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index term nonlinear optics were described for their main
parts in the 1960s, together with the related theoretical back-
ground. The reader may usefully refer to specialized books
such as those cited in Refs. (1) and (2). However, the number
of papers, conferences, and patents relating to NLO is still
increasing nowadays, mainly because of the numerous poten-
tial applications of optoelectronic devices. Furthermore, since
1960 these studies have benefited from constant progress on
both laser sources and optical materials.

Nonlinear optical phenomena are analogous effects, such
as harmonic generation, parametric amplification, and recti-
fication, which are well-known to electrical engineers at
audio, radio, and microwave frequencies. All of these have
their counterpart at optical frequencies, between 1013 Hz and
1015 Hz, corresponding to ultraviolet, visible, near, and midOPTICAL HARMONIC GENERATION
infrared spectra. This is a consequence of the nonlinear re-PARAMETRIC DEVICES
sponse of a medium to an applied optical field.

In terms of linear optics, developed for centuries, the prop-The scope of this article is mainly focused on optical harmonic
agation of an electromagnetic wave in a dielectric medium isgenerators and parametric generators. These devices are
schematically described as follows: the optical field at circularbased on nonlinear optical interactions to generate or amplify
frequency � creates dipoles by displacing the valence elec-one or several laser beams. They offer a unique opportunity
trons of all the different atoms of the material (the motionto achieve an optical frequency conversion; furthermore, their
of the heavy nuclei is generally neglected at the consideredconversion efficiency may reach 85% for the best performing
frequencies); this induces a macroscopic electronic polariza-ones. Nowadays, most of these systems use 3-wave interac-
tion, which in return radiates a field proportional to the inci-tions in noncentrosymmetric and anisotropic crystals. These
dent one and with the same vibration �. The associated re-interactions consist of sum and difference frequency mixing,
fractive index n is a rank two tensor, characteristic of theSFM and DFM, respectively, as shown in Fig. 1. Harmonic
medium; it is symptomatic of the structural arrangement ofgenerations are particular cases of SFM. This introduction be-
the atoms in the medium. Under these conditions, two wavesgins with a rapid overview of nonlinear optics in order to pre-
at different frequencies cannot interact.sent the main issues closely related to that of parametric de-

The consideration of a linear response of the medium isvices. The main applications of these systems will then be
only an approximation, which is currently done in many do-presented.
mains of physics. If the amplitude of the incoming electric
fields is large, the induced polarization is nonlinear with re-

NONLINEAR OPTICS: AN ACTUAL AND spect to those fields, and waves can interact together. In such
WIDE FIELD OF OPTICS RESEARCH

a case, the motion of the electrons becomes anharmonic and
so the dipoles will radiate additional waves at frequencies dif-Since the first observation of second harmonic generation by
ferent from the incoming ones (e.g., twice the incident fre-Franken in 1961, the field of nonlinear optics (NLO) has be-
quency in the case of second harmonic generation). Many ap-come extremely diverse, with a still increasing variety of ap-
plications of NLO are based on this generation of anplications. The wide range of phenomena gathered under the
additional beam, as will be discussed further.

The realization of nonlinear optical interactions requires
the use of intense optical fields because the nonlinear re-
sponse of the medium is always low when the optical frequen-
cies are far from the electronic resonant frequencies of the
material. However, if the electric field is too intense an irre-
versible degradation of the material occurs.

NLO phenomena are most commonly observed with laser
beams. As an example, the intensity emitted by pulsed lasers
may easily reach 1010 W � cm�2, with a corresponding electric
field of 108 V �m�1. It should be noted that this field remains
a weak perturbation in comparison to the internal field bind-
ing the electrons, typically 3 � 1010 V �m�1. Moreover, such
high power levels are not a necessary condition for the obser-
vation of most of the NLO interactions. Under favorable con-
ditions, discussed further, an intensity of 1 W � cm�2 of coher-
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ent light is sufficient to realize a second harmonicFigure 1. 3-wave interaction in a noncentrosymmetric nonlinear
generation experiment.crystal (NLC): (a) sum frequency mixing �3 � �1 � �2, second har-

If the intensity is lower than 1010 W � cm�2, the induced po-monic generation (SHG) 2� � � � �, third harmonic generation
larization can be written as a Taylor series of the successive(THG) 3� � 2� � �; (b) difference frequency mixing (DFM) �b �

�3 � �a with (�a, �b) � (�1, �2) or (�2, �1). powers of the electric field.
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The quadratic term of the induced polarization is responsi-
ble for 3-wave interactions of SFM and DFM. These effects
are observed in media with a quadratic electric susceptibility,
which means noncentrosymmetric materials. Actually, in a
centrosymmetric medium, two opposite directions are equiva-
lent, and so the polarization must change sign if the optical
electric field is reversed. Then, there can be no even powers
of the field in the expansion of the polarization in such media.
In noncentrosymmetric materials, the associated response is
strongly enhanced if the nonlinear polarization and the radi-
ated electric field achieve a constructive interaction over all
the dipoles. This condition requires the use of incident coher-
ent optical fields; it is known in NLO as phase-matching, and
it is only achievable in anisotropic crystals, as will be ex-
plained further. Nevertheless, quadratic nonlinear interac-
tions may be realized in isotropic media, whether solid, liquid,
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(c)or gas, as soon as they lack an inversion symmetry.
Another effect arising from the quadratic polarization is Figure 2. Configurations of association of a laser medium with an

the linear electrooptic effect, also known as Pockels effect NLC: (a) extracavity nonresonant, (b) extracavity resonant, (c) intra-
(1893). It is described as the interaction between two fields at cavity.
optical frequency with one static or low frequency (�105 Hz)
electric field, which induces a modification of the refractive

A useable nonlinear crystal should present several otherindex. The Pockels cells, used for optical modulation, are
physical properties such as good transparency and low opticalbased on an external applied low-frequency electric field.
absorption at the concerned frequencies, high optical damageOn the other hand, an electric field can be photoinduced threshold, and mechanical and chemical stability.

and involved in a linear electrooptic effect, which is called a Such systems have a high plug in efficiency. They offer a
photorefractive effect. It leads to self-focusing or defocusing of compact, reliable, powerful, and eventually portable alterna-
the beam in the material, which can be detrimental in regard tive, whereas liquid and gas lasers are inconvenient. More-
to optical damages, or used for the propagation of optical spa- over, integrated optoelectronic devices are now developed.
tial solitons. The field of application of parametric interactions is as

The cubic term of the induced polarization is responsible wide as that of lasers themselves. Optical data storage, print-
for 4-wave interactions: frequency conversion with corre- ing, eye-safe telemetry, machining, and medical laser systems
sponding SFM and DFM, and the particular case of direct are a few examples among those that clearly benefit from the
third harmonic generation, on the one hand, and phase conju- wider wavelength range delivered by parametric devices.
gation which allows us to restore a distorted wavefront, on Tunable picosecond lasers also offer new capabilities in high
the other hand. repetition rate optical telecommunications through wave-

If the incident frequency is close to the electronic resonant length multiplexing and soliton propagation. Apart from
frequencies of the medium, the nonlinear response is strongly these large-scale commercial applications, scientific applica-
enhanced. Resonant techniques such as multiphoton absorp- tions are developed for parametric devices, especially in the
tion and ionization or stimulated Raman scattering are used field of spectroscopy: tunable femtosecond laser sources allow
for spectroscopic applications. Because of maximal linear opti- a variety of time-resolved studies.
cal absorption at resonant frquencies, this is not an optimal The actual development of parametric devices allows us to

fulfill all kinds of experimental requirements: apart fromsituation for the generation of powerful beams. All the cubic
their wide wavelength range, they offer a variety of peak in-and resonant NLO interactions are not within the scope of the
tensities, pulse widths (from the millisecond to the femtosec-present article, and details may be found in specialized books.
ond ranges), and repetition rates.

MAIN APPLICATIONS OF PARAMETRIC DEVICES INDUCED MACROSCOPIC POLARIZATION

The function of optical parametric devices is to extend the We consider the most frequently encountered situation where
the polarized units of the medium have negligible sizes com-wavelength range of lasers, which mainly emit discrete or
pared with the optical wavelengths, the optical frequencies arelimited-tuning-range wavelengths: optical parametric crystals
far away from the resonance of the medium, and optical fieldare then associated with laser media in order to generate or
intensities do not exceed a few gigawatts per square centime-amplify coherent light from 0.2 �m to 20 �m. Particularly
ter. We also suppose that the displacement of the optical fieldsinteresting from the point of view of applications is the poten-
lead to a corresponding time displacement of the induced polar-tial to realize all-solid-state tunable laser sources, with the
izations, and the polarization effects are supposed to occurassociation of nonlinear crystals with a solid-state laser
at the site of the polarizing field with no remote interactions.pumped by a diode. As shown in Fig. 2, the nonlinear crystals

can be placed outside or inside the laser cavity, and are called
Linear and Nonlinear Responsesextracavity or intracavity devices, respectively; for extracavity

devices, the parametric interaction can be resonant (by plac- In the framework of the approximations listed previously, the
macroscopic electronic polarization of the unit volume of theing the nonlinear crystal in a resonant cavity) or nonresonant.
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nonlinear medium, in the space and frequency domain (r, �), The spherical coordinates (�, �) of u in the optical frame (x,
y, z) are related to the cartesian coordinates byis usually expanded in a Taylor power series of the optical

electric field according to (1):
ux = sin θ cos φ uy = sin θ sinφ uz = cos θ (8)

PPP(rrr, ω) = PPP0(rrr) + PPP(1)(rrr, ω) + PPP(2)(rrr, ω) + · · · + PPP(n)(rrr, ω) (1)
We consider lossless media, thus, the refractive indices n	(�,

with �, �) � [�	(�, �, �)]1/2, n� � n�, are real and correspond to the
solutions of Fresnel (3):

PPP(n)(rrr, ω) = εoχ
(n)(ω) · EEE(rrr, ω1) ⊗ EEE(rrr,± ω2) ⊗ · · · ⊗ EEE(rrr,± ωn)

(2)

P0(r) is the static polarization and P(n)(r, �) stands for the
nth-order polarization.

� � 2�v � 2�c/� is the circular frequency associated with
the frequency v and the wavelength �.

n± =
� 2

−B ± (B2 − 4C)1/2

�1/2

B = −u2
x (b + c) − u2

y (a + c) − u2
z (a + b)

C = u2
xbc + u2

yac + u2
z ab

a = n−2
x (ω), b = n−2

y (ω), c = n−2
z (ω)

(9)

c is the light velocity in the vacuum.

nx(�), ny(�), and nz(�) are the principal refractive indices of
The circular frequencies of the interacting waves verify the the index surface at the circular frequency �. The existence
energy conservation: of equalities between the principal refractive indices deter-

mines the three optical classes: isotropic (nx � ny � nz) for the�ω = �ω1 ± �ω2 ± · · · ± �ωn (3)
cubic system, uniaxial (nx � ny � no � nz � ne, o for ordinary
and e for extraordinary) for the tetragonal, hexagonal and� stands for the tensorial product and � stands for the contrac-
trigonal systems, and biaxial (nx � ny � nz) for the orthorhom-tion between the nth-order susceptibility tensor �(n)(�) and
bic, monoclinic, and triclinic systems. (n� � n�) is termed asthe nth-order field tensorial product.
birefringence.P(1)(r, �) is the linear polarization and the P(n�1)(r, �) are

The unit electric field vectors e� and e� are calculated fromthe nth orders of the nonlinear polarization. According to Eq.
the propagation equation projected on the three axes of the(2), the components of the first and second orders of the polar-
optical frame. We obtain, for each wave, three equations thatization vectors are expressed as
relate the three components (ex, ey, ez) to the unit wave vector
components (ux, uy, uz):P (1)

i (rrr, ω) = εo

X

i

χ(1)
i j (ω)Ej (rrr, ω) (4)

(n±)2(e±
p − up[uxe±

x + uye±
y + uze±

z ]) = (np)2e±
p (10)

P (2)
i (rrr, ω) = εo

X

j,k

χ(2)
ijk (ω)Ej (rrr, ω1)Ek(rrr,± ω2) (5)

Here (p � x, y, and z) with (e	x )2 � (e	y )2 � (e	z )2 � 1. Any para-
metric interaction occurs necessarily between the eigen

�(2) is expressed in meters per volt. The cartesian indices (i, modes e� and e� at the concerned frequencies.
j, k) refer to the optical frame (x, y, z), which is the orthonor-
mal frame of the principal axes of the index ellipsoid and

Symmetry Properties of the Electric Susceptibilitysurface.
We consider plane waves, and we keep the complex form In a lossless medium, any nth-order susceptibility tensor

of the electric fields, which is given by �(n)
ij. . .n(�) is real [i.e., �(n)

ij. . .n(�) � �(n)
ij. . .n*(�)], and it remains un-

changed by concomitant permutations of the cartesian indices
EEE(rrr, ω) = eee(kkk)E(rrr, ω) exp[ jkkk(ω) · rrr] (6) and the corresponding circular frequencies; that is to say, for

�(2) (1),
E(r, �) � A(r, �) exp[j�(�)] is the scalar complex amplitude

where �(�) is the initial phase. χijk(ω3 = ω1 + ω2) = χjik(ω1 = ω3 − ω2) = χkij(ω2 = ω3 − ω1)

(11)E(r, ��) � E*(r, �) because the fields are real.
e and k are the unit electric field vector and the wave vec-

This property is called an ABDP symmetry. If the wavelengthtor, respectively.
dispersion of the refractive indices of the nonlinear medium
is small, �(n) is totally symmetric—the tensor is invariant withIn an isotropic medium, the possible directions of e are all the
respect to any permutation of cartesian indices. This overalldirections in the plane normal to k, and the modulus of k is
permutation symmetry is called Kleinman symmetry, whichthe same in all directions. On the other hand, only two direc-
reduces the number of independent coefficients of the tensortions e� and e� are allowed in the plane normal to k with the
from 27 to 10 for �(2). These properties are both intrinsic sym-corresponding moduli �k�� and �k�� in an anisotropic medium
metry properties.in the general case.

The symmetry of �(n) must correspond to that of the crystalThe two wave vectors k�(�, �, �) and k�(�, �, �) associated
in accordance with the Neumann principle (4). The applica-with a direction of propagation of unit vector u(�, �) are given
tion of this principle leads to a reduction of the number ofby
independent coefficients and eventual connections between
them. The form of �(n) is then specific of the crystal class (e.g.,
�(2) is nil for any centrosymmetric class).

kkk±(ω, θ, φ) = ω

c
n±(ω, θ, φ)uuu(θ, φ) (7)
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ELECTROMAGNETIC ENERGY EXCHANGE waves is not incident in the nonlinear medium but is
generated inside the nonlinear crystal, its initial phase

The time average work that is done by the electromagnetic is locked at the value that allows a maximum work, that
is to say with �� � �/2. Then in these conditions, thewaves in a nonlinear medium is one of the first ways to char-

acterize the efficiency of a parametric interaction: the effi- initial phases of a 3-wave parametric interaction verify
�(�1) � �(�2) � �(�3) � �/2. From the point of view ofciency is maximum when the sign of the work remains posi-

tive over the distance of propagation. In that case, the the quantum theory of light, the phase-matching of the
waves corresponds to the total photon-momentum con-nonlinear polarization P(n)(r, �) continuously transfers its en-

ergy to a wave E(r, �) during a parametric interaction involv- servation; in other words,
ing (n � 1) waves. The work W(n)(r, �) in a dielectric medium
is given by (1): γ −1X

m=1

�kkk(ωm) = �kkk(ωγ ) (17)
W (n)(rrr, ω) = 2ω Im[EEE∗(rrr, ω) · PPP(n)(rrr, ω)] (12)

with � � 3 for a 3-wave interaction.According to relations (5) and (6), the 3-wave work W(2)(r,
�3 � �1 � �2) is equal to

According to Eq. (7), the projection of the vectorial phase-
matching relation (17) on the wave vector k(��, ��, ��) at theW (2)(rrr, ω3) = 2ω3ε0χ

(2)

eff (ω3 = ω1 + ω2) sin(�k�k�k · rrr + �φ) (13)
highest circular frequency �� is written:

The effective coefficient �(2)
eff is given by

χ(2)

eff (ω3 = ω1 + ω2) = χ(2)(ω3) · F (2)(ω3 = ω1 + ω2) (14)

γ −1X

m=1

ωmn(ωm, θm, φm) cos αmγ = ωγ n(ωγ , θγ , φγ ) (18)

with �m� is the angle between k(�m, �m, �m) and k(��, ��, ��).
The circular frequencies verify the energy conservation:F (2)(ω3 = ω1 + ω2) = eee∗(ω3) ⊗ eee(ω1) ⊗ eee(ω2) (15) ���1

m�1  �m �  ��. The different n(�, �, �) are the solutions n�

and n� given by Eq. (9). Collinear phase-matching corre-
F (2) is the field tensor. Note that e*(�3) � e(�3) because the sponds to the case where all the interacting waves have col-
waves are linearly polarized. �k � r � �� is the phase parame- linear wave vectors (i.e., �m� � 0 for each m wave).
ter with Because any medium is dispersive [i.e., !n(�)/!� � 0],

phase-matching can be achieved only in directions where the
associated birefringence compensates the dispersion. In the

�kkk · rrr = [kkk(ω1) + kkk(ω2) − kkk(ω3)] · rrr and

�φ = φ(ω1) + φ(ω2) − φ(ω3)
(16)

case of normal dispersion [i.e., n	(�i) 
 n	(�j) for �i 
 �j], only
three types of combinations of the refractive indices verify

Phase Relations equality (18) for a 3-wave parametric interaction. The three
corresponding phase-matching relations in the collinear caseThe sign of the work depends on the value of the phase pa-
are (6)rameter �k � r � ��, which is the phase mismatch between

the nonlinear polarization and the radiated wave.
ω3n−(ω3, θ, φ) = ω1n+(ω1, θ, φ) + ω2n+(ω2, θ, φ) (19)

• If �k � r � 0 and if there is no particular relation be- ω3n−(ω3, θ, φ) = ω1n−(ω1, θ, φ) + ω2n+(ω2, θ, φ) (20)
tween �k and ��, then the work alternates in sign as a
function of r, which is a detrimental situation for the ω3n−(ω3, θ, φ) = ω1n+(ω1, θ, φ) + ω2n−(ω2, θ, φ) (21)

parametric interaction. The distance over which the
Relations (19), (20), and (21) correspond, respectively, to typeswork keeps the same sign is called the coherence length
I, II, and III for the SFM (�3 � �1 � �2), to types II, III and Irc. For the case where the three interacting waves have
for the DFM(�1 � �3 � �2) and to types III, I, and II for thecollinear wave vectors, we have rc � �/��k�, indepen-
DFM(�2 � �3 � �1). In a positive uniaxial crystal, the eigen-dently on ��, according to Eq. (13). The coherence length
mode n� corresponds to an extraordinary polarized wave anddepends only on the refractive indices. The typical values
n� to an ordinary one. These polarizations are reversed in aof rc are very small, between 1 and 100 �m.
uniaxial crystal with a negative optical sign. The definition of• Even if �k and �� have values as in the previous case,
extraordinary and ordinary waves is only valid in the princi-it is possible to impose a constant sign for the work by
pal planes of the index surface of biaxial crystals (3).applying a periodic phase correction equal to � after the

waves have propagated over the coherence length. The
Symmetry Propertiesperiodic reset of � is classically achieved by changing the

sign of the effective coefficient, which is called quasi- According to relation (14), the effective coefficient not only is
phase-matching (QPM): the nonlinear medium is then a function of the nonlinear optical properties �(2) but also de-
formed by a succession of thin crystal domains with a pends on the linear optical properties via F (2). Indeed, the unit
length equal to rc (5). electric fields are calculated from the refractive indices ac-

cording to Eq. (10), and then the components of the field ten-• The best way to obtain a work with a sign constant over
all the propagation distance is to have �k � r � 0. Fur- sor are trigonometric functions of the direction of propaga-

tion. There exist particular relations between field tensorthermore, when at least one wave among the interacting
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components of SFM and DFM that are valid for any direction PROPAGATION OF THE WAVES
IN THE NONLINEAR MEDIUMof propagation. Indeed the field tensor remains unchanged by

concomitant permutation of the electric field vectors at the
The Maxwell equations describe the propagation of electro-different frequencies and the corresponding cartesian indices,

that is to say magnetic waves in a nonlinear medium. These waves are cou-
pled through the nonlinear polarization, which we limit to the
quadratic susceptibility term P(2)(r, �) in the present study.
The material is supposed to be nonconducting, free of charges,

F e3e1e2
i j k

(ω3 = ω1 + ω2) = F e1e3e2
j i k

(ω1 = ω3 − ω2)

= F e2e3e1
k i j

(ω2 = ω3 − ω1)
(22)

nonmagnetic, and optically anisotropic, with low optical losses
at the considered frequencies so that the �(2) tensor is real, as

For a given interaction, the symmetry of the field tensor is detailed previously.
governed by the vectorial properties of the unit electric field
vectors, which is characteristic of both the optical class (iso- General Propagation Equations for 3-Wave Mixing
tropic, uniaxial, or biaxial) and the direction of propagation.

We define an orthonormal frame (X, Y, Z) linked to the wave,These properties lead to a reduction of the number of inde-
with Z the direction of propagation of the waves, which arependent components of the field tensor (3). Then the symmet-
supposed to have collinear wave vectors in the following cal-ries of the field tensor and of the electric susceptibility tensor
culations. This frame must not be confused with the principalare different, which can lead to a nil contraction between the
axes (x, y, z). To obtain the coupled differential equations thattwo tensors, that is to say to a nil effective coefficient, even if
describe the 3-wave interaction, we generally neglect thethe parametric interaction is phase-matched (i.e., �k � r �
backward propagating waves generated by the nonlinear po-�� � 0): the crystal classes D4 (422) and D6 (622) forbid the
larization (9). This assumption, called the slowly varying enve-parametric interactions where two ordinary refractive indices
lope approximation, identically states that the field ampli-and one extraordinary index are involved; it is also the case
tudes have slow variations over one wavelength. This givesfor two extraordinary and one ordinary refractive indices for
the following propagation equations (10):the crystal classes C4v (4 mm) and C6v (6 mm).

Manley–Rowe Power Relations

The permutation symmetry relations in Eqs. (11) and (22)
lead to relations between the effective coefficients of SFM and

M̂1E1 = jκ1E3E∗
2 exp( j�k · Z)

M̂2E2 = jκ2E3E∗
1 exp( j�k · Z)

M̂3E3 = jκ3E1E2 exp(− j�k · Z)

(25)

DFM. For a 3-wave process, we have

where the operator M̂i is given byχeff(ω3 = ω1 + ω2) = χeff(ω1 = ω3 − ω2) = χeff(ω2 = ω3 − ω1)

(23)

Equalities (23) allow us to establish relations between the cor-
responding works given by Eq. (12) in the case of a lossless
medium. These relations are called Manley–Rowe power rela-

M̂i = ∂

∂Z
+ tan(ρiX

)
∂

∂X
+ tan(ρiY

)
∂

∂Y

+ j
2ki

�
∂2

∂X 2 + ∂2

∂Y 2

�
+ 1

vgi

∂

∂t
+ αi

(26)

tions, which are written
where

• Ei � Ei(X, Y, Z, t) is the Fourier component of the electric
W (2)(rrr, ω1)

ω1
= W (2)(rrr, ω2)

ω2
= −W (2)(rrr, ω3)

ω3
(24)

field at the circular frequency �i. We consider an interac-
Because �3 � �1 � �2, Eq. (24) leads to a work conservation tion between linearly polarized waves, so that each field
condition, namely W(r, �1) � W(r, �2) � W(r, �3) � 0. Consid- Ei corresponds to an eigen mode E� or E� defined by rela-
ering the example of SFM, this relation indicates that the to- tion (10).
tal energy lost by the waves at �1 and �2 is transferred to the • "iX

and "iY
are the double refraction angles along the X

wave at �3. and Y axes; because "i varies with the frequency and the
eigen mode, the three waves have different double refrac-
tion angles, and the beams do not overlap throughout allNONLINEAR MATERIALS
the crystal length. This phenomenon, called spatial walk-
off, reduces the conversion efficiency of the interaction. ItThe nonlinear medium for �(2) parametric interactions is a
is important for small size beams. Actually, for parallelnoncentrosymmetric crystal. No single nonlinear material is
beams with a flat transverse profile and a beam radiusthe best one for all applications, so the different crystals must
w0, the beams are completely separated after a distancebe seen as complementary. Most parametric devices are based
La � 2 (wo/"), with " in radians. In an uniaxial crystal,on inorganic crystals such as KH2PO4 (KDP), �BaB2O4 (BBO),
and in the principal planes of a biaxial crystal, threeLiB3O5 (LBO), KNbO3, LiIO3, LiNbO3, KTiOPO4 (KTP),
waves with collinear wave vectors have their PoyntingRbTiOAsO4 (RTA), AgGaS2, AgGaSe2, ZnGeP2, and Tl3AsSe3
vectors in the same plane [e.g., (X–Z)] so that the term(7). The main organic crystals are Urea, 5-Nitrouracil (5-Nu),
tan("iY

) (!/!Y) is nil in operator M̂i. This is not the casemethyl-(2,4-dinitrophenyl)-aminopropanoate (MAP), 2-
out of the principal planes of a biaxial crystal.methyl-4-nitroaniline (MNA), 3-methyl-4-nitropyridine-N-ox-

yde (POM), N-(4-nitrophenyl)-L-propinol (NPP), and 2-amino- • ki is the wave vector modulus at �i. The second-order de-
rivatives relative to the space coordinates is the diffrac-5-nitropyridine-dihydrogene phosphate (2A5NPDP) (8).
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tion term. It is important for beams with small trans- The presence of optical rotation will also lead to a de-
verse dimensions (typically if w0 # 50 �m) and for real phasing as a result of the dispersion in wavelength of the
beams with nonuniform or distorted wavefronts. rotatory power. Nevertheless, for the most active crys-

tals, this results in a slight and generally negligible shift• vgi
� (!�/!k)���i

is the group velocity of the wave at �i.
of the phase-matching directions. The same kind of re-Because of the dispersion in wavelength of vg, a temporal
marks hold for the photorefractive effect.separation of the three waves occurs in the case of pulsed

An external modification of the phase-mismatch isbeams. The pulses at �i and �j are separated by a path
possible via the application of a static or low-frequencyequal to the initial pulse width after a distance L� �
electric field (electrooptic effect) or heating or cooling of�/(v�1

gi
� v�1

gj
), where � is the pulse duration. The conver-

the crystal.sion efficiency saturates for longer crystal lengths. For
Finally, the chemical composition of the material alsothe typical materials cited before, with a crystal length of

affects the phase-matching properties: the presence of1 cm, this temporal walk-off becomes important for pulse
chemical inhomogeneities, impurities, or defaults candurations shorter than 100 ps. For even shorter pulses,
lead to a variation of the refractive indices throughoutin the femtosecond range, we cannot consider constant
the material. Depending on the considered material, thegroup velocities in relation (26) for the interacting waves.
overall index homogeneity should reach 	10�6/cm toThe second term of the Taylor series �(�) is added to the
achieve uniform phase-matching.operator M̂i to account for dispersion spreading. It is of

In the following discussions, we will neglect all thethe form �� (!2k/!�2)���i
.

additional contributions to the phase-mismatch. For an• �i is the optical loss coefficient at the circular frequency
interaction between three waves with collinear wave vec-�i. The linear absorption coefficient is given by �L

i �
tors, the different types are defined by relations (19)–Im[�(�i)] � Im[�(1)(�i)]. It must be low in order to achieve
(21). Note that the configurations of polarization thatan efficient frequency conversion. The intrinsic part of
allow noncollinear phase-matching are the same as those�L

i is low for wavelengths not too close to the edges of the
for the collinear case but that the location of the corre-transparency range of the nonlinear material. An extrin-
sponding phase-matching directions is different.sic part of �L

i is a result of the impurities and defaults
induced by the synthesis of the material, which may also
cause scattering losses. Both absorption and scattering Resolution of the General Equations
are critical for high-power frequency converters. In the

The resolution of the coupled equations (25) begins by consid-commonly used devices, �L
i is less than 1% � cm�1 at each

ering the relative importance of the relative terms in operatorwavelength. A nonlinear contribution �NL
i is sometimes

(26). It is easily done by evaluating the characteristic lengthsadded to �i. When the photon energy is greater than half
L� and La detailed previously for the temporal and spatialof the band gap energy of the material, two-photon ab-
walk-off, and Ld � kw2

0 for diffraction. The effects whose char-sorption occurs, and �NL
i � �iE2

i in that case. �i does not
acteristic length is long compared to the crystal length areinclude the Fresnel reflection losses, which may reach
not to be considered. Another simplification is possible in the10% at each surface for each wave because Eqs. (25) deal
case of small conversion efficiencies: the power of the incidentwith waves inside the nonlinear crystal. These losses
beams remain constant, which is called undepleted pump ap-must be considered in the final expressions of the optical
proximation. Now there is only one differential equation leftpowers outside the material. The crystal is then gener-
in system (25). The pump depletion may be evaluated by theally coated for maximum transmission at 1, 2, or 3 wave-
characteristic length LNL � 1/[�3 �E2

1(0) � E2
2(0) � E2

3(0)]lengths in order to increase the conversion efficiency.
where Ei(0) is the incident electric field at �i (12).

• �i � ��eff /[ni�i cos2("i)], where �eff (in meters per volt) is
In most cases, the integration of Eqs. (25) requires a nu-the effective coefficient defined in Eq. (14), ni the refrac-

merical computation. Several studies have been made in par-tive index corresponding to the considered eigenmode n�

ticular situations: the most complete ones are pump deple-or n� at the wavelength �i, and "i the double refraction
tion, diffraction, and spatial walk-off (13), as well as pumpangle mentioned before.
depletion and spatial and temporal walk-off (14). The models

• �k �Z is the total phase-mismatch, expressed by relation allow us to calculate the transverse beam profiles of the inter-
(16), where the three wave vectors are collinear. For di- acting waves and the conversion efficiencies in good
vergent beams, there exists a distribution of phase-mis- agreement with corresponding experiments.
match resulting from noncollinear interactions between In order to make an analytical integration of Eqs. (25), we
the angular components of the beams. In the most gen- simplify the system by neglecting diffraction, spatial and tem-
eral case, �k results from several contributions because poral walk-off, and optical absorption. It is then written
many physical properties may affect the refractive indi-
ces of the material.

In the case of a nonnegligible optical absorption, the
crystal is heated by the absorbed power, and the refrac-
tive indices vary because of the thermooptic effect, re-
sulting in an additional phase-mismatch. One then must
solve the heat conductivity equation simultaneously with

∂E1

∂Z
= j κ1E3E∗

2 exp( j �k · Z)

∂E2

∂Z
= j κ2E3E∗

1 exp( j �k · Z)

∂E3

∂Z
= j κ3E1E2 exp(− j �k · Z)

(27)

the coupled differential equations (25). This has been ex-
tensively studied (11) but will not be considered hereaf-
ter. with �i defined previously and "i � 0 for the following.
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This system allows us to study the principal effects (phase- where Pc
oi

is the peak power at �i, �i is the half width at 1/e2,
P̃i the average power, and f is the repetition rate.matching and its related acceptance bandwidths, pump deple-

tion) in the most commonly encountered situations. For the
Undepleted Pump Approximation in the Parallel Beam Limitusual materials with a crystal length of 1 cm, this corre-

sponds to a waist radius w0 $ 1 mm and to a pulse duration Equations (27) are integrated with the initial conditions:
� $ 100 ps. We mainly focus our attention on second harmonic

!E�
1 /!Z � !E�

2 /!Z � 0, and E2�
3 (X, Y, 0) � 0. The incident power

generation (SHG) (� � � � 2�), which can be considered as at � is distributed on the two eigenmodes P�
1(0) and P�

2(0).
the prototypical quadratic nonlinear interaction. According to the relations in Eqs. (19)–(21), two configura-

tions of polarization allow phase-matched SHG: type I where
the two waves at � are identically polarized, so P�

1(0) �SECOND HARMONIC GENERATION
P�

2(0) � P�
tot/2, and type II, which is equivalent to type III,

with two different polarizations at �. In the crystal, at theIntegration of the Propagation Equations
entrance, these powers are T�

1P�
1(0) and T�

2P�
2(0), where Ti �The integration of the simplified system (27), according to the 4ni/(1 � ni)2 is the Fresnel transmission coefficient. The initial

initial values of the different electric fields, allows us to calcu- electric fields E�
1(0) and E�

2(0) are deduced from these powers
late these fields at the exit surface of the nonlinear crystal, according to relation (30). We consider that the two funda-
Ei(X, Y, L), with L the crystal length. The power of each wave mental beams have the same radius w�

0, which is not an ap-
is obtained by integration of the intensity over the cross sec- proximation for type I SHG. The harmonic electric field is pro-
tion of the beams. We will consider transverse TEM00 portional to the product of the two fundamental fields, and
Gaussian profiles for the waves, expressed as then also has a Gaussain transverse profile, with the radius

w2�
0 � w�

0 /�2. The harmonic power, obtained by Eqs. (27) and
(30), is given in the SI system:Ei(X ,Y, Z) = Eoi

(Z)exp

�
−X 2 + Y 2

w2
i (Z)

�
(28)

where wi(Z) is the beam radius at 1/e of the electric field,
which is identical to the radius at 1/e2 of the intensity. The
minimum radius w0, called the beam waist, is located at Z0.
w(Z) is then given by

P 2ω(L) = BPω
1 (0)Pω

2 (0)
L2

w2
0

sinc2
�

�k · L
2

�

with B = 9462
2N − 1

N
χ2

effT
2ω
3 Tω

1 Tω
2

λ2
ωn2ω

3 nω
1 nω

2

(32)

L is the crystal length in the direction of propagation.
N is the number of independently oscillating modes in the

w2(Z) = w2
0

�
1 + (Z − Zo)

2

Z2
r

�
(29)

fundamental beam: every longitudinal mode at the har-
with Zr � �nw2

0/�, the length over which the beam remains monic pulsation can be generated by many combina-
approximately collimated, called the Rayleigh length. If Zr is tions of two fundamental modes; the statistical calcula-
much larger than the crystal length (i.e., L/Zr 
 0.3), we con- tion leads to the (2N � 1)/N factor (15).
sider the beams to be parallel, with a constant radius w0: this

�� is the fundamental wavelength.
is the plane wave limit. For longer crystals, the beam radius
cannot be regarded as constant, we have a longitudinal L, w0, and � are in meters; �eff is in meters per volt; B is in
Gaussian profile. In the parallel beam limit, the integration watt�1. The refractive indices at the two wavelengths are n2�

3 �
over the transverse profile gives the following expression of n�(2�); for type I SHG, n�

1 � n�
2 � n�(�), whereas for type II

the power at �i: SHG n�
1 � n�(�) � n�

2 � n�(�), according to relations (19)–(21).
The SHG efficiency is defined as �SHG � P2�(L)/[P�

1(0) �
P�

2(0)]. For c.w. beams, it is deduced from Eq. (32). For pulsed
beams, this relation gives the peak power efficiency �pk

SHG. One
generally defines an additional average power conversion ef-

Pi(L) = ni

2

�
ε0

µ0

R R |Ei(X ,Y, L)|2 dX dY

= ni

�
ε0

µ0

π

4
w2

0|Eoi
(L)|2

(30)

ficiency �av
SHG � P̃2�(L)/P̃�(0), which is equal to the ratio of the

average pulse energies. For Gaussian temporal profiles, the
The integration of the system (27) is independent of the time harmonic pulse duration is shorter than the fundamental
variations because we neglect the group velocity dispersion. one, �2� � ��/�2, for the same reasons as the beam radii. The
Thus we calculate the instantaneous value of the electric average power conversion efficiency is then smaller by a fac-
fields. For continuous waves (c.w.), it is identical to the aver- tor �2 than the peak power SHG efficiency.
age power, but for pulsed beams, it is necessary to consider
the pulse shape. A usual Gaussian dependence is described Acceptance Bandwidths
by

According to Eq. (32), the generated harmonic power is maxi-
mum when the interference function sinc2(�k �L/2) is equal to
unity, which is possible only for �k � 0. This phase-matching
condition was previously established from energy exchange
considerations.

At a given temperature TPM, for a given fundamental wave-
length �PM and configuration of polarization (type I or II), the
relation �k � 0 defines the phase-matching directions (�PM,

Pi(t) = P c
oi

exp

�
−2

t2

τ 2
i

�

and

P̃i =
�

π

2
fP c

oi
τi

(31)
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When the second- and higher-order derivatives in Eq. (33) are
negligible, the phase-matching is called critical (CPM) be-
cause L�� � �2�/[!(�k)/!���PM

]� is small. For the particular
cases where !(�k)/!���PM

� 0, L�� � ��4�L/[!2(�k)/!� 2��PM
]� is

larger than CPM acceptance, and the phase-matching is
called noncritical (NCPM) for the considered parameter �.

We consider each parameter independently, holding the
other constant and equal to the phase-matching value.

The angular acceptances are calculated from the relation
in Eq. (33), with the refractive indices given by Eq. (9), ac-
cording to the phase-matching relations in Eqs. (19)–(21). At
a given temperature TPM and wavelength �PM, �PM does not
depend on � in a uniaxial crystal, so the associated angular
acceptance L�� is infinite, but L�� is finite. The angular non-
critical phase-matching corresponds to a SHG in the principal
plane, at � � �/2. For biaxial crystals, L�� is not infinite, but
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the anisotropy of the angular acceptances remains. The
phase-matching is angular noncritical along the three princi-Figure 3. Conversion efficiency evolution as a function of � for a
pal axes (x, y, z) of the index surface, which is easily estab-given crystal length. � denotes the angle � or � of the direction of

propagation, the temperature T, or the wavelength �. �PM represents lished by considering the symmetry of this surface (16).
the considered parameter allowing phase-matching. The anisotropy of the angular acceptances leads to an in-

tensity anisotropy of the harmonic beam. A fundamental
beam with a circular cross section generates a beam at 2��PM), which lie on a cone, because of the symmetry of the in-
with an elliptic cross section. The small and large axes aredex surface (6,16). In an uniaxial crystal, the refractive indi-
respectively contained in the planes of critical and noncriticalces do not depend on �, and so nor does �PM. The variation of
angular acceptances. This anisotropy of the harmonic beam is�PM as a function of �PM is termed as the phase-matching tun-
then strongly reduced for angular noncritically phase-ing curve. Nevertheless, all the directions at constant �PM are
matched SHG.not equivalent for SHG because the effective coefficient �eff

Critical acceptances are small, about 1 mrad � cm. For ex-depends on � because of the variation of the field tensor F (2)

ample, in the uniaxial crystal KDP, type I SHG is phase-elements, and so also the conversion efficiency. The situation
matched at �PM � 41.2� for �PM � 1.064 �m, and the associatedis more complicated in the biaxial crystal, where �PM is not
critical angular acceptance is L�� � 2.0 mrad � cm. For a fun-constant for different �PM. The fundamental wavelength
damental wavelength �PM � 0.5175 �m, type I SHG is noncrit-ranges allowing phase-matching are different from one princi-
ical (i.e., �PM � 90�), and the NCPM angular acceptance ispal plane to the other, as are the associated SHG efficiencies.
L�� � 41 mrad � cm. Furthermore, the second benefit of thisFor the study of real systems, it is important to know the
NCPM is that the associated walk-off angle is nil. Conse-effect of a deviation of �k from 0 resulting from variations of
quently, no attenuation of the conversion efficiency occurs.the propagation angles (� 	 	�, � 	 	�), of the fundamental

The thermal acceptance bandwidth is calculated accordingwavelength (� 	 	�) and of the temperature (T 	 	T) on the
to the relation in Eq. (33) for fixed propagation angles (�PM,conversion efficiency. These evolutions are usually character-
�PM) and fundamental wavelength (�PM). Small thermoopticized by the associated acceptance bandwidths ��(� � �, �, �,
coefficients !ni/!T lead to a large thermal acceptance. ForT). According to the variation of the conversion efficiency with
SHG at �PM � 1.064 �m, L�T varies from 0.3 K � cm for�, plotted on Fig. 3, the acceptance bandwidth �� is defined
KNbO3 to 51 K � cm for �BaB2O4. Nonlinear crystals with aas the full width at 0.405 of the maximum of P2�(�). �� is then
small thermal acceptance need to be thermalized to avoid im-the deviation from the phase-matching value �PM leading to a
portant fluctuations of the generated harmonic power, espe-phase-mismatch variation �k from 0 to 2�/L.
cially when the optical absorption at the concerned frequen-A larger value of L�� corresponds to a smaller decrease in
cies is not negligible.the conversion efficiency for the same heating of the crystal

The spectral acceptance is an important issue for funda-(due to absorption or external heating) or for the same angu-
mental lasers emitting with a large bandwidth. For the usuallar or wavelength shift resulting from the divergence and
nonlinear materials, L�� is about 1 nm � cm, which is largerspectral linewidth of the fundamental laser beam, respec-
than the linewidth of many laser lines, except for subpicosec-tively.
ond lasers.L�� is a characteristic of the phase-matching direction. It

When !(�k)/!���PM
� 0, the phase-matching is noncriticalis linked to the thermal, spectral, and angular dispersion of

with respect to the wavelength and is termed as �-noncritical.the refractive indices. The derivation of L�� is made by ex-
In that case, the group velocities are matched along the direc-panding �k in a Taylor series about �PM:
tion of propagation, and temporal walk-off is avoided.

The angular and spectral NCPM are linked by the phase-
matching tuning curve �PM � f (�PM). The angular NCPM corre-
sponds to a nil derivative !�PM/!�PM � 0, as shown on Fig. 4(a)
at the point (�o

PM, �o
PM). Actually, a deviation of �o

PM at constant
�PM leads to a minimum departure from the phase-matching
curve. At this point, !�PM/!�PM is infinite, and the phase-

2π

L
= �k

=
X

ξ=θ ,φ,λ,T

�
∂(�k)

∂ξ

����
ξPM

�ξ + 1
2

∂2(�k)

∂ξ 2

����
ξPM

(�ξ )2 + · · ·
�

(33)
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• In the parallel beam limit (i.e., L/Zr 
 0.3), we have
G(L, w0, ", �k) � g() sinc2(�k �L/2) with  � "L/w0. The
conversion efficiency is then maximum for perfect phase-
matching (i.e., �k � 0). However, for type II SHG, the
separation of the fundamental beams reduces the effec-
tive interaction length and leads to a saturation of the
associated acceptance bandwidths, which is not the case
for type I.

Analytical expressions of g are obtained only in the
asymptotic cases (19,20). For perfect phase-matching,

λ λ

λo
PM

λo
PM

θ θ θo
PM θ o

PM

(a) (b)
we have

Figure 4. Schematic phase-matching tuning curve �PM � f (�PM). The if  � 1, corresponding to low walk-off or low focusing,
point (�o

PM, �o
PM) corresponds to (a) angular noncritical phase-matching g �1 for both types I and II; thus P2�

I,II(L) � L2,
or (b) �-noncritical phase-matching.

if  % 1, for type I gI � 1/ and P2�
I (L) � L/"; for type

II gII � 1/2. Thus P2�
II (L) reaches a saturation

value P2�
IIsat

(L) � (1.351/"2) BP�
1(0)P�

2(0) because of
the complete separation of the fundamental beams.

matching is a spectral critical one. Figure 4(b) shows the re- Type I SHG is then more suitable than type II for
ciprocal case: at (�o

PM, �o
PM) the phase-matching is �-noncritical strong focusing applications in the parallel beam limit.

and thus angular critical (8).
Spectral NCPM is important for subpicosecond lasers,

which have large linewidths and suffer from group velocities
dispersion. Angular NCPM is suitable for strongly focused
beams. Particular noncollinear configurations may then be
used to enhance the acceptance bandwidths when collinear
phase-matching is critical. One-beam noncritical noncollinear
phase-matching is noncritical with respect to the angle of one
of the input beams (17). Vectorial group noncollinear phase-
matching is noncritical with respect to the wavelength of one
of the beams (18).

SHG with Spatial Walk-off

The double refraction angles of the three interacting waves
are generally not equal, so that the spatial overlap of the
beams is reduced and the SHG conversion efficiency is attenu-
ated. Types I and II SHG are not equivalent with respect to
this effect. For type I, the two fundamental waves have iden-
tical polarization and thus their double refraction angles are
equal and different from the harmonic one. For type II SHG,
the two fundamental double refraction angles are different
and the beams are totally separated beyond a propagation
distance La. This is illustrated on Fig. 5. Apart from the atten-
uation of the conversion efficiency, spatial walk-off is respon-
sible for a distorted transverse profile of the generated wave:
the harmonic beam is larger than the fundamental one for
type I, in contrast to type II.

We assume that the three double refraction angles "i are
coplanar, which is not an approximation in the uniaxial crys-
tal and in the principal planes of the biaxial crystal. The 3-
wave interaction is then described by the system in Eq. (27),
with one more term tan("iX

) !/!X. The walk-off angle is de-
fined as the maximum difference between these double refrac-
tion angles, " � Max(�"i � "j�) with i � j � 1, 2, or 3. For the
common nonlinear materials, the maximum walk-off angles
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are less than 4�. The integration of the propagation equation
in the undepleted pump approximation gives the harmonic Figure 5. Schematic beam separation in the parallel beam limit for

(a) type I SHG and (b) type II SHG. S are the Poynting vectors, andpower:
k are the associated wave vectors collinear to the CPM direction. �
and � refer to the eigenmodes n� and n�. The shaded area denotes
the volume of interaction, whereas the black arrows refer to the inter-
acting beams.

P 2ω(L) = BPω
1 (0)Pω

2 (0)
L2

w2
0

G(L, wo, ρ, �k)

cos2 ρ2ω

(34)
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Such a difference between the two types of SHG also ex-
ists in the case of temporal walk-off for short pulses: type
II leads to a saturation of the conversion efficiency, in
contrast to type I.

• For longitudinal Gaussian beams, the attenuation factor
is G(L, w0, �, �k, f ), where f gives the position of the
beam waist inside the crystal: f � 0 at the entrance and
f � 1 at the exit surface. A numerical computation is
required for the calculation of G (21).

The maximum value of P2� is found for nonzero phase-
mismatch �kopt � 0 as a result of noncollinear interac-
tions imposed by the pump divergence. The optimum lo-
cation of the beam waist is always at the center of the
crystal f opt � 0.5 for type I, whereas for type II it comes
nearer to the entrance surface as the focusing is in-
creased ( fopt � 0 if L/Zr �).

We plot on Fig. 6 the calculated SHG efficiency corre-
sponding to the optimum phase-mismatch and waist lo-
cation, �kopt and f opt. This gives a clear illustration of the
walk-off effect in usual harmonic generators with non-
negligible focusing.

For a zero walk-off angle, the evolution is similar for
both types of SHG. An optimum focusing is found at
L/Zr � 5.68, which defines the optimum waist radius for
given crystal length, or the optimum length for fixed
waist radius. The definition of the optimum focusing con-
ditions must take into account the damage threshold of
the material, which gives the lower limit of the beam
waist radius. The decreasing efficiency for stronger focus-
ing is a result of the variation of the associated ‘‘average
beam radius’’ inside the crystal, which increases for
L/Zr � 5.68.

In the case of nonzero walk-off angles, type I and type
II exhibit different behaviors. The calculation of the con-
version efficiency as a function of the crystal length, for
a fixed beam radius, shows a saturation for type II, in
contrast to type I. In the case of a fixed crystal length,
the optimum focusing for type I corresponds to smaller
values of (L/Zr)opt if the walk-off angle increases, and the
associated maximum efficiency becomes smaller. For
type II, an optimum focusing becomes less and less ap-
parent while (L/Zr)opt shifts to much smaller values than
for type I for the same variation of �; the decreasing of
the maximum amplitude is stronger in the case of type
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Figure 6. Type I (dashed curves) and type II (solid lines) SHG con-
version efficiencies calculated as a function of L/Zr for different typi-

For type II SHG devices with strong focusing conditions, cal walk-off angles �: (a) corresponds to a fixed focusing condition
walk-off compensation is needed. It is achievable by two pos- (wo � 30 �m) and (b) is plotted for a constant crystal length (L � 5
sible ways: mm). All the calculations are performed with the same effective coef-

ficient, refractive indices, and fundamental power.

• Noncollinear phase-matching is used such as the angle
between the two fundamental wave vectors inside the
nonlinear crystal is equal to the walk-off angle �. The tion of propagation or around the direction orthogonal to
associated Poynting vectors are then parallel, and the the direction of propagation and contained in the walk-
harmonic beam is at an angle about �/2. This interaction off plane. The beams are separated into the first crystal
is angular noncritical with respect to one fundamental and then converge into the second one. In fact, n groups
beam, and type II is turned into a pseudotype I SHG be- of two such crystals, of individual length L, can be as-
cause the saturation of the efficiency is avoided (22). sembled and optically contacted in order to avoid Fresnel

reflection losses. The associated effective walk-off angle• Two crystals with the same length and cut in the same
CPM direction are associated. The second crystal is ro- is much lower than that of a single crystal of length

2nL; this allows an enhancement of the SHG efficiencytated 180� with respect to the first one around the direc-
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by one or two orders of magnitude with n ranging be- 100% with the complete depletion of the pump. It is not
achievable in real cases because there always exist a residualtween 1 and 6 (23). Unfortunately, the realization of

good-quality optical contacts is difficult. dephasing, which is a result of the divergence of the beam for
example. For small �L, the functions tanh2(�L) � �2L2 and
sn2(�L/vb, v4

b) � sin2(�L/vb) with vb � 2/�s. So, in that case,SHG with Pump Depletion
the integration of the intensity over the cross section of the

For pulsed beams with high peak intensities or tight focusing beam exactly leads to the formula in Eq. (32), which is estab-
SHG devices, important values of the conversion efficiency lished in the undepleted pump approximation.
are reached. For example, a 7 mm long KTP crystal produces For type II SHG, the expression of I2�(L) is more compli-
80% energy conversion efficiency for the SHG of an injection- cated and is only given for perfect phase-matching here:
seeded, single longitudinal mode Nd : YAG laser emitting 900
mJ pulses at 1.064 �m with a 8 ns duration (full width at
half maximum) and to 10 Hz repetition rate (24). With the
same material, it is possible to generate very high average
powers: up to 100 W of 0.532 �m radiation is obtained from
200 W of fundamental power, with 2.5 kHz repetition rate

I 2ω(L) = 2I ω
1 (0)T 2ω

3 T ω
1 sn2

�
�IIL,

I ω
1 (0)

I ω
2 (0)

�

with �II = κ3

s
n2ω

3 T ω
2 I ω

2 (0)

nω
1 nω

2

r
µ0

ε0

(36)

and 25 ns pulsewidth (25).
As soon as �pk

SHG is greater than 10%, the pump beam can- with I�
1(0) � I�

2(0). The parameter I�
1(0)/I�

2(0) is termed as pho-
not be regarded as undepleted, and the formula in Eq. (32) is ton imbalance.
no more valid. We must then integrate the complete system Thus, even for perfect phase-matching, the efficiency will
in Eq. (27); we consider the case of negligible walk-off attenu- not reach 100% if the two incident intensities are not strictly
ation, which in fact is the suitable case to achieve high con- equal. Note that a circularly polarized fundamental wave will
version efficiency. The electric fields at the exit surface of the allow an easier realization of a unit photon imbalance than a
crystal are expressed in terms of Jacobian elliptic functions linearly polarized one. On the other hand, for crystals with
sn(u, m), where the parameter m must not be confused with anisotropic losses or with an important birefringence, the op-
the modulus, k � �m, of the function (1,11,26). In the case of timum input polarization does not lie exactly at �/4 of the
type I SHG, the generated harmonic intensity is expressed as principal axes but rather slightly shifted.

All the previous intensities are peak intensities in the case
of pulsed beams, which are generally used for high conversion
efficiency SHG. For a fundamental beam with a flat trans-

I 2ω(X ,Y, L) = I ω
tot(X ,Y, 0)T2ωTωv2

bsn2
�

�(X ,Y )L
vb

, v4
b

�
(35)

verse profile, the integration of the previous intensities over
with I�

tot(X, Y, 0) the total incident fundamental power, and the cross section is obvious, and the harmonic exhibits the
same profile and radius as the incident beam. The SHG con-
version efficiency is then directly derived from the relations
in Eq. (35) and (36). The possible variations as a function of
�L are plotted on Fig. 7.

For a fundamental beam with a transverse Gaussian pro-
file, the depletion induces an important variation of the beam

1
vb

= �s
4

+
�

1 +
�

�s
4

�2

with �s = k2ω − kω

�
and�(X ,Y ) = κ3

�
Iω

tot(X ,Y, 0)Tω

2n

r
µ0

ε0

profiles along the interaction length (12). Actually, the deple-
tion is more important in the center of the beam, where then � n� � n2� for type I SHG, and the other parameters defined

previously. The intensity of the fundamental beam at the exit fundamental intensity is maximum, than on the edges, corre-
sponding to low intensity.of the crystal is easily established from the Manley–Rowe re-

lations in Eq. (24). For type I SHG without dephasing, and for type II SHG
with equal intensities for the two eigenmodes, the harmonicThe effect of a nonzero phase-mismatch is much more com-

plicated in the case of pump depletion. The associated accep- beam keeps a Gaussian transverse profile, but the associated
radius changes over the propagation: from w�

0 /�2 at the en-tance bandwidths, calculated from the relation in Eq. (35),
decreases with increasing �L (26). This is of particular impor- trance of the crystal where pump depletion as not already

occurred to w�
0 at the length where the pump is completelytance for high-power devices: the residual absorption leads to

a heating of the crystal. Together with the beam divergence, depleted. In other cases, where the parameter in the Jacobian
elliptic function is not equal to unity, the harmonic beam rap-they can create an important dephasing.

Because of the periodic nature of the Jacobian elliptic func- idly deviates from a transverse Gaussian profile. In all cases,
the harmonic power deduced by the integration of relationstions, there exists an optimum value of (�L)opt beyond which

the harmonic intensity decreases. The computation of (�L)opt (35) and (36) over the cross section of the beam has a different
variation than with flat profiles. P2�(L) is still a periodic func-for the considered phase-matching direction allows us to de-

termine the optimum incident intensity I�
opt for a given crystal tion with respect to L, but it never turns back to zero when L

increases. A typical evolution of the transverse profiles andlength or the optimal length Lopt for a given fundamental
beam. This must take into account the damage threshold of conversion efficiency is shown in Fig. 8.

Once again these considerations concern the peak intensi-the nonlinear material Idam, which imposes an upper limit to
the incident intensity. ties and powers. The integration of the previous results over

the temporal profiles will give the pulse energies. The evolu-For perfect phase-matching, �k � 0, we have �s � 0 and
vb � 1, and the Jacobian elliptic function sn(u, 1) is equal to tion of the temporal profiles for flat transverse beams is iden-

tical to that of the transverse peak profiles. In all cases, thetanh(u): the conversion efficiency asymptotically approaches
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QPM offers specific advantages when compared to birefrin-
gence phase-matching. It may be used for any configuration
of polarization; in particular, frequency conversion involving
three parallel polarized waves are allowed, which is impossi-
ble by classical index matching. It is then possible to solicit
the diagonal elements of the 	(2) tensors, which often are their
greatest elements. For example, in LiNbO3, 	zzz (
54 pm/V at
� � 0.532 �m) is six times greater than the elements involved
in type I or type II phase-matching (7).

Another advantage of QPM is that the direction of propa-
gation may be controlled. In uniaxial materials, the QPM
structure is realized for propagation in the principal plane,
whereas in biaxial crystals the principal axes are used so that
the associated walk-off angles are nil.

Finally, QPM allows frequency conversion at any wave-
length in the transparency range of the nonlinear material
and thus allows us to extend the tuning ranges of the existing
materials. This is of particular interest for short wavelengths
SHG for which phase-matching is not always possible. For
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Figure 7. Schematic peak conversion efficiencies for flat transverse
profiles, corresponding to (a) no depletion, no dephasing �SHG � �2L2;
(b) no depletion, dephasing �SHG � �2L2sinc2�; (c) depletion, without
dephasing �SHG � tanh2�L; (d) depletion and dephasing (type I SHG)
or depletion and nonunity photon imbalance (type II SHG) �SHG �

�msn2(�L/vb, m). For a fixed crystal length, �L is proportional to the
fundamental intensity, and for constant I�(0), �L is proportional to
the length L.

relation between the energy and peak conversion efficiencies
is not given by the simple ratio �av

SHG � (�2�/��) �pk
SHG in contrast

to undepleted SHG.

Quasi-Phasematching

According to Eq. (32) the generated harmonic power has a
quadratic dependency to the crystal length (P2� � L2) for a
phase-matched interaction. When the dispersion in wave-
length of the refractive indices does not allow birefringence
phase-matching, the harmonic power oscillates with the peri-
odicity 2rc, where rc the coherence length previously men-
tioned. In that case, quasi-phase-matching is used to increase
continuously the harmonic power inside the nonlinear mate-
rial, owing to a reverse of the nonlinear polarization every rc.
In the most general case, the switch of the nonlinear polariza-
tion can be done after an odd number of rc. For such mth-
order QPM, the periodicity of the structure is 2mrc. The equiv-
alent nonlinear coefficient is 	QPM � 2	eff /(m�), where 	eff is
the effective coefficient, defined by relation (14), associated to
the considered configuration of polarization and direction of
propagation. The SHG efficiency is then reduced by a factor
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of [2/(m�)]2 relative to birefringence phase-matching (5). Figure 8. Schematic normalized transverse profile of the fundamen-
When it is possible, first-order QPM is preferred to higher tal or harmonic beam over the interaction length: (a) peak intensities
orders in the most general cases. Corresponding variations of for the typical case of type II SHG with nonunity photon imbalance
the harmonic power with respect to the crystal length are and (b) corresponding peak conversion efficiency as a function of the

crystal length.shown in Fig. 9.
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odicity must be precisely preserved over the complete length
of the sample, and the domain walls must be as small as pos-
sible to reduce the losses and achieve efficient conversion. The
fabrication of bulk structures is even more complicated than
for waveguides; the maximum thickness available at present
is less than 1 mm. QPM applications then require strong fo-
cusing, and because of the optical damages, they are limited
to low-power pump lasers.

Tuning of QPM can be achieved by thermalization or by an
angular shift in the direction of propagation off the periodicity
vector  of the structure. Angular, spectral, and thermal ac-
ceptance bandwidths are defined in much the same way for
the case of birefringence phase-matching. For QPM, the angu-
lar noncritical situation corresponds to the normal to the
structure which happens to be parallel to . In that case, ��
is inversely proportional to the square root of the structure
length L. � is the angle between the direction of propagation
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and the normal to the structure. Angular critical QPM corre-
Figure 9. Spatial growth evolution of second harmonic conversion sponds to the normal to the device which makes a nonzero
efficiency for non-phase-matching (NPM), �k � 0, and phase-match- angle with . �� is then inversely proportional to L (5).
ing (PM), �k � 0, in a ‘‘continuous’’ crystal, and for first-order quasi-

The critical and noncritical angular acceptance band-phase-matching (QPM) in a periodic structure. The dashed line curve
widths for QPM are of the same order of magnitude as forcorresponds to (4/�2)�PM(Z) where �PM is the conversion efficiency of
birefringence phase-matching. An enhancement of these an-the phase-matched SHG deduced from Eq. (32). rc � �/�k is the co-
gular acceptances may be reached with different domainherence length.
lengths and specially designed periodicity; even orders of the
QPM can then be used. This optimization is detrimental to

example, a LiTaO3 structure with a domain period of 1.31 �m the conversion efficiency because the associated effective non-
generates harmonic power down to � � 0.325 �m (27). linear coefficient is lowered.

Different techniques are employed for the practical realiza-
tion of the QPM structures:

Resonant SHG

• For infrared conversion processes, the associated coher- SHG experiments with low-power pump lasers, especially c.w.
ence lengths are large, on the order of 100 �m. It is then lasers, yield to small single-pass conversion efficiencies. In
possible to bind thin plates of the nonlinear material, that case, a net enhancement is obtained when the nonlinear
each rotated 180� with respect to the previous plates. For material is placed inside a resonant cavity, and particularly
example, such GaAs structures are used for the SHG of directly inside the pump laser cavity, which is presented here.
a fundamental CO2 laser emitting near � � 10 �m. The corresponding devices are shown in Fig. 2(b, c). Actually,

the transmission of the output mirror is generally low so that• For ferroelectric materials (i.e., materials with a nonzero
the fundamental intensity in the resonator is more importantstatic polarization), periodic poling is an attractive way
than the output intensity.to realize QPM because the reverse of the ferroelectric

To achieve an intracavity device, the two cavity mirrorsdomain is associated with a sign change of the nonlinear
are total reflectors for the fundamental wave, and one ofpolarization. This periodic domain structure is generally
them, the output coupler, is perfectly transmitting at the har-obtained by applying an electric field to the sample
monic wavelength. The coupling of the laser radiation is thenthrough a periodic electrode.
made by the nonlinear medium, which is equivalent to a non-• For waveguide applications, a ferroelectric domain struc-
linear transmission coefficient at � equal to twice the single-ture can also be induced by proton- or ion-exchange or by
pass SHG conversion efficiency.electron beam scanning. Such devices are used to en-

The SHG intracavity device requires an intracavity polar-hance the single-pass conversion efficiency of low-power
izer. For type II phase-matching, it is useful to use a rotatedlasers, especially c.w. lasers. Actually, because of the
quarter-waveplate in order to restitute the initial polarizationmodal propagation in waveguides, the fundamental en-
of the fundamentals after a round trip in the nonlinear crys-ergy is confined into a few micrometers radius area over
tal, the retardation plate, and the mirror.the complete crystal length. A 10% conversion efficiency

The intracavity SHG conversion efficiency is usually de-is then attainable with less than 1 W of a c.w. pump
fined as the ratio of the generated harmonic power to thepower, which is about three orders of magnitude greater
maximum fundamental power that would be delivered fromthan in identical bulk materials. For example, a 3 mm
the same laser without the nonlinear crystal but with opti-long first-order QPM LiNbO3 waveguide illuminated with
mum linear coupling (i.e., optimum transmission coefficient196 mW fundamental c.w. power generates 21 mW at the
at � for the output mirror) (29). This efficiency is severelyharmonic wavelength � � 426 nm (28), which is very at-
reduced by all possible losses in the cavity. The absorption oftractive for optical data storage applications for example.
the nonlinear crystal should then be as low as possible at both
wavelengths. The crystal should be cut with high precision toThe main limitations of the QPM devices come from the

difficulties to realize large good-quality structures. The peri- allow the propagation along the chosen phase-matching direc-
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tion in normal incidence; its surfaces should be well-polished The parametric interaction is an SFM when (�p, �s, �i) �
and antireflection-coated to avoid scattering and undesirable (�1, �2, �3) or (�2, �1, �3): the device is an up-conversion OPG
reflection losses. Given these conditions, it is possible to because the generated circular frequency is bigger than the
achieve 100% conversion efficiencies. Based on the previous two incident ones. The process is a DFM when (�p, �s, �i) �
definition of the intracavity efficiency, the fundamental power (�3, �1, �2) or (�3, �2, �1) or (�1, �3, �2) or (�2, �3, �1), and in
is not completely converted into the harmonic inside the cav- that case we have a down-conversion OPG. The third har-
ity in that case. monic generator is a widely used up-conversion OPG. In that

Such devices are used to generate very high harmonic pow- case, �p � �, �s � 2�, and �i � 3�. Such a device is based on
ers. For example, 140 W average power at 0.532 �m is ob- the association of two nonlinear media, one for SHG (� �
tained with a 5 mm long KTP crystal placed in the cavity of � � 2�) and the other for THG (� � 2� � 3�). A common
a Q-switched Nd : YAG laser with a repetition rate of 25 kHz. example is the THG in KDP from a Nd : YAG laser emitting
External cavity SHG also leads to good results. at 1.064 �m with a 10 Hz repetition rate and 8 ns pulse dura-

tion. For an incident energy equal to 600 mJ, it is typically
OPTICAL PARAMETRIC GENERATORS AND AMPLIFIERS possible to generate 300 mJ at 0.532 �m in the first KDP and

160 mJ at 0.355 �m in the THG KDP. In that case, Eqs. (37)–
Second harmonic generators are particular cases of SFM opti- (39) are not valid because the two incident beams are de-
cal parametric generators (OPG). In this section, we consider pleted.
the general case where the parametric interaction can be an If only one incident beam is undepleted [i.e., �E(�p, Z)/
SFM or a DFM and where the two incident beams have differ- �Z � 0] and if �p is not the highest circular frequency (i.e.,
ent circular frequencies and different intensities. The incident �p � �1 or �2), then, according to system (27), the intensities
waves are named the pump wave with the circular frequency of the interacting beams are (30)
�p and the signal wave at �s; the generated wave is the idler
wave at �i with �i � �p 
 �s. A schematic device is given in I(ωp, L) = T2(ωp)I(ωp, 0) (40)
Fig. 10.

The nonlinear medium of the OPG or optical parametric I(ωs, L) = T2(ωs)I(ωs, 0) cos2 αL (41)
amplifier (OPA) is not placed inside a resonant cavity. The
device can have several functions, separated or not: the gener- I(ωi, L) = ωi

ωs
T(ωs)T(ωi )I(ωs, 0) sin2

αL (42)

ation by SFM or DFM of a beam at �i for the OPG or the
amplification by DFM of the beam at �s for the OPA. The with α = ε0χeff|E(ωp, 0)|

√
T(ωp)κωs κωi

(43)
device can exhibit the two functions for certain cases of DFM.

In order to simplify the integration of the system in Eq. where ��s
and ��i

are defined in the system in Eq. (25).
(27), we consider that the waves are plane, and that the SFM The parametric process is a DFM when (�i, �s, �p) � (�2,
and DFM are phase-matched in a direction of propagation �3, �1) or (�1, �3, �2) and a SFM when (�i, �s, �p) � (�3, �1,
without walk-off; furthermore, the pump is always unde- �2) or (�3, �2, �1).
pleted, with or without depletion of the signal wave. Because the functions in Eqs. (41) and (42) are periodic,

the idler intensity I(�i) is maximum after the waves havePure Optical Parametric Generators
propagated a distance Lm � (2m � 1)�/2� where m is an inte-

If the two incident beams are undepleted during the paramet- ger. At these points, the wave at �s is completely depleted
ric interaction [i.e., �E(�p, Z)/�Z � �E(�s, Z)/�Z � 0], then, and I(�i) � (�i/�s)T(�s)T(�i)I(�s, 0). It is obvious that a nonlin-
according to Eqs. (27), the intensities are ear medium with a length Lo � �/2� is sufficient for an opti-

mized device. Lo is typically equal to a few millimeters. NoteI(ωp, L) = T2(ωp)I(ωp, 0) (37)
that the maximum value of I(�i) is the same with or without
the depletion of the pump beam.I(ωs, L) = T2(ωs)I(ωs, 0) (38)

In Fig. 11 are plotted the pure OPG Eqs. (37)–(43).

Mixed Optical Parametric Generators and Amplifiers
I(ωi, L) = ω2

i

2

�
µ0

ε0

�3/2
(εoχeff)

2T(ωp)T(ωs)T(ωi )

n(ωp)n(ωs)n(ωi)

I(ωp, 0)I(ωs, 0)L2 (39)
If the beam at the highest frequency is the only one to be
undepleted [i.e., �E(�p � �3, Z)/�Z � 0], the different intensi-with the parameters defined in Eq. (32).
ties are expressed as (30)

I(ωp = ω3, L) = T2(ω3)I(ω3, 0) (44)

I(ωs, L) = T2(ωs)I(ωs, 0) ch2
βL (45)

I(ωi, L) = ωi

ωs
T(ωs)T(ωi)I(ωs, 0) sh2

βL (46)

with β = ε0χeff|E(ωp, 0)|
√

T(ω3)κω1
κω2

(47)

Mirror

L

I(   p,   s,   i, L)  ω ω ωI(   s, 0)  ω

I(   p, 0)ω

χ(2)

The parametric interaction is a DFM, with (�i, �s) � (�1, �2)Figure 10. OPG or OPA device. I(�p, 0) and I(�s, 0) are the intensit-
or (�2, �1).ies of the incident beams. I(�p, L), I(�s, L), and I(�i, L) are the intensi-

Equations (45) and (46), which are plotted on Fig. 12, showties at the exit of the nonlinear medium with the length L. (�i, �s,
�p) � (�1, �2, �3) with �3 � �1 � �2. that the generation of the idler wave is not obtained to the
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detriment of the signal wave, which is contrary to the pure
OPG with one undepleted beam. Consequently, such a device
also has the function of an OPA.

The gain of the OPA can be defined as

G(L) =
�
�
�
�

Is(L)

Is(0)
− 1

�
�
�
�

(48)

We take the example of the parametric amplification of a
beam at 0.355 �m by a pump at 1.064 �m. A gain of about 10
can be obtained at the exit of a 5 cm long KD2PO4 crystal with
a pump intensity of 28 MW/cm2 (30).

Then the mixed OPG-OPA is of great interest when it is
difficult to measure a weak signal in the infrared range, at
�s � �1, where the usual detectors have a small detectivity.
Indeed, this device makes it possible to amplify the signal
(OPA function), which can help for the detection at its own
circular frequency; the other issue is to get the information
concerning �1 by the measurement of the generated idler fre-
quency (OPG function), at �i � �2 � �1, when the pump beam
at �p � �3 is properly chosen (e.g., in the visible range, such
as �2 is in the near infrared where the detection is easy). Note
that a pure SFM OPG can also be used for up-conversion: the
signal at �s � �1 is mixed with the pump at �p � �2 for the
generation of the idler circular frequency �i � �3, which will
be measured; according to Eq. (42) the maximum intensity
that can be generated at �3 is unfortunately limited by the
weak signal intensity [i.e., Imax(�3) � I(�3, Lo) � (�3/�1)T(�3)
T(�1)I(�1, 0)]. Then, if I(�3, Lo) has not a sufficient level for a
good detection, it is necessary to realize the up-conversion
with a mixed OPG-OPA as already described: the generated
idler circular frequency �i � �3 
 �1 � �2 is lower than in the
case of the SFM OPG (i.e., �i � �1 � �2 � �3). On the other
hand, the maximum intensity that it is possible to generate
is not limited by the weak signal but by the strong pump [i.e.,
Imax(�2) � (�2/�3)T(�3)T(�2)I(�3, 0)]. This value is reached
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when the pump at �3 is completely depleted; then Eq. (46) is
not valid, and the calculation of Imax(�2) can be done by consid-Figure 11. Pure OPG intensity behaviors. (a) Two undepleted
ering the exact solution of the system in Eq. (27) (i.e., thebeams: SFM with (�i, �s, �p) � (�3, �1, �2) or (�3, �2, �1) and DFM
Jacobian elliptic functions, or more simply by using Manley–with (�i, �s, �p) � (�2, �1, �3) or (�1, �2, �3) or (�2, �3, �1) or (�1, �3,

�2). (b) One undepleted beam: SFM with (�i, �s, �p) � (�3, �1, �2) or Rowe relations).
(�3, �2, �1). (c) One undepleted beam: DFM with (�i, �s, �p) � (�2, �3,
�1) or (�1, �3, �2).

OPTICAL PARAMETRIC OSCILLATORS

When a strong laser beam at �p propagates in a 	(2) medium,
there exists a probability that these photons spontaneously
break down into a continuous range of pairs of lower-energy
photons of circular frequencies �s and �i with the total photon
energy conserved for each of the pairs (i.e., �s � �i � �p). This
phenomenon is called spontaneous parametric emission or
parametric noise (31).

The amplification of the corresponding generated waves is
possible during their propagation in the nonlinear medium by
the process of OPA described in the previous section. The
pairs of generated waves for which the phase-matching condi-
tion is satisfied [i.e., k(�s) � k(�i) � k(�p)] are the only ones
to be efficiently amplified.

The intensities generated after a single pass in the nonlin-
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ear medium are small because of the weak parametric noise
intensity, even in a phase-matching direction. The parametricFigure 12. Mixed OPG-OPA intensity behaviors. DFM with (�i, �s,

�p) � (�1, �2, �3) or (�2, �1, �3). amplification is a stimulation emission process, so its effi-
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ciency depends on the intensity of the interacting waves, ac- gates in the axis of the cavity. For continuous waves or pulsed
waves with pulse durations greater than 1 ns, it is possible tocording to system (27). Consequently, the efficiency of the

OPA can be enhanced if the nonlinear medium is placed in- increase the cavity length in order to place inside the cavity
two 45� mirrors that reflect the pump beam. It corresponds toside a resonant cavity that constitutes an optical parametric

oscillator (OPO) (32). The OPO can be singly resonant Fig. 13(b), which allows us to protect the cavity mirrors and
to use for them simpler dielectric coatings.(SROPO) at �s or �i, doubly resonant (DROPO) at both �s and

�i, or triply resonant (TROPO), at �s, �i, and �p. The oscilla- In any case, it is necessary to pump an OPO by a beam
with a smooth optical profile because hot spots could damagetion of the chosen generated waves begins when the paramet-

ric gain, which depends on the pump intensity, is sufficiently all the optical components in the OPO: mirrors and nonlinear
high to compensate the cavity losses. For that, it is necessary crystal. Furthermore, an OPO requires a pump beam of very
to pump the OPO above a minimum intensity level, which is high quality with regard to other parameters such as the
termed as threshold pump intensity Ith. The losses are essen- spectral bandwidth, the pointing stability, the divergence,
tially the linear absorption in the nonlinear medium and the and the pulse duration; their respective role are discussed
transmission coefficient of the output coupler mirror. later according to the specificity of the device.

Ith decreases when the number of resonant frequencies in- OPOs can be used to generate a fixed wavelength, idler, or
creases. On the other hand, the instability increases because signal, but their real interest is in the wavelength tunability
the condition of simultaneous resonance is critical. over a broad range, from the near ultraviolet to the mid infra-

The threshold pump intensity of a SROPO or a DROPO red. As we saw previously, the range of pairs (�s, �i) that can
can be reduced by reflecting the pump from the output cou- be amplified depends on the spectral range of phase-matching
pler mirror. For a SROPO at �s and for a pulsed pump beam and then on the refractive indices. The tuning is based on the
with an intensity that is supposed to be constant over a sin- dispersion of the refractive indices with the wavelength, the
gle-pass, Ith is given by (33) direction of propagation, the temperature, or any other vari-

able of dispersion. The choice of the nonlinear medium is then
of prime importance because phase-matching must exist over
the widest spectral range for a reasonable variation of the

Ith = 1.8
κsL2(1 + γ )2

�25L
cτ

+ 2αL + ln
� 1√

1 − T(ωs)

�
+ ln(2)

�2

(49) considered dispersion parameter. Several methods are used:
rotation of the nonlinear crystal, variation of pump wave-

�s � �s�i	
2
eff /[2n(�s)n(�i)n(�p)�0c3], L is the length of the nonlin-

length, modification of the temperature, or application of aear medium, � � 1 is the ratio of the backward to the forward
static or low-frequency electric field. Angle tuning and pumppump intensity, � is the 1/e2 half width duration of the pump
wavelength tuning are the most frequently used methods atbeam intensity, (2�) is the linear absorption coefficient, and
present for birefringence phase-matching.T(�s) is the transmission coefficient of the output coupler

at �s. Optical Parametric Oscillators at Fixed WavelengthsEquation (49) shows that as the losses increase, the effec-
tive coefficient must also increase in order to work at a lower The pump wavelength is fixed, and the nonlinear crystal is
threshold pump intensity. In the nanosecond regime, which cut so that the phase-matching direction of the considered in-
is the case of the most part of the currently commercially teraction is collinear to the cavity axis. The output coupler
available OPOs, the typical values of Ith are in the range 10– M2 can be transparent at �s or �i or at both circular frequen-
100 MW/cm2. cies, according to the application. The prototypical single-fre-

There exist two main techniques for the OPO pump injec- quency OPO is an SROPO that emits an eye-safe wavelength
tion, as shown in Fig. 13. In Fig. 13(a), the pump beam propa- at 1.61 �m (34). The OPO is pumped at 1.064 �m by a Q-

switched Nd : YAG laser with a 1/e2 pulse duration of 15 ns.
The pump coupling is coaxial as in Fig. 13(a): the pump cou-
pler M1 has high reflection at 1.61 �m and high transmission
at 1.064 �m, and the output coupler M2 has high reflection at
1.064 �m and a 10% transmission coefficient at 1.61 �m. The
nonlinear medium is an x-cut 20 mm long KTP crystal: the
principal x-axis is a type II phase-matching direction for the
DFM 1/1.064 �m 
 1/3.14 �m � 1/1.61 �m; it is an angular
NCPM direction. An energy of 9 mJ at 1.61 �m is obtained
from 20 mJ at 1.064 �m corresponding to an intensity of 160
MW/cm2. This device is currently used for telemetry.

Optical Parametric Oscillators with Angle Tuning

The function of these devices is to generate the signal and
idler waves over a broad range, ��s and ��i, respectively,
from a fixed pump wave at �p (35). The spectral shifts ��s �
��

s 
 �

s and ��i � ��

i 
 �

i are obtained by rotating the non-

I(  p)ω

I(  p)ω

L

L

M1 M2

M1 M2

(a)

(b)

χ(2)

χ(2)

linear crystal by an angle �� � �� 
 �
 in order to achieve
successively phase-matching over the considered spectralFigure 13. Configurations of OPO pump injection. (a) An SROPO,
range [i.e., �p n(�p, �) � �s n(�s, �) � �i n(�i, �), from (�


i ,an DROPO, or an TROPO according to the reflectivity of mirrors M1

and M2. (b) An SROPO or a DROPO. �

s , �
) to (��

i , ��
s , ��)]. We give the example of the phase-
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nonlinear crystal with angular CPM (i.e., ��i,s/�� � 0), over a
broad spectral range.

The angular criticality of the phase-matching is detrimen-
tal to the wavelength stability of the signal and idler waves
with respect to the pointing fluctuation of the pump beam. A
pointing stability on the order of 100 �rad is considered to be
acceptable with crystals such as KTP and BBO. Because of
the angular criticality, the spectral bandwidth of the gener-
ated beams, ��i and ��i, strongly depends on the divergence
of the pump beam. A larger value of ��i,s/�� corresponds to
higher spectral bandwidths for a given pump divergence. Fur-
thermore, the derivative varies according to the phase-match-
ing direction as it is shown in Fig. 14. ��i,s/�� is maximum at
the degeneracy for type I (i.e., for �i � �s), and at the short
angle cutoff of the phase-matching curve for type II. That im-
plies that the spectral bandwidth of the signal and idler
waves can vary considerably over the considered spectral
range, especially for type I: a variation from 500 to 50 cm
1 is
common along a typical type I phase-matching curve; the
spectral bandwidth (expressed in cm
1) is defined as ��i,s/�2

i,s.
These broad spectral bandwidths are too large for a few

applications such as spectroscopy. A weak reduction can be
achieved by using an injection seeded pump. Indeed, the
phase-matching is �-noncritical according to its angular criti-
cality. On the other hand, the use of a single-mode pump
allows a better stability of the idler and signal intensities.
The only way to substantially reduce the spectral bandwidth
is to introduce bandwidth-limiting elements in the OPO cav-
ity (e.g., a grazing grating associated with a tuning mirror
reflecting either the signal or the idler according to the chosen
resonance). The rotations of the nonlinear crystal and of the
restricting elements must be synchronized in order to be ac-
tive over the generated wavelength range. Narrow band-
widths of about 0.1 cm
1 can be obtained, but unfortunately
the gain of such devices is low. Nevertheless, high energy and
narrow bandwidth can both be obtained by the association of
a narrow band OPO with a mixed OPA–OPG, which is also
pumped at �p. The seed wave emitted by the narrow band
OPO (i.e., either the signal or the idler) is amplified, and the
other one is generated, as explained in the previous section.
The OPA can be placed inside a resonant cavity in order to
increase the gain.

Optical Parametric Oscillators with Pump Tuning

The nonlinear crystal is fixed, and the pump circular fre-
quency can vary over ��p leading to a variation of the signal
and idler frequencies ��s and ��i, respectively. For a given
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pump wavelength range ��p, the nonlinear crystal and the
phase-matching direction are chosen in order to get the high-Figure 14. OPO angular tuning curves of (a) BBO and (b) KTP. � is
est tuning rate ��i,s/��p. The most favorable situation is obvi-the internal phase-matching angle.
ously an angular NCPM direction because it is a wavelength
critical direction. Figure 15 shows that RTA is suitable for an
OPO pumped by a Ti : Sapphire laser (36).matching tuning curves �i(�) and �s(�) for BBO and KTP,

Because of angular NCPM, the OPO with pump tuning haswhich are widely used in broadband devices. The curves of
a low sensitivity to the divergence and pointing fluctuation ofFig. 14 are calculated with the relation in Eq. (19) for BBO
the pump beam, as opposed to an angular CPM OPO. Fur-and relations (20) and (21) for KTP.
thermore, the walk-off angle is nil, allowing us to use a longerThe nonlinear crystal and the phase-matching directions
nonlinear crystal and then to provide a higher conversion ef-are chosen so that the tuning rate ��i,s/�� is maximum be-
ficiency.cause �� cannot exceed about 30� of arc (i.e., 15� on either

side of the direction normal to the surface of the nonlinear
Multigrating Quasi-PhaseMatched OPOcrystal). Actually the refraction can lead to an attenuation of

the efficiency of the parametric interaction for bigger angles. In a QPM device, the interacting frequencies are fixed by the
frequency dispersion of the birefringence of the nonlinear ma-For this reason, the broadband device necessarily requires a
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In order to allow the development of commercial devices,
these materials must also have good mechanical and chemical
stability. New materials are searched among the inorganic
and organic compounds, and more recently mixed organic-in-
organic components were developed. An important field of re-
search also concerns quantum wells, fibers, thin films, and
polymers that can exhibit interesting nonlinear properties.

The study of any new material generally requires impor-
tant material processing efforts, and the sample sizes are gen-
erally small at such early stages. Development of performant
methods for the characterization of linear and nonlinear opti-
cal properties is then of prime importance (40).

Concerning the devices, efforts are being made on nanosec-
ond systems, which constitute powerful sources, as developed
in this article. Note that special effort has been made on short
pulse devices, because of their high potentialities for telecom-
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munication systems, all the more so since optical fibers are
Figure 15. Phase-matching tuning curve of RTA for type II SFM.

progressing at the same time. Once again, the reader inter-
ested in those particular aspects should refer to specialized
texts.terial and by the periodicity of the grating. A series of grat-

New devices have been developed to achieve several inter-ings with different periodicities are fabricated in the same
actions simultaneously. One particular example is called tan-nonlinear crystal; the translation of this crystal with respect
dem OPO. Two crystal are placed in the resonant cavity. Theto the fixed pump beam allows us to address the different
first one generates signal and idler waves �sa

and �ia
from thegratings and then to generate different couples (�s, �i). Be-

incoming pump at �p; the second crystal is chosen to allowcause the tuning is obtained in discrete steps, it is necessary
phase-matching with the previous signal �sa

acting as a pumpto combine temperature or angle tuning with the translation
and generates �sb

and �ib
such as �sa

� �sb
� �ib

(41). Theseof the sample in order to make a smooth interpolation be-
devices allow us to generate two more wavelengths from thetween the steps. This device has been recently developed with
unique pump and to possibly extend the tuning range. Simi-a periodically poled LiNbO3 (PPLN) with a thickness of 0.5
lar devices associate one OPO and one SFM in the same cav-mm and a length along the periodicity vector of 1 cm (37). A
ity, or one OPO and one SHG, or one OPO and one DFM. Ittotal of 25 gratings with periods between 26 and 32 �m are
is worth noting that for very particular combinations of wave-realized in 0.25 �m increments. The OPO is pumped at 1.064
lengths, the two interactions may be phase-matched along the�m and generates a signal between 1.35 and 1.98 �m, and
same direction, and one unique crystal is then used.the corresponding idler generates a signal between 4.83 and

Another advance in the field of OPOs may come from intra-2.30 �m.
cavity OPOs: they take advantage of the more important
pump intensity inside the laser cavity, and should then allow

RECENT ADVANCES IN FREQUENCY CONVERSION high conversion efficiencies (42).
All these devices involve an additional coupling, and their

Many applications require solid-state laser sources, with a overall behavior is more complicated than the single-crystal
wider spectral range, better tuning capabilities, higher output devices.
energies, and optimum beam quality. Apart for the ameliora-
tion of the pump lasers performances, the corresponding opti-
mization of the frequency converters mainly concerns two as- BIBLIOGRAPHY
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