity is � and the Bohr frequency of the
atomic system is �0. The Hamiltonian for this atom-radiation
system is obtained from Eq. (22) as the single mode limit of 〈�(t)〉 = − 1

�2 + n|
|2
[
�2 + n|
|2 cos

(√
�2 + n|
|2t

)]
(41)

the RWA. Setting the energy zero-point to be midway be-
tween the atomic levels E1 and E2 Eq. (22) reduces to Equation (41) indicates that the population inversion under-

goes periodic oscillations at a flopping frequency which de-
pends on n photons.

Consider next the dynamics of an atom that is in its ex-
cited state and enters the cavity. Then the expectation value

H(t) = ω0

2
(�(2,2, t) − �(1,1, t)) + ωa†(t)a(t)

− 1
2

(

∗a(t)†�(1,2, t) + 
�(1, 2, t)†a(t)

) (37)

of the initial population inversion is ��(0)� � 1, the expecta-
tion value of the excitation number is �N� � n � 1 and ��̂� �

where the single-mode label � has been omitted. ��2 � (n � 1) ���2. In this case, the expectation value of the
The Heisenberg equations resulting from this Hamiltonian population inversion evolves in accordance with the expres-

are the equations (11,22) sion

〈�(t)〉 = 1√
�2 + (n + 1)|
|2[

�2 + (n + 1)|
|2 cos
(√

�2 + (n + 1)|
|2t
)] (42)

In contrast to the case of an initially unexcited atom, Eq. (42)

d
dt

�(1, 2; t) = − jω0�(1,2; t) − j
2

�(t)
 a(t)

d
dt

�(t) = j
(
�(2,1; t)
 a(t) − 
∗

λ a†(t)�(1,2; t)
)

d
dt

a(t) = − jω a(t) + j
2


�(1,2; t)

(38)

indicates that the population inversion undergoes periodic os-
cillations at a flopping frequency which depends on n � 1

together with adjoint equations for �(2, 1, t) and a†(t). These photons.
equations include both spontaneous and stimulated emission. Although the two cases reveal the same type of population

Let us consider the evolution of the population inversion oscillations, there is a significant difference between them.
When there are no photons initially present, n � 0, there are�(t). Converting Eq. (38) for the population inversion to a sec-
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no population oscillations for an unexcited atom passing atom with an initial momentum p and mass M absorbs a pho-
ton of energy ��, energy and momentum conservation requirethrough a cold cavity. The situation is different when the

atom is initially excited because the oscillation frequency in- that (23)
volve n � 1 excitations. Even when there are no photons ini-
tially, population oscillations will arise. These oscillations
originate with spontaneous emission. An excited atom moving

p2

2M
+ �ω = (p + �k)2

2M
+ �ω0 (43)

into a cold cavity will spontaneously emit radiation if the cav-
This expression reduces toity frequency matches the Bohr frequency.

k · p
M

= � − δ (44)
MECHANICAL EFFECTS OF SPONTANEOUS EMISSION

where � � �k2/2M is known as the recoil frequency. Thus,The goal of this final section is to discuss some of the mechan-
energy conservation requires that the absorbed photon has aical effects on atomic motion introduced by the absorption and
Doppler shift equal to the detuning minus the recoil fre-emission of radiation. The atom is still represented by a two-
quency. For emission, the Doppler shift islevel system but we now take into account the motion of its

center of mass. The mode structure of the radiation field is
assumed a continuum appropriate to free space. The empha- k · p

M
= � + δ (45)

sis here will be put on simple physical arguments based on a
semiclassical approach. A more quantitative discussion of the In previous sections atom recoil was neglected (Raman–Nath
quantum and classical aspects of the phenomena described approximation). This approximation is usually valid (23) be-
here can be found in Refs. 13, 14, 19, 21, 34–36. cause typically the recoil frequency is several orders of magni-

In general, the approach to describing the effects of radia- tude smaller than the other relevant frequencies such as the
tion pressure concentrates on the study of radiation forces re- excitation frequency �, the transition frequency �0, the Rabi
sulting during the atom-radiation interaction. This approach frequency �, and the spontaneous emission rate �.
could lead to misleading interpretations if an inconsistent di- The rate at which momentum is transferred to the atom in
vision of the atomic dynamics into internal and translational absorption-spontaneous emission cycles is given by (19,35)
components is used. An example of inconsistent choices occurs
when the internal degrees of freedom are modeled as an ideal
two-level system described by the Jaynes–Cummings Hamil- η(v) = 
2

2
γ

(� − k · v)2 + 
2/2 + γ 2 (46)
tonian, while the translational motion is only described in
terms of the kinetic energy of the atom (21).

where v � p/M is the atom velocity.The fluctuations of the radiation force are responsible for
For atom velocities much smaller than the resonant veloc-a diffusion of the atomic momentum and the heating of the

ity � � k � v, the radiation force acting on the atom is �0translational degrees of freedom of the atom (34,35). When
k � (1 � �n � v), where �0 � �(v � 0), � � (��/�v)/�0 andatoms interchange energy with resonant radiation, the atomic
n � k/k is the direction of propagation of the radiation field.motion must compensate for the momentum change in the
The first term corresponds to the average pressure exerted byradiation field. The corresponding energy is gained by the
the radiation field, while the second term corresponds to theatom in the form of recoil kinetic energy. By suitable arrange-
radiation pressure damping which contains the projection ofment of the source of the radiation pressure force, cooling or
the atom velocity along the propagation direction of the field.heating of atoms can be achieved (19,34,35).
As a consequence of the stochastic nature of the spontaneousThe physical basis of the cooling effect is the irradiation of
emission process, the atom will also exhibit a velocity spread-atoms with a laser beam whose frequency is chosen slightly
ing of order �2��/M, resulting from the uncertainty of thelower than the frequency of an atomic transition. Thus, when
emitted radiation energy.photons are moving towards the atom the frequency of the

light in the frame of reference moving with the atom is Dopp-
ler shifted to resonance and the absorption of photons is BIBLIOGRAPHY
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1995; J. Sobĕhart and R. Farengo, Phys. Rev. A, 52 (4): 3022,
1995.

36. K. Ellinger, J. Cooper, and P. Zoller, Phys. Rev. A, 49: 3909, 1994.

J. R. SOBĚHART
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