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OPTICAL FILTERS

An optical filter is any device or material which is used to
change the spectral composition of an incoming electromag-
netic field. Optical filters are used to modify both the spectral
power and the phase distributions.

Optical filters operate in the visible, ultraviolet and near
infrared wavelength regions. Depending on the application,
their spectral behavior is described in terms of the wave-
length �, the frequency � or the wave number k0 � 2�/� of
the electromagnetic field in vacuum.
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We will first define the basic filter parameters and mea-
surement techniques. A discussion of the most important fil-
ter concepts then forms the central part of this article,
whereas acoustooptical devices and spectrometers are treated
elsewhere in the encyclopedia. The applications of optical fil-
ters in optical communication systems, sensors, consumer
products, lasers and other optical instruments are briefly
sketched.

Transfer matrix theories (see section entitled ‘‘Co- and
Contradirectional Couplers’’) or the equivalent characteristic
matrices (see section entitled ‘‘Interference Filters’’) are in-
creasingly preferred as a means of describing optical filters,
since they offer a straightforward way of calculating stacked
filters and even more complex circuitries.

BASIC EQUATIONS AND PARAMETERS

The majority of optical filters are linear devices, i.e., the spec-
tral response �o(�) of an optical filter to an incoming signal
�i(�) is given by

�o(ω) = H(ω)�i(ω) (1)

where H(�) stands for the transfer function of the optical fil-
ter. Within this article, a forward traveling wave is described
by � � exp( j(kr � �t)) with the position vector r and the
time t. Some signs in phase-sensitive expressions will be af-
fected by this basic assumption.

Today, most optical filters are used in phase-insensitive as-
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semblies. For such applications, the optical filter is completely
Figure 1. Relevant parameters of optical filters (IL: insertion loss,described by its response to an incoming optical power distri-
XT: crosstalk attenuation, CI: channel isolation, ILPB, ILSB: maximum/bution Pi(�) � ��i(�)�2, i.e.,
minimum insertion loss in the passband/stopband, �ILp/��p: addi-
tional insertion loss/equivalent frequency shift due to polarization),Po(ω) = |H(ω)|2Pi(ω) (2)
�s, �x: signal and crosstalk frequencies).

Figure 1 serves as an illustration for the following discus-
sion of the most important filter parameters.

Any treatment of crosstalk at a signal frequency (�x � �s)
which is typical for echoes or reallocated frequency channels

Insertion Loss must take coherent effects into account. The channel isolation
The insertion loss of an arbitrary optical device is the fraction

CI(ωx) = XT(ωx) − ILPB (5)of optical power which is lost by moving the device into the
optical path. The insertion loss of an optical filter at a signal

relates the crosstalk attenuation to a reference insertion lossfrequency �s is defined by
ILPB, usually the maximum insertion loss within a passband.
It should be noted that the accumulated crosstalk from manyIL(ωs) = 10 · log10 |H(ωs )|2 (3)
spectrally distant sources of a multichannel system can be-
come significantly higher than that of the two adjacent chan-

It should be noted that the insertion loss is defined via the nels. By cascading optical filters it is always possible to im-
ratio of the optical powers of incoming and outgoing signals, prove the crosstalk attenuation at the expense of a reduced
and not via the corresponding electrical power levels within filter bandwidth.
the detection circuitry.

Passband/Stopband
Crosstalk Attenuation/Channel Isolation

A passband [�(PB)
min , �(PB)

max] of an optical filter is a frequency inter-
For a set of closely spaced transmission lines, crosstalk is de- val offering ‘‘low’’ insertion losses, that is,
fined as the relative power transfer to a nonexcited line. Anal-
ogously, the crosstalk attenuation XT of an optical filter is ILPB ≥ IL(ω(PB)

min ≤ ω ≤ ω(PB)
max ) ≥ ILPB − �ILPB (6)

defined as the insertion loss in another channel at a fre-
quency �x, that is, ILPB is the maximum insertion loss tolerated in the passband.

Ranges of acceptable insertion losses are typically �ILPB �
XT(ωx) = IL(ωx) (4) 1 . . . 3 dB depending on the number of cascaded filters. A
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stopband [�(SB)
min , �(SB)

max] of an optical filter, in contrast, is a fre-
quency range offering ‘‘high’’ insertion losses,

IL(ω(SB)

min ≤ ω ≤ ω(SB)
max ) ≥ ILSB (7)

where ILSB stands for the minimum insertion loss in the
stopband.

The roll-off of an optical filter is given by the slope of the
filter curve. It determines the extent of the spectral range be-
tween the passband and the stopband which cannot be used
for most applications.
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Group Delay/Dispersion Figure 2. Measurement setups for insertion loss (a) and group delay
(b) (DUT: device under test, SRC: optical source, �: microwaveThe group delay
source, POL: polarizer, MOD: amplitude modulator, TAP: optical tap
(1 : 10), DET: detector, VEC–VM: vector voltmeter, �: amplifier).

tg(ωs) = − ∂ϕ

∂ω

∣∣∣∣
ωs

(8)

tion of a filter which is periodic with respect to the frequency
caused by an optical filter at a signal frequency �s is given by

or wave number satisfies the condition
the first derivative d�/d� of the phase of the transfer func-
tion H(�s) � �H(�s)� exp( j�(�s)).

The group velocity dispersion (GVD) H(ω + �ωFSR) = H(ω) (10)

The period ��FSR designates the free spectral range of the op-
tical filter, i.e., the spectral range of nonoverlapping opera-GVD(ωs) = ∂tg

∂λ
= ω2

s

2πc
∂2ϕ

∂ω2

∣∣∣∣
ωs

(9)

tion. The maximum number Nmax of channels, which can be
separated by a periodic filter (e.g., a Fabry–Perot interferom-

is defined as the additional group delay per wavelength devia- eter) according to Rayleigh’s criterion is given by Nmax �
tion. The definitions of the group delay tg and the GVD can be ��FSR/��RC. The true number of frequency channels depends
verified by studying the propagation of a Gaussian pulse on the crosstalk requirements of the underlying application.
through a purely phase-distorting optical filter.

The GVD leads to compression and decompression of opti-
Measurement Setupscal pulses as well as to a linear chirp.

The spectral characterization of optical filters concentrates on
two different parameters: insertion loss and group delay.Polarization Dependent Parameters

Figure 2(a) shows a typical setup for the measurement of
Most optical filters are more or less polarization sensitive de- the insertion loss. The light transmitted through the optical
vices, that is, the insertion loss measured at a certain fre- filter is emitted from a tunable source which is built up as a
quency varies according to the polarization state of the input tunable laser (e.g., an external cavity laser) or as a broadband
signal. Over an extended spectral region, the ranges of possi- source [e.g., a light emitting diode (LED) or a white light
ble insertion losses form a band which allows the polarization source] combined with a monochromator. The beam is then
dependent behavior of an optical filter to be assessed. For the transmitted through a polarizer before a small part of the op-
majority of devices, the boundaries of these bands are given

tical power is split off as a reference signal. The signal is sub-by two orthogonal polarization states (s- and p-polarization
sequently transmitted through the optical filter. Signal andfor interference filters, TE- and TM-polarization for inte-
reference are detected by two optical power meters. Lock-ingrated optical devices) irrespective of the wavelength.
techniques are used to improve the accuracy.The design of filters usually aims to minimize the polariza-

Figure 2(b) shows a setup for the measurement of thetion sensitivity. For many filters of this type, the boundaries
group delay of an optical filter. It measures the group delayof the bands of possible insertion losses are represented by
of a microwave signal directly. The light transmitted throughtwo filter curves of almost the same shape (see Fig. 1) which
the optical filter is again emitted from a tunable source. Theare shifted with respect to each other. The residual polariza-
beam is then transmitted through a modulator where the am-tion dependence can then be described by an equivalent fre-
plitude of the optical beam is modulated by the microwavequency shift ��p and an additional insertion loss �ILp for one
signal. The signal is finally detected and amplified in the elec-of the polarization states.
trical domain before being compared with the reference micro-
wave signal by using a vector voltmeter or a network ana-

Spectral Resolution/Free Spectral Range lyzer. The resolution of the setup increases in accordance with
the increasing frequency of the microwave signal. The ampli-According to the generalized Rayleigh’s criterion, the spectral
tude modulator, the direct detection receiver as well as theresolution ��RC of an optical filter is given by the full width

half maximum (FWHM) of its filter curve. The transfer func- vector voltmeter therefore need to be high-speed devices.
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SYSTEMS WITH OPTICAL FILTERS with fiber pigtails. Microoptical and integrated optical devices
are increasingly ousting out their classical equivalents.

The optical circuitry required for the transmission or detec-
Spectroscopytion of several frequency channels can be laid out in four dif-

ferent ways (see Fig. 3). The first concept (spectrograph) sepa- Spectrometers and spectrographs are the classical instru-
rates all the frequency channels in one step. It represents the ments used in spectroscopy. Spectrometers are tunable filters
best solution for the parallel processing of many channels. which can sweep over the optical spectrum. They are often
The required multichannel filters are reflection or transmis- used as monochromators. Spectrographs, in contrast to spec-
sion gratings, prisms or optical phased arrays. The second trometers, allow parallel processing of the optical spectrum.
concept (chain) consists of a cascade of filters. Each filter (typ- A great variety of mountings is available each of which is op-
ically an interference filter) along the chain adds or drops one timized with respect to the underlying application. A large
frequency channel. It represents a modular solution for ADD/ free spectral range and a high spectral resolution are the key
DROP applications. The accumulation of insertion losses parameters of spectrometers and spectrographs. For this rea-
along the chain results in declining the power levels of the son, reflection gratings operated in the first-order of diffrac-
different frequency channels. The third concept (array) con- tion form the core of most of these instruments. For deep-UV
sists of an array of filters which are connected in parallel. applications, special prisms serve as optical filters. Additional
Each filter (typically a Fabry–Perot interferometer) repre- broadband filters (usually interference filters) are often
sents a band-pass for one of the frequency channels. This con- placed in front of spectrometers and spectrographs in order to
cept suffers from an inherent splitting loss (ILs � 10 log N). restrict the spectrum to one order of diffraction.
The fourth concept (tree) is based on a binary tree, usually of Spectrometers and spectrographs are typical representa-
periodic filters. Each filter (typically a directional or Mach– tives of laboratory equipment. Most of these devices are bulky
Zehnder coupler or interference filter) routes every second fre- and should be operated in a laboratory environment.
quency channel or the upper or lower half of the frequency

Communications Systemschannels to one output port, that is, each filter must be
adapted to the underlying system. Optical filters play an increasing role in optical communica-

During the last few years, the range of applications has tions systems.
shifted from classical sectors, mainly spectroscopy and lasers, Today, the worldwide telecommunications core network is
to optical communication systems and sensors. In conse- based mainly on single-mode fibers. The transmission sys-
quence increasing numbers of optical filters are now equipped tems are operated in the near infrared wavelength region

(1.3 �m . . . 1.5 �m) where both the attenuation and the
GVD of the optical fibers are small. The remaining limitations
of optical transmission due to fiber loss and dispersion have
been overcome by introducing erbium-doped fiber amplifiers
(EDFAs) and dispersion management. The maximum trans-
mission length of today’s high bitrate systems is power depen-
dent. It is limited at the low power side by noise accumulation
and at the high power side by fiber nonlinearities. Most long-
haul transmission lines (�150 km) have been equipped with
EDFAs resulting in a substantially reduced number of electri-
cal 3R-repeaters. Optical filters (mainly fiber based direc-
tional couplers, Mach–Zehnder devices, and interference fil-
ters) are used to flatten their gain characteristics. Tunable
filters are used to restrict the spectrum of the amplified spon-
taneous emission (ASE) and thus the ASE–ASE beat noise
occurring at the receiver. With an increasing data rate the
compensation of fiber dispersion becomes increasingly impor-
tant. In addition to dispersion compensating fibers, optical
filters (mainly chirped Bragg gratings) can be used to com-
pensate the group velocity dispersion of the fibers.

An increasing number of transmission lines is operated in
wavelength division multiplex (WDM) mode in order to up-
grade the capacity of existing fibers. According to the stan-
dards of the International Telecommunications Union (ITU),
the WDM channels are located in the amplification band of
the EDFA around 1.55 �m. The spacing of these channels is
given by multiples of 100 GHz (�0.8 nm at 1.5 �m). Optical
filters are used as wavelength demultiplexers and, for sys-
tems with many wavelength channels, also as wavelength
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multiplexers. They are critical high-end components in the
layout of such systems. The corresponding components are re-Figure 3. Basic optical filter circuitries (Spectrograph, Chain,
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gratings), chains of optical filters (usually interference filters) tion for microoptical devices. An example is given by the in-
tegrated optical spectrographs which are used to calibrateor an array of passband filters (fiber Bragg gratings or

Fabry–Perot filters). Wavelength division multiplex repre- high-end printers by measuring their color temperature.
Photon-assisted sensors detect the influence of an acoustic,sents a high-end application for optical filters. The required

channel isolation (typically �20 dB for adjacent wavelength electrical or chemical signal on the behavior of an optical
wave. Some of these sensors are based on the detuning of op-channels and �30 dB for distant wavelength channels) for an

arbitrary polarization state represents the central require- tical filters, mainly of Mach–Zehnder or Michelson interfer-
ometers. Examples of this kind are gyroscopes, position sen-ment for transmission systems with many WDM channels.

The tolerated insertion loss is determined by the layout of the sors, and vapor sensors (e.g., SO2 and NH3). Strain sensors
based on detuned fiber Bragg gratings have also been imple-system. It represents a critical quantity for WDM links with-

out optical amplifiers (typical specification: 5 dB). The core mented.
Photonic sensors find application in industrial and militarynetwork is moving toward an all-optical network which is

characterized by reconfigurable links in the optical domain environments (e.g., chemical plants, oil platforms), transpor-
tation (e.g., aircraft), electrical power plants and distributionon the basis of WDM transmission. Key components of such

networks are optical add-drop multiplexers (OADM) and opti- systems, as well as robotics and machine-control systems. Al-
though the cost of photonic equipment has dropped dramati-cal cross connects (OXC). OADMs allow one or more WDM

channels to be added to and/or dropped from a WDM trans- cally, high costs still often prevent more extensive use of
these sensors.mission system. The core of such a component is formed by

one or more tunable filters or by a wavelength multiplexer/
demultiplexer pair separated by a passive circuitry. An OXC Other Applications
consists a multiplexer and a demultiplexer separated by a

Anti-reflection (AR) coatings and mirrors are the most impor-switching matrix. It allows wavelength channels to be ex-
tant applications which have not yet been covered. AR coat-changed between different fibers. If wavelength converters
ings are used for dereflecting lenses and other optical inter-are additionally installed, the OXC can switch wavelength
faces inside optical instruments, lasers, and laboratorychannels in the same way as fiber channels. OADMs are cur-
equipment, but also in typical consumer products such asrently entering the market, while OXCs are being tested in
spectacles and camera lenses. Interference filters are alsofield trials.
used as mirrors in resonators for lasers and Fabry–Perot in-Optical fibers are currently also moving into the access
terferometers. Beam splitters, neutral filters, and similar de-networks. Fiber to the curb (FTTC) systems, which are based
vices form further applications.on bidirectional full-duplex transmission, use optical filters

(mainly interference filters) to separate the two wavelengths
used for upstream and downstream transmission. These

INTERFERENCE FILTERS ANDtransmission lines use a wide channel spacing (today usually
FABRY–PEROT INTERFEROMETERS�200 nm) to allow high wavelength tolerances for the lasers.

From the point of view of the optical filter, the required isola-
Fabry–Perot interferometers and interference filters aretion of the counter propagating signals with greatly differing
based on the interference of electromagnetic radiation in apower levels (typically �50 dB for the complete setup) and
series of plane–parallel (usually dielectric) interfaces.the low price are the critical parameters for this component.

Optical filters used for such systems are interference filters
Reflection and Refractionand directional couplers (fiber-based and integrated optical

solutions). The directions of propagation of the reflected and the trans-
Optical communications systems require robust and com- mitted waves passing through a planar dielectric interface be-

pact components which can be used in the field under tough tween two media i and o with refractive indices ni and no re-
environmental conditions. For this reason most of the optical spectively, can easily be determined by the law of reflection
components are manufactured by using the technologies of

�r � �i and Snell’s law of refraction no sin �o � ni sin �i.microoptics or integrated optics. Fresnel’s formulas are used to calculate the reflection coef-
ficient

Sensors

Sensors form part of most systems today and will play an r = ηi − ηo

ηi + ηo
(11)

increasing role in view of the growing possibilities offered by
signal processing. Photonics can be used within sensor sys-

and the transmission coefficienttems for detection, communications, and power supply appli-
cations. Competitive advantages of optical communications
and power supply systems include: no electromagnetic inter-
ference, electrical isolation, and high explosion safety. The

t = 2ηi

ηi + ηo
(12)

photonic sensors themselves can be divided into two classes:
true photonic sensors and photon-assisted sensors. The characteristic admittance �

True photonic sensors detect and/or analyze optical sig-
nals. Examples of this type of sensing are absorption analysis
and spectroscopy. Beside the classical laboratory spectrome-
ters and spectrographs, there is an increasing field of applica-

η =
{√

n2 − n2
i sin2

θi for s-polarization

n2/
√

n2 − n2
i sin2

θi for p-polarization
(13)
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allows a unified treatment of s- and p-polarization. For s-po-
larization, the electric field is perpendicular to the plane of
incidence, whereas for p-polarization it is parallel to it.

The reflectance, that is, the relative reflected power, is
given by R � �r�2. The transmittance, that is, the relative
transmitted power is determined by T � �t�2Re(�o)/Re(�i).

The effect of passing a plane–parallel plate of thickness d
and refractive index n is described by using the equivalent
phase thickness

δ = k0d
√

n2 − n2
i sin2

θi (14)

of the layer. For transparent media and angles below the crit-
ical angle of total reflection, the coefficient ei	 will be a pure
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phase factor, whereas lossy material will be subject to an at-
Figure 4. Filter curves versus equivalent phase thickness of Fabry–tenuation of �ei	� 
 1.
Perot interferometers with various finesses (F � 10, 100, 1000).

Fabry–Perot Interferometer

The Fabry–Perot interferometer is formed by a single cavity
embedded between two plane–parallel, nearly perfect mir- full width half maximum. The transmittance does not vanish
rors. Its reflection coefficient is given by completely even in the regime of total reflection. Its minimum

value is given by

rFP = ri + roe2iδ

1 + riroe2iδ
(15)

T (min)

FP = (π/2)2

(π/2)2 + F2 ≈
( π

2F

)2
(20)

where ri and ro stand for the reflection coefficients at the input
and output interfaces, respectively. The expression for the re-

This phenomenon is called tunneling in conformity with theflection coefficient of the Fabry–Perot interferometer is usu-
terminology of quantum mechanics (2).ally derived by summing the amplitudes of all partial reflec-

Today, Fabry–Perot interferometers are mainly used astions and refractions (Airy’s summation). It can also be
tunable band-pass filters. Interference filters act as the highlycalculated by using the characteristic matrices introduced in
reflecting mirrors forming the resonator. The finesse of thesethe section entitled ‘‘Interference Filters.’’
interferometers is limited by imperfections of the resonatorFor symmetric arrangements, r � �ri � ro, lossless media
especially in tunable filters and by diffraction inside the reso-and angles below the critical angle of total reflection (�ei	� � 1,
nator. Fabry–Perot interferometers are usually tuned by�r � 0), the reflectance is given by
moving one of the mirrors. Devices whose cavities are filled
with liquid crystals can be tuned without moving the mirrors,
but they suffer from polarization dependence and additionalRFP = F2 sin2

δ

(π/2)2 + F2 sin2
δ

(16)

insertion losses caused by the liquid crystal. Fabry–Perot in-
terferometers with finesses of up to several hundred are avail-where
able on the market. Their disadvantages are a low tuning
speed and a frequently occurring hysteresis of the tuning
curve.F = π

√
R

1 − R
(17)

designates the finesse of the Fabry–Perot interferometer (1). Interference Filters
Figure 4 shows filter curves for this case. No reflection occurs

Interference filters consist of a series of thin films which canif the condition 	 � m� is satisfied. The free spectral range is
be deposited by evaporation, ion-assisted deposition, ion plat-given by �	FSR � �, that is,
ing, sputtering or even by various epitaxial processes. Inter-
ference filters can also be deposited from the liquid phase, but
this technique is declining in importance due to the increase�λFSR = λ2

2d
√

n2 − n2
i sin2

θi

(18)
in fabrication tolerances. The choice of coating materials and
fabrication process is driven by the type of filter and by the

The FWHM of the filter is environmental specifications, especially the degree of hard-
ness and the resistance to humidity. An extensive list of avail-
able coating materials is presented in the textbook by Mac-�δFWHM = 2 sin−1

( π

2F

)
≈ �δFSR

F
(19)

leod (3).

Equation (19) shows that the finesse represents the number
Characteristic Matrix. Using the fundamental solutions ofof wavelength channels which can be placed within one free

spectral range when the channel spacing coincides with the Maxwell’s equations in a homogeneous space, which take both
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forward and backward traveling waves into account, the prop- with �TrU � � 2 are designated as its (potential) stopbands
since an infinite periodic stack of multilayers (N � 
) acts asagation of the electromagnetic field is given by
a perfect reflector (R � 1) within these bands. The widths of
the stopbands represent a measure of the refractive index
contrast of the basic period. With decreasing refractive index

(
Ei

jHi

)
= U

(
Eo

jHo

)
(21)

contrast, the width of a stopband tends to zero. A necessary
condition for the occurrence of a stopband at the wavelength

The characteristic matrix U with the elements uij describes
�l is therefore

the transfer of the optical field through a single homogeneous
layer of thickness d and refractive index n. It is given by 2π

λl

√
n2 − n2

i sin2
θi = lπ

�
(26)

in which � is the period, that is, the thickness of the basic
U =

(
cos δ − sin δ/η

η sin δ cos δ

)
(22)

period. However, if any of the layers forming the basic period
with the characteristic admittance � and the phase thickness is transparent for a certain order l, the stopband cannot be
	 of the layer. Since the tangential components of both the observed. The stack (HL)N, for example, has no even orders
electric and the magnetic field are continuous at a dielectric for that reason. This equation is in fact the Bragg condition
interface, an arbitrary interference filter consisting of L lay- that governs any type of contradirectional coupler.
ers can be described by stacking up the characteristic matri- A symmetric stack of layers U � U 1U 2 . . . U L . . .
ces, i.e., U � �L

l�1U l � U 1U 2 . . . U L. The admittance Y of U 2U 1 can be replaced by a single equivalent layer with the
the interference filter is given by characteristic matrix

jY = u21 + ju22ηo

u11 + ju12ηo
(23)

U =
(

cos � sin�/H
−H sin� cos �

)
(27)

where �i and �o stand for the admittances of the input and
The equivalent phase thickness � is given by cos � � u11. Itoutput media. Matching the tangential field components at
is either purely real or purely imaginary. The equivalent ad-the first dielectric interface of the interference filter yields the
mittance �eq is defined by �eq � ��u21/u12.following relation for the reflection coefficient:

Examples. Figure 5 shows a simple design and a schematic
diagram of the filter curve for the four most important types

rIF = ηi − Y
ηi + Y

(24)

of interference filter—anti-reflection coating, low-pass, high-
Equation (12) for the transmission coefficient and the equa- pass, and band-pass filters. It should be pointed out that the
tions for reflectance and transmittance at a single interface edge filters—low-pass and high-pass types—should be oper-
can be applied to interference filters simply by replacing the ated at their fundamental order since the behavior of the fil-
admittance of the output medium �o by that of the interfer- ter curve close to the stopband changes at higher orders. More
ence filter. sophisticated designs can be obtained by refining the filter

curves of such simple designs, that is, by varying the thick-
ness of certain layers to reduce the ripples of the filter curveLossless Filters. The lossless interference filters character-

ized by a real refractive index n form the most important in its passband. A more detailed discussion of this topic is
given in (3–5).class of interference filters. They are described by unimodular

2 � 2-matrices (see the Appendix for some of their prop-
erties).

CO- AND CONTRADIRECTIONAL COUPLERSFor particular wavelengths, where the optical thickness is
an integral number of quarter-waves, the characteristic ma-

Co- and contradirectional couplers are any devices based ontrix is given by
the coupling of guided modes. A small selection of these de-
vices will be examined in the following.

Transfer Matrix Theory

Transfer matrix theory represents a common theory which
provides a description of any circuitry built up from co- and

U =




(−1)N/2


1 0

0 1


 for even N

(−1)(N+1)/2

(
0 1/η j

−η j 0

)
for odd N

(25)

contradirectional couplers. The transfer matrix for a general
coupler with N interacting modes is given by a N � N matrix.i.e., half-wave layers are optically transparent. A convenient

notation is obtained by defining the interference filters at a It describes the transfer of modes through the coupling
structure.design wavelength in terms of quarter-wave layers. The char-

acters H, L, and M usually refer to quarter-wave layers of For a purely passive coupler, the sum of the reflected and
transmitted powers at all ports is always smaller than orhigh, low, and intermediate refractive index, respectively.

The characteristic matrix of an N-period multilayer can be equal to the incoming power. The losses are caused by radia-
tion and absorption. Theoretical descriptions for both losslesscalculated by using Chebyshev polynominals. Spectral regions
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2 matrix). The transfer matrix (for definitions of input and
output ports, see Fig. 6)

(
a(o)

1
a(o)

2

)
= U±

(
a(i)

1
a(i)

2

)
(29)

describes the variation of the amplitudes ai of the two modes
propagating either co- or contradirectionally. The conserva-
tion of optical power is guaranteed by the relation

∣∣a(o)

1

∣∣2 ± ∣∣a(o)

2

∣∣2 = ∣∣a(i)
1

∣∣2 ± ∣∣a(i)
2

∣∣2 (30)

Cascaded couplers and couplers of varying cross section
are described by the product of the transfer matrices of their
constituents, that is, U � �L

l�1U l � U 1U 2 . . . U L. Sections
of more complex networks are described by box-diagonal ma-
trices (6).

Matrix Elements. There are several techniques for calculat-
ing the elements of a transfer matrix. The two most impor-
tant are coupled mode theory (CMT) and the bidirectional
eigenmode propagation method (BEP).

AR coating

I M O, nM = √  i  0

Low-pass filter

I L (L H L)N
 LO

2 2 22

High-pass filter

I H (H L H)N
 HO

2 2 22
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λ λd

λ λd

λ λd
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η η 

Figure 5. Basic types of interference filter (AR coating, low-pass fil-
ter, high-pass filter, band-pass filter). H, L, and M refer to quarter-
wave layers of high, low, and intermediate refractive index, and I and
O refer to the input and output media.

and lossy devices are available. However, most coupler struc-
tures can be treated approximately as lossless devices. Such
devices are modeled by unimodular matrices.

Two Interacting Modes. For the most important case of two
interacting modes the transfer matrix of a lossless device is
given by

U± =
(

A
 A⊗

∓A⊗∗ A
∗

)
(28)
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where the upper sign applies to the codirectional case and the
lower sign to the contradirectional one. Each type of transfer Figure 6. Periodically varying asymmetrical coupler: (a) representa-
matrices (U � and U �) forms a group, that is, the product of tion by transfer matrices, (b) device structure composed of basic wave-
two transfer matrices results in a transfer matrix of the same guide structures, (c) comparison of the field distributions on both

sides of an abrupt change of the waveguide.type (see Appendix for some properties of the unimodular 2 �
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Coupled mode theory is a perturbation theory modeling a
general coupler with N interacting modes. It starts from the
coupled mode equations

− j
∂am

∂z
= kmam +

N∑
l=1

(1 − δml )κmlal (31)

where am and km describe the amplitude and wave number of
the fundamental mode of a waveguide m, 	ml stands for the
Kronecker symbol. The coupling coefficients are given by its
overlap integrals or Fourier coefficients. The elements of the
transfer matrix in Eq. (28) calculated within the framework
of coupled mode theory for the most elementary devices are
given by
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Figure 7. Filter curves for uniform (untapered) and �-tapered de-
vives showing the substantially reduced side-lobes for the Blackman
window. The insert shows the corresponding weighting function, i.e.,

A

± = cos(δeff L) ± jδ sin(δeff L)/δeff

A⊗ = jκ sin(δeff L)/δeff

(32)

the mean coupling coefficient along the filter.

in which A�
� applies to the uniform directional coupler and

A�
� to the uniform Bragg grating. The definitions of the cou-

Side-Lobe Suppression. The side-lobes of co- and contradi-pling coefficient �, the detuning 	, and the effective detuning
rectional couplers can be suppressed by appropriate tapering	eff are given in the sections entitled ‘‘Uniform Directional
of the coupling coefficients, that is, by adiabatic variation ofCouplers’’ and ‘‘Bragg Gratings.’’
the coupling coefficient along the coupler. It can be shownThe BEP method (7) is a powerful simulation tool which
(9,10) that the envelope of the filter curve is given by the Fou-can be used to propagate an optical field under the influence
rier transform of the tapered coupling coefficient. This makesof co- and contradirectional coupling. In a similar way to the
the classical window functions used for digital filtering appro-beam propagation method (BPM), the BEP handles curved
priate candidates for �-tapering. As an example, Fig. 7 showswaveguides by means of stepwise changes. Within guided
the filter curves of meander couplers for the uniform (unta-eigenmode propagation method [GEP Method (7)] the optical
pered) case and for �-tapering by a Blackman window. Thefield is expanded into the eigenmodes of the coupled wave-
side-lobes of the filter are obviously significantly smaller, thatguide structure which then propagate undisturbed with their
is, the crosstalk is substantially reduced.effective wave numbers ki along sections with a constant re-

It should be noted that side-lobe suppression by �-taperingfractive index profile. At any interface the eigenmodes are de-
can be realized only at the expense of an increased devicecomposed into the tangential components of the electric and
length or coupling coefficient. Typically, a factor of 2 . . . 3 ismagnetic fields which are then matched calculating the over-
needed to ensure efficient suppression. The classical windowlap integrals aik between the field distributions. The field dis-
functions (11) such as Hamming, raised cosine, Blackman,tributions E(l)

i and E(l�1)
i of the eigenmodes i are slightly differ-

and Kaiser windows, are usually preferred since they provideent in both sections (l and l � 1), as sketched in Figs. 6(b) and
excellent side-lobe suppression.6(c). Each abrupt change of the waveguide structure leads to

a mode conversion in which power is coupled from one mode
Uniform Directional Couplersto the other (or from one waveguide to the other). These

transfer matrices coincide with those of coupled mode theory Figure 8 shows a typical directional coupler consisting of two
(7) for the weak coupling limit. Radiation modes can be ne- single-mode waveguides with a longitudinally uniform cou-
glected for the sake of simplicity, although the degree of the pling region and branching regions at both ends of the device.
approximation is known at each step. The relevant expansion
coefficients for codirectional devices are the overlap integrals
between the even and odd eigenfunctions in both sections.

aik(λ) = ∫
E (l+1)

i
(x)E (l)

k
(x) dx∫

El
i (x)El

k(x) dx = δik

(33)

The eigenmode calculation can be performed using either one-
dimensional (calculated by the field transfer matrix method
(8) or two-dimensional [calculated by the finite difference
(FD) method] field distributions. The latter method involves
greater numerical effort. In many cases a one-dimensional ap-

A xA =

Branching
region

Branching
region

Coupling
region

I

Gapproach is accurate enough. It has the advantage of providing
a numerical solution of an exactly solved equation. With to- Figure 8. Symmetrical directional coupler composed of rib wave-
day’s personal computer power, this numerical process is very guides. The coupling and branching regions and the gap of the wave-

guides are identified.fast and accurate.
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Within the framework of coupled mode theory, the matrix ele-
ments of the transfer matrix in Eq. (28), A�

� and A�, are given
by Eq. (32), where L describes the device length, 	 � k0 �n/2
the detuning of the eigenmodes of the isolated waveguides
and 	eff � �	2��2 � k0 �nc/2 that of the coupler. If both sets
of eigenmodes are available from a numerical analysis, the
coupling coefficient � can be written as � � �	2

eff � 	2. The
beat length of the uniform coupler is given by L� � 2�/	eff, its
coupling length by L� � �/	eff.

Symmetrical Coupler. A symmetrical directional coupler
maintains the phase mismatch 	 �0 over the full spectral
range. Its transfer function has a sinusoidal wavelength char-
acteristic irrespective of the shape of the branching regions
(6). A symmetrical coupler which separates two wavelengths
�1 and �2, for example, 1300 nm and 1500 nm, usually has a
length equal to one coupling length at �1 and two at �2. It has
a wide passband and a narrow stopband due to its sinusoidal
filter characteristic. Symmetrical directional couplers have in-
finitely many perfect bar and cross states.

Symmetrical couplers have been fabricated as fiber based
and integrated optical devices in various material systems,
for example, SiO2/Si, LiNbO3, ion exchange in glass,
InGaAsP/InP, and GaAlAs/GaAs. Today, fused fiber couplers
are optical filters widely used as broadband filters (e.g., for
1.3/1.5 �m) or taps in communications systems.

Asymmetrical Coupler. An asymmetrical coupler consists of
two different waveguides. It has infinitely many perfect bar
states I� � 0 but usually imperfect cross states. Its filter char-
acteristic is given by I� � F sin2(	effL) where the Lorentzian-
shaped envelope is

F = κ2

κ2 + δ2 (34)

To calculate the number of channels which can be separated
by an asymmetrical coupler it is useful to consider typical
spacings between adjacent channels. Figures of this kind are
the full width half maximum ��FWHM and the spectral dis-
tance ��� to the adjacent bar states.
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Figure 9. Asymmetrical coupler: (a) eigenmodes for isolated and cou-
pled waveguides, (b) 	(�) and �(�) from (a), (c) low crosstalk for de/
multiplexer at 1550 nm due to asymmetry.
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�λFWHM =
√

3
2

�λ
 (36)
crossover wavelength. Figure 9 shows the filter curve of an
asymmetrical directional coupler whose waveguide arms have

In comparison to a symmetrical directional coupler, the different material compositions and geometries. Complete
FWHM of an asymmetrical coupler is reduced and the stop- crossover is achieved only for specific layouts which guarantee
band is significantly wider. The width of the passband de- the coincidence of the wave numbers at the design wave-
creases for increasing device length L, that is, with a decreas- length. A good guideline for the design is to make the product
ing coupling coefficient. Thus the ratio of bandwidth to device of waveguide cross section and refractive index contrast for
length can be used as a measure for the efficiency of an asym- both waveguide core regions equal at the design wavelength.
metrical coupler. The maximum power transfer at the cross Figure 9(a) shows the crossover of the eigenmodes of the
state is given by I� � ��/	eff�2, that is, the cross state is imper- isolated waveguides and the detuning of the coupler modes as

a function of the wavelength. This diagram can be used tofect as long as the detuning 	 � 0 does not vanish at the
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obtain the required values of the detuning 	 and the coupling
coefficient �, as is shown in Fig. 9(b). It should be noted that
the two curves are not straight lines as assumed within cou-
pled mode theory. Figure 9(c) shows the dispersion diagram
of an asymmetrical coupler. The design of an asymmetrical
coupler is restricted to certain waveguide combinations.

Grating Assisted Asymmetrical Couplers

Use of an overlay grating allows the design space of asymmet-
rical couplers to be enlarged. The ratio of the FWHM to the
device length in particular can be significantly reduced by us-
ing two waveguides with minimum and maximum refractive
index contrasts, each with the maximum core area leading to
single-mode operation. Phase matching can be achieved for
the design wavelength �0 by introducing a period Wavelength (nm)
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Figure 10. Experimental and theoretical filter curves for a �-tapered
meander coupler in InGaAsP/InP (30 periods with a length of each

� = π

δ(λ0)
(37)

100 �m, 2 . . . 5 �m waveguide separation).

Any periodically varying waveguide structure that changes
the waveguide thickness or refractive index can be used.
Thickness variations are implemented by etching processes,

position of the set of required gratings. This is done by sum-refractive index variations often by (e.g., electro- or thermoop-
ming all the individual coupling coefficients. This concepttical) tuning.
would enlarge the design space and the flexibility for add/A cross section of a grating assisted coupler (meander cou-
drop filters in WDM systems (7).pler) is shown in Fig. 6(b). The filter curves are sinc-like func-

tions, as has been shown for the asymmetrical coupler (see
Mach–Zehnder DevicesFig. 9). One period of a meander structure based on a rectan-

gular grating of tooth height hg is described by
Mach–Zehnder devices represent compound components con-
sisting of a phase shifter embedded between two Y-branchesUunit = UCM(δ, κ,�/2) ∗ UCM(δ,−κ, �/2) (38)
or directional couplers. The 4-port Mach–Zehnder coupler can
be used as an optical filter or switch. The operation of a prop-
erly designed Mach–Zehnder device is mainly driven by the

κ(λ) = πa12(λ, hg)

�
(39)

phase shifter. Its transfer matrix is given by
The definition of the detuning 	 coincides with that of the
asymmetrical coupler. The coupling coefficient � for one sec-
tion is correlated with the overlap integral a12 [Eq. (33)].

The transfer matrix of a uniform grating assisted coupler
can be calculated by using Chebyshev polynominals (see Ap-

U =
(

cos φ1 j sinφ1

j sinφ1 cos φ1

) (
e j�ϕ/2 0

0 e− j�ϕ/2

)(
cos φ2 j sinφ2

j sinφ2 cos φ2

)

(40)pendix). For a nonuniform grating (chirp, �-tapering), the fil-
ter has to be stacked section by section.

with the phase thicknesses �1 and �2 of the two couplers andFigure 10 shows the experimental and theoretical results
the relative phase shift �� of the phase shifter.for a �-tapered meander coupler in InGaAsP/InP with a pe-

The directional couplers within the Mach–Zehnder chainriod of �100 �m. The coupler is built up from curved wave-
are constructed as follows. Each coupler has a phase thick-guides to reduce the radiation losses. Since both waveguide
ness �i, the overall phase thickness being �/2. In the uniformarms forming the coupler have the same material composi-
case, all couplers are identical. Analogously to the grating as-tion, the full width half maximum was 40 nm. By using differ-
sisted couplers, the coupling coefficients can be tapered, re-ent material compositions, this figure can be reduced to only
sulting in reduced crosstalk. Figure 11 shows calculated filter1 nm for a 10-mm long device.
curves of a chain of ten Mach–Zehnder couplers for the uni-To overcome the limitations of a fixed grating structure, an
form case and two tapered ones. It should be noted that theelectrode and a control scheme can be used to synthesize each
filter curves look similar to those of asymmetrical couplers.grating period individually. The basic idea of the Syngrat lay-

For a required crosstalk attenuation of 20-dB, a 10-stageout is to use four independently controlled electrodes for each
filter with a Blackman window can be used to separate onlyperiod (12). A tuning range from � �1250 nm to 1600 nm
three wavelength channels.with a channel separation of 1 nm can be realized with the

expenditure of several thousand electrodes. The use of tuned
gratings allows the filter to be reconfigured dynamically. Bragg Gratings
Moreover, the wavelength channels can be addressed directly

Bragg gratings, that is, single-mode slab or stripe waveguidesafter a scaling procedure.
or single-mode fibers equipped with an appropriate periodicThe Syngrat is a forward transverse filter. It can be used

to add or drop a set of wavelengths in a single step by super- overlay, represent the most elementary and at the same time
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Bragg gratings exhibit radiation on the short-wave side of
the fundamental Bragg peak (13), the efficiency of the cou-
pling depending on the layout of the grating (geometry and
refractive indices). When operated at oblique incidence, these
gratings show polarization conversion and a Brewster angle
for TE polarization (14).

Bragg gratings can be stacked together in order to realize
compound devices. For example, by putting a �/4 spacer be-
tween two identical gratings of this kind, it is possible to real-
ize an extremely narrow passband in the center of the stop-
band of the original gratings (see Fig. 5 for a typical filter
curve). In the same way, it is possible to derive the filter curve
for any type of chirped and tapered Bragg gratings.

Chirped Bragg gratings are promising candidates for dis-
perion-compensating filters. Because of the chirp, the effec-
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tive reflection point, that is, the group delay, shifts rapidly if
the wavelength is varied. It should be noted that the chirpFigure 11. Filter curves for a chain of ten Mach–Zehnder interfer-

ometers for the uniform and �-tapered cases. must be controlled perfectly in order to avoid ripples in the
dispersion curves.

Bragg gratings designed as optical filters have been real-most important example of contradirectionally coupled de-
ized in fibers and as integrated optical devices in the SiO2/Sivices in guided wave optics. The Bragg condition
and InGaAsP/InP material systems. The grating structures
with periods of �1 �m for fibers and the SiO2/Si material
system and 
0.5 �m for the InGaAsP/InP material system,

� = λ0

2n
(41)

are implemented by holography or by using phase masks.
determines the spectral position of the stopband. Fiber Bragg gratings are commercially available today.

The elements of the transfer matrix Eq. (28), A�
� and A�, They are used as optical filters for communications systems

calculated within the framework of coupled mode theory are operating in the wavelength division multiplex mode (WDM)
given by Eq. (32), where L describes the device length, 	 � or as dispersion compensating filters. Fiber Bragg gratings
k0 �n/2 � �/� the detuning of the eigenmodes of the isolated

incorporated in the phase shifter of a Mach–Zehnder couplerwaveguides under the influence of the Bragg grating and
are used as ADD/DROP devices.	eff � �	2 � ���2 the effective detuning. � describes the Fourier

coefficient responsible for the contradirectional coupling. For
a rectangular grating, it is given by � � �n/(�n̄). The re-
flectance of the Bragg grating is given by DIFFRACTION GRATINGS AND OPTICAL PHASED ARRAYS

Spectrographs are based on the interference of multiple
beams which are fed from the input signal. The beams inter-

R = |κ|2 sin2
(δeff L)

δ2
eff cos2(δeff L) + δ2 sin2

(δeff L)
(42)

fere in a free-space or a slab waveguide region. Focusing spec-
and its transmittance by T � 1 � R. In contrast to the corre- trographs provide both diffraction and imaging within a sin-
sponding codirectional coupler, the effective detuning of a gle device.
(lossless) Bragg grating can become purely imaginary if 	 2 

���2. Figure 12 shows the increasing reflectance within the
stopband for increasing values of �L. Theory

For the sake of simplicity the theoretical treatment of focus-
ing spectrographs is restricted here to planar devices. The ex-
tension to three dimensions is straightforward (15).

Light-Path Function. The treatment of spectrographs based
on the light-path function represents a generalization of Huy-
gen’s principle for tackling focusing gratings. The light-path
function

F(y) = FI(y) + PD − OD + mλG(y) (43)

describes the effective path difference between a ray propa-

Power (a.u.)

–4 –2 0 2 4

δ/κ

κL = 10 

κ L = 2

gating from the point of incidence I to the observation point
D � (yD, zD) via an intermediate point P � (y, zG(y)) at theFigure 12. Filter curves for uniform Bragg gratings with �L � 2 (a),

�L � 10 (b). grating line zG(y) and the central ray of the beam propagating
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It should be noted that spectrographs will not always form a
real image. In particular, gratings will often not form an im-
age at all.

Magnification. The ratio of the spot magnifications mD and
mE of two arbitrarily chosen observation points D and E is
given by

mD

mE
= rD cos αE

rE cos αD
(47)

The contours of constant spot magnification are formed by a
family of circles which are tangential to the grating line at its

y

z

Grating line

Focal line

P

O

I

D

D

α

center O.
Figure 13. Coordinate system for the analysis of a planar spectro-
graph. Rowland Mountings. A Rowland-type mounting is an un-

chirped spectrograph (G(�)(0) � 0, � � 1). Its grating line
zG(y) � R � �r2 � y2 is a semicircle of radius R. The point of
incidence is chosen such that the phase portrait along thevia the center O � (0, 0) of the grating line (see Fig. 13). The
grating line becomes linear (F (�)

I (0) � 0, � � 1).coordinate system is oriented such that the grating line zG(0)
The focal line of a Rowland-type mounting is given by ais tangential to its y-axis. The first term FI(y) � IP

�

� IO
�

stands
circle of radius r � R/2 that is tangential to the grating linefor the effective path difference of the fan-in region, this conti-
at its center O. Rowland-type mountings offer constant spotbution. It varies for different types of spectrograph. The next
magnification and low aberrations.two terms on the right-hand side of Eq. (43) account for the

physical path difference between the emergent rays. The last
Aberrations. Further expansion coefficients F (�)(0) with � �term, m�G(y), describes the contributions of the (almost) peri-

2 can be made to vanish only for special mountings. They rep-odic structure of the grating to the effective path difference
resent the aberrations of the spectrograph. The leading termoperated in the mth diffraction order. For further analysis,
F�(0) designates the coma, and the following contributionthe light-path function F(y) is expanded into a rapidly con-
F (IV)(0) the spherical aberration. Astigmatism represents theverging Taylor series.
most significant aberration for three-dimensional spectro-
graphs. It cannot occur in planar devices. In order to obtain

Stigmatic Points. A focusing grating forms a perfect, that is,
the maximum spectral resolution, designs usually aim to min-

completely aberration-free, image of the incoming beam if the
imize the aberrations of the grating. As a rule of thumb, a

light-path function F(y) � 0 vanishes along the entire grating
focusing spectrograph will form a good image as long as the

line. This rigid condition can be satisfied for only a few points
path difference between the central and 1/e ray is smaller

in the observation plane at best. Such aberration-free obser-
than a tenth of the wavelength (F(y1/e) 
 �/10). It should be

vation points are designated as stigmatic points of the
noted that it is impossible to design a planar spectrograph

mounting.
which exhibits neither coma nor spherical aberration over an
extended spectral range. Only Rowland-type mountings have

Imaging. If only the leading coefficients of the Taylor no coma.
expansion of the light-path function vanish, images exhibiting
aberrations will occur. By determining the observation point Efficiency. The shape of a single diffraction peak repre-
in the slab waveguide, it is usually possible to make the first sents the Fourier transform of the envelope of the optical field
two expansion coefficients vanish. emitted from the grating line. The Fourier transform of the

Fermat’s principle (F�(0) � 0) yields the diffraction angle near-field of a single grating groove forms the envelope of the
�D via the grating equation diffraction pattern (see Fig. 14). For curved gratings, the cen-

tral rays emitted from all partial beams must intersect each
sinαD = −F ′

I (0) − mλG′(0) (44) other at a single point which can be regarded as the ‘‘blaze
point’’ of the mounting. This point should obviously be located

The image, that is, the waist of the diffracted beam, is located on the focal line.
at a distance A few remarks on the electromagnetic theory of reflection

gratings are relevant here. Since the boundary conditions at
the corrugated surface of a grating differ for the different vec-
tor components of the electric and magnetic fields, the effi-

rD = cos2 αD

−mλG′′(0) − F ′′
I (0) + z′′

G(0) cos αD
(45)

ciency curves of the reflection gratings will be affected by the
vectorial character of the incoming beam. In consequence, theaway from the center O of the grating line. The focal line rf,
envelope of the diffraction pattern of a reflection grating willthat is, the image curve of the grating, is then given by
always exhibit polarization-dependent behavior. The theory of
plane reflection gratings for optical instruments is extensively
examined in a book edited by Petit (16). The efficiency curves
of such gratings exhibit a rich variety of physical effects in-

r f = rD

(
− sin αD

cos αD

)
(46)
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point, which may be located at infinity for nonfocusing de-
vices.

Transmission Gratings. Transmission gratings are divided
into amplitude and phase gratings. Amplitude gratings modu-
late the amplitude distribution along the phase front by a se-
ries of (usually equidistant) slits. They represent the most
classical type of grating dating back to Fraunhofer. Due to
the excess loss (usually 3 dB), they are of minor technical
interest today. Phase gratings, in contrast, modify the phase
portrait without changing the amplitude distribution. They
are much more attractive but hard to fabricate.

Integrated optical transmission gratings have been real-
ized by several groups. Up to now, none of these devices has
entered the market.

Reflection Gratings. A focusing reflection grating is a more
compact solution since it represents a folded optical system.

F[AF]

NF

AF

F–1[AF]

x

y

Grating line

Focal line

The classical Rowland mounting is based on a reflection
Figure 14. Diffraction efficiency of spectrographs. grating.

Most reflection gratings manufactured today represent
replicas of ruled master devices. Such gratings are preferred
due to their high efficiency. However, marginal mechanicalcluding Wood anomalies and the excitation of surface waves
imperfections of the ruling machines result in aberrations of(surface plasmons).
the grating. In particular, periodic perturbations yield
‘‘ghosts’’ of the grating, that is, in satellite peaks within theirSpectral Resolution and Free Spectral Range. The spectral res-
spectra. Holographic exposure makes it possible to fabricateolution of a spectrograph is governed by the number of illumi-
gratings which do not exhibit any ghosts, although at the ex-nated grating grooves. According to Rayleigh’s criterion, it is
pense of a significantly reduced efficiency. Holographic grat-given by [see Eq. (10)]
ings allow for stigmatic points, but the impacts of the holo-
graphic setups limit this feature to a few types of mounting
(17).dλRC = λ

|m|N (48)
Planar spectrographs based on reflection gratings have

also been successfully fabricated. The reflection gratings were
The spectral resolution required for practical devices (see (6), realized by etching into a slab waveguide or by processing the
Ch. 9) depends on the underlying application, essentially on chip endface. The technologies of integrated optics allow, in
the specified crosstalk attenuation between adjacent wave- contrast to those for classical spectrographs, the gratings to
length channels. have an arbitrary shape and chirp. This increased flexibility

The maximum diffraction order is determined by the re- is counterbalanced by restrictions on geometry and chip area
quired free spectral range. The period �m � �m��1 of an mth- which are characteristic of integrated optics. Integrated opti-
order spectrograph represents a multiple of the period of the cal gratings have been realized by several groups. Figure 15
equivalent first-order device, that is, the fabrication of spec- shows a flat-field spectrograph. The point of incidence and the
trographs can be simplified at the expense of a reduced spec- focal line of this device are located at the chip endface. Inte-
tral range. In fact, planar spectrographs used in optical com- grated optical reflection gratings are currently available on
munications systems often exhibit the maximum diffraction the market.
order that is permitted, and devices with �m� � 100 have been
realized. The number of accessible wavelength channels Nch

is given by the quotient of free spectral range and spectral
resolution.

Reflection and Transmission Gratings

The physical path difference for the fan-in region of a grating
is given by FI(y) � IP � IO, where I represents the point of
incidence and P an arbitrary point on the grating line. Its
derivatives at the center O of the grating line are given by
F �I (0) � sin �I and F �I (0) � cos2 �I/rI � z�G(0) cos �I. The spot
magnification factor is given by m0 � (rD cos �I)/(rI cos �D),
where �D designates the diffraction angle and rD the distance
between the center of the grating line and the image D. The

Etch groove

Reflection
grating

Silica

Silicon

Photodiode
arrayPoint

incidenceparameters �I and rI describe the corresponding parameters
of the input beam. Gratings are blazed by orienting the grat- Figure 15. Integrated optical flat-field spectrograph in the silica-on-

silicon (SiO2/Si) material system.ing grooves such that all reflected rays intersect at the blaze
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on top of PIP
�

and OIO
�

designates the arc length along the
corresponding strip waveguides. The ratio np/ns accounts for
the phase difference caused by the different effective propaga-
tion constants of the strip np and slab ns waveguides. The
front side of the phase shifter usually represents a circle
whose center is located at the point of incidence. The first two
terms (IPI � IOI) will therefore often compensate each other.

The Rowland mounting represents the most popular layout
for optical phased arrays. The groove function for such de-
vices is given by G(y) � y/� where � designates the period of
the optical phased array (projected onto the tangential coordi-
nate axis y). The grating line is given by a semicircle of ra-
dius R. The fan-in of the phased array must be assembled

Point of
incidence

Grating line

Focal line

Phase shifter

Wavelength
channels

such that the phase portrait becomes linear along the grating
Figure 16. Optical phased array chip: principle of operation. line. The light-path difference on the input side is then given

by

Optical Phased Arrays

An optical phased array—also called an arrayed waveguide
FI(y) =

(
−m

λC

�
− sin αC

)
y = np�L

ns�
(49)

grating (AWG) or a phasor—represents a phased transmis-
in which �C designates a design wavelength (inside the slabsion grating (6,18). In contrast to more conventional devices
waveguide), �C the diffraction angle for this wavelength andof this kind, it allows a huge phase shift and thus operation
�L the path difference between two adjacent waveguides. Asat extremely high diffraction orders.
pointed out earlier, planar Rowland mountings exhibit noFigure 16 shows a schematic drawing of a optical phased
coma. The Rowland mounting which forms the basis for thearray. The point of incidence I of the phased array is located
optical phased array is operated close to the vertex of theat the beginning of the left slab waveguide. Starting from this
Rowland circle (�D � 0), where it exhibits a stigmatic point.point, the input beam propagates under the influence of dif-
Figure 17 shows a set of filter curves for a phased array infraction through the homogeneous slab waveguide. At the
the silica-on-silicon (SiO2/Si) material system. At the expensefront end of the phase shifter, the optical far-field represents
of an additional insertion loss, the passband of the phasedthe Fourier transform of the near-field of the input beam. The
arrays can be flattened by modifying the phase shifter or thebeam is then divided into N partial beams, each propagating
waveguides at the point of incidence I or the focal line.separately through one of the strip waveguides forming the

Integrated optical phased arrays are key componentsphase shifter. The phase shifter allows the phase positions of
within fiber optical transmission systems and networks oper-the partial beams to be individually adjusted relative to each
ated in the wavelength division multiplex mode (WDM). Theyother, that is, the phase portrait at the grating line, which is
are used as wavelength demultiplexers separating all wave-located at the input side of the second slab waveguide, to be
length channels in a single step. For transmission systemstuned. The endfaces of the strip waveguides forming the grat-
with many wavelength channels they are also operated asing line replace the grating grooves of a conventional grating.
multiplexers in order to avoid the excess loss of wavelength-If the front and back of the phase shifter have the same lay-
independent combiners.out, the optical field at the grating line will represent the Fou-

rier transform of the near-field at the input side modified by
the phase portrait due to the phase shifter. The near-field at
the point of incidence will be reconstructed at the focal curve
provided the optical system of the phased array does not ex-
hibit any aberrations.

The period of the phased array is given by the spacing of
the strip waveguides at the back of the phase shifter (pro-
jected to the tangent at the center of the grating line). In or-
der to prevent coupling between the strip waveguides forming
the phase shifter, practical designs tend to be based on the
maximum diffraction order allowed by the free spectral range
of the underlying application. The blazing of phased arrays is
straightforward. The axes of the waveguides ending at the
grating line should intersect the focal curve at a common
point, which is the blaze point of the device.

For a phased array, the light-path difference between the
point of incidence I and the grating line zG(y) is given by
FI(y) � IPI � IOI � (np/ns)(PIP

�

� OIO
�

) where O represents the
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center of the grating line and P an arbitrary point on it. The
other two points OI and PI are located on the input side of the Figure 17. Filter curves of an 8-channel optical phased array in the
phase shifter. They are connected with their counterparts O silica-on-silicon (SiO2/Si) material system (channel spacing: 400 GHz,

TE, and TM polarization).and P by the strip waveguides of the phase shifter. The tilde
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u11 u12
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Siemens AG

OPTICAL FILTERS. See ELECTRO-OPTICAL FILTERS.
OPTICAL FREQUENCY CONVERSION. See OPTICAL

HARMONIC GENERATION PARAMETRIC DEVICES.


