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DISTRIBUTED MEMORY PARALLEL SYSTEMS

A typical parallel computer system consists of a set of comput-
ing nodes. Such a computer allows a programmer to divide
the computational steps of an application over the set of com-
puting nodes. This division of the computational steps allows
the programmer to run the overall application with reduced
execution time on a parallel system compared to the time
taken on a uniprocessor system. Such division of the computa-
tional steps and the associated data of an application to mul-
tiple computing nodes is known as parallel programming.
Two types of parallel programming models are quite common:
distributed memory and shared memory. Parallel computer
systems supporting the distributed memory programming
model are known as distributed memory parallel systems. Sim-
ilarly, parallel computers supporting shared memory pro-
gramming model are known as shared memory parallel
systems.

The two kinds of programming models differ in the way
the memory of the computing nodes are made visible to the
computing nodes/programmer. Figure 1 shows the distinc-
tion. Consider a parallel system consisting of four computing
nodes (processors P0, P1, P2, and P3) and each node having 128
Mbytes of memory (M0, M1, M2, and M3), as indicated in Fig.
1(a). All together the parallel system has 128 � 4 � 512
Mbytes of memory. In a distributed-memory parallel system,
each computing node can access its own memory only; that
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Figure 1. (a) Example of a parallel com-
puter with four computing nodes and as-
sociated memory. (b) Distributed memory
programming model. (c) Shared memory
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programming model.

is, P0 can access only M0, P1 can access only M1, and so on. exchange of information is known as interprocessor communi-
cation and is achieved by exchanging messages between theSuch an organization is indicated by Fig. 1(b). However, in a

shared memory parallel computer, as shown in Fig. 1(c), each computing nodes. Each message passing step involves a pair-
wise operation: a send operation from the sender computingcomputing node can access the entire 512 Mbytes of memory.

The above two types of parallel systems provide different node and a recv operation from the receiver computing node.
Figure 2 shows an example of a message passing programtrade-offs for a programmer when writing a parallel program.

It is much easier to write a shared memory parallel program involving three computing nodes (P0, P1, and P2). On each
computing node, computational steps are interleaved withbecause data can be placed anywhere in the shared memory.

However, building such a parallel system delivering very good message passing steps. Processor P0, after its initial computa-
tion phase, sends a message to processor P1. This messageperformance is quite difficult and expensive. Thus, many cur-

rent generation parallel systems support distributed memory passing step is initiated by a send communication primitive.
This primitive indicates that a message containing data dataxprogramming model.

In this article, we focus on such distributed memory paral-
lel systems and discuss the associated architectural, commu-
nication, programming, and performance issues. We start
with the basic concept of message-passing and introduce vari-
ous communication primitives. Next, we introduce existing
message-passing standards and libraries. Basic architectural
issues related to the overall system organization are dis-
cussed. Issues related to obtaining good performance on such
systems are discussed next. Example system architectures
corresponding to Intel Paragon, Cray T3E, and IBM SP2 are
discussed. Finally, we present future trends of distributed
memory parallel systems.

BASIC CONCEPT OF MESSAGE PASSING

The computing nodes of a distributed memory parallel system
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cannot access each other’s memory. However, in order to exe-
cute a parallel application, these computing nodes have to Figure 2. Example of a message passing program containing three

pairs of send–recv message passing steps.exchange information (data and control) among them. Such
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(from the memory of P0) needs to be sent to processor P1. Simi- quested to refer to Refs. 1, 4, 5, and 6 for details of such varia-
tions.larly, processor P1 initiates a recv operation to receive the

message sent by processor P0. This example program involves
three send-recv pairs of message passing: (P0, P1), (P1, P2),
and (P2, P0). MESSAGE PASSING STANDARDS AND LIBRARIES

Over the years, as different kinds of distributed memory par-
allel systems got developed, the designers of each system keptCOMMUNICATION PRIMITIVES
on providing a wide range of communication primitives for
their own system. This trend allowed a parallel programmerDifferent distributed parallel systems support different kinds

of communication primitives to provide flexibility of message to write the best parallel program for an application on a
given system. However, such a practice was found to be verypassing for the application developers. Broadly, the primitives

are divided into two classes: point-to-point and collective. The restrictive because the parallel program written for a given
system could not be easily ported to another system. The por-first category involves message passing between one sender

and one receiver. The second category involves communica- tability was limited because the communication primitives of
these two systems were not identical.tion between more than two processors. Examples include

broadcast, multicast, barrier synchronization, and so on (1,2). For some years, such lack of portability provided a big limi-
tation to the development of parallel programs. This has ledIn broadcast operation, one processor sends data to all other

processors in the system. Similarly, multicast operation in- to the development of message passing standards. A message
passing standard defines a set of communication primitivesvolves sending data from one processor to a subset of the

other processors. Barrier synchronization across a set of pro- and its variations to write message passing programs. A par-
allel system supporting the standard ensures that all commu-cessors involves making sure that all processors arrive at a

given point in their respective program execution before pro- nication primitives and their variations are implemented on
the system with good performance capability. If a parallelceeding further.

Both point-to-point and collective communication primi- programmer writes a distributed memory parallel program
using the communication primitives of the standard, then thetives are built on top of send and recv primitives. Different

variations of send and recv primitives also exist (3,4). Some program is completely portable across parallel systems sup-
porting the standard. Such standardization allows a greatexample variations are (1) synchronous versus asynchronous

and (2) blocking versus nonblocking. A synchronous send oper- deal of flexibility for application developers to design, develop,
and evaluate parallel programs on different parallel systems.ation indicates that the processor will not come out of this

message passing step unless the message gets delivered to It also provides a safeguard for an application developer to be
able to run a parallel code (written using the standard) on athe receiver and an acknowledgment gets returned to the

sender. An asynchronous send operation does not ensure the newer parallel system when the old one becomes obsolete.
During the last few years, the message passing interfaceacknowledgment step. The completion of such send operation

indicates that the message has been sent out from the sender; (MPI) (4) standard has evolved as the de facto standard for
writing message passing programs on distributed memoryhowever, it is not clear whether the receiver has received the

message or not. A blocking recv operation indicates that the parallel systems. This standard was developed by a consor-
tium of scientists, engineers, and researchers from parallelreceiver processor must get blocked (not able to proceed) until

the message arrives at the receiver. Alternatively, a non- computer industry, universities, and research laboratories.
The MPI-1 standard was finalized during 1995, and most ofblocking recv operation indicates that the receiver processor

can return back to the computation if the message does not the current generation distributed memory parallel systems
support this standard. Currently, effort is underway to definearrive.

These variations provide different message passing seman- the MPI-2 standard with a set of richer communication primi-
tives.tics to an application programmer. Depending on the compu-

tation–communication characteristics of an application (or for As mentioned earlier, communication primitives belong to
two major classes: point-to-point and collective. For a parallela given part of the application), the programmer can choose

to use appropriate communication primitives in order to pro- system with a given number of processors, obtaining the best
point-to-point communication performance between twovide good overlap between computation and communication

steps. Such overlap allows the program to run with less time nodes for a given data size may require that we use one of
the several underlying available implementations. Similarly,and deliver better parallel speedup.

In addition to the above variations, the communication implementing any one of the collective communication opera-
tions (the MPI standard indicates 14 different collective com-primitives also differ in the way parameters are passed to

these primitives. For example, for a send operation, the munication operations) with the best possible performance in-
volves using the best point-to-point communication primitive,source location of the data to be sent (from local memory) and

its length need to be specified. Similarly, for a recv operation, using dedicated hardware support for the operation (if avail-
able), and using the best communication algorithm (7). Thethe location where the received data needs to be written at

the receiver memory needs to be specified. For a nonblocking performance of a given collective communication operation
also depends on the number of processors and data size usedrecv operation, the status of whether it becomes successful or

not also needs to be returned to the receiver processor. Such in the operation.
Thus, in order to provide the best choice for an application-parameter passing together with the above variations provide

a wide range of choices of communication primitives for a level communication (point-to-point or collective), many dif-
ferent implementations need to be available on the system.given distributed memory parallel computer. Readers are re-
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(c) node-network interfaces, and (d) input/output (I/O) sub-
system. The I/O subsystem may be comprised of I/O devices
being connected to only a few computing nodes or to all of the
computing nodes.

Architectural issues in designing computing nodes for dis-
tributed memory parallel systems are the same as those of
designing computing nodes for uniprocessor computer sys-
tems. The major components of a computing node are high
speed microprocessor(s) together with the associated periph-
eral logic blocks (such as interrupt, direct-memory access
[DMA], and timer), main memory blocks, caches, and system
bus. Computing nodes for earlier generation distributed mem-
ory parallel systems used to be designed in a customized man-
ner. Recently, the trend has changed and the nodes are de-
signed using off-the-shelf microprocessors. Detailed design
issues to build high-performance computing nodes for uni-
processor systems are indicated in Ref. 9.

The interconnection network and the node-network inter-
faces are significant components of a distributed memory par-
allel system. The interconnection network typically is used to
support interprocessor communication between the comput-
ing nodes. If the I/O subsystem is connected to only a few
computing nodes then the interconnection network is also
used to support I/O traffic.

As the speed of microprocessors continues to increase, the
System network characteristics
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computing nodes are becoming faster. This trend is de-
manding faster interconnection network (supporting low la-Figure 3. Hierarchies involved in developing a scalable communica-

tion library for a distributed memory parallel computer. tency and high bandwidth) so that a given parallel program
can be executed faster.

There are several challenges in designing an interconnec-
tion network supporting low latency and high bandwidth dataSuch implementations are typically available as a message
transfer. The major components in designing an interconnec-passing library form, and the application is linked to the li-
tion network are topology, switching technique, routing, flowbrary at compile/run time to select the best possible imple-
control, and switch architecture. There are several choices formentation. Figure 3 shows the typical hierarchical approach
each of these components. Some of the choices are dependentused to develop such scalable and high-performance message
on the networking technology. Thus, it is a challenging taskpassing libraries. The point-to-point implementations are de-
for an architect to make appropriate selections to design aveloped based on the system/network characteristics. The col-
high-performance interconnection network. For more infor-lective communication implementations are developed based
mation on these design challenges, readers are requested toon the point-to-point communication operations and dedicated
refer to an accompanying article in this encyclopedia, INTER-hardware support for a given collective operation. The scal-
CONNECTION NETWORKS FOR PARALLEL COMPUTERS.able communication library is designed by integrating the im-

In addition to designing faster computing nodes and inter-plementations for point-to-point and collective operations.
connection networks, it is significant to have faster node-net-Most of the current generation distributed memory paral-
work interfaces in a distributed memory parallel system. Oth-lel systems support scalable communication library conform-
erwise, the communication performance of the system ising to the MPI standard. In addition to this library, some sys-
severely limited. Major components of a node-network inter-tems also support communication libraries conforming to
face are a set of injection channels to inject messages from thetheir own proprietary standards. Examples include the MPL
computing node to the interconnection network and a set oflibrary (8) by IBM SP2, the NX library by Intel Paragon (5),
consumption channels to consume messages from the inter-and so on. Such alternative libraries allow flexibility for a
connection network to the computing node. As with designingparallel programmer to develop an application in a custo-
the interconnection network, there are several challenges inmized manner for a given computer with the best possible
designing a balanced node-network interface so that there isperformance. These proprietary libraries are also targeted to-
no bottleneck in interprocessor communication. Typically,ward providing vertical compatibility with their earlier gener-
such design involves establishing a close coupling betweenation of parallel systems, thus allowing applications written
the network link speed, speed of the computing node, andfor their earlier generation systems to run with minimum
speed of the I/O bus to which the node-network interface ismodifications while delivering reasonable performance.
attached (10). Such a close coupling provides low latency and
high bandwidth communication for the system.

The I/O subsystem includes the I/O bus and the I/O de-ARCHITECTURAL ISSUES
vices. As indicated earlier, the I/O subsystem may be
attached to only a few nodes or to all nodes of the system. IfMajor components of designing a distributed memory parallel

system are: (a) computing nodes, (b) interconnection network, it is attached to only a few nodes, the system operates in an
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asymmetric manner with respect to I/O operation. In such network. The system has a peak 1.8 TFLOP computation rate
and a peak cross-section bandwidth of over 51 Gbytes/s. Thesystems, the nodes connected to I/O devices are typically

known as I/O nodes. The computing nodes take the help of nodes are distributed as follows: 4,536 computing nodes, 32
service nodes, 24 I/O nodes, 2 system nodes, and the re-I/O nodes to perform I/O operations. In a symmetric design,

all computing nodes are attached with I/O devices. In these maining hot-spare nodes. In 1997, this system with 9,216 pro-
cessors was the largest distributed memory parallel systemsystems, I/O operations can be done in parallel by all comput-

ing nodes leading to high-performance I/O. ever built.
Each node in the Paragon system is a shared-memory

multiprocessor consisting of two or more processors. One pro-
PERFORMANCE ISSUES cessor works like a dedicated message processor. The other

processor(s) perform computation. Each node is connected to
The performance of a parallel program on a distributed mem- the interconnection network through a network interface chip
ory parallel system depends on several factors. Assume that (NIC). Two DMA engines (one for sending messages and the
the parallel program is written in an efficient manner, which other for receiving messages) are used to support burst data
minimizes communication and I/O steps. The overall execu- transfer between the memory and network.
tion time of this program will depend on how much overlap The interconnection network for Paragon is a two-dimen-
can be achieved between the amount of time spent on compu- sional mesh network. A two-plane, two-dimensional network
tation, communication, and I/O. This overlap indirectly de- is used in the Option Red system for improved system main-
pends on several architectural factors previously mentioned. tainability. The network supports wormhole-switching and is
Some of these factors include the speed of computation (pro- capable of transmitting data at a peak unidirectional speed of
cessor speed and speed of the memory hierarchy), overhead 400 Mbytes/s and 800 Mbytes/s at full duplex.
for communication (operating systems and communication
software overheads to inject/consume a message), communi- Cray T3E
cation delay in the interconnection network (switch delay,

The Cray T3E (17,18) system was introduced to the markettransmission delay, amount of contention in the network),
in 1995. It is a successor to the Cray T3D system and containsoverhead to initiate an I/O operation, and time spent on I/O
several architectural enhancements over the Cray T3Doperation.
system.Over the years, as the technologies for processor, memory,

The Cray T3E system is comprised of a number of pro-interconnect, and disk have continued to advance, the parallel
cessing elements (PEs) interconnected by a 3D, bidirectionalcomputer architects have been involved in designing better
torus network. This network is primarily used for fast com-and better computing nodes, interconnection networks, node-
munication. The PEs are also connected by a number of Giga-network interfaces, and I/O subsystems for high-performance
Ring channels, which provide connectivity to networks anddistributed memory systems.
I/O devices.While designing these subsystems, architects typically use

Each PE consists of a DEC Alpha 21164 microprocessor, amicrobenchmarks to evaluate the performance of the respec-
local memory, a control chip, and a router chip. The controltive subsystems (9,11). Such benchmarking allows them to de-
chip provides flexibility for logically shared memory across allsign the best subsystem under each category. When putting
PEs: Each PE can access the memory in any other PE, anddifferent subsystems together, applications-driven bench-
every PE can access any I/O device through the GigaRingmarks (like NAS [12], SPLASH [13]) are typically used to
channels.evaluate the performance of a complete system.

The T3E supports low-latency, high-bandwidth communi-
cation through a 3D torus network. The network supports

ARCHITECTURE OF EXAMPLE SYSTEMS minimal adaptive routing (18) to minimize network con-
tention for messages. The network is capable of delivering a

In this section, we present an architectural overview of some 64-bit word every system clock (13.3 nsec) in each of all 6
of the current generation distributed memory parallel directions. The bisection bandwidth for a 512-PE system ex-
systems. ceeds 122 Gbytes/s.

The I/O subsystem of Cray T3E is built with a set of
GigaRing channels (19). Each channel is connected to a set ofIntel Paragon
PEs (up to 16 PEs) and to the torus network. Each channel

The Intel Paragon was introduced to the market in 1992 by
can deliver a peak bandwidth of 1 Gbytes/s. Besides the PEs,

Intel Corporation as its third-generation distributed memory
other types of I/O nodes and controllers (such as SCSI, FDDI,

parallel system (14). Earlier, Intel had introduced the iPSC-1
Ethernet, ATM, and HIPPI) can also be connected to a Giga-

and iPSC-2 series of distributed memory parallel systems
Ring channel. This provides flexibility to provide different

supporting store-and-forward and circuit-switched intercon-
kinds of I/O and network connectivity for the system.

nections, respectively. The Paragon system supported the
third-generation wormhole-switched interconnection network

IBM Scalable Parallel (SP) System
(15).

Currently, the largest Paragon system is installed as the IBM entered the MPP market with the introduction of the
IBM SP1 system in 1993. The SP2 system was introduced inOption Red machine at Sandia National Laboratories (16).

This system has 4,608 nodes (each consisting of two Pentium 1994. The SP systems focus on cluster architecture. Each node
is actually an RS/6000 workstation with its own local disk. APro processors) with 297 Gbytes of memory. The computing

nodes are connected with a 38 � 32 � 2 mesh interconnection complete AIX (IBM’s Unix) resides on each node. A high-
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speed interconnection network connects the nodes. The SP is leading to development of fast I/O buses and efficient node-
network interfaces.systems are designed using custom components as much as

possible. This trend brings better systems to the market
within short time intervals.

CONCLUSIONS
Each node of the IBM SP system consists of a POWER2

processor, local memory, disk, and network connections for In this article, we have defined distributed memory parallel
the Ethernet and high-performance switch (20). The network systems. Basic concepts of message passing and communica-
connections are through the Micro Channel I/O bus. De- tion primitives are introduced. Current message passing stan-
pending on the capacity of memory hierarchy, the data path dards and libraries for distributed memory systems are out-
width, and the number of I/O bus slots, IBM SP systems are lined. Main architectural and performance issues are
available with three different node types: wide node, thin discussed. Architectures of a set of representative distributed
node, and thin node 2. memory systems (such as Intel Paragon, Cray T3E, and IBM

The nodes are interconnected by two networks: a conven- SP) are presented. Finally, current and future trends in de-
tional Ethernet and a high-performance switch. The Ethernet signing high-performance and cost-effective distributed mem-
connection is used as a backup interconnection and becomes ory systems are outlined.
extremely useful for program development, testing, and de- This article has attempted to provide an overview of dis-
bugging. The high-performance switch and its network links tributed memory systems. Interested readers are requested to
are used to support low latency interprocessor communi- refer to additional readings (33,34,35) for more information.
cation.

The high-performance switch is a packet-switched,
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