
MESSAGE-PASSING SOFTWARE SYSTEMS

INTRODUCTION

A parallel computer is a set of processors, connected via
some interconnection network, working together to solve a
computational problem. The major hardware features of a
parallel computer are the processing units themselves and
the interconnection network that ties them together. The
effective use of this hardware requires a software infras-
tructure that provides an appropriate level of abstraction
and functionality, and that allows the applications running
on the processors to use the interconnection network.

In this document, we review the development of the soft-
ware infrastructure for parallel computers, focusing in par-
ticular on the message passing systems that are commonly
used at the application program level for communicating
processor data over the interconnection network. We shall
start with a brief introduction to parallel programming
and message passing, followed by a detailed examination
of the most influential message passing systems. The chap-
ter will conclude with an examination of MPI, the standard
for message passing software.

PARALLEL PROGRAMMING MODEL

The von Neumann machine model assumes a processor ca-
pable of executing sequences of instructions. In addition to
various arithmetic operations, an instruction can specify
the address of a datum to be read or written in memory
and/or the address of the next instruction to be executed.
While it is possible to program a computer in terms of this
basic model using machine language, this method is for
most purposes prohibitively complex, as millions of mem-
ory locations must be tracked and the execution of hun-
dreds of thousands of machine instructions must be orga-
nized. In addition, this approach is not portable between
different computers. Hence, modular design techniques
are applied, whereby complex programs are constructed
from simple components, and components are structured
in terms of higher-level abstractions such as data struc-
tures, iterative loops, and procedures. Abstractions, such
as procedures, make the exploitation of modularity eas-
ier by allowing objects to be manipulated without concern
for their internal structure. High-level programming lan-
guages, such as Fortran, Pascal, C, and Ada, allow designs
expressed in terms of these abstractions to be translated
automatically into executable code.

Parallel programming introduces additional sources of
software complexity most of which arise from providing
multiple processors with access to memory. When more
than one processor is able to write concurrently to the same
memory location a race condition may arise, resulting in a
non-deterministic program. This can result in a program
being incorrect, and requires access to shared memory lo-
cations to be synchronized. An incorrect program can also
arise when one processor attempts to read a memory lo-
cation before its value has been set by another processor.
Again, program correctness requires that access to memory

be synchronized.
Ideally a parallel application should keep the processors

of a parallel computer running all the time. In practice in-
efficiencies arise that degrade performance. Synchroniza-
tion between processors in a parallel program leads to in-
efficiency as some processors may need to wait to access
memory. Also, in parallel computers with a deep memory
hierarchy (i.e., several layers of memory with different ac-
cess times) the time taken to access remote memory may
reduce the performance of an application.Applications that
contain little inherent parallelism, or that are highly in-
homogeneous resulting in an unequal distribution of work
among the processors, will also perform poorly on a parallel
computer. To be efficient parallel software seeks to exploit a
high degree of concurrency, while at the same time achiev-
ing good load balance, avoiding unnecessary synchroniza-
tion, and making optimal use of hierarchical memory by
keeping accesses local to storage. Parallel software that
achieves these aims will be efficient on large numbers of
processors, and is said to be highly scalable.

Processes and Communication

We consider next the question of which abstractions are
appropriate and useful in a parallel programming model.
Clearly, mechanisms are needed that allow explicit discus-
sion of concurrency and locality and that facilitate devel-
opment of scalable and modular programs. Also needed are
abstractions that are simple to work with and that match
the architectural model of the underlying hardware. A com-
putation can be mapped onto a parallel computer as a set
of processes that may communicate data by sending and
receiving messages. This message passing model of par-
allel computation is most commonly used on distributed
memory parallel computers (or multicomputers). In this
model, a process encapsulates a program and local mem-
ory. It is important to realize the distinction between a pro-
cess (an abstract unit of computation) and a processor (a
piece of physical hardware). In addition to reading to and
writing from local memory, a process can send and receive
messages by making calls to a library of message passing
routines. The coordinated exchange of messages has the
effect of synchronizing processes. This can be achieved by
the synchronous exchange of messages in which the send-
ing operation does not terminate until the receive opera-
tion has begun. A different form of synchronization occurs
when a message is sent asynchronously but the receiving
process must wait (or “block”) until the data arrives.

Processes can be mapped to physical processors in vari-
ous ways; the mapping employed does not affect the seman-
tics of a program. In particular, multiple processes may be
mapped to a single processor. The message passing model
provides a mechanism for talking about locality; data con-
tained in the local memory of a process are “close” and other
data are “remote.”

We now examine some other properties of the message
passing programming model: performance, mapping inde-
pendence, and modularity.

Performance. Sequential programming abstractions
such as procedures and data structures are effective
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because they can be mapped simply and efficiently to
the von Neumann computer. Processes and messages
have a similarly direct mapping to the multicomputer. A
process represents a piece of code that can be executed
sequentially, on a single processor. Two processes need
to communicate if a data dependency exists between
them, i.e., if the computation of one process depends on
data held in the local memory of the other process. If the
two communicating processes are mapped to different
processors interprocessor communication is required.
If they are mapped to the same processor, some more
efficient mechanism can be used, such as direct sharing of
memory.

To achieve good performance for a parallel program
the computation must be equally shared between the pro-
cesses, and the need for communication between processes
must be minimized by preserving good locality of reference.
Performance can also be enhanced by overlapping commu-
nication with computation through the use of non-blocking
communication. If the distribution of work over the compu-
tational domain is fixed throughout the computation then
work can be assigned to processes statically at the start
of the program. If the work load changes dynamically dur-
ing computation some processes will have more work to do
than others. In such cases it may be necessary to perform
dynamic load balancing to re-distribute the work evenly
among the processes.

Mapping Independence. The computation and commu-
nication performed by processes is independent of process
location, thus the result of a program does not depend on
where the processes execute. Hence, algorithms can be de-
signed and implemented without concern for the number of
processors on which they will execute. In fact, algorithms
are frequently designed that create many more processes
than processors. This is a straightforward way of achiev-
ing scalability. As the number of processors increases, the
number of processes per processor is reduced, but the al-
gorithm itself need not be modified. The creation of more
processes than processors can also serve to mask communi-
cation delays by providing other computation that can be
performed simultaneously with communication to access
remote data.

Modularity. In modular program design, various com-
ponents of a program are developed separately as inde-
pendent modules and then combined to obtain a complete
program. Interactions between modules are restricted to
well-defined interfaces. Hence, module implementations
can be changed without modifying other components, and
the properties of a program can be determined from the
specifications for its modules and the code that connects
these modules together. When successfully applied, modu-
lar design reduces program complexity and facilitates code
reuse.

Other Programming Models

Shared Memory. In the shared-memory programming
model, processes share a common address space, which
they read and write asynchronously. Various mechanisms

such as locks and semaphores may be used to coordinate
concurrent accesses to the shared memory, thus avoiding
implicit race conditions. An advantage of this model from
the programmer’s point of view is that the notion of data
“ownership” is lacking, and hence there is no need to specify
explicitly the communication of data from producers to con-
sumers. Although extra mechanisms known as monitors
may be required to handle changes in temporary control
of data spaces, this model can simplify program develop-
ment. However, understanding and managing locality can
be more difficult than on distributed memory systems. It
can also be more difficult to write deterministic programs.

Shared-memory computers can be relatively easy to pro-
gram, for example, using the OpenMP directives and li-
braries (5). However, it is difficult for applications to main-
tain efficiency when scaling up to numbers of processors in
excess of a hundred or more, without the use of good tuning
tools. On the other hand, distributed-memory computers
which do require explicit passing of messages may have an
advantage over shared-memory machines when it comes
to a high degree of parallelism such as in applications that
require the coordination of thousands of processes.

Data Parallelism. Another commonly used parallel pro-
gramming model, data parallelism, calls for exploitation of
the concurrency that derives from the application of the
same operation to multiple elements of a data structure,
for example, “add 2 to all elements of this array,” or “in-
crease the salary of all employees with 5 years service.” A
data-parallel program consists of a sequence of such op-
erations. As each operation on each data element can be
thought of as an independent task, the natural granularity
of a data-parallel computation is small, and the “locality” of
the data has to be well known and exploited to achieve good
performance. Hence, data-parallel compilers often require
the programmer to provide information about how data
is to be distributed over processors, in other words, how
data is to be partitioned among processes. The compiler
can then translate the data-parallel program into a Single
Program Multiple Data (SPMD) formulation, thereby gen-
erating communication code automatically as in the case of
High Performance Fortran (HPF) and Fortran 90. It should
be noted that many of the earlier parallel computer sys-
tems were data-parallel or ’array’ based in nature and that
the mapping of data and locality were exactly known and
specified by the user at compile time, i.e. scalar, array, ma-
trix, or tiled data mappings. Many of these systems were
constructed from very large numbers of simple processing
elements (more akin to ALUs) and thus were termed Mas-
sively Parallel Processors or MPPs.

Nested Parallelism. During the early 1990s many paral-
lel computers were constructed from groups of general pur-
pose timeshared individual workstations interconnected
by one or more network topologies. These Networks of
Workstations or NOWs, would be used together to cre-
ate temporary (or virtual) parallel computers. Due to the
prohibitive price of custom built parallel computers many
users started constructing dedicated networks of comput-
ers built out of commodity off-the-shelf (COTS) compo-
nents. Since the mid-1990s, these COTS based systems
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have provided very cost effective high performance par-
allel computers. Such systems are usually referred to as
“clusters”, and consist of nodes, containing commodity pro-
cessors and memory, connected by a fast interconnect. A
cluster node contains one or more processors, which in turn
may consist of multiple processing cores on a single chip.
Multicore processors have been incorporated into cluster
systems since about 2004. All processors and processing
cores within a node share the local memory of that node.
This makes it possible, and desirable, to exploit parallelism
at two levels - between the processing cores in a single node,
and between the nodes that comprise the cluster. Nested
parallelism is a parallel programming model that explicitly
takes into account multiple levels of parallelism. Nested
parallelism can be supported by a variety of mechanisms,
but a popular approach is to use multithreading to exploit
parallelism across the processors or multiple cores that
share the same node memory, while using explicit mes-
sage passing between cluster nodes as in the traditional
approach to parallel computing.

The advent of Grid computing in the late 1990s of-
fers another level at which parallelism can be exploited,
namely, between distinct computing resources. The Grid is
an emerging global infrastructure for computational and
communication that allows the sharing and coordination
of distributed computing resources (11). Thus, a parallel
application composed of several large grain-size sub-tasks
may be scheduled across multiple clusters, with each clus-
ter performing one sub-task. Each sub-task may itself be
expressed as a parallel program that runs across the clus-
ter nodes. Finally, on each cluster node multithreading may
be used to achieve fine-grain parallelism across the mul-
tiple cores. Usually, the large grain-size sub-tasks are as-
signed to computing resources manually, or by job schedul-
ing systems, and may communicate through standard In-
ternet protocols, such as HTTP. In practice,as of 2006, there
is no unified programming paradigm for addressing these
three levels of parallelism.

MESSAGE PASSING

The most basic programming paradigm assumes a single
sequential process. The programmer has a simplified view
of the target machine as a single processor, that can access
a certain amount of memory, and writes a single program
to run on that processor. The paradigm may in fact be im-
plemented in various ways, perhaps in a time-sharing en-
vironment where other processes share the processor and
memory. The programmer, however, wants to remain above
such implementation-dependent details, in the sense that
the program or the underlying algorithm could, in princi-
ple, be ported to any sequential computer.

The programming model of communicating sequential
processes (26), developed in the 1970s, is the basis of the
message passing paradigm for parallel computing. Sev-
eral instances of the sequential program are considered
together. That is, the programmer imagines several pro-
cesses, each with its own memory space, and writes a pro-
gram to be executed by each process. Since the process-local
computations contribute to the solution of a global prob-

lem, at certain points during execution the processes have
to exchange data. This data transfer, also called message
passing, enables a process to use previous results of other
processes, and thus to cooperate with them in the global
problem solution.

Message passing is probably the most widely used par-
allel programming model today. The main point of this
paradigm is that the processes exchange data only by
sending messages to each other. Thus the concept of a
shared memory space or of processes directly accessing
each other’s memory is outside the scope of the paradigm.
Some mixed model systems do exist, such as Linda (4) and
UPC (44), which is a shared space that is accessed using
operations similar to message passing.

Each process in a message passing application is identi-
fied by a unique name which is used to identify the sender
and receiver of messages. A message consists of the data
being sent, also called the message payload, and any nec-
essary system information required to route it to its desti-
nation. This data is sometimes referred to as the header as
it is often transferred in the beginning of a message, or the
message envelope, in analogy to the use of envelope infor-
mation in delivering a letter. The message passing system
has no interest in the contents of the message payload, it
is only concerned with moving it. In general, the following
information must be given to the message passing system
to specify the message transfer.

� Which process is sending the message?
� Where is the data in the sending process?
� What kind of data is being sent?
� How much data is there?
� Which process(es) is/are receiving the message?
� Where should the data be stored in the receiving pro-

cess?
� How much data is the receiving process prepared to

accept?
� How is the message differentiated from other mes-

sages sent between the same processes, i.e. is it tagged
in some way?

� Is this message of a higher priority than other mes-
sages and thus can be read out of order1?

In general, the sending and receiving processes will co-
operate in providing this information through some kind
of message passing interface, the details of which can vary
from system to system. Technically, this interface in most
cases is realized by calls to library functions, which, for ex-
ample, send or receive a message, or broadcast some data
to a whole group of processes. Some of the envelope infor-
mation provided by the sending process may be attached to
the message as it travels through the system, and is made
available to the receiving process, either by being returned
as arguments in a receive function call or by additional
query function calls.

The message passing model does not preclude the dy-
namic creation of processes, the execution of multiple pro-
cesses per processor, or the execution of different programs
by different processes. However, in practice most message
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passing systems create a fixed number of identical pro-
cesses at program startup and do not allow processes to
be created or destroyed during program execution. These
systems are said to implement a single program multiple
data (SPMD) programming model (14) because each pro-
cess executes the same program but operates on different
data. The SPMD model is sufficient for a wide range of par-
allel programming problems but does hinder some parallel
algorithm developments.

Message passing is a programming paradigm used
widely on parallel computers, especially scalable parallel
computers with distributed memory, and on Networks of
Workstations (NOWs). Since it provides the most explicit
way of programming a parallel computer with physically
distributed memory, the application programmer can limit
the communication traffic on the interconnect system to
the minimum required by the underlying parallel algo-
rithm. The resulting application performance is, therefore,
close to the theoretical optimum for a wide range of hard-
ware designs and configurations. The superior efficiency of
this very basic parallel programming model has been the
main reason for its success.

The message passing programming paradigm is not lim-
ited to hardware with distributed memory. It has been im-
plemented on many parallel machines with shared phys-
ical memory, often with very good communication perfor-
mance. Although on those systems applications can also be
programmed efficiently by directly using the shared mem-
ory, the advantage of the message passing paradigm is that
it guarantees near-optimal performance both on shared
and distributed memory systems, thus providing the high-
est level of portability to application programs.

Since the days of the first parallel computers, many mes-
sage passing programming interfaces have been developed.
In particular, most hardware vendors developed their own
variant, thus limiting the portability of application pro-
grams. Later, several public-domain systems have demon-
strated that a message passing system with a uniform pro-
gramming interface can be efficiently implemented, which
eventually led to the development and adoption of the in-
ternational message passing standard MPI.

MESSAGE PASSING RESEARCH AND EXPERIMENTAL
SYSTEMS

Experiments with message passing programming started
in the early 1980s and by the end of the decade many pro-
gramming interfaces had been developed and used by ap-
plication programmers. The reason for this diversity was
that, in the absence of a standard, each parallel computer
hardware vendor defined their own interface. On the one
hand, this provided the basis for experiments with many
different approaches, but on the other hand it inhibited ap-
plication program portability between different machines.

Several research groups solved the lack of portability
by defining vendor-independent application programming
interfaces (in the following called portability APIs) and by
implementing them on various machines. Some of the more
widely used examples are Express (32), P4 (1, 2), PAR-
MACS (3–25), and PVM (38). A program using such an API

was portable between computers. The remaining problem,
however, was the diversity of portability APIs, making ap-
plications and library software incompatible if they used
different APIs. In section 4we will describe some portabil-
ity APIs in more detail.

Experience gained with portability APIs was very im-
portant in the Message Passing Interface (MPI) standard-
ization process. In contrast to the vendor-specific libraries,
their design could only be successful if they provided suf-
ficient abstraction from hardware details of existing ma-
chines. Also, wide-spread use was only possible if they sup-
ported the requirements of a wide range of application ar-
eas. Portability APIs quickly became popular among ap-
plication programmers. The main reason was the indepen-
dence from hardware platforms, which was of particular
importance since early parallel machines were often pro-
duced by small and short-lived companies.

The availability of the same message passing API on
NOWs and high-performance parallel systems also allowed
a new means to develop software for expensive and thus
not widely available parallel systems. Users could develop
their applications on NOWs which they usually owned or
had easy access to, and when they had a proven applica-
tion, they could move the code to the larger machines with
little or no modification.This allowed users at smaller insti-
tutions to develop and test applications that could be run
first time at the newly appearing supercomputer centers
without wasting limited machine access time on develop-
ment. Depending on the applications intended use and life
span, it would still however usually have to be tuned for
maximum performance on the target parallel computer.

History of Vendor-Specific Message Passing Systems

How the facilities and functionality of modern message
passing systems evolved has been influenced by a vast
number of research projects and commercial implementa-
tions by vendors of MPP machines. We will briefly discuss
some of these systems in terms of which features (we now
think of as standard) they introduced and which they omit-
ted.

Since the introduction of the first distributed memory
MPP, the Caltech Hy-percube, the design of the comput-
ing nodes and their interconnection structure has changed
many times, often repeating in the light of advances in
physical hardware technology. This has directly affected
the scope of message passing in allowing more flexibility in
terms of addressing, types of messages that can be passed
and the level of “services” available upon each node, such
as dynamic processes, debugging support, parallel IO/disk
operations etc.

Caltech Hypercube and the CROS Operating
Environment. The Caltech Hypercube (circa 1984) was
a d-dimensional hypercube-structured system with a
computational node at each vertex, and a single host to
control the machine (known as an Intermediate Host). The
system was programmed in either C or Fortran77, and
communication was based on a subroutine library known
as the Crystalline Operating System (CrOS) (28).
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The communications library assigned addresses to
tasks depending on which node they were physically lo-
cated, and processes could only communicate to neigh-
bors or the intermediate host (a total of d + 1 links). The
CrOS terminology for a link between two nodes was that
of a channel through which 8 byte message packets could
be sent. The system only supported collective operations
(broadcast) to/from the intermediate host.

Seitz (34) indicated that the hardware structure of the
Caltech Hypercube was a “difficult target for program-
ming any but the most highly regular problems”. This
led to the development of the Distributed Process envi-
ronment, a kernel-based small operating system which al-
lowed greater control and flexibility than CrOS. In par-
ticular, the user developing message passing programs no
longer had to think about a fixed mapping between nodes
(running programs) that communicate in a fixed way via
channels (i.e. hardware links),but could now think in terms
of processes connected via virtual communication channels
which provided the basic address independence from hard-
ware locations that is now commonplace.

Within two years Dally and Seitz (7) suggested the de-
sign of a special VLSI routing chip that would allow au-
tomatic routing for messages between non-adjacent nodes
as in the virtual communication channels. Until then mes-
sages had to be forwarded using the store-and-forward
technique at each hop in software, resulting in transfer
times proportional to the number of hops. The new hard-
ware routing system was one of the first worm-hole rout-
ing systems which allowed a route to be set up through
which subsequent message packets could then follow the
head/lead packet with minimal overhead. This deadlock-
free network allowed programmers of the system some
freedom in coding as they no longer had to explicitly code
around possible deadlock in the message passing system.

Thus the Hypercube not only demonstrated efficiency
when programming down to the “bare metal”, but it also
later showed the advantages of virtual addresses, virtual
communication channels, and the availability of more fa-
miliar OS level services at each node, all trends which were
to continue.

The Meiko Computing Surface CS-1 and Occam. This
was an Inmos Transputer T800-based system that could
be programmed using either Inmos’s Occam language or
the later CSTools environment, which is mentioned later
when discussing the more powerful second generation CS-
2 machines. The transputer was a 32 bit microprocessor
with hardware support for intercommunication and very
fast task switching capabilities. The interesting point here
is that the initial systems could be programmed using
Occam-2, a language based on the Communicating Sequen-
tial Processes (CSP) specification previously discussed. In
this language, processes communicated via abstract links
known as channels using only synchronous blocking sends
and receives in the form of:

where ! denotes a send and ? denotes a receive. In many
ways, programming such a system was as rigid as that of

the Caltech Hypercube, with the added advantage that if
the program deadlocked due to communication mis-match,
it was due to an incorrect program. For example, the fol-
lowing program would always fail:

Due to the close relationship between Occam and CSP it
was possible to prove program correctness via static anal-
ysis before execution and this was the basis of many early
European ESPRIT projects. As other message passing sys-
tems allowed users to make mistakes and produce hard
to debug applications, some advocates of Occam proposed
ways that would allow its use in more general ways, such
as language extensions in the form of Occam2-1/2 and Oc-
cam3, together with portable compilers aimed at worksta-
tions such as the Kent retargetable Occam compiler project
(43).

NX from the Intel iPSC1 to the Paragon. From the hard-
ware point of view, the original iPSC1 (circa 1986) was a
seven-dimensional hypercube, much like the Caltech Hy-
percube. Its software environment NX1, however, showed
more similarity with the “Distributed Processes” environ-
ment than with CrOS.

The NX1 operating system was based on the Caltech
Reactive Kernel which provided hiding of the underlying
communication topology (processes were identified by a
simple integer from 0 to P-1, where P was the number of
processes per partition), multiple processes per node, any-
to-any message passing, asynchronous messaging (i.e. the
sender and receiver did not have to be active at the same
time for a communication to complete) and non-blocking
(i.e. no need to wait for completion), in short what is now
thought of as a typical set of features that define a message
passing environment.

This additional flexibility also increased the complexity
of the message passing library. Users needed additional
routines to inquire about location information, and mes-
sages needed to be addressed correctly (with additional ar-
guments in the subroutine calls). On the one hand, pro-
gram developers now had to identify messages on an indi-
vidual basis as there was no longer a fixed order of trans-
mission or receipt, but on the other, the pattern of commu-
nications was no longer dictated only by topology. To assist
developers, messages could be tagged or typed. That is, a
user-assigned integer could be associated with a message
which would be used by the receiver to distinguish mes-
sages. Unfortunately, the original system did not permit
the filtering of messages by sender identity and type at the
same time, although the type could be set to the sender’s
ID to allow for receive-from-sender semantics.

An additional new complication for the developer was
that messages of different length could be received with-
out the receiving process knowing which one was first and
hence knowing how much buffer memory to allocate. Thus
the user had to indicate for each message how large the
receive buffer was. Only after the receive completed could
the user find out how much data was received, up to the
maximum allowed of 16Kbytes. If the buffer offered was too
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small, the excess message data was discarded (truncated).
The later Intel machines implemented an improved ver-

sion of NX, known as NX2. In the case of the Paragon,
this was implemented upon an OSF/1 Unix microkernel.
A number of improvements were added such as interrupt-
driven communication which allowed an application to per-
form computation and be woken up when a message ar-
rived instead of having to poll for it intermittently (leading
to decreased cache performance and possible page faults as
OS calls were invoked to check for messages).

Other changes included the inclusion of message iden-
tifiers (mids) that allowed simple identification of non-
blocking operations. When a non-blocking operation was
initiated, a mid would be issued and the user could check
for completion of this mid later, thus allowing the underly-
ing hardware communications processors to overlap com-
munication while the compute processors continued. Se-
mantic changes included allowing the use of wild cards
(typically negative integers) to denote groups of processes.
That is, receiving a message of type -1 would denote re-
ceive from anybody of any type, i.e. whatever was received
next. Sending to a node of type -1 would denote sending
to all processes on a partition. Up to this point, commu-
nication had been point-to-point, i.e. from a single sender
to a single receiver. The new broadcast functions allowed
the construction of global operations such as global syn-
chronizations (barriers) and some arithmetical reduction
operations.

Although the design of NX inspired many of the features
of current message passing systems, it also had a number
of shortcomings, such as lack of more comprehensive group
communication functions (to assist certain types of calcula-
tions), lack of message identification and filtering at the re-
ceiver’s end (only one type compared to up to three used on
later systems), and initially a high software overhead com-
pared to simpler protocols such as active messages which
had direct access to hardware (33).

The German SUPRENUM Project. SUPRENUM was a
German project to develop supercomputing expertise in
Europe by developing a supercomputer and the required
software infrastructure. Although only five machines were
delivered, this 5 Gflop MPP system and the follow up
ESPRIT GENESIS project led to major advances in net-
work interconnection, node design, operating systems, lan-
guages, and benchmarking systems.

Two separate systems were used to program the ma-
chine: one was the PEACE operating system which through
a complex compiler allowed message passing statements,
similar in syntax to read/write statements, and Fortran 90
array extensions to each program running on each node.
The other was a version of PARMACS which is discussed
below in more detail. On top of the PARMACS system,
high-level libraries such as GMD’s COMLIB, a grid based
tool, were created to assist users in using problem domain
specific numeric solvers. Other examples included LiSS, a
parallel multi-grid solver for partial differential equations.
The use of PARMACS is important, as the software design-
ers not only concentrated on improving the range of group
operations available to users but also realized that porta-
bility of code was important especially in the light of the

short life span of each MPP.

IBM Scalable Power Series and the External User Inter-
face (EUI). The IBM Scalable Power (SP) Series of sys-
tems, starting with the IBM 9076 SP1 and the later SP2
machines, consisted of tightly-coupled distributed mem-
ory sets of RS/6000 RISC processors interconnected by a
high-speed switch. The systems were based on experience
gained from the Vulcan hardware project and the Viper
operating environment. The message passing library de-
signed to program these systems was known as the IBM
external user interface (EUI) and consisted of four main
components: task management, message passing (point-
to-point), task groups, and collective operations. The last
two items were of particular importance to later systems
such as MPI.

Point-to-point communication under EUI was per-
formed by sending messages to tasks directly in the same
style as on the Intel iPSC systems, with addresses from 0
to N-1, where Nwas the number of processes making up
a parallel job. The point-to-point system supported typed
messages for both blocking and non-blocking messages.
Unlike NX, messages could be selected by the receiver on
both message type and source (sender) including the use
of wild cards. To assist in handling non-blocking messages,
the user could check the status of a particular transfer as
well as wait for completion of a named operation, any of a
range of operations, or all pending outstanding transfers.

EUI allowed the construction of conceptual collections
of processes into logical groups that could be addressed by
a single group name in the form of a Group ID. This al-
lowed users to avoid having to list (sometimes very large
numbers of) processes explicitly when passing messages
in regular patterns repeatedly. The use of collective oper-
ations on these groups avoided the use of many individ-
ual send and receive point-to-point calls and allowed the
system to perform these as efficiently as possible on the
given hardware. The range of operations included barriers,
data shifts, broadcasts, gathers, scatters, generalized com-
bines and associative reductions. All the collective opera-
tions were blocking and required all members of each pro-
cess group to be involved. If any process in a group did not
invoke the collective operation it would potentially dead-
lock all the other processes in that process groups collective
operation.

During the design of EUI the IBM designers faced many
issues relating to how the interface should look and oper-
ate. For example, asynchronous returns from non-blocking
functions were an example of where a two-part status
lookup was required. If the user interface to a non-blocking
receive were as follows:

the size-received variable could not be set by the system un-
til the non-blocking operation had completed, which might
be while the thread that made this call was in a differ-
ent program module. Thus it was necessary to get a sta-
tus handle which could be queried after the operation had
completed and the memory storage of which was handled
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by the messaging system:

The EUI project was not the first to introduce this two
step strategy, this also occurred between NX1 and NX2, but
the overall design used by IBM was the basis of that used
later by the MPI forum.

Meiko CS-2 and the CSTools environment. The Meiko
CS-2 grew out of many of the lessons learned from the
SUPRENUM project, especially in terms of Meiko’s ELAN
message handling hardware coprocessor and the coupling
of a compute engine (i860 and later Sparc-based proces-
sors) with optional vector floating point units at each node.
Each node ran a copy of the Solaris Unix microkernel
which mapped the Elan memory into User space and thus
provided access directly to the communications hardware.
Therefore,a system call in protected mode could be avoided,
which led to drastically increased performance compared
with previous designs. An example for such a system which
had suffered from poor performance due to software over-
heads in accessing hardware had been the NX library run-
ning under OSF/1 on the Intel Paragon.

The system was programmed with the previously de-
veloped CSTools environment which used the concept
of named communication channels known as transports
through which messages could be passed. Hence users
could code in terms of these named links rather than
in terms of the actual end-points. Once a transport
had been instantiated, repeated communication through
it incurred very little system overheads. Blocking, non-
blocking, synchronous, and asynchronous point-to-point
operations were all supported.

Thinking Machines CM5 and the CMMD Active Mes-
sage Layer (AML). The Connection Machine 5 from Think-
ing Machines (TMC CM5) was very different from previ-
ous Connection Machine designs, being a true distributed
memory MIMD system as opposed to the previous SIMD
systems. The machine featured two interconnection net-
works, and Sparc-based processing nodes, each with four
vector units for pipelined arithmetic operations. The pro-
gramming environment consisted of the CMOST operating
system, the CMMD message passing library and various
array-style compilers, the most popular of which, known
as CMF, supported a F90-like SIMD programming style.

The CMMD message passing system was unique in that
it offered users access to routines from the lowest level, the
Active Message Layer (AML),a point-to-point library, chan-
nels and a cooperative functions library. The four systems
will be reviewed briefly here:

The Active Message Layer was the lowest level of
operation and manipulated the communications hardware
directly. The layer provided three basic operations. Active
messages are similar to a lightweight Remote Procedure
Call (RPC). The sender sends the address of a function to
be invoked at a remote node together with its arguments

in a single 72 byte packet. The second operation was a data
transport mechanism which only wrote data into a remote
memory at a set location (much like Cray’s shmput opera-
tions). The final operation was a receive port data structure
which assisted in handling multiple data packets.

The CMMD point-to-point library was built on top
of the AML and provided the common list of operations
including blocking, non-blocking, synchronous, and asyn-
chronous point-to-point operations with selection upon
source, message type or wild cards. Interestingly, the block-
ing calls were quicker than the non-blocking calls as they
avoided system level copying of message data. Another in-
teresting feature was the inclusion of a joint send and re-
ceive operation, that allowed for simpler coding of stencil
operations and boundary exchanges in domain decomposi-
tion problems. An important advantage of this combined
function was that it could be implemented more efficiently
than the two separate operations. For example, previously
two operations were required to exchange values:

As opposed to:

Note that the first version is made more complex by
the need to copy data values to prevent them from being
overwritten before they are copied into the message layer,
a common complication found in many wavefront calcula-
tions.Additionally combined send-receive calls can use seg-
mentation to reduce total memory requirements whereas
the first code version requires up to twice as much storage
in the worst case implementation.

The CMMD Virtual Channels, like the transport op-
erations on the Meiko CS-2, allowed multiple communica-
tions to occur with minimal overhead once they had been
initiated. The interface was very basic, with calls to open,
close, and status checking of channels. A write operation
was provided, although the receiver would have to check
the status to find out if its data had arrived, and then reset
the channel to allow for more data to be sent.

The CMMD Cooperative Communications in-
cluded broadcast, reduce, synchronize (barrier), and scan
functions. Unlike other systems, they used a separate inter-
connection network for better performance. Another more
recent architecture to also use separate hardware to en-
hance performance of global operations are the SGI Cray
Research T3D/E machines that utilize a special signaling
line for handling barrier synchronization.

Summary of Vendor-Specific Message Passing Systems.
This section has shown how several different parallel com-
puting systems provided a wide range of message passing
features that primarily took advantage of different hard-
ware facilities. Although there appeared a standard subset
of functions expected by users, the detailed interface defi-
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nitions were often tailored to the special hardware of each
particular vendor. Another interesting point was the de-
mand for communication functions at a higher abstraction
level, as application programmers repeatedly had to code
the same communication patterns, for example, as they oc-
cur on regular process grids. Vendors thus introduced bet-
ter facilities than just simple send and receive primitives
to support these higher level abstractions.

Portable Message Passing Systems

The lack of application code portability between the paral-
lel systems of different vendors prompted the development
of portable message passing interfaces (portability APIs)
by various research groups. While portability of user codes
among hardware platforms of different vendors was a com-
mon feature of those interfaces, to some extent they catered
for different problem-specific domains. These two aspects,
portability and application diversity, made the portability
APIs an important step on the way towards the message
passing standard. This section presents some of the more
influential developments.

The m4 and p4 Macros. The p4 (1, 2) system grew out
of a set of Fortran macros that was developed at Argonne
National Laboratory (ANL) for use on a HEP shared mem-
ory computer. The original macros, called MonMacs, were
processed at compile time by the Unix m4 preprocessing
utility, and offered the user a set of monitor functions used
to provide locks on critical sections of code that accessed
shared data. The use of macros avoided an additional set
of stack operations, that function calls would have made
necessary.

The authors of the system co-wrote the book “Parallel
Programs for Parallel Processors” which gave the system
its final name of p4. The system was used as a basis for sev-
eral specialized versions, such as TCGMSG for Chemistry
problems, and the GMD macros for solving problems on
regular grids. This later version was used as the basis for
the very successful PARMACS system developed by Rolf
Hempel at GMD in Germany.

The final p4 system was based on procedure calls and
supported C as well as Fortran on a very wide range of
systems including both distributed-memory and shared-
memory systems. The programming paradigm was that of
processes that formed administrative clusters which inter-
communicated by either locks or explicit message passing.
The system provided user access to buffers, so that an ex-
perienced user could avoid additional buffering by the sys-
tem. There were no non-locally blocking or asynchronous
calls, i.e., the calls returned when the data was sent, and
the user did not have to probe, test or wait for completion
before reusing buffers. A globally blocking point-to-point
call was also included p4sendr() which waited for an ex-
plicit acknowledgment from the receiver before returning
(hence the r on the end of the call name to signify a ren-
dezvous). The p4 system also included a wide range of col-
lective operations, with the additional option to construct
user-defined operations with the p4-globalop op() call.

Although the p4 system was very efficient, it was not as
popular as other message passing systems and was later

used as a layering scheme to support other projects such
as Chameleon (17), BlockComm and later the MPICH im-
plementation of MPI (18, 19).

The Express Environment. Express (32) was initially
based on the Crystalline Operating System’s message pass-
ing library from Caltech, with special emphasis on perfor-
mance. Highly-tuned versions of the software were avail-
able for certain MPP systems. There was some limited sup-
port for dynamic process creation.

The system later grew into a complete application devel-
opment package which supported dynamic load balancing,
parallel IO, and comprehensive collective libraries for com-
mon topologies such as rings, grids, tori etc. These topology
features were made accessible through the exgrid*() fam-
ily of calls. If used correctly, a complete message passing
application could be created by using exlayout() to specify
distribute data and exdist() to move the data, leaving the
user with no explicit send and receive calls, and thus avoid-
ing mis-ordered calls and complex handling of boundary
conditions when implementing numeric solvers.

Zipcode. Zipcode (35) was an experimental portable
message passing system that emphasized support for par-
allel library development. As message passing applications
became more complex, for example through the use of
third-party libraries, insulating the message traffic in the
application code from the communication inside a library
became a non-trivial problem, in particular if wild cards
were used in receiving messages.

Zipcode introduced safe communication spaces, so that
separate program units (libraries) could have their own
spaces within which to communicate. This was achieved
by making the addressing of processes relative to static
process groups combined with a message context, a system-
supplied additional message tag, that was opaque to the
user. The process groups (with relative addresses known
as ranks) were bound to contexts by processes known as
mailers.

Zipcode also allowed for topology information to be as-
sociated with process groups, so that communication ad-
dresses could be specified relative to the current position
in topological terms. For example, one could send a message
to the next process in a ring, rather than having to look up
an absolute address and then specifying that value as an
address in the send operation.

Linda. Linda (4) was based on an associative shared vir-
tual memory system, or Tuple Space. Rather than sending
messages from one process to another, processes created,
consumed, duplicated or evaluated data objects known as
tuples. Creating a tuple was performed by calling out(),
which was then passed into a common shared space which
all other processes had access to. Reading a tuple was per-
formed by either rd() or in(), where rd() just read (dupli-
cated) the tuple and in() consumed the tuple and removed
it from the shared space. Matching of tuples was performed
by specifying a template of possible fields in the tuple
when calling either rd() or in(). eval() created tuples asyn-
chronously, with each field making the tuple evaluated in
parallel (or at least in a non-deterministic order much like
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in the Occam ALT construct).
Linda allowed for very simple but powerful parallel com-

puter programs by simplifying addressing (no explicit ad-
dressing of processes, only the data they handled) and by
removing the coupling between processes. In Linda, one
could not specify the consumer of a tuple, and the consumer
might not even had existed when the tuple was created.

For example in a conventional message passing system
the following steps are required to pass a message from
one process to another:

where in Linda one could have

Some time later

In this case the tuple that contained ’messagetag’ as
the first field would be consumed by process B (the ’?’ spec-
ifies a wild card) upon which its data would be placed in
the indata memory buffer. Neither process overlaps in time
(temporarily) or knows of the others ‘address’.

Although initial implementations were slower than na-
tive libraries, later versions that utilized compile time
analysis of data fields used by application programs al-
lowed the run-time system to select tuned low-level ser-
vices that implemented the tuple space management and
matching operations. On a number of tests (8), some ver-
sions of Linda performed conparably to both networked
message passing systems such as PVM as well as native
vendor message passing libraries on a number of MPPs for
medium to large message payloads.

The Parallel Virtual Machine (PVM). PVM was a system
for managing and coordinating message passing programs
that was developed as a research project by researchers at
Emory University, the University of Tennessee, Knoxville,
and Oak Ridge National Laboratory (38, 15). PVM allowed
message passing across diverse heterogeneous collections
of machines which could be considered a single computa-
tional resource (the virtual machine). It was unusual in
that it supported dynamic functionality as much as possi-
ble, unlike most systems that were aimed at a static view
of the world.

In PVM the hosts that made the virtual machine could
be added, removed or just plainly fail while the rest of the
system continued. This was also true for processes, called
tasks, which could be created (spawned) on the fly, and
which in turn could spawn more tasks or kill any other
PVM tasks at will. This flexibility added greatly to PVM’s
use on networked machines which were prone to changes
of configuration unlike most MPPs which were very static

in nature.
All tasks in PVM had a unique address known as a Task

IDentifier or TID. Any task could send a message to any
other task once its address was known. Messages were
typed (using tags), allowing receivers to filter using wild
cards as well as source addresses. In the final version of
PVM (3.4) this was extended to also include user allocated
system contexts.

All messages were initially built in a PVM message
buffer which would be sent to the receiving task. This al-
lowed for the use of XDR (supporting heterogeneous con-
figurations of hosts) and the mixing of many different data
types in a single message. The receiver would then have to
unpack messages to access the data contained within. This,
together with the notion that sends never blocked, due to
the system providing all necessary buffering, helped users
avoid deadlocks.

In the following example, the message passed between
two processes is made up of a number of double precision
data elements, preceded by an integer containing the num-
ber of data elements:

The additional overheads caused by buffer management
on MPP systems could be considerable. This was resolved
with the addition of pack send/receive calls pvmpsend() /
pvmprecv() which provided performance very close to that
of many vendor libraries on a number of MPPs.

PVM also provided group collective operations, with a
separate task (PVMGS) maintaining association between
group names and lists of member TIDs. Following usual
PVM practice, these groups were dynamic, although the
ability to freeze groups for improved performance was
added in PVM version 3.3.

A number of versions of PVM were placed in the public
domain, and the authors of PVM encouraged feedback as a
mechanism for improving their software and assessing the
needs of parallel application developers. Thus, in the early
1990s, PVM became quite widely used, particularly on net-
works of workstations, and when the MPI standardization
process was begun in 1992, PVM was the most popular
message passing system in use.

PARMACS. The PARMACS (PARallel MACroS) (23, 3)
were initially a macro-based message passing system de-
veloped from the ANL & GMD macro system, which itself
was a grid based version of the earlier MonMacs. Later
versions of the system were purely library-based and sup-
ported both C and Fortran base languages. The PARMACS
were designed to be the most portable and efficient gen-
eral purpose message passing system for distributed mem-
ory parallel systems prior to any MPI standard imple-
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mentations. The system supported synchronous and asyn-
chronous message passing as well as message probe tests
and an extensive range of collective group operations. Mes-
sages could be selected by the sender using both source ad-
dress as well as message type. In an aid to efficiency, the
system would only perform data conversion and buffering
if the processors executing the sending and receiving pro-
cesses used different data representations.

PARMACS supported virtual topologies, a mapping be-
tween actual process addresses and a virtual torus grid
with up to four dimensions, or arbitrary graph structures
specified by vertex and neighbor lists. The topology was de-
fined by the PMPTOR() call in the master process, which
then created the computation processes with a subsequent
PMPCRTE() call. Addresses in PARMACS were then calcu-
lated from each process’ mapping within this virtual topol-
ogy and could be accessed by calls to the Torus Query func-
tion PMQTOR() or the generic Cartesian lookup function
PMLKUP(). Thus communication between processes could
be programmed using completely relative addressing, such
as “send message to my predecessor” (or successor). This al-
lowed the readability of programs to be greatly enhanced
and reduced much of the code overhead normally associ-
ated with explicitly calculating addresses and handling
boundary conditions that occur in many message passing
codes.

As PARMACS were ported efficiently to many MPPs
systems, it became a target for many tools that operated
at an even higher level of abstraction. Examples were the
GMD Communications Library (Comlib), which was de-
signed to support partial differential equation solvers for
multidimensional spaces, and the SLAP Linear Algebra
package which contained parallel solvers for linear equa-
tions and eigenvalue problems.

THE MESSAGE PASSING INTERFACE STANDARD - MPI

One of the main advantages of software standards is porta-
bility. A corollary of this is that it becomes worthwhile to in-
vest effort in efficient implementations of the standard and
to develop higher-level software based on it. Thus software
standards create scope for the development of high quality,
commercial software. However, standardization does have
a potential downside – if the standard is not well thought
out it may enshrine deficiencies, omit important function-
ality, or quickly become out-dated. A standard that fre-
quently needs to be updated does not inspire confidence
and is likely to be discarded.

MPI-1

MPI arose from a desire to ensure that efforts in the United
States and Europe towards the standardization of message
passing libraries did not diverge. Attempts in Europe to
standardize message passing date to a SERC1 workshop
in March 1990 on software standards for MIMD comput-
ers. By the early 1990s two approaches were contenders
in Europe for a message passing standard. One of them,
named UBIK ASI3, had its roots in Occam, reflecting the
fact that a large fraction of European parallel computers
were transputer-based. UBIK ASI featured named chan-

nels for message passing, and arose out of the ESPRIT II
GP-MIMD project2. The second approach was PARMACS2,
which was initially developed by Rolf Hempel of GMD and
Jim Patterson of ANL. From 1990 onwards PARMACS
was further developed by Hempel and colleagues in Eu-
rope within the EU-funded ESPRIT project Genesis2. PAR-
MACS was adopted as the programming model of the PPPE
and RAPS projects2. At ANL, PARMACS evolved essen-
tially independently to become the P4 project2.

A strong impetus for a message passing standard was
provided by the Commission of the European Community
which placed an emphasis on uniform programming in-
terfaces for all projects in the ESPRIT III program. From
1991, the ESPRIT Special Interest Group on Language
Standardization for Distributed Memory MIMD Comput-
ers had sought to develop a standard in Europe. This led
to the SHAPES project2, which attempted to reconcile the
UBIK ASI and PARMACS programming models. It turned
out that the two approaches were too different to be merged
without creating an unwieldy interface. UBIK ASI contin-
ued to be used in the GP-MIMD project, whereas PAR-
MACS became one of the foundations for MPI.

In the United States, a number of differing distributed
memory machines were in use by the early 1990s, and sev-
eral research groups had developed message-passing sys-
tems that sought to provide portability across these plat-
forms. The public domain software PVM (Parallel Virtual
Machine),developed at Oak Ridge National Laboratory, the
University of Tennessee at Knoxville, and Emory Univer-
sity, was in wide use for message passing in the United
States and in Europe. Express was commercially marketed
by Parasoft, Inc. and was also popular. Before 1992, there
was no organized attempt to adopt a message passing stan-
dard in the United States.

Jack Dongarra and Tony Hey were among the first to
recognize the need for coordination to prevent European
and US researchers selecting different message passing
standards. In the Summer of 1992 Jack Dongarra, Rolf
Hempel, Tony Hey and David Walker became involved
in an effort to define a common message passing stan-
dard, and a Working Group was formed to carry this for-
ward. In October 1992, a preliminary draft message pass-
ing proposal, now known as MPI-0, was introduced by Don-
garra, Hempel, Hey, and Walker and circulated for com-
ment within the Working Group (42). In November 1992
it was decided to place the standardization process on a
more formal footing. The procedures and organization of
the HPF Forum were adopted to create the MPI Forum.
Subcommittees were formed for the major component ar-
eas of the standard and an email reflector was established
for each. The ambitious goal of producing a draft MPI stan-
dard by the Fall of 1993 was set. In addition, Ewing Lusk
and William Gropp of ANL made a commitment to imple-
ment the standard.

The original goals of the MPI Forum were to develop
a widely-used, practical, portable, efficient, and extensible
standard for message passing, or stated more precisely:

� Design a programming interface that can be used
by software development projects at various lev-
els, ranging from end-user applications to highly-
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optimized parallel libraries and run-time systems of
data-parallel compilers.

� Allow for efficient implementations. For example, it
should be possible to avoid repeated copying of volume
data, to overlap computation and communication, and
to offload work to a communication co-processor, if
available.

� Define an interface not too different from current
practice, such as Express, NX, PARMACS, PVM, p4
etc.

� Define an interface that can be implemented on many
vendor’s platforms with no significant changes in the
underlying communication and system software.

� Allow for implementations in heterogeneous environ-
ments.

� Allow convenient C and Fortran bindings for the in-
terface (later also C++), while making the semantics
of the interface language independent.

� Provide a reliable communication interface. The user
should not have to cope with communication failures.

� Design a thread-safe interface.

It should be noted that some of the requirements were
commonly regarded as counter to each other, such as ef-
ficiency through fewer internal copy steps versus hetero-
geneous environment support. The goal of the MPI Fo-
rum was to design the interface such that all require-
ments could be fulfilled at the same time, whereas previous
generations of systems such as PVM opted for portabil-
ity (across heterogeneous systems), with less than optimal
performance.

The MPI standard was intended for use by all program-
mers of portable message passing codes in Fortran, C, and
C++. This included individual application programmers,
developers of software designed to run on parallel ma-
chines, and creators of environments and tools. In order
to be attractive to this wide audience, the standard had to
provide a simple, easy-to-use interface for the basic user,
while not precluding experienced software developers from
exploiting the full efficiency of advanced machines.

To finish this ambitious standardization project within
a short time frame, the MPI Forum met every six weeks
throughout the first nine months of 1993 in Dallas, Texas.
During this period, a draft specification for what is now
termed MPI-1 was produced and presented to the high
performance computing community at the Supercomput-
ing ’93 conference in Portland, Oregon. A comment period
followed lasting until February 1994 during which people
were invited to comment on the specification. Version 1.0
of the MPI specification, now known as MPI-1, was then
released through the Internet on May 5, 1994. The MPI
Forum released a revised version 1.1 of the MPI-1 spec-
ification on June 12, 1995. This formally ended the first
phase of the MPI standardization process, although a fur-
ther revision was published as version 1.2 in July 1997.
The development of the MPI-1 specification is described in
more detail in (24).

From mid-1993 onwards, an up-to-date version of the
current MPI draft specification was implemented, main-

tained, and distributed by Ewing Lusk and William Gropp
of ANL. This reference implementation, now known as
MPICH (19), played an important role in the MPI stan-
dardization process. It quickly revealed any problems or
inconsistencies in the MPI specification as it evolved. It
demonstrated that efficient implementations of MPI were
possible. It provided an implementation of MPI that could
be quickly ported to a wide range of parallel computing
platforms, and it formed the basis of many hardware ven-
dors’ custom implementations of MPI.

Technical Details of the MPI-1 Standard

The MPI-1 standard includes chapters with the following
topics:

� Point-to-point communication (Chapters 2 and 3)
� Collective operations (Chapter 4)
� Process groups (Chapter 5)
� Communication domains (Chapter 5)
� Process topologies (Chapter 6)
� Environmental Management and inquiry (Chapter 7)
� Profiling interface (Chapter 8)
� Bindings for Fortran and C

The basic communication mechanism of MPI-1 is the
transmission of data between a pair of processes, one
side sending the other side receiving. Many variants of
this point-to-point communication are supported, includ-
ing blocking and non-blocking functions, buffered send op-
erations, and persistent (channel-like) communication re-
quests.

Message data in MPI-1 is strongly typed, to allow
for communication in heterogeneous environments, where
type information is used by the MPI-1 implementation for
automatic data representation conversion. Integer tags at-
tached to messages allow messages to be selected on the
receiving side, either by specifying a particular value or a
wild card. Message selection by specifying the source pro-
cess of the message is also available.

MPI-1 incorporates the notion of process groups and
insulated communication domains, called communicators,
that were first introduced by the Zipcode interface (cf. Sec-
tion 17). Process groups can have a topological structure,
very similar to the topology support in PARMACS (cf. Sec-
tion 20). Building on the concept of process groups, MPI-1
provides the following collective communication functions:

� Barrier synchronization across all group members
(Section 4.4).

� Global communication functions. They include

- Broadcast from one member to all members of a
group (Section 4.6).

- Gather data from all group members to one mem-
ber (Section 4.7).

- Scatter data from one member to all members of
a group (Section 4.8).
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- A variation on gather, called all-gather, where all
members of the group receive the result (Section
4.9).

- Scatter/gather data from all members to all mem-
bers of a group (also called complete exchange or
all-to-all) (Section 4.10).

� Global reduction operations such as sum, max, min,
or user-defined functions. The result can either be re-
turned to only one group member or to all members
(all-reduce) (Section 4.11).

� A combined reduction and scatter operation (Section
4.11.5).

� Scan across all members of a group (also called prefix
operation) (Section 4.12).

MPI-1 is suitable for use by fully general Multiple Pro-
gram, Multiple Data (MPMD) programs, where each pro-
cess follows a distinct execution path through its own
code. It is also suitable for codes written in the more re-
stricted style of Single Program, Multiple Data (SPMD,
cf. Section 3), where all processes follow a distinct execu-
tion path through the same program. Although support for
threads is not required, the interface has been designed
so as not to preclude their use. MPI-1 provides many fea-
tures intended to improve performance on scalable paral-
lel computers with specialized interprocessor communica-
tion hardware. These features have been used by hardware
vendors to produce native, high-performance implementa-
tions. At the same time, implementations of MPI-1 on top
of standard Unix interprocessor communication protocols
provide portability to workstation clusters and heteroge-
neous networks of workstations.

MPI-2

When MPI-1 was published, the MPI Forum already had
plans for a continuation. Some important topics, which
could not be handled within the short time frame of MPI-1,
were postponed to this later phase. About one year passed,
however, before the MPI-2 meeting series started. Dur-
ing this interval, several MPI-1 implementations were re-
leased, and feedback from MPI users became available.

In March 1995, the first MPI-2 Forum meeting took
place. Ewing Lusk of ANL was the convenor of all sixteen
MPI-2 meetings, and the location was moved to Chicago.
Otherwise, the procedural rules of the forum were kept the
same as for MPI-1.

The main activity of the MPI-2 Forum was the standard-
ization of issues which had been left open during MPI-1.
The main topics were:

� Parallel I/O
� Dynamic process management,
� Single-sided communication,
� Extensions to collective operations,
� New language bindings.

In spite of the similarities, there were important dif-
ferences between the two MPI phases. One of the MPI-1

guidelines had been to keep the standard as close as possi-
ble to “current practice”. Most features had been tested in
several existing message-passing interfaces, and even the
more exotic ones were available at least in one experimen-
tal implementation. Several topics were passed to MPI-2
mainly because in 1993 they seemed too immature for stan-
dardization.

In many cases during MPI-2, the borderline between
current practice and research was passed, and new fea-
tures were included in the standard without any experi-
ence with available implementations. As a consequence,
there was a great diversity of ideas brought to the forum,
and at times it was difficult to keep the focus on the stan-
dardization aspect and away from computer science re-
search. In the end, many of the more research-oriented
ideas were put into the “Journal of Development” instead
of the standard itself.

Another important difference was that during MPI-
2 complementing implementation activities only covered
parts of the standard. Examples are the IBM implemen-
tation of single-sided operations, a preliminary version of
the ROMIO I/O software from ANL, and some process man-
agement functions in the LAM package of the Ohio Super-
computer Center. Therefore, there was limited information
available as to the practical applicability of the interface
specification.

The different character of the two MPI forums is also
reflected by the number of meetings required to finalize
the standard document - sixteen for MPI-2, compared with
only seven for MPI-1.

Parallel I/O played a special role in MPI-2. When the
new forum was created, parallel I/O was dropped from its
initial list of topics, although it had been the MPI exten-
sion most strongly requested by application programmers.
The reason was that with the multi-agency Scalable I/O
Project and the MPI-IO project by IBM and NASA Ames,
there were already activities going on which the MPI-2 fo-
rum did not want to duplicate. After more than a year, how-
ever, MPI-IO was integrated officially into the MPI-2 activ-
ity. At that point, their interface definition document was
taken by the forum as a first draft which then went through
the same procedure of readings and voting sessions as any
other proposal. In the end, a revised version became the of-
ficial I/O chapter of the MPI-2 standard. Later, the Scalable
I/O Project adopted the MPI-2 standard as their applica-
tion programming I/O interface.

The MPI-2 forum published the results of their delib-
erations in July 1997. Documents and related informa-
tion can be retrieved through the official MPI web site
http://www.mpi-forum.org/. A book publication of an anno-
tated reference manual for MPI-2 (22) appeared in 1998
analogous to its MPI-1 counterpart (36) combined with a
revision (37) of the latter document. A subsequent book
provided a fuller discussion of how to use MPI-2 in prac-
tice (21).

In contrast to MPI-1, implementations have emerged
rather slowly for MPI-2. Apart from MPI-2 being larger
than MPI-1, the main reason was the lack of a public do-
main version which hardware vendors could use as a start-
ing point for their optimized implementations. One diffi-
culty in the design of a portable implementation was that
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MPI-2 goes beyond message-passing in several areas and
requires interaction with highly machine-dependent sys-
tem services such as I/O, scheduling and resource alloca-
tion. Argonne National Laboratory did not make a firm
commitment to provide a full MPI-2 extension of their
highly successful MPICH software, but some implementers
were waiting for it to become available anyway. As first
steps, ANL published an implementation of the parallel
I/O chapter, known as ROMIO (39), and a C++ binding as
extensions to MPICH. As a consequence, the parallel I/O
chapter was the first part of MPI-2 available on a wide va-
riety of parallel platforms, and it has since been integrated
into several proprietary MPI implementations.

Following the publication of the MPI-2 standard, hard-
ware vendors initially spent less effort on the development
of their own MPI-2 implementation than they did for MPI-
1. In addition to their reluctance to write all the necessary
software themselves, there were at least two other reasons.
One reason was that the status of the MPI-1 interface of
most vendors was far from being optimal. Many aspects
were still handled by generic software which did not ex-
ploit special hardware features. For example, many MPI
implementations still copied non-contiguous messages to
contiguous memory first before sending them, instead of
combining the compression and send operations into a sin-
gle step. Also, the process topology functions in most cases
did not provide an optimized mapping between processes
and processors in heterogeneous network configurations.
With limited personnel resources, many hardware vendors
regarded these and other MPI-1 optimizations more im-
portant than an early availability of MPI-2.

Meanwhile, the public domain software MPICH cov-
ers the full MPI-2 standard, and several hardware ven-
dors provide complete proprietary implementations, but
the adoption by application programmers is still slow and
non-uniform for the different MPI-2 sections. While the
parallel I/O functions today are used in many application
programs, and the single-sided communication functions
are gaining popularity, this is less true for other parts of
MPI-2, as for example the dynamic process management
features.

LESSONS LEARNED

From the very beginning, the organizers of MPI recognized
the importance of having as many interested parties as pos-
sible represented in the forum, and in particular a majority
of the hardware vendors of parallel systems. In the techni-
cal discussions, care was taken to avoid interface features
that would be difficult to implement on some existing or
conceivable future hardware platform. As a result, most
vendors, if not all, support MPI as their primary message
passing interface, and other interfaces continue to be avail-
able mainly for reasons of compatibility with legacy codes.

The impression that some interested parties tried to im-
pose a standard onto the rest of the community never arose,
since the MPI Forum adopted the rules of complete open-
ness and democracy.

It would have been very difficult to make one of the ex-
isting message passing interfaces the universal standard.

From the technical point of view, no interface before MPI
fulfilled the functionality requirements of the whole range
of potential users, from novice programmers to parallel li-
brary writers, and allowed good performance to be achieved
on all target platforms. At least as important was the po-
litical aspect since choosing an existing interface would
have created opposition by vendors and users who pre-
ferred other choices. The adopted approach of combining
the proven features of existing interfaces into something
new was the only way to gather the required support.

The universality of MPI led to a complexity which many
critics initially regarded as a disadvantage. Two develop-
ments helped to overcome this impression. The MPICH im-
plementation of the full standard showed that it could be
implemented without loss of efficiency, and that it could be
ported to a new platform with reasonable effort. The publi-
cation of introductory textbooks (18, 30) helped application
programmers focus their attention on the MPI constructs
needed for their work. Before, the typical way to learn how
to use MPI had been to study the standard document, so
beginners were immediately confronted with the full com-
plexity of the interface. The textbooks demonstrated that
simple example programs were as easy to write with MPI
as with other message passing interfaces.

The de facto status of the MPI standard was never a lim-
iting factor to its success. Since there were no formal rules
imposed by a standardization body, the organization was
very flexible and effective. For MPI, it was accepted that the
early publication of the standards document would make
minor corrections necessary later, and in this case it hap-
pened after about one year. Experience has shown that the
negative impact of “changing a standard” was small com-
pared with the benefit of a timely result. It may be true,
however, that de facto standards are particularly success-
ful within the technical computing community, at which
MPI was targeted.

MPI is firmly established in the high-performance com-
puting community and supported by all relevant hardware
and software vendors. At least for now, there appears to be
no interest to make MPI an official international standard.
The general expectation is that the potential gain would
not justify the effort required.

Many people regarded MPI and PVM as competing to
become the message passing standard even though Jack
Dongarra and Al Geist, two of the principal designers of
PVM, were key players in the development of MPI. How-
ever, MPI and PVM were designed for different uses. PVM
was originally intended for use on networks of worksta-
tions, and to address issues such as heterogeneity, fault
tolerance, interoperability, and resource management - its
message passing capabilities were not very sophisticated.
The design of MPI focused on message passing capabilities,
and it was intended to attain high performance on tightly-
coupled, homogeneous parallel architectures. For several
years MPI and PVM developed in tandem, and each bene-
fited by a cross-fertilization of ideas.

It is debatable whether PVM would have become the
message passing standard in the absence of MPI. Unlike
MPI, PVM was a research project with a finite lifetime.
Its development and support was undertaken by a small
group of researchers, and although it was a highly suc-
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cessful project, it seems unlikely that it would ever have
developed the same range of functionality and sophistica-
tion that the MPI Forum deemed necessary in a message
passing standard. It should be noted that the consultative
process through which MPI was created was important not
only in generating a well thought-out specification, but also
in giving MPI a degree of credibility that other message
passing libraries, developed by research groups or hard-
ware vendors, did not have. (For details, see (20).)

A major strength of PVM was its resource management
capabilities, some of which have been incorporated into
MPI-2. MPI has been successful in delivering high per-
formance on tightly-coupled parallel systems, but PVM is
still in use on networks of workstations (NOWs). The mes-
sage passing aspects of PVM were frozen after Version 3.4,
and the PVM project has since branched out into other re-
search areas that build upon the PVM work, such as CU-
MULVS (16) and HARNESS (10) which are concerned with
distributed, heterogeneous environments for NOWs. Inter-
estingly the HARNESS project led to the development of
a very PVM spirited MPI implementation known as Fault
Tolerant MPI (FT-MPI), extending the link between PVM
and MPI research.

At the time of writing there are two notable portable
open source MPI implementation projects active; MPICH
from ANL and Open MPI. The Open MPI project is a collab-
oration between a number of previous MPI implementation
(LAMPI, LAM/MPI, FT-MPI and PACX-MPI) authors from
industry, national laboratories and universities around the
world.
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