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COHERENCE

The concept of coherence, when applied to wave phenomena,
implies a well-defined relationship in phase and frequency for
the propagation of a wave or group of waves: the various com-
ponents of the wavepacket are well organized, and their cohe-
sion is maintained over large distances and times. Coherence
distinguishes such phenomena from random noise signals, re-
gardless of intensity or power level. The relevance of this fun-
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Figure 1. Monochromatic plane wave.

damental concept extends to many different types of waves,
including pressure waves (sound), electromagnetic waves
(light), quantum wavepackets (atoms and elementary parti-
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cles), and gravitational waves.
Figure 3. Schematic of Young’s double-slit experiment.

In the case of electromagnetic waves, comparing a laser
beam with an incoherent light source such as a flashlight
qualitatively illustrates the fundamental features of coher-

harmonic plane wave can be given in terms of the associatedence, as revealed by basic experiments. In particular, a laser
field,beam readily produces interference patterns, thus exhibiting

spatial coherence, and the intense, monochromatic character
E(x, t) = x̂E sin[φ(x, t)]of laser light is an indication of its temporal coherence. The

propagation of laser light in the form of a Gaussian, diffrac-
where the quantitytion-limited beam, as shown by its capacity to be focused ex-

tremely tightly, demonstrates transverse spatial coherence.
φ(x, t) = ωt − k · x + φ0 = ωt − kz + φ0The basic concept of coherence is illustrated in Figs. 1 and

2, where monochromatic (single-frequency) plane waves are is the phase of the wave, while E represents its amplitude,
first considered. A simple mathematical description of such a and x̂ corresponds to its polarization state (linear, in this

case). The sine function describes the harmonic variation of
the wave with space and time. The parameter � is the fre-
quency of the wave, and k is its wavenumber, which defines
both the wavelength and the direction of propagation (chosen
here in the direction of positive z, with k � ẑk). As dispersion
and coherence are two very closely interrelated concepts, the
important relation between frequency and wavenumber will
be discussed in some detail in subsequent paragraphs.

To study the overall effect of the waves shown in Fig. 2,
the principle of superposition is applied, which simply states
that the resultant wave is obtained by summing vectorially
over the fields of the incident waves. In the first case (top),
the waves are phased randomly, and they interfere destruc-
tively to produce a low amplitude field, characteristic of an
incoherent process. By contrast, in the second case (bottom),
the waves have the same phase and add up coherently. The
intensity of the resulting wave is obtained by taking the
square of the field, and it is easily seen that in the case of the
superposition of N waves of equal amplitudes, the coherent
intensity scales as N2, while the incoherent radiation inten-
sity only increases linearly with N. Finally, it should be noted
that the principle of superposition holds for linear waves only,
such as electromagnetic radiation in a vacuum (below the
Schwinger critical field, where spontaneous pair creation oc-
curs), or quantum-mechanical probability waves. In the case
of nonlinear media, coherence takes a more subtle form, yield-
ing a rich variety of complex phenomena.

It is interesting to note that in some cases, as illustrated
in Fig. 3 by the famous double-slit experiment, an incoherent
point source can be utilized to produce interference patterns
due to spatial coherence only. This can be readily understoodFigure 2. (Top) Incoherent superposition of plane waves. (Bottom)

Coherent superposition of monochromatic plane waves. by noting that in this type of configuration, a single wave-
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packet is made to self-interfere at a given time, thus eliminat- radars, to stellar interferometry, UV and X-ray microlithogra-
phy, microwave sources, free-electron lasers, particle acceler-ing temporal coherence considerations. The quantum me-

chanical version of this experiment applies equally well to ators, plasma physics, as well as advanced biomedical tech-
niques.photons (electromagnetic waves) or electrons (probability

wavefunctions), and the self-interference aspect of the process This article is organized as follows. After a brief discussion
of dispersion, the radiation characteristics of free electronsclearly illustrates the quantum wave-particle duality.

The earliest scientific observations of coherence were made are described in some detail, within the framework of classi-
cal electrodynamics (CED). For point charges, the radiation isby Christiaan Huygens (1629–1695), Sir Isaac Newton

(1642–1727), and Augustin Jean Fresnel (1788–1827), who always coherent because no cutoff is introduced. For extended
charge distributions, however, there is a physical scale thatconsidered interference effects at optical wavelengths. In par-

ticular, diffraction patterns and interference fringes were sets the transition from coherent to incoherent radiation; this
mechanism is discussed, as well as spatial coherence (trans-studied in detail and led to the wave theory of light, which

was subsequently identified with electromagnetic radiation verse modes), phase noise in free-electron devices, nonlinear
coherent scattering processes (Compton, Kapitza-Dirac, pon-through the fundamental work of James Clerk Maxwell

(1831–1879). Powerful mathematical concepts, including sine deromotive), and radiative corrections. Next, the coupling of
bound electrons to electromagnetic fields in quantum sys-and cosine transforms, were introduced by Joseph Fourier

(1768–1830) and other mathematicians to study the physics tems, as exemplified by the atomic laser, is reviewed, together
with recent major advances in this field, including chirpedof waves, including their propagation, diffraction, and inter-

ference. pulse amplification (CPA), temporal shaping and imaging,
and femtosecond (10�15 s) optics. A ‘‘chirped’’ pulse is charac-Until the early twentieth century, wave experiments were

essentially limited to the visible part of the electromagnetic terized by a frequency that has temporal dependence.
The important question of whether coherence implies orspectrum, although sound waves, which can exhibit coher-

ence, were also studied. Coherent radiation sources now cover requires monochromaticity is also addressed. In a classic pa-
per (4), Roy J. Glauber introduced higher-order correlationthe electromagnetic spectrum from ultra-low frequency (ULF)

waves used for underwater communications, through millime- functions, and demonstrated that coherent fields can be gen-
erated with arbitrary Fourier spectra. This formalism is pre-ter-waves, and the far infrared (FIR) and infrared (IR) re-

gions of the spectrum, to the vacuum ultraviolet (VUV). Free- sented in detail in a monograph (5) by Leonard Mendel and
Emil Wolf and will be summarized here. Finally, other topicselectron devices, including microwave tubes and free-electron

lasers (FELs), cover most of this range, while atomic lasers in quantum optics and laser-plasma interaction physics, re-
lated to the general concept of coherence, are briefly dis-are predominant in the IR-UV range. A free-electron laser ex-

tracts electromagnetic energy from a relativistic electron cussed, including nonlinear processes, phase conjugation,
squeezed states, four-wave mixing, and decoherence.beam through resonant interaction with a fast electromag-

netic wave (v� � c). Atomic X-ray lasers have also been devel-
oped using radiative and cascade recombination schemes. COHERENCE IN FREE-ELECTRON DEVICES

Quantum mechanics introduced a new type of wave with
the early work of Louis de Broglie, Niels Bohr, Erwin Schroe- Dispersion
dinger, and Werner Heisenberg, who postulated the existence

The aforementioned relation between the frequency andof matter waves, later identified with a state vector � gov-
wavenumber is called the dispersion equation and containserned by the Schroedinger equation. This wavefunction was
important information about the propagation of waves in aphysically interpreted in terms of a probability density ��*
particular medium. For example, in the case of electromag-by Max Born. In the context of quantum mechanics, atomic
netic waves propagating in a vacuum, �2/c2 � k2 � 0, withlevels can be viewed as the stable interference of electron wa-
solutions k � ��/c. In this case, the two solutions for thevefunctions in the Coulomb field of the nucleus. The experi-
wavenumber are linear functions of the frequency, which in-ments of Clinton Joseph Davisson and Lester Halbert Germer
dicate that the vacuum is a nondispersive medium. In gen-(1) first demonstrated the diffraction of electron waves by a
eral, expressing the wavenumber as a function of frequencynickel crystal.
yields a complex, nonlinear set of solutions. Each particularRecently, remarkable experiments using Bose-Einstein
solution represents a mode of propagation. In the case wherecondensates to generate coherent atomic beams have been
the propagation of a pulse is studied, the wavepacket can beperformed at MIT (2), where the coherence of the condensate
Fourier-transformed into the frequency domain, yielding awavefunction was verified by measuring its interference with
spectrum centered at a given frequency, �0. The nonlineari-a second atomic beam. The question of quantum decoherence,
ties of the dispersion can now be Taylor-expanded aroundalso referred to as ‘‘wavefunction collapse,’’ is one of the cur-
that central frequency to first yield the central wavelength ofrent outstanding problems in modern physics, as exemplified
the pulse,by the ubiquitous ‘‘Schroedinger’s cat’’ paradox. Finally, with

the generalization of quantum field theories (3) to describe
the strong and electroweak interactions, in terms of fermionic λ0 = 2π

k(ω0)(charges) and bosonic (interaction carriers) fields, coherence
and interference are now conspicuous throughout modern

then the corresponding group velocity,physics.
In terms of applications, the concept of coherence is also

very pervasive in advanced technologies, ranging from masers
and lasers, spectroscopy, imaging, holography, and Doppler

∂k
∂ω

(ω0) = 1
νg(ω0)
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which gives the propagation velocity of the center of the pulse, equations. On the one hand, there are Maxwell’s two groups
of equations, governing the fieldswhile the quadratic term in the expansion

∇ × E + ∂tB = 0 (1)

∇ · B = 0 (2)
∂2k
∂ω2 (ω0) = −1

ν2
g (ω0)

∂νg

∂ω
(ω0)

and the group with sources
is related to group velocity dispersion (GVD). Higher-order
terms in the expansion describe more complex distortions of
the pulse as it propagates through the medium under consid- ∇ · E = 1

ε0
ρ (3)

eration.
In addition, the dispersion relation can often take a ten- ∇ × B − 1

c2
∂tE = µ0 j (4)

sorial form, as in the case of anisotropic media, and its com-
plex characteristics (imaginary part of the wavenumber) indi-

On the other hand, there are the equations governing the par-cate attenuation or amplification of the waves in the medium.
ticles’ dynamics, which are given by the expression of the Lo-Finally, the relation between the frequency and wavenumber
rentz force,can also depend on the intensity of the wave. In this case, the

medium is called nonlinear, and the propagation of waves in dtp = −e(E + v × B) (5)
such a system can yield a very rich variety of phenomena,
ranging from self-focusing and self-phase modulation to soli- and the continuity equation, which corresponds to charge or
ton propagation and harmonic generation. The dispersion particle conservation,
characteristics of a medium are often given in terms of its
refractive index, ∂tρ + ∇ · j = 0 (6)

Here, j� � (c�, j) � �enc(1, �) is the four-vector current den-
sity, with n the particle density, and v � c� their velocity.n(ω) = ck(ω)

ω
= c

νφ (ω)
= c

√
ε(ω)µ(ω)

The particles’ momentum is given by p � m0cu, and their
energy is given by m0c2�, where we have introduced the four-

which scales like the inverse of the phase velocity and can velocity u� � (�, u) � �(1, �). In this notation, the four-veloc-
also be related to the relative electric permittivity and mag- ity corresponds directly to the normalized energy-momen-
netic permeability of the material. These tensors indicate tum: p� � (�/c, p) � m0cu�, with � the energy. At this point, it
how the external, or incident, electromagnetic fields induce is important to note that Maxwell’s source-free Eqs. (1) and
both charge and current densities as they propagate (2) suggest the introduction of the four-vector potential A� �
through the medium, thus giving rise to complex, nonlinear (�/c, A), defined such that
inductions, which, in turn, modify the propagation of the
wave. E = −∇φ − ∂tA (7)

Boundary conditions, such as those imposed by a wave-
B = ∇ × A (8)guide structure or an optical resonator, also modify the dis-

persion characteristics of an electrodynamic system. Typi-
As a result, Eqs. (1) and (2) are automatically satisfied. If, incally, those boundaries introduce a quantization of the
addition, we impose that the four-vector potential satisfies the

transverse mode spectrum, characterized by a discrete cutoff Lorentz gauge condition
frequency spectrum. In a resonator, the axial modes also form
a discrete spectrum. In both cases, any space- and time-de-
pendent electromagnetic field configuration can be described

1
c2

∂tφ + ∇ · A = 0 (9)

as a superposition of such modes, as they form a complete
system of eigenfunctions for the system under consideration. we see that the second group is equivalent to
The corresponding eigenvalue spectra describe the dispersion
properties of each mode. The combination of a Fourier trans-
form for the time-dependent part of the wave, together with

�
∇2 − 1

c2
∂t

�
φ + 1

ε0
ρ = 0 (10)

a transverse eigenmode series expansion, is a powerful math-
ematical tool to analyze wave propagation and coherence in

�
∇2 − 1

c2
∂t

�
A + µ0 j = 0 (11)

detail. This technique will now be fully illustrated.

Equations (10) and (11) can be conveniently grouped in a sin-
gle covariant wave equation (6),Radiation Characteristics of a Point Charge

A simple approach to the description of coherent radiation
processes can be constructed within the framework of classi-

�
∇2 − 1

c2
∂2

t

�
Aµ + µ0 jµ = [∂ν∂

ν ]Aµ + µ0 jµ = 0 (12)

cal electrodynamics and help illustrate the concept of coher-
ence. For completeness, a brief review of the most important where the four-gradient operator is defined by
ideas of radiation theory is first given.

The interaction of charged particles with electromagnetic
fields can be described, in the classical limit, by two sets of

∂µ ≡ ∂

∂xµ
≡ −

�1
c
∂t, ∇

�
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In this form, the gauge equation and the Lorentz force where the charge density of the particle is modeled by a
three-dimensional delta-function that has been generalized toequation simply read
four dimensions by integrating over the electron’s proper
time. The four-vector u�/� � (1, �) corresponds to the parti-∂µAµ = 0 (13)
cle’s three-velocity.dτ uµ = −e(∂µAν − ∂νAµ)uν (14)

The four-vector potential corresponding to the retarded
(causal) Green function is called the Lienhard-Wiechert po-The covariant notation used here corresponds to a flat hyper-
tential, and has the covariant formbolic metric, where the scalar product is defined as a�b� �

a � b � a0b0, with the subscript 0 referring to the temporal
component of a four-vector, while the bold characters corre- Aµ(xν ) − 1

c
φ(xν )

uµ

γ
, φ(xν ) = 1

4πε0

e
R(1 − βββ · n̂)

(20)
spond to the usual spatial three-vectors (6). For example, we
have u�u� � (��)2 � �2 � �2(�2 � 1) � �1. The proper time is

where all the dynamical quantities are evaluated at the re-defined by dt/d� � �, and the four-velocity can now be defined
tarded time, defined such thatin terms of the position: u� � dx�/d�.

Note that the four-vector potential can be modified ac-
R = c(t − t−) = |x − r(t−)| (21)cording to

and accounting for the propagation delay. Here, x� � (ct, x)A → A + ∇�, φ → φ − ∂t�, Aµ → Aµ + ∂µ� (15)
corresponds to the observation position and time, while r(t)
describes the trajectory of the source (in particular, � �while the fields remain unchanged. Here, � is an arbitrary
dr/dt), and n̂ is the unit vector from the retarded position tofunction of space and time. The invariance of the fields under
the point of observation.such a transform is called gauge invariance. This concept, to-

The corresponding electric and magnetic fields are derivedgether with covariance (invariance under Lorentz transforma-
using Eqs. (7) and (8), with the result thattions), entirely specifies classical and quantum electrodynam-

ics (QED).
The driven wave Eq. (12) is linear, and the principle of

superposition applies to its solutions. In particular, if a solu-
tion to the wave equation is known for a Dirac delta-function
source, it can be immediately generalized, as any four-current

E(x, t) = e
4πε0

�
n̂ − βββ

γ 2(1 − βββ · n̂)3R2 + n̂ × (n̂ − βββ) × β̇ββ

(1 − βββ · n̂)3Rc

�
t=t−

B(x, t) = n̂× E(x, t)
c

(22)

density source can be appropriately described by an integral
superposition of delta-functions: where the first term in the brackets essentially corresponds

to the Lorentz transform of the Coulomb field (also called ‘‘ve-
locity field’’), while the second term, which carries energy tojµ(xν ) =

Z Z Z Z
jµ(x′

ν )δ4(xν − x′
ν ) d4xν (16)

infinity, is the radiation (or ‘‘acceleration’’) field. The radiated
power flux is given by the Poynting vector:The general radiation problem then takes the form

[∂ν∂
ν ]G(xν − x′

ν ) + µ0δ4(xν − x′
ν ) = 0 (17) S = n̂

dP
R2 d�

= E × H = n̂
E2

µ0c
(23)

The solution to this problem, G, known as the Green function
The power scales like the square of the field and acceleration.of the problem, is therefore of particular importance. The de-
It is easily seen that, in the instantaneous rest frame of thetails of the resolution fall out of the scope of this article, and
electron (� � 0), the radiation pattern is always dipolar:can be found in the classic monographs by Pauli (6) and Jack-

son (7), for example. The main steps of the derivation involve
Fourier-transforming the driven wave equation into momen-
tum space, where �� � ik�, and using a complex contour inte- S = n̂

e2

16π2ε0c
β̇ββ

2
sin2

ξ

R2
(24)

gral to avoid the poles corresponding to the vacuum disper-
sion on the past and future light-cones. There are two distinct with the typical sin2 angular dependence. Here, � is the angle
solutions corresponding to retarded and advanced waves between the acceleration and the direction of observation. In
propagating at c in a vacuum in the absence of any structure: any other frame, the relativistic Doppler effect warps this pat-

tern and strongly favors forward scattering. The total radi-
ated power is obtained by integrating the Poynting vector
flux R2(S � n̂) over all solid angles, while the radiated momen-

G± = −
�

1 ± x0 − x′
0

|x0 − x′
0|
�

δ(s2) (18)

tum is given by the integral of R2S over the same domain. In
where s2 � (x � x�)�(x � x�)� is the space-time interval, and covariant form, this yields
(x0 � x�0) is the time-like separation.

It is also important to note that the radiation of a point
charge in arbitrary motion can be described in terms of Green

dGµ

dτ
= µ0e2

6π
(aνaν )uµ (25)

functions (6,7) by expressing its four-current density as
where G� is the radiated energy-momentum, and a� �
du�/d� is the four-acceleration of the source. Finally, the radi-
ated spectral energy density can be derived by Fourier-trans-

jµ(xν ) = ec
uµ

γ
(xν )δ3(x) = ec

Z ∞

−∞
uµ(x′

ν )δ4(xν − x′
ν ) dτ ′ (19)
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forming the source trajectory and using Parsival’s Theorem FEL structure. The ideas presented here are easily general-
ized to other free-electron devices. In the presence of a heli-(7) to obtain
cally polarized magnetic field, monoenergetic electrons can be
launched on helical trajectories (9),d2I(ω, n̂)

dω d�
= e2ω2

16π3ε0c

����
Z ∞

−∞
n̂× (n̂×βββ exp

�
iω

�
t − n̂ · r(t)c

c

��
dt
����
2

(26) βββ(r, θ, z, t) = ẑβ‖ + β⊥[r̂ cos(kwz − θ ) + θ̂ sin(kwz − θ )] (28)

Note that the question of coherence does not appear explicitly where the perpendicular velocity is given in terms of the wig-
in this picture, as the point source has no physical scale, and gler field amplitude Bw, wavenumber kw, and initial energy
radiates coherently at any wavelength. To complete this brief �0, by
overview of classical electrodynamics, it is worth mentioning
the question of radiative effects: as shown in Eq. (25), the
electromagnetic field radiated by the accelerated source car-

β⊥ = eBw

γ0m0kwc
ries both energy and momentum; therefore, one should expect

and where energy conservation yieldsthe particle to recoil as it radiates. For a point charge, this
effect is essentially a self-interaction and has been derived by
Dirac (8) in 1938. The lowest-order correction yields the
Dirac-Lorentz equation

1
γ 2

0

= 1 − β2
‖ − β2

⊥

The axially extended electron bunch charge density is de-
scribed by a Gaussian distribution moving along the z axis
with the axial velocity ��c

aµ = −e(∂µAν − ∂νAµ)uν + τ0

�daµ

dτ
− (aνaν )uµ

�

= −eFµνuν + τ0

�daµ

dt
− Gµ

� (27)

where we recognize the usual Lorentz force and the negative
ρ(r, z, t) = q√

π �z πr2
⊥

exp

�
− (z − β‖ct)2

�z2

�
r ≤ r⊥ (29)

of the radiated energy-momentum, which is identified with
where q is the total bunch charge, �z its characteristic axialthe radiation damping force. The supplementary term, which
scale length, and r� its radius. The corresponding currentcorresponds to the third-order derivative of the particle posi-
density in the helically polarized wiggler is then given bytion, is required to satisfy the condition

uµaµ = 1
2

d
dτ

(uµuµ) = 0
j(θ, z, t) = ẑβ‖cρ(z, t)+β⊥cρ(z, t)[r̂ cos(kwz−θ )+ θ̂ sin(kwz−θ )]

(30)

and is called the Schott term. The parameter To solve the driven wave equation in this case, it is useful to
start by deriving the temporal Fourier transform of the cur-
rent density. We have, by definition,τ0 = 2

3
r0

c
= 6.26 × 10−24 s

is the Compton time-scale, where r0 is the classical electron jr(r, θ, z, t) = 1√
2π

Z ∞

−∞
dω̃ r(r, θ, z, ω) exp(−iωt) (31)

radius. This scale is the only natural scale appearing in clas-
sical electrodynamics, and it is interesting to note that the where the Fourier transform is given by
ratio of the Compton wavelength of the electron to its classi-
cal radius,

̃ r(θ, ω, z)= qβw√
2π3/2r2

⊥
cos(kwz−θ ) exp

�
i
ωz
β‖c

�
exp

�
−
�

ω �z
2β‖c

�2�

(32)
λc

r0
= 1

α
= 137.036

The Gaussian function corresponds to the coherence factor:
is the inverse of the fine structure constant. Therefore, QED for charge density distributions that are very short compared
effects generally become important before radiative recoil to the radiation wavelength, ��z � 1, and the Gaussian is
strongly modifies the electron dynamics. very close to unity; for arbitrarily short wavelength radiation,

the coherence factor vanishes exponentially.
Coherent Synchrotron Radiation The dispersive characteristic of the structure can now be

derived using a transverse eigenmode expansion. Note thatThe question of coherence in free-electron devices can now be
these transverse modes, which satisfy the boundary condi-addressed by considering the radiation characteristics of an
tions of the waveguide FEL, are spatially coherent. The de-accelerated charge distribution. The transition from coherent
gree of mixing of the transverse modes is a direct measure-to incoherent radiation is modeled by considering the ratio of
ment of the transverse spatial coherence of the radiationthe electron bunch length to the radiation wavelength. The
generated in the FEL.spatial coherence corresponds to the excitation of transverse

The transverse wave equation, for cylindrical geometry, ismodes in the system, and phase noise can be analyzed by con-
sidering the dispersion characteristics of the structure. For
the sake of illustration, a fairly specific example is considered:
coherent synchrotron radiation in a cylindrical waveguide

�
� − 1

c2
∂2

t

�
Ar − 1

r2
(Ar + 2∂θ Aθ ) = µ0 jr (33)
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It is easily seen that in the case of a spatially extended charge to Eq. (36). The operator introduced above diagonalizes the
left-hand side of Eq. (36), while it projects the source term ondistribution propagating in a helical wiggler, the transverse

electric (TE) modes couple to the wiggler-induced motion, a particular TEpq cylindrical waveguide mode. This technique
is rigorously analogous to the eigenfunction analysis used towhile the transverse magnetic (TM) modes are driven by the

uniform motion of the space-charge distribution in the cylin- solve the Schroedinger equation in quantum mechanics. After
some algebra, the sought-after differential equation govern-drical waveguide. Only the TE modes are considered here.

The general method of resolution for this very general ing the evolution of the spectral density of a given TE mode,
driven by an axially extended charge distribution propagatingclass of electrodynamical problem consists in separating vari-

ables and expanding the transverse components of the four- through a helically polarized wiggler is obtained:
vector potential in terms of transverse vacuum eigenmodes of
the structure, satisfying the appropriate boundary conditions.
In the example treated here, the radial and azimuthal compo-
nents of the four-vector are expanded in terms of the TE cy-
lindrical eigenmodes and Fourier-transformed into frequency
space, which yields the following expressions:

�
ω2

c2
− χ ′2

1q

a2
+ ∂2

z

�
Ã1q(ω, z)

=
µ0qβwJ2(χ ′

1qr⊥/a) exp

�
−
�

ω
�z

2β‖c

�2�

√
2π3/2a2J2

1 (χ ′
1q)

�
1 −

�
1

χ ′
1q

�2� exp

�
i

�
ω

β‖c
− kw

�
z

�

(38)

Note here that the wiggler helicity imposes a selection rule

Ar(r, θ, z, t) = 1√
2π

X
m

X
n

Z +∞

−∞
dωÃmn(z, ω)

× Jm(χ ′
mnr/a)

χ ′
mnr/a

exp[i(mθ − ωt)]

(34)

on the azimuthal wavenumber, further restricting the inter-
action to TE1q modes. To obtain a clear picture of the physics
involved in Eq. (38), we can introduce two different wavenum-
bers. First,

Aθ (r, θ, z, t) = 1√
2π

X
m

X
n

Z +∞

−∞
dωÃmn(z, ω)

× i
m

J′
m(χ ′

mnr/a) exp[i(mθ − ωt)]

(35)

k1(ω) =
�

ω2

c2
−

χ ′2
1q

a2
(39)

Here, ��mn is the nth zero of the Bessel function derivative J�m,
and a is the waveguide radius. The explicit dependence on

which corresponds to the propagation of the TE1q mode in thethe axial coordinate z is retained to obtain a differential equa-
cylindrical waveguide, and where we recognize the cutoff fre-tion governing the spectral density of each TE mode. It is im-
quency associated with the mode, andportant to note here that, in very general terms, there is a

one-to-one correspondence between the geometry of the elec-
trodynamical system under consideration and the mathemati- k2(ω) = ω

β‖c
− kw (40)

cal structure of the eigenmodes. For each boundary condition
for a given spatial coordinate, a discrete eigenmode results: which corresponds to the FEL Doppler-shifted beam mode as
for instance, in the present case, the radial boundary condi- illustrated in Fig. 4. This mode involves the excitation of elec-
tions yield a discrete spectrum of Bessel functions, while the trostatic space-charge waves on the electron beam and propa-
azimuthal symmetry results in a discrete set of harmonic gates at the axial beam velocity, as it is directly driven by the
functions in the angular coordinate �. For unbounded density modulation imposed on the beam by the external
variables, such as time, a continuous spectrum emerges; in fields. With these definitions, Eq. (38) takes the considerably
the present case, it is represented by a Fourier transform simpler form
into frequency space. Inserting these expressions into the
driven wave equation, expressed in frequency space after d2

z f (z) + k2
1 f (z) = C exp(ik2z) (41)

Fourier-transforming the current density [see Eq. (32)], one
obtains

X
m

X
n

�
ω2

c2
− χ ′2

mn

a2
+ ∂2

z

�
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The next important step in the derivation is to use the orthog-
onality of the transverse eigenmodes to diagonalize this infi-
nite set of coupled differential equations. This is achieved by
applying the following operator ck
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Figure 4. Dispersion diagram showing both the group and phase ve-
locities.
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which corresponds to a harmonic oscillator, with eigen- phase information (coherence and chirp) is described by the
argument of the complex exponential.frequency k1 (electromagnetic mode), driven harmonically at

k2 (beam mode). This system is driven resonantly when Therefore, the analysis of the dispersion characteristics of
an electrodynamical system, using the Fourier-eigenmode
expansion method described here, yields a number of impor-k1(ω) = k2(ω) (42)
tant results pertaining to the spatial and temporal coherence
of the radiation interacting with the system. The temporalwhich corresponds to the two roots � � ��, where
characteristics of the wavepacket generated by the coherent
synchrotron radiation process can also be analyzed by Fou-
rier-transforming back into the time domain. This is now
briefly sketched in the following paragraphs.

ω± = γ 2
‖ β‖kwc

�
�1 + β‖

�
1 −

�
ωc

γ‖β‖kwc

�2
�
� (43)

In general, it is not possible to derive an analytical expres-
sion for the time-dependent electromagnetic field in a complex

are the waveguide FEL Doppler upshifted and downshifted electrodynamical structure. However, most of the physics of
interaction frequencies. Here, �c is the cutoff frequency of the coherence and dispersion can be analyzed by using a Taylor
TE1q mode under consideration. Taking the solution to Eq. expansion of the dispersion relation around a given frequency
(41) corresponding to forward propagation, and using the re- �*, which is often chosen to correspond with a resonant inter-
lation E � ��� � �tA, yields the Fourier transform of the action frequency, such as those described in Eq. (43) for the
electric field excited by the beam in the FEL interaction re- FEL case. For the FEL, the wavenumber detuning is ex-
gion panded around the resonant frequency as follows:
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Here, the group velocity, GVD, and the cubic term are consid-where we have defined the radial overlap integral of the
ered; higher-order terms can also be introduced to includebunch over the transverse eigenmode, g1q (which is a geomet-
other pulse distortions at large detuning parameters. Noterical factor indicating how efficiently the electron beam cou-
that the linear term corresponds to slippage, which is the mis-ples to a particular transverse mode, depending on its electro-
match between the group velocity and the beam velocity. Formagnetic field distribution), and where the wavenumber
a given type of interaction (slippage dominated, grazing, zero-detuning parameter has been introduced. The zeros of this
dispersive grazing, etc.), corresponding to a minimal order ofparameter correspond to the FEL interaction frequencies
the Taylor expansion, the wavenumber detuning takes thegiven in Eq. (43).
general formThe main features of this solution are the following. First,

the amplitude of the electric field is proportional to the bunch
�k(ω − ω∗) ∼= an(ω − ω∗ )n (46)charge and acceleration, which yields the usual quadratic

scalings for the power spectrum. This is a general characteris-
wheretic of coherent radiation processes, as illustrated in the N2

scaling discussed in the Introduction. The next factor is the
aforementioned overlap integral of the bunch transverse dis- a1 = 1

νg
− 1

ν‖tribution with the TE mode. The exponential factor describes
the degree of coherence of the radiation; its argument is a

describes slippage,quadratic function of the bunch length to wavelength ratio.
This means that for long wavelengths, the bunch essentially
behaves like a point charge and radiates coherently, while at
wavelengths shorter than the physical size of the electron

a2 = −1
2

ν ′
g

ν2
g

bunch, the radiation is incoherent, as destructive interference
corresponds to GVD, andbetween various parts of the bunch greatly diminish the re-

sulting radiation intensity. The next factor, which appears in
the form of a modified sinc (sin(x)/x) function is the envelope
of the radiation spectrum, containing the information that the

a3 = −1
6

ν ′′
g

ν2
g

interaction is maximized at the FEL resonant frequencies,
where the detuning factor is zero and the sinc reaches its is the cubic term. At grazing, the first term is zero, and the

interaction spectrum has a quadratic behavior near reso-maximum value of unity. In the case of well separated Dopp-
ler upshifted and downshifted interaction frequencies, the de- nance, thus broadening the interaction bandwidth; other dis-

persive structures can yield even higher-order broadening,nominator of the sinc function tends to zero linearly. By con-
trast, in the case of grazing, where the group velocity of the where the minimum order of the expansion becomes cubic,

for example.wave matches the axial bunch velocity, the denominator has
a double singularity (�	 � ��), yielding a quadratic behavior Using the Taylor expansion to Fourier-transform back into

the time domain yields analytically tractable results, at leastand a maximized interaction bandwidth. Finally, the spectral
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for low-order interactions. Slippage translates into linear energy in the form of photons. Bohr first explained the hydro-
gen spectrum in terms of quantization of the angular momen-pulse broadening, where the radiation pulse leads or lags be-

hind the electron bunch, whereas at grazing, where slippage tum, following de Broglie’s argument that the particle-wave
duality exhibited by the photon must have a counterpart foris eliminated, the temporal pulse broadening mechanism is

GVD: the interaction bandwidth is large, and different fre- the electron and other subatomic particles. This early theoret-
ical model of the hydrogen atom was subsequently shown toquency components of the pulse have different group veloci-

ties. The output pulse is also chirped by this mechanism (typi- be a solution of Schroedinger’s equation, which brings a for-
mal basis to quantum mechanics.cally, the high frequencies propagate faster than the longer

wavelengths, for a positive GVD medium). With negative The next development concerned the radiation theory of
Dirac (10,11), where emission and absorption were describedGVD, pulse compression can be achieved. Finally, we note

that very similar techniques are used at optical wavelength, in terms of the interaction of the quantized electromagnetic
field with atomic systems. It was also realized that a fullyincluding CPA, which is described in the section concerning

optical coherence and quantum systems. relativistic formulation of quantum electrodynamics was
needed. Two types of problems immediately appeared: the
point structure of the electron yielded an infinite electromag-
netic mass, and the zero-point vacuum energy also resultedCOHERENCE IN QUANTUM DEVICES
in severe divergences. The problem was solved by the intro-
duction of modern QED by Feynman, Schwinger, Dyson andThe other general type of electromagnetic source corresponds

to quantum systems, where bound electrons can interact with Tomonaga, who renormalized both the electron mass and
charge to avoid the electromagnetic mass and vacuum polar-the (external or virtual) radiation field. Three fundamental

processes can occur in this situation: absorption, spontaneous ization problems. The new roles of the electron and photon in
QED, which also fully explained antiparticles, have importantemission, and stimulated emission. By comparison with the

previously described, classical free-electron radiation sources, consequences for the concept of coherence in electrodynamics.
coherence now links and correlates the stimulated emission
process, while spontaneous radiation is typically associated Absorption, Spontaneous Emission, and Stimulated Emission
with incoherent radiation, where the statistical properties of

Before considering superradiant processes and the quantumthe photon field correspond essentially to random noise fluc-
theory of optical coherence, it is interesting to briefly reviewtuations.
the basic ideas behind the fluctuations in photon number. ATwo very important concepts are associated with quantum
detailed presentation is given in the classic monograph ofsystems interacting electromagnetically: the quantization of
Loudon (12). As mentioned earlier, the occurrence of absorp-the radiation field into the photon field, and Heisenberg’s un-
tion and emission processes causes the number of photons incertainty principle, which sets a lower limit to the commuta-
each mode of the quantized radiation field to fluctuate. Thetor of conjugate variables for both particles and fields. The
ergodic theorm, often used in statistical mechanics, indicatesfirst concept, introduced by Planck to describe the spectral
that averaging a given system over time is equivalent to aver-characteristics of blackbody, or thermal equilibrium, radia-
aging over an ensemble of identical systems at a given time.tion, was extended by Einstein to describe absorption and
In the case of photons, instead of time-averaging over a largespontaneous radiation. As a result of this analysis, Einstein
cavity in space, one can average the photon number over thepostulated the existence of a third type of radiation process:
same field mode in large numbers of similar cavities. Thestimulated emission. One of the key features of stimulated
fluctuations are then derived from the higher-order momentsradiation is its coherence: the phases of the incident and emit-
of the photon number probability distribution, with the resultted photons are identical. The second concept introduces vac-
that �n � ��n�2 	 �n2�, where the brackets denote averaging.uum fluctuations: the electromagnetic field is described as an
Such statistical fluctuations can be measured in photon-assembly of harmonic oscillators, with quantized energy lev-
counting experiments.els corresponding to oscillation modes represented by pho-

The mechanism of emission and absorption of photons cantons. The energy spectrum associated with this model has the
first be described by means of a simple phenomenological the-form (n 	 1/2)��, where the lowest (vacuum) energy level has
ory proposed by Einstein. The postulates behind this simplea nonzero value. The parameter � � 6.62 10�34 J � s is Planck’s
model can actually be rigorously demonstrated using a quan-constant. Creation and annihilation operators are applied to
tum mechanical description of these interaction processes. Indescribe the quantum dynamics of the photon number and
this model, the electromagnetic field is quantized in a cavityare interpreted physically in terms of emission and absorp-
with fixed boundary conditions, and two-level atoms are con-tion. Because of the nature of the quantum vacuum, which is
sidered. Photons can be emitted or absorbed if their frequencynow described in terms of virtual particles and satisfies the
satisfies the condition ��12 � E2 � E1, where E1 is the grounduncertainty principle, vacuum fluctuations can induce sponta-
state energy of the atoms, and E2 is the energy of the excitedneous transitions between different energy levels associated
state. The respective number of atoms, also called population,with the emission of incoherent spontaneous radiation.
in each level is N1 and N2. Both the thermal energy densityAnother important set of ideas in the early formulation of
of the radiation and the contribution from an external probethe quantum theory was concerned with the explanation of
beam must be considered; in this case, the total energy den-atomic spectral lines. The interaction of electromagnetic radi-
sity in the cavity, at a frequency �, is Wt(�) 	 We(�). Theation with atoms became a very important research topic, and
photon absorption and emission probabilities are defined asthe discrete nature of atomic spectra yielded a strong indica-
follows. An excited atom has a transition rate A21 to spontane-tion that the energy levels in the atom must be quantized,

in close connection with the quantization of electromagnetic ously emit a photon and decay into the ground state. For an
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atom in the ground state, excitation is possible only if the stimulated emission will dominate at longer wavelengths. In
the optical range, the spontaneous emission rate far exceedsatom absorbs a photon. The probability for this process, per

unit time, is thus proportional to the photon energy density: the stimulated emission, thereby requiring pumping schemes
for population inversion in lasers.B12 W(�). Finally, as will be shown, a third process must be

allowed to balance the equations describing the evolution of
the population in the ground and excited states. This process, Quantum Theory of Optical Coherence
postulated by Einstein, is called stimulated emission and has

With the advent and rapid development of masers and lasers
the probability B21 W(�).

in the early 1960s, the concept of coherence that had been
For a sufficiently large total number of atoms, the rate

conventionally used in optics was found to be inadequate to
equations governing the two levels are

completely describe the novel photon states produced by these
sources. To provide a fuller discussion of coherence, a succes-
sion of correlation functions for the complex field strength

dN1

dt
= −dN2

dt
= N2A21 + [N2B21 − N1B12]W (ω) (47)

was defined by Glauber (4), in his classic exposition of the
quantum theory of optical coherence.To inspect the implications of this result more carefully, one

can consider the simple case of thermal equilibrium. In any
Chirped Pulse Amplificationequilibrium configuration, the time derivatives are identically

zero; in addition, for thermal equilibrium, there is no external Chirped pulse amplification (CPA) is a technique used to am-
energy density; therefore, plify ultrashort laser pulses (1 ps to 10 fs) to very high peak

power levels (100 GW to 100 TW) through temporal expansion
and recompression. With a time–bandwidth product defined
by the laser pulse shape (i.e.: Gaussian �� �� � 2), short
pulse length is directly correlated to large bandwidth. When

Wt (ω) = A21�
N1

N2

�
B12 − B21

(48)

such a pulse is incident on an optical diffraction grating, the
various spectral components of the short pulse are spreadOn the other hand, for thermal equilibrium, the populations
spatially. By arranging a pair of optical gratings, the spatialobey Boltzmann’s law, where
separation is converted to an ordering of the spectral compo-
nents in time. Under the proper set of circumstances, the
chirped pulse output will have a duration of orders of magni-
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tude (up to 100,000 demonstrated in the laboratory) larger
than the original short pulse from the oscillator. Theand an expression relating the energy density to the Einstein
stretched pulse can be safely amplified without causing dam-coefficients is obtained:
age to the amplifier medium. Once amplified, the conjugate
process to stretching is applied to recompress the now large
amplitude laser pulse. This process relies directly on the spa-
tial and temporal coherence of the incident ultrashort laser

Wt (ω12) = A21

exp
�
�ω12

kBT

�
B12 − B21

(50)

pulse and is a good example of a modern development in fem-
tosecond optics.This expression can be directly compared with Planck’s law

for blackbody radiation. In the absence of stimulated emis-
Squeezed Optical Statession, temperature independent balance cannot be achieved.

Finally, this result must be independent of the equilibrium Although the uncertainty principle imposes a lower bound on
temperature, thus yielding the following relations for the coef- the commutator of conjugate variables, such as amplitude and
ficients: phase for the quantized radiation field, the shape of the do-

main of phase space corresponding to a particular coherent
state of light can be reshaped by means of nonlinear interac-B12 = B21 (51)
tions. For example, the phase fluctuations can be smaller
than those of the vacuum state. Of course, this is done at the

�ω3
12

π2c3 B21 = A21 (52)
expense of the conjugate variable. This is essentially the basic
idea behind optical squeezing. Such modern developments inThis result shows that for an idealized, two-level atomic sys-
optics are also closely related with quantum nondemolitiontem, the transition rates can be expressed in terms of a single
measurements, include those relying on Kerr-type nonlineari-coefficient. Simple considerations also lead to the fact that,
ties, and with the concept of phase conjugation.in thermal equilibrium, the emission rate stimulated by the

blackbody photons is proportional to the spontaneous emis-
sion rate and the average photon number in the radiation COHERENT EFFECTS IN LASER PRODUCED PLASMAS
modes at the transition frequency �12:

Laser-produced plasmas are an important plasma source and
a complex medium for the propagation of electromagnetic
(EM) waves (14). They are important to applications such as

A21

B21Wt (ω12)
= exp

�
�ω12

kBT

�
− 1 (53)

inertial confinement fusion (ICF), study of relativistic plasma
physics, acceleration of electrons to GeV energies (by meansFor example, at room temperature, the wavelength scale of

thermal radiation is of the order of 50 �m, and thermally of laser EM fields or longitudinal plasma waves), and many
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other areas, including industrial applications. Since plasmas A self-consistent steepening of the density profile is an es-
sential feature of the resonant absorption of intense lightare composed of electrically charged particles, there is a
waves. In an expanding plasma, any pressure exerted at anystrong coupling between the charged particles in the plasma
point will locally modify the density profile, which produces aand the EM fields of the laser. A number of processes can
localized steepening. One example of this is the momentumoccur between the laser light and the plasma, such as absorp-
deposition of the incident light reflecting at its critical den-tion and coupling of the EM energy through a number of dif-
sity. A more complex situation arises if p-polarized laser lightferent processes. The plasma, produced by the laser pulse, is
is incident at an oblique angle with respect to the plasmamodified as the light pulse propagates through the plasma,
density gradient. In this case, the steepening of the densitymodifying the electron density and temperature, the electron
profile is produced both by the pressure of the reflecteddensity gradient, and the overall geometry of the plasma. In
obliquely incident light and by the pressure of a resonantlyturn, the plasma itself has a strong effect on the laser pulse,
generated electrostatic field near the critical density. Whenmodifying its properties as it propagates, modifying the direc-
electrons oscillating in the resonantly-driven field move intotion of propagation, its frequency, and its coherence.
regions of higher and lower electron density, the electron os-Further complexities arise from the coupling of the EM
cillation becomes nonsinusoidal. Harmonic components arewave to other modes inside the plasma (15). Since a plasma
superimposed on their oscillations and similarly on the radi-can support a family of longitudinal plasma waves, they can
ated EM wave. The number of harmonics will be a functioncouple to the incident EM wave of the laser, producing sec-
of the intensity of the laser light and the steepness of theondary progeny waves, with one of the waves being an EM
electron density gradient. This process has produced harmon-progeny wave with optical properties different from the inci-
ics to high orders (�50) when driven by long wavelength la-dent ‘‘pump’’ EM wave. There are situations, on the other
sers, such as CO2 (18). The interest in this area has been re-hand, where the properties of the laser field are modified on
opened with the new, high-power, short-pulse lasers (19).purpose. For applications such as ICF (16), the coherence of

Strong modification to the frequency spectrum of the laserthe laser beam is modified in an attempt to resolve problems
light can be induced by the decay into secondary EM as a by-associated with the coupling of the laser to the ICF plasmas.
product of a decay associated with a parametric processWe will consider the following three issues associated with
(14,15). Laser plasma coupling can be strongly influenced bythe propagation of an EM wave of high intensity through a
the excitation of plasma waves either by mode conversionplasma: harmonic generation near the critical density; decay
near the critical density as discussed above (resonance ab-of the incident laser light through parametric processes; and
sorption) or by a variety of instabilities. These instabilitiesthe purposely modified coherence of a laser beam. These three
can be most simply represented as the resonant coupling ofcases address situations where the laser light dramatically
the incident laser light into two other waves. If we neglectchanges its frequency (generation of harmonics), has a strong
magnetic fields, these progeny waves are simply high-fre-modification to its frequency (loss of energy to a local longitu-
quency electron plasma waves (Langmuir), low-frequency iondinal model of the plasma), and the reduction of spatial or
acoustic waves, and scattered electromagnetic waves. The

temporal coherence of the light to minimize detrimental ef- stimulated Brillouin scattering (SBS) and the stimulated Ra-
fects. man (SRS) instabilities have been studied extensively during

Harmonics of the laser light can be generated at the criti- the past twenty years, both theoretically and experimentally.
cal density of a laser-produced plasma, where electrons are Stimulated Brillouin scattering consists of the decay of the
forced to oscillate by the electric field of the laser, in and out incident EM wave (�o, ko) into a scattered EM wave (�SBS,of a region of plasma of varying density. Critical density is kSBS) and an IAW (�IAW, kIAW), where � and k are the respec-
the density at which the frequency of the laser light equals tive frequency and wavevector for each wave. Similarly, stim-
the frequency of the plasma, a point at which total reflection ulated Raman scattering consists of the decay of the incident
of the light occurs. The EM field of the laser causes a nonsi- EM wave into a scattered EM wave (�SRS, kSRS) and an IAW
nusoidal oscillation of the electrons, yielding the generation (�EPW, kEPW). For example, in the stimulated Raman instabil-
of higher harmonics. The process responsible for this is the ity, the laser light can decay into a scattered light wave and
ponderomotive force associated with the resonant absorption an electron plasma wave. In the Brillouin instability, the two
of light. Resonance absorption is a linear process by which a progeny waves are a scattered light wave and a low frequency
light wave is partially absorbed by conversion into an electro- ion acoustic wave. A decay into an electron plasma wave plus
static wave at the critical surface (17). A light wave incident an ion acoustic wave (or a purely growing ion fluctuation) is
onto an inhomogeneous plasma is reflected at the classical also possible, and this process can occur near the critical den-
turning point determined by ne � ncr cos2�, where � is the sity. In addition to the above processes, the laser light can
angle of incidence. For a p-polarized wave, the electric field produce density modulations which lead to either self-focus-
of the light wave is in the plane formed by its propagation ing or filamentation. All these instabilities have the conse-
vector k and �ne. At the turning point, the local electric field quence of modifying the incident laser light. The EM waves so
points in the direction of �ne. Some of this field tunnels to the generated are shifted in frequency, proportional to the energy
critical surface region, where it resonantly drives an electron taken by the local plasma mode, either the electron plasma
plasma oscillation. Part of the light wave energy is thus con- wave or ion acoustic wave. For all these processes, the coher-
verted into an electrostatic wave, which heats the plasma ence length of the interaction beam is an important factor of
electrons as it damps. This process does not occur for s-polar- the coupling. As the light propagates through the plasma, its
ized light. The electric field of the light wave is then perpen- wavenumber varies as a function of the local plasma condi-
dicular to both k and �ne and so does not drive charge den- tions. This limits the region of interaction in which the three

waves are resonant (14,15).sity fluctuations.
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