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FOCAL PLANES

Focal planes are two-dimensional arrays of detectors em-
ployed for image formation. Charged coupled device (CCD)
arrays are used in the visible spectrum, and infrared focal
plane arrays (IRFPAs) are employed to sense thermal radia-
tion. CCD arrays are mainly composed of silicon-based detec-
tors and readout circuits. For IRFPAs, silicon is still the
choice for readout circuits; however, it is not an effective ma-
terial for detecting infrared radiation. Other material with
narrow bandgap such as mercury cadmium telluride is used.
The use of different materials for sensing, multiplexing, and
readout in a hybrid scheme poses challenging connection
problems. Moreover, the focal plane has to be cooled down
to cryogenic temperatures. This cooling requirement highly
increases the cost and complexity of IRFPAs. Currently, mo-
nolithic fabrication techniques that do not require sophisti-
cated cooling mechanisms are being developed, with the po-
tential of increasing the yield and lowering the cost of IRFPAs
significantly. Rapid progress has been made in manufacturing
uncooled IRFPAs operating at TV frame rates in recent years.
At present, more demanding tasks such as missile seeking
still rely on the hybrid technology (1–3).

The thermal radiation sensed by current infrared detectors
lies in three spectral bands: long wavelength infrared (8 �m
to 20 �m), medium wavelength infrared (3 �m to 5 �m), and
short wavelength infrared (1 �m to 3 �m). A large fraction of
the thermal radiation from objects in the ambient tempera-
tures range is contained in the long wavelength infrared
range and a small fraction is contained in the medium wave-
band. Small temperature differences in the ambient scene are
effectively detected in the long wavelength band and, to a
lesser extent, in the medium waveband. The peak emissions
from artificial sources are mainly contained in the medium
waveband, which makes it an excellent medium for the detec-
tion of hot bodies against a cooler background in military ap-
plications (4).

Focal planes are used in a variety of military, astronomi-
cal, medical, and industrial applications. Depending on the
application, system parameters such as weight, size, sensitiv-
ity, resolution, power dissipation, and cost are determined.
Present-day focal planes may consist of a few hundred to
milliions of detectors. They can also be operated in different
modes. In a staring focal plane, one detector is assigned to
each pixel of the field of view. In the scanning mode, the focal
plane is moved systematically over the field of view. Staring
focal planes have the advantage of increased sensitivity,
whereas a larger field of view is covered by a scanning focal
plane. A step-staring sensor effectively brings the two opera-
tional modes together by staring at part of its total field of
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view for a time and then stepping to another part and star-
ing again.

NOISE AND UNCERTAINTIES

Spatial response nonuniformity is an important problem with
the use of IRFPAs. It arises because individual detectors on
the focal plane exhibit different response characteristics from
those of its neighboring elements. The response characteris-
tics are described by parameters such as offset and gain of
the detector element. The mean response of the detector to
zero input flux is called the dark current offset. Generally, it
is unique to each detector and varies with focal plane temper-
ature, illumination history, and time elapsed from startup.
Furthermore, detectors have reduced sensitivity at the top of
their dynamic range, which is also to be compensated. Two or
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more auxiliary point sources may be used to calibrate the off-
set, gain, and higher order nonuniformities. This calibration Figure 1. The response of the focal plane to two closely spaced ob-
procedure has to be repeated during operation in high-perfor- jects and two widely separated objects.
mance systems. Techniques that do not require auxiliary
point sources based on neural networks are also being de-

image restoration or reconstruction,veloped.
point source detection,A second source of imperfection is the electrical crosstalk
location, andbetween detectors in close proximity. Crosstalk is measured
tracking.by illuminating a detector element by a spot source and re-

cording the response of the neighboring detectors. During the
The techniques that are used for image enhancement, recon-measurements care must be taken to localize the spot source
struction, and target tracking are covered elsewhere in thisat the exact center of the detector cell and to ascertain that
encyclopedia. We will mainly concentrate on point source pro-the effective area of the spot source is smaller than the detec-
cessing techniques.tor width. Otherwise, the optical crosstalk resulting from the

A point source within the context of infrared imaging is anenergy induced on the adjacent detector cells may be mis-
object that is sufficiently far from the detector array so thattaken as the result of electrical crosstalk.
it effectively acts as a point. Some examples of point sourcesAnother source of noise encountered primarily in defense
may therefore be stars, missiles, and satellites. For a pointapplications is impulsive noise due to gamma radiation. It
source of a given intensity, the signal generated on a detectormanifests itself as noise samples with very large magnitudes
is determined by the point spread function of the optics, whichthat are independent in both space and time. Techniques sug-
is approximated well by the two-dimensional Gaussian func-gested for treating bad detector elements are effective to miti-
tion as well as by other design parameters such as detectorgate impulsive noise as well. In particular, the samples af-
shape, size, and the fill factor. We shall assume that the idealfected by impulsive noise may be discarded, replaced by a
detector cell response to a point source with unit amplitudeuser value, or interpolated using neighboring detector ele-
is known by the user.ment values or time samples.

The conventional method for determining the location of aIn a static scene, sampling the detector cells on the staring
single point source in infrared imaging is centroiding. Thisfocal plane yields multiple observations of the same point in
method is based on finding the center of mass of a given framethe field of view. These samples can be averaged to improve
and is applicable to cases where the point spread function isthe signal-to-noise ratio when the noise can be modeled as
unknown. It is also useful in tracking problems where one isadditive Gaussian noise. For samples with impulsive noise
interested in tracking a group rather than individual pointcomponents, robust estimation techniques such as the median
sources. Multiple widely separated sources can be locatedand trimmed mean estimates should be used. For the scan-
through the same means by partitioning the data into non-ning focal plane, the objects in the scene will move along the
overlapping segments. Matched filtering and track-before-scan direction on the focal plane in a predictable manner. The
detect methods provide useful means for separating widelysame noise rejection techniques may be applied once the
spaced point sources. Alternative methods, however, aremovement of the objects on the focal plane in the scan direc-
needed to resolve closely spaced sources, such as maximum-tion is accounted for. This approach is commonly known as
entropy Bayesian deblurring algorithms (e.g., see Refs. 20

time delay integration (TDI). and 21). Typical responses of the focal plane to two closely
spaced objects (CSO) and widely separated objects (WSO) are

Focal Plane Signal Processing depicted in Fig. 1.
At the signal-processing stage, one or more of the following
tasks may be performed: MULTIPLE POINT SOURCE LOCATION PROBLEM

image enhancement, A set of p detector cells are located on the focal plane. Without
loss of generality, the focal plane is taken to be the plane innoise rejection,
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three-dimensional space parallel to the xy axis and passing The p 
 m steering matrix S(�) has the m steering vectors
associated with the individual steering vectors as its columnsthrough the origin. The coordinates of points on this plane

are therefore given by (x, y, 0). In the problem under consider- and the m 
 1 multiple point source amplitude vector a has
the individual point source amplitudes as its components. Foration, the radiation emitted by a number of point sources in

three-dimensional space is intercepted by the detector cells. notational brevity, the steering matrix S(�) has been ex-
pressed as an explicit function of the 2m 
 1 multiple pointA static point source with amplitude a1 located at the z-

axis with coordinates (0, 0, z1) produces a radiation density source location vector as specified by
of a1 s(x, y) at the output of the detector located at (x, y). In
this representation s(x, y) denotes the response of the detector θθθ = [

x1 y1 x2 y2 · · · xm ym
]T

(5)
cell to a unit amplitude point source. A static point source

Equation (4) provides the idealized expression for the detectorlocated at (x1, y1, z1) produces the spatial shifted radiation
cell responses in the noise free case where m spatially station-density a1 s(x � x1, y � y1) on the same detector.
ary point sources radiate the infrared (IR) focal plane. In theIn the simplest case, the radiation emitted by a single
more realistic case, the cell responses are corrupted by sensorpoint source located at the fixed point (x1, y1, z1) is measured
noise and other extraneous influences. We shall quantifyby p detector cells on the focal plane. In accordance with the
these extraneous factors by an additive p 
 1 ‘‘noise’’ vectormodeling assumptions made above, the individual detector
w(t). To estimate the multiple point source location vector �cell responses are specified by the constant function of time
and multiple point source amplitude vector a, we shall use
the following set of time samples of the noise-corrupted detec-dk(t) = a1 sk(x1, y1) for 1 ≤ k ≤ p (1)
tor cell response vector

The dependency of this response term on the point source am-
d(tn) = S(θθθ )a + w(tn) for 1 ≤ n ≤ N (6)plitude a1 and location (x1, y1) has been made explicit, while

its dependency on the position of the detector cell is implicitly where the time sampling scheme �tn� need not be uniform.
recognized through the subscript k. In our modeling, each de- Examination of these time samples reveals that they are each
tector cell may have a distinctly different shape, although in additive noise-corrupted measurements of the constant signal
many applications, the detector cells will have identical vector S(�)a.
shapes. To employ concepts from contemporary array signal
processing, the set of detector cell responses at time t shall Least Squared Error Modeling
be compactly represented by the p 
 1 detector cell response

The task of multiple point source detection and location isvector
basically that of using the N sampled values of the detector
cell response vector [Eq. (6)] to estimate the a amplitude vec-d(t) = [ d1(t) d2(t) . . . dp(t) ]T (2)
tor and the � multiple point source location vector. In this
section, these parameters are selected so as to minimize thewhere dk(t) designates the response of the kth detector cell.
squared error criterion:We wish to use time-sampled values of the cell response vec-

tor (2) to estimate the locations of the point sources.
Upon substituting the cell response components of Eq. (1) c(a, θθθ ) =

N∑
n=1

[d(tn) − S(θθθ)a]T [d(tn) − S(θθθ )a] (7)
into Eq. (2), an expression for the detector cell response vector
is directly obtained. We shall express this detector cell re-

The minimization of this squared error criterion is equivalentsponse vector in the following form,
to the maximization of the likelihood function when the noise
samples are temporally and spatially independent and identi-
cally distributed samples from a Gaussian distribution. When
the samples from different detectors are either dependent or

d(t) = a1[ s1(x1, y1) s2(x1, y1) . . . sp(x1, y1) ]T

= a1 s(x1, y1)
(3)

not identically distributed, a weighted squared error criterion
The p 
 1 vector s(x1, y1) is referred to as the steering vector can be used. Upon examination of the squared error criterion
and it characterizes the manner in which the detector cells [Eq. (7)], the multiple point source amplitude vector a is seen
respond to a static point source located at (x1, y1, z1). When to enter in a quadratic manner while the multiple point
there are multiple point sources irradiating the focal plane, source location vector � appears in a highly nonlinear fashion.
the combined effect on the detector cell response is modeled This being the case, a closed form expression for an optimum
as the sum of the responses generated by the individual point selection of (a, �) that minimizes this criterion does not exist.
sources. Let there be m such point sources located at (xl, yl, One must therefore appeal to nonlinear optimization meth-
zl) for 1 � l � m. The resultant detector cell response vector ods. The computational complexity of these methods is a func-
will be represented as a linear combination of steering vectors tion of the number of variables in the minimization problem.
in the following compact notation: Fortunately, as will be shown shortly, it is possible to sepa-

rate the selections of the multiple point source amplitude vec-
tor a from the multiple source location vector � by exploiting
the quadratic manner in which the former enters the criterion
(7). This separation significantly decreases the computa-
tional complexity.

The convergence rate of the nonlinear programming algo-
rithm is affected by the structure of the steering matrix S(�).

d(t) = [
s(x1, y1)

... s(x2, y2)
... · · · · · ·

... s(xm, ym)
]



a1
a2
...

am




= S(θ )a (4)
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In practice, faster convergence rates are achieved when S(�) The effectiveness of descent algorithms such as the Gauss-
is decomposed as the product of a p 
 m matrix Q(�), whose Newton method largely depends on the initial choice of the
orthonormal column vectors span the range space of S(�), and composite location parameter vector. If a poor initial point is
a m 
 m nonsingular upper triangular matrix R(�), that is chosen, any descent algorithm may generally converge to a

poor relative minimum. The sequential orthogonal projection
S(θθθ) = Q(θθθ )R(θθθ ) (8) algorithm is also called a coordinate descent algorithm (7) and

has proven to be a useful initial point selection procedure in
where various applications (9–13). This procedure is based on se-

quentially increasing the number of point sources in theQ(θθθ )T Q(θθθ ) = Im (9)
model, and with each new source added, an estimate of the
location for that source is made using a direct search method.in which Im is the m 
 m identity matrix. This QR decomposi-

tion can be achieved by applying the Gram–Schmidt orthogo-
nalization procedure to the full rank matrix S(�). Substituting
Equations (8) and (9) into the squared error criterion of Eq. OUTLIER DETECTION
(7) and its minimization with respect to the multiple point
source amplitude vector a yields the optimum multiple point The widespread use of the least squared error criterion is jus-
source amplitude vector ao as tified by its equivalence to the maximum likelihood criterion

for independent identically distributed Gaussian noise. It fur-
ao = R(θθθ )−1Q(θθθ )T d̂ (10) thermore provides mathematical tractability. Unfortunately,

estimates obtained through LSE criterion are not asymptoti-
where cally efficient when the noise is non-Gaussian. Symmetric

non-Gaussian noise typically gives rise to estimates with high
variance, whereas the estimates obtained in the presence of
asymmetric non-Gaussian noise are biased as well.

d̂ = 1
N

N∑
n=1

d(tn) (11)

A widely accepted approach to cleanse the input data from
Moreover, the value of the squared error criterion of Eq. (7) such outlying samples is to detect and remove aberrant data
for this optimum choice is given by points before carrying out the location estimation phase. This

can be achieved by using robust time delay integration tech-
niques to a limited extent when the impulsive behavior is not
severe. However, this approach may not be effective in the

c(ao, θθθ ) =
N∑

n=1

d(tn)T d(tn) − Nd̂T Q(θθθ )Q(θθθ)T d̂ (12)

vicinity of a point source, especially if the amplitude of the
An examination of Eqs. (10) and (12) reveals that the opti- point source is unknown. This being the case, we describe an
mum selections of the multiple point source location and am- outlier detection scheme that can be employed after the loca-
plitude vectors have been decoupled. In principle, one first tion and amplitude estimation step. Once the outliers are de-
finds the multiple point source location vector � that mini- tected, they will be discarded and the estimation procedure
mizes criterion [Eq. (12)]. Once this vector has been obtained, repeated with the remaining samples. The iterations will be
it is substituted into Eq. (10) to obtain the corresponding opti- continued until no outlying samples are detected. Different
mum multiple source amplitude vector. The minimization outlier detection techniques are described in Ref. 14.
problem of Eq. (12) is highly nonlinear in the unknown multi- As the outlier samples are discarded, the sizes of the detec-
ple point source location vector �. Nonlinear programming tor cell response vectors d(tn) may not be identical for all tn.techniques must therefore be used to achieve this minimi- Consequently, Eq. (10) cannot be used to estimate the ampli-
zation. tudes. To accommodate missing data, the model in Eq. (6) has

to be modified. The data are represented by a composite de-Nonlinear Programming Solution
tector cell response vector, which is obtained by concatenating

Many nonlinear programming techniques are based on the the available detector cell response vectors. This gives an
principal of incrementally perturbing the parameters to be equivalent representation covering the cases of missing data
optimized so that the functional being minimized takes on as well as the case in which some of the point sources are
monotonically decreasing values. Various nonlinear program- moving. When the composite detector cell response and noise
ming algorithms are distinguished by the manner in which vector d and w are constructed as
the perturbation vector and step size scalar are chosen (6–7).
We shall employ the Gauss-Newton method, whose perturba-
tion vector is specified by

δδδ(GN )

k = −[J(θθθk)T J(θθθk)]−1J(θθθk)T e(ao, θθθk) (13)

in which the residual error vector e(ao, �k) is given by

d =




d(t1)

d(t2)

...
d(tN )


 w =




w(t1)

w(t2)

...
w(tN )


 (15)

e(ao, θθθ ) = (I − Q(θθθ )Q(θθθ )T ) d̂ (14) the data may be compactly represented as

and the J(�k) is the Jacobian matrix. Closed form expressions
for the elements of the Jacobian matrix are given in Ref. 8. d = S(θθθ)a + w (16)
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where S(�) denotes composite steering matrix where p� designates the pdf of �. The samples of w� which
take on the value zero are generated by the (1 � �) �(w�) term
where �(.) is the Dirac delta function. Since w is defined in
Eq. (20) as the sum of two independent random variables wg

and w�, its probability density function is specified by the con-
volution integral

S(θθθ) =




S(θθθ; t1)

S(θθθ; t2)

...
S(θθθ; tN )


 (17)

where the dependence of the steering matrices on the time
pw(w) =

∫ ∞

−∞
pg(η) pwγ (w − η) dη (23)

samples indicates their possible dependence on time when the
sources are moving. where pg designates the probability density function of wg.

After the location estimation procedure is completed, the Then the probability density function of w is given by
estimated parameters ao and � o may be employed to obtain
the ‘‘residual error vector’’ e as specified by

pw = (1 − ε) pg + ε

∫ ∞

−∞
pg(η) pγ (w − η) dη (24)

e = d − S(θθθ o)ao (18)

Moreover, the closed form expressions for the mean �w andThe elements of the residual error vector therefore indicate
variance �2

w of the random variable w are given bythe mismatch between the actual and the estimated re-
sponses of the detector cells. Substituting the expression for

µw = µg + ε µγ (25)the detector cell response vector of Eq. (16), the representa-
tion of the residual error vector is given by σ 2

w = σ 2
g + ε σ 2

γ + ε (1 − ε) µ2
γ (26)

e = [S(θθθ )a − S(θθθo)ao] + w (19)
where the means and variances of wg and � are denoted by
�g, �� and �2

g, �2
�, respectively.The first term in brackets in Eq. (19) vanishes if the estimates

Equations (25) and (26) indicate that when the contami-of the amplitude and location parameter vectors are identical
nating distribution � has zero mean, only the variance of wto their actual values, that is, ao � a and � o � �. This ideal
increases. When � has a nonzero mean, a further increase ofsituation is rarely achieved with a finite sample size, but may
the variance is accompanied by a shift in the mean as well.be approximated for symmetric distributions if the sample
Examination of pw in Eq. (24) reveals that the samples thatsize is sufficiently large. For the mathematical analysis, we
are significantly affected by � are located at the tails of pw. Awill assume that the actual and estimated values of ampli-
general approach to detect such samples is to determine thetude and location parameter vectors are close enough so that
samples of w whose magnitude is larger than a threshold. Thethe residual error vector is dominated by its input noise vec-
test statistic for the ith sample of w, � (wi), is given bytor term w.

In our modeling, the elements of the L 
 1 input noise
vector w are realizations of the random variable w whose τ (wi) = wi − µg

σg
(27)

probability density function (pdf) is designated by pw. This
random variable is in turn generated as the sum of two inde-

The outlier detection scheme described in this section may bependent random variables wg and w� so that
integrated into a point source location and amplitude estima-
tion method so that each iteration consists of an amplitudew = wg + wγ (20)
and location estimation followed by a step of detection of the
outlying points in the residual error vector e [see Eq. (18)].In many applications, wg is modeled as a zero-mean Gaussian
After each outlier detection step, all points that are declaredrandom variable with variance �2

g. The second random vari-
as outliers are removed, and a new iteration of amplitude andable w� is usually non-Gaussian with nonzero mean and/or
location estimation is initiated. This iterative procedure is re-has a variance higher than �2

g. The scenario may be further
peated until no samples of the residual error vector containscomplicated if some samples of w have no contribution from
an outlier for the estimated amplitudes and locations.w�. This will be the case if samples of w� are generated from

For the initial iterations, the estimates of a and � may not
be sufficiently close to their actual values. In that case, the
residuals are dominated by the errors in the estimates of a
and � rather than the additive noise. Then even the residuals

wγ =
{

γ with probability ε

0 with probability (1 − ε)
(21)

corresponding to the samples without impulsive noise may be
where � is a sample from the so-called ‘‘contaminating’’ distri- larger than the given threshold. To safeguard against exces-
bution with pdf p� and � is from the closed interval [0, 1]. sive rejection, we use a modified rejection rule
Such a random variable � could represent impulsive noise en-
countered in infrared estimation problems. The relationship reject wi if wi > 3 • max (σ̂w, σg) (28)
between the probability density functions of w� and � is given
by where �̂w is the sample standard deviation.

For distributions with nonzero mean, the estimates of the
amplitudes obtained through Eq. (10) are typically biased. Inpwγ (wγ ) = (1 − ε) δ(wγ ) + ε pγ (wγ ) (22)
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fact, if the sample mean of w converges to �w in probability, Problem Formulation for Subspace Methods
then the estimated amplitude vector is given by

Let there be m point sources radiating the focal plane. The
radiation density induced at the observation point (x, y, 0) on

ao = a + R(θθθ )−1Q(θθθ)Tµµµwww (29) the focal plane by the ith point source is given by ai s(x � xi,
y � yi). In this expression, ai, xi and yi are, respectively, the

where �w is a L 
 1 vector with elements �w. Since the ex- amplitude and the x and y coordinates of the ith point source,
pression for �w is given in Eq. (20) as the sum of �g and � ��, and s(x, y) is the response induced by a unit amplitude point
the L 
 1 vector �w is also specified by source located at (0, 0, zi).

In the LSE method, the locations of the elements of the
detector array were arbitrary. In this section, however, it willµµµwww = µg + ε µγ (30)
be assumed that the detectors are placed in the focal plane on
a rectangular grid. Moreover, the detector array is uniformlyHence, compensation of the nonzero mean may be achieved
sampled along the x and y directions with sampling rates Txby modifying Eq. (10) as
and Ty such that Nx and Ny samples are obtained in each di-
rection. For a unit amplitude point source located at (xi, yi,ao = R(θ )−1Q(θ )T (d − µµµwww) (31)
zi), this set of data can be expressed in a Nx 
 Ny data matrix
S(xi, yi) whose (k, l) component is specified by

The mean of w has to be either known or estimated before-
hand to achieve an unbiased estimate of a. Fortunately, it can S(xi, yi)k,l = s([k − 1]Tx − xi, [l − 1]Ty − yi ) (32)
be generally estimated from the part of the data that does not
include a point source.

The data matrix S(�), defining the combined effect of the m
sources, will be the weighted sum of the individual data ma-
trices, that is,SUBSPACE METHODS

In the following sections we will describe two other location-
finding methods based on an eigendecomposition of the data.

S(θθθ) =
m∑

i=1

ai S(xi, yi ) (33)

These methods are called subspace methods since they involve
decomposing the data into their components in two sub- where � is the 2m 
 1 unknown location parameter vector
spaces. Subspace methods have received considerable atten-
tion in the 1980s, inspired by the work of Pisarenko and θθθ = [x1 y1 x2 y2 . . . xm ym]T (34)
Schmidt (15–16). Unfortunately, this very powerful class of
high-resolution algorithms are not directly applicable to infra- in accordance with Eq. (5). For the purposes of this study, we
red point source location problems. Since the amplitudes of will restrict ourselves to signals that are separable in their
point sources are constants in time, eigenanalysis of the cor- parameters. If the signal generated by a point source, s(x, y),
relation matrix of the detector cell vector typically does not is separable in the variables x and y, then s(x, y), can be ex-
reveal the number and locations of the point sources. Never- pressed as the product of functions of x and y, that is,
theless, subspace methods can still be applied to point source
location estimation problems if the response of the detector s(x, y) = sx(x)sy(y) for all x, y ∈ � (35)
cells are separable in their location parameters, and they are
expressed by a data matrix (frame) rather than a detector cell

Since the sampling scheme is uniform on the focal plane, theresponse vector. Then it is possible to express the response
data matrix generated by the ith source is readily shown todue to a point source as the outer product of two vectors
be the scalar multiple of the outer product of two steeringwhere the first vector depends on the x, and the second vector
vectors sx(xi) and sy(yi), that is,depends on the y location of the point source only. In the pres-

ence of multiple point sources, the outer products correspond-
ing to each source are superimposed. S(xi, yi ) = ai sx(xi) sT

y (yi) (36)

The location estimation procedures exploit the fact that the
principal singular vectors of the data matrix span the same where
space as the basis vectors forming the outer products, and the
other singular vectors are orthogonal to these basis vectors. sx(xi ) = [sx(−xi ) sx(Tx − xi ) . . . sx((Nx − 1)Tx − xi )]

T (37)
A procedure that is predicated on the first property is called a
signal subspace method while a procedure based on the second and
property is called a noise subspace method. In the absence of
noise, the number of point sources may be determined as the sy(yi ) = [sy(−yi ) sy(Ty − yi ) . . . sy((Ny − 1)Ty − yi )]

T (38)
number of nonzero singular values of the data matrix. In the
presence of noise, the number of singular values that are sig-

The total signal generated by m point sources is given by thenificantly larger than others may be chosen to model the data.
data matrix S(�) defined in Eq. (33). For separable signals,As opposed to the formulation in the previous sections, where
this expression may be conveniently expressed asthe detector output was expressed by vectors, a matrix formu-

lation shall be adopted here. This formulation is not only
more convenient, but is necessary to apply subspace concepts. S(θθθ ) = Sx(x) A ST

y (y) (39)
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where the Nx 
 m and Ny 
 m matrices Sx(x) and Sy(y) have son for the appearance of x and y will be clear shortly. The
closed form expression for R(x) is given bythe steering vectors sx(xi) and sT

y (yi) as their columns, that is,

Sx(x) = [
sx(x1)

... sx(x2)
... · · · · · ·

... sx(xm)
]

(40)

Sy(y) = [
sy(y1)

... sy(y2)
... · · · · · ·

... sy(ym)
]

(41)

The unknown amplitudes constitute the diagonal elements of
the diagonal matrix A so that

R(x) = E{DDT}
= E{(S(θθθ) + W )(S(θθθ ) + W )T }
= E{S(θ )S(θθθ)T }

+ E{S(θθθ)WT } + E{WS(θθθ)T } + E{WWT }
= S(θθθ)S(θθθ )T + Nyσ

2INx

(45)

where INx
is the Nx 
 Nx identity matrix. Similarly,

A =




a1 0
a2

. . .
0 am


 (42)

R(y) = E{DTD}
= S(θ )TS(θ ) + Nxσ

2INy

(46)

and the vectors x and y, appearing in Eqs. (39), (40), and (41), Our objective is to develop techniques for determining the
are the m 
 1 location parameter vectors number and locations of the point sources based on the eigen-

decomposition of the data matrix. The following theorem pro-x = [x1 x2 . . . xm]T and y = [y1 y2 . . . ym]T (43)
vides a means for achieving this objective.

Observations. Theorem 1. Let the rank of Sx(x) and Sy(y) each be m. Fur-
thermore, let �1, �2, . . ., �Nx

be the eigenvalues of R(x) and
The problem at hand is to estimate the m amplitudes ai �1, �2, . . ., �Nx

be the eigenvalues of S(�)S(�)T. Then
and the 2m 
 1 parameter vector �. This is equivalent
to estimating the m 
 1 parameter vectors x, y and the
diagonal elements of the matrix A. λi =

{
νi + Nyσ

2 for i = 1, 2, . . ., m
Nyσ

2 for i = m + 1,m + 2, . . ., Nx
(47)

As Eq. (39) suggests, the estimation procedures for x and
y would be identical, except that the estimation proce- Furthermore, if u1, u2, . . ., uNx

are the corresponding eigen-
dure for x would involve Sx(x) and the estimation proce- vectors of R(x),
dure for y would involve Sy(y).

Since the parameters of a given point source are defined ui ∈ Range {Sx(x)} for i = 1, 2, . . ., m (48)
by a unique set of amplitude and x and y coordinates,

andonce all the amplitudes ai and location vectors x and y
are obtained, they have to be paired so that the data

ui ∈ Null{ST
x (x)} for i = m + 1, m + 2, . . ., Nx (49)are best described by the parameter set. For point

sources with equal amplitudes, the number of possible
parameter sets is m! and the number grows to (m!)2 for

Proof The correlation matrix R(x) is given bypoint source with unequal amplitudes. Evidently, the
amount of computation required may be unacceptable R(x) = S(θθθ)S(θθθ )T + Nyσ

2INx
(50)

for large values of m.

and if u1, u2, . . ., uNx
are the eigenvectors corresponding to

Eigenanalysis for Separable Frames the eigenvalues �1, �2, . . ., �Nx
, such that �1 � �2 � . . . �

�Nx
The estimation procedure will be complicated by additive
noise. In particular, the observed data matrix D will be given

R(x)u + i = λiui for i = 1, 2, . . ., Nx (51)by

which implies that u1, u2, . . ., uNx
are also the eigenvectorsD = S(θθθ) + W (44)

of S(�)S(�)T, that is,
where W is taken to be a Nx 
 Ny matrix with elements from

S(θθθ )S(θθθ)T ui = νiui for i = 1,2, . . ., Nx (52)a wide sense stationary random process. It is also assumed
that the elements of W are zero mean and uncorrelated, that

Therefore,is, for any two elements wij and wkl of W

λi = νi + Nyσ
2 for i = 1,2, . . ., Nx (53)E{wijwkl} = σ 2 δ(i − k, j − l)

However, Sx(x) and Sx(y) are of full rank m, therefore
where ‘E’ denotes the expected value operator and � is the S(�)S(�)T has Nx � m zero eigenvalues, that is,
Kronecker delta function.

We will call the E�DDT�, the correlation matrix of x and
will denote it by R(x). Similarly, the E�DTD� will be called
correlation matrix of y and will be denoted by R(y). The rea-

λi =
{

νi + Nyσ
2 for i = 1, 2, . . ., m

Nyσ
2 for i = m + 1,m + 2, . . ., Nx
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Since the closed form of S(�)S(�)T is given by so that Us and Vs contain the singular vectors corresponding
to the m largest singular values. Un and Vn, on the other
hand, contain the singular vectors corresponding to the zeroS(θθθ )S(θθθ)T = Sx(x)AST

x (y)Sx(y)AST
x (x), (54)

singular values. The columns of Us and Vs are said to span
the signal subspace, whereas the columns of Un and Vn spanand Sx(x) and A ST

x (y) Sx(y) A are both of full rank m, the
the noise subspace. In fact, it can be shown straightforwardlyeigenvectors corresponding to the Nx � m smallest eigenval-
thatues of R(x) are in the null space of ST

x (x). The other m eigen-
vectors that are associated with the m largest eigenvalues are
in the range space of Sx(x). D = Us

∑
V T

s (61)

by substituting the partitioned forms of U and V into Eq. (58).Similar properties are enjoyed by the correlation matrix of
Therefore, D can be expressed in the signal subspace singulary, R(y).
vectors only.

Theorem 2. Let the rank of Sx(x) and Sy(y) be m. Further-
more, let �1, �2, . . ., �Ny

be the eigenvalues of R(y) and �1, �2,
Algorithms. . ., �Ny

be the eigenvalues of S(�)TS(�). Then
Source Number Estimation. For m sources with different x

and y coordinates, the ranks of Sx(x) and Sy(y) will both be
m. In this case, the number of sources can be estimated fromλi =

{
νi + Nxσ

2 for i = 1, 2, . . ., m
Nxσ

2 for i = m + 1, m + 2, . . ., Ny
(55)

either Eq. (47) or (55) by determining the number of eigenval-
ues of R(x) and R(y) that are greater than Ny�

2 and Nx�
2,

Furthermore, if v1, v2, . . ., vNy
are the corresponding eigen- respectively. When k of the point sources have identical x or

vectors of R(y), y coordinates, one of the matrices Sx(x) and Sy(y) will have
rank m � k. The number of sources can still be estimated by
first determining the number of eigenvalues of R(x) and R(y)vi ∈ Range {Sy(y)} for i = 1, 2, . . ., m (56)

that are greater than Ny�
2 and Nx�

2, respectively. Then the
and larger of the two results is declared as the estimate of the

number of sources. Similar statements hold for the case in
which kx of the x coordinates and ky of the y coordinates arevi ∈ Null {ST

y (y)} for i = m + 1, m + 2, . . ., Ny (57)
the same.

The eigenvalues and the eigenvectors of the correlation
Noise Subspace Algorithm. Equation (49) implies that thematrices R(x) and R(y) appear very naturally in the singular

space spanned by the columns of Un is orthogonal to the spacevalue decomposition (SVD) of matrix D (e.g., see Ref. 18).
spanned by the columns of Sx(x), that is,Singular Value Decomposition. Let D be a Nx 
 Ny matrix

with Rank(D) � m, then there exist unitary matrices U, V
and a diagonal matrix � such that ST

x (x)Un = 0 (62)

Similarly, Eq. (57) implies thatUT DV =
[∑

0
0 0

]
(58)

ST
y (y)Vn = 0 (63)

where

However, because of the presence of noise in the eigenvector∑ = diag(σ1, σ2, . . ., σm) (59) estimates that span the noise and the signal subspaces, the
orthogonality conditions above will not in general hold. One

and �1 � �2 � . . . � �m 
 0. The numbers �1, �2, . . ., �m, will have to find the parameter vectors x and y that most
constituting the elements of diagonal matrix �, are called the closely approximate the orthogonality conditions given by
singular values of the matrix D. The columns of the unitary Eqs. (62) and (63). These will be given as the spectral peaks
matrix U are called the left singular vectors of D. Similarly, of the functions �(x) and �(y) such that
the columns of the unitary matrix V are called the right singu-
lar vectors of D. The right singular vectors are the eigenvec-
tors of DTD, and the left singular vectors are the eigenvectors ρ(x) = 1

sT
x (x)UnUT

n sx(x)
(64)

of DDT.
The unitary matrices U and V have ui and vi as their col-

andumns, respectively. In the noise-free case, the diagonal ele-
ments of � are ��i, where �i are the m nonzero eigenvalues
of S(�)S(�)T.

Signal and Noise Subspaces. Let U and V be partitioned so
ρ(y) = 1

sT
y (y)VnV T

n sy(y)
(65)

that

This algorithm is a noise subspace algorithm, since it involves
the property of the noise subspace.U = [Us|Un] and V = [Vs|Vn] (60)
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Signal Subspace Algorithm. On the other hand, Eq. (48) im-
plies that the columns of Us can be written as a linear combi-
nation of columns of Sx(x), that is,

Us = Sx(x)H1 (66)

where H1 is a m 
 m unknown coefficient matrix. A similar
expression can be written for Vs so that

Vs = Sy(y)H2 (67)

The parameter vectors x, y and the coefficient matrices H1
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and H2 should be chosen so that Eqs. (66) and (67) are satis-
Figure 3. The mean of the estimates of the x-coordinates. From (12).fied. Therefore, one can at most search for the parameter vec-

tors that will minimize a chosen norm of the error matrices
Us � ST

x (x)H1 and Vs � ST
y (y)H2. One such widely used norm

SPECIAL CASE: GAUSSIAN POINT SOURCESis the Frobenius norm of the error matrices

In this section, we will test the effectiveness of the proposed
ρ(x) = ‖Us − Sx(x)H1‖2

2 (68) multiple source location and outlier detection algorithms for
a specific application. We assume that the point spread func-

and tion of the projected focal plane IR intensity density function
of a point source located at (xk, yk, zk) is specified by the com-
monly employed symmetric Gaussian functionρ(y = ‖Vs − Sy(y)H2‖2

2 (69)

where Eq. (68) is to be minimized with respect to x and Eq. i(x, y) = 1
2πω2

e−[(x−xk )2+(y−yk )2 ]/2ω2
(70)

(69) is to be minimized with respect to y. Unfortunately, a
closed form solution to the minimization problems above al-
most never exists because of the nonlinear manner the matri-
ces Sx(x) and Sy(y) depend on the unknown parameter vectors
x and y. This being the case, a nonlinear programming
method must be used. For this problem, we also used the
Gauss–Newton method with QR decomposition. The Gauss–
Newton method, as a descent method, expects ‘‘good’’ initial
estimates for the parameter vectors to be estimated. The ini-
tial estimates are supplied by the Sequential Orthogonal Pro-
jection method.
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Figure 5. The LSE estimates with and without
outlier detection (trimming) algorithm for differ-
ent contamination levels. Triangular noise only.
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From (12).

where the blur width parameter, �, is assumed to be known s(xc, yc) is a separable function of x and y. The plot of this two-
dimensional ‘‘Gaussian-like’’ function corresponding to a unitand controls the spread of the function. This point source illu-

minates an array of square-shaped IR detector cells with amplitude point source located at (�1.400�, 1.300�) is shown
in Fig. 2(a).sides of length � that are parallel to the x and y axes. The

response of such a detector cell with its center located at (xc, In the simulations, the following staggered detector cell
array configuration consisting of eighteen square detectors ofyc) to the IR intensity function [Eq. (70)] is given by
size � is used:

s(xc, yc) = 1
2πω2

∫ yc+0.5∗�

yc −0.5∗�

∫ xc +0.5∗�

xc −0.5∗�

e−(x−xk )2+(y−yk )2/2ω2
dx dy (71)

It is clear that this detector cell response is equal to the vol-
ume of the two-dimensional point spread function [Eq. (70)]

(0,0) (0,�) (0, 2�)

( �
2 , �

2 ) ( �
2 , 3�

2 ) ( �
2 , 5�

2 )

(�,0) (�,�) (�, 2�)

( 3�
2 , �

2 ) ( 3�
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2 , 5�

2 )

(2�,0) (2�,�) (2�, 2�)

( 5�
2 , �

2 ) ( 5�
2 , 3�

2 ) ( 5�
2 , 5�

2 )
above the square-shaped detector cell surface. Although a
closed form solution for this integral does not exist, it is possi- Assume that the main lobe of a static point source illuminat-
ble to represent this integral in terms of the Gaussian cumu- ing the focal plane remains in a given cell for four samples
lative distribution function whose values are available in nu- while the plane is moved along the negative x-axis with con-
merical tables. Thus, we have stant velocity. With three detectors in a row, twelve samples

are obtained in the x-direction. Since every other column is
shifted by a half detector width and there are three detectors
in each column, the data can be expressed by a matrix with
12 rows and 6 columns.

We assume there are two unit amplitude stationary point

s(xc, yc ) =
[
�

(
x1 − xc + 0.5�

ω

)
− �

(
x1 − xc − 0.5�

ω

)]
[
�

(
y1 − yc + 0.5�

ω

)
− �

(
y1 − yc − 0.5�

ω

)] (72)

sources located at (�1.0700�, 0.8870�) and (�1.6710�,
1.4880�) on the focal plane. With this choice of coordinates,where
the two point sources are separated by a distance of 0.85�
from each other. The size of a square detector, �, is chosen so
that a unit point source located at the center of a cell will

�(x) = 1√
2π

∫ x

−∞
e−t2/2 dt (73)

induce a response of 0.86 on the detector. The noise free data
matrix obtained by this configuration is shown in Fig. 2(b).Examination of Eq. (72) indicates that the detector cell re-

sponse is equal to the product of a function dependent on x The data matrix is then corrupted by additive white
Gaussian noise at different maximum signal-to-noise-ratiocoordinates with a function dependent on y coordinates. Thus
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Figure 6. The outlier detection (trimming) algo-
rithm with mixture noise. Different Gaussian
noise levels (SNRs)/10% contamination with tri-
angular noise. From (12).
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Figure 7. The outlier detection (trimming) algo-
rithm with mixture noise. Different Gaussian
noise levels (SNRs)/18% contamination.
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(SNR) levels. The relationship between the SNR and the stan- estimates of location and amplitude without trimming are not
only biased, but have high variance as well. When the trim-dard deviation of the Gaussian noise is given by the expres-

sion ming algorithm is employed, the means of estimates of the x
location and amplitude parameters of the point source are
equal to their actual values of �1.400� and 1.000 for contami-SNRpeak = 10 log

0.86
σ 2

(74)
nation levels up to 20%. Moreover, the corresponding stan-
dard deviations of the estimates are zero, indicating perfect

At various signal-to-noise ratio levels, 100 trial runs of the retrieval for one hundred trials at every contamination level.
experiment are performed and the estimates of the x and y Figure 6 depicts the statistical properties of the LSE esti-
coordinates obtained by each method are recorded. mates with and without trimming for a mixture noise. In this

As a next step, the effectiveness of the outlier detection particular case, 90% of the noise samples are from a Gaussian
scheme is tested with a unit amplitude point source located distribution at the given signal-to-noise ratio, and the re-
at (�1.400�, 1.300�). The two-dimensional data matrix for maining 10% are samples from the triangular distribution in
this point source is depicted in Fig. 2(a). Samples of the con- addition to Gaussian noise. Another experiment for the case
taminating distribution are generated from a triangular dis- in which 18% of the noise samples are from the triangular
tribution with mean two and variance one. With this model- distribution is performed and the results are presented in Fig.
ing, the values noise samples take are one to three times the 7. For both cases, the trimming algorithm is very effective
amplitude of the point source. One hundred trial runs of the when the Gaussian portion of the noise samples are at maxi-
experiment are performed at different contamination levels mum signal-to-noise ratios higher than 30 dB.
�. The estimates of the location coordinates and amplitudes
obtained with and without the outlier detection scheme are
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11. Y. Yardımcı, J. A. Cadzow, and A. E. Çetin, Robust signal model-The variance of the estimates of the x coordinates at different
ing through nonlinear least squares, Proc. IEEE Int. Conf. Acoust.

signal-to-noise ratios are depicted in Fig. 4(a) and (b). The Speech Signal Process. 1994.
Cramer–Rao lower bounds (CRLB) for the estimates are cal-

12. Y. Yardımcı and J. A. Cadzow, High-resolution algorithms for lo-
culated by applying the general results of Stoica and Nehorai cating closely spaced objects via infrared focal-plane arrays, Opti-
(17) to the Gaussian point source location problem. The mean cal Engineering, 33 (10): 3315–3323, 1994.
square error of the estimates obtained by the minimization of 13. I. Ziskind and M. Wax, Maximum likelihood localization of multi-
the squared error achieved the CRLB at high signal-to-noise ple sources by alternating projection, IEEE Trans. Acoust. Speech
ratios. Similar results are obtained for the y coordinates and Signal Process, ASSP-36: 1553–1560, 1988.
the amplitudes. In Ref. 18, simulation results for the means 14. V. Barnett and T. Lewis, Outliers in Statistical Data, Chichester:
square errors and the CRLB are given for varying source sep- Wiley, 1984.
arations; the authors observe that the LSE method ap- 15. V. F. Pisarenko, The retrieval of harmonics from a covariance
proaches the CRLB as the point source separation increases. function, Geophys. J. Roy. Astron. Soc., 33: 347–366, 1973.

In the presence of nonzero mean triangular distribution 16. R. Schmidt, Multiple emitter location and signal parameter esti-
only, the estimates obtained through the minimization of the mation, Proc. RADC Spectral Estimation Workshop, 243–256,

1979.square error are severely degraded. As depicted in Fig. 5, the



664 FORECASTING THEORY

17. P. Stoica and A. Nehorai, MUSIC, maximum likelihood, and Another principle of forecasting is that forecasts are more
Cramer-Rao bound, IEEE Trans. Acoust. Speech Signal Process. accurate for groups or families of items rather than for indi-
ASSP-37: 720–740, 1989. vidual items themselves. Because of pooling of variances, the

18. J. T. Reagan and T. J. Abatzoglou, Model-based superresolution behavior of group data can have very stable characteristics
CSO processing. In O. E. Drummond (ed.), Proc. of SPIE 1954, even when individual items in the group exhibit high degrees
204–218, 1993. of randomness. Consequently, it is easier to obtain a high de-

gree of accuracy when forecasting groups of items rather than
YASEMIN YARDıMCı individual items themselves.
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