
642 PARALLEL PROGRAMMING TOOLS

PARALLEL PROGRAMMING TOOLS

Innovation in the field of digital computers has been spurred
by an ever-increasing demand for computing power. Driven
by the desire for speed, processor designs are incorporating
more and more complicated features. While these features re-
sult in increased performance, the price-to-performance ratio
of such uniprocessor systems is fairly high. This diminishing
return of performance has motivated the development of par-
allel computer systems, which consist of a number of uni-
processors connected together by an interconnection network
(for more information, see INTERCONNECTION NETWORKS FOR

PARALLEL COMPUTERS).
High-performance parallel computers can often be built for

a fraction of the cost of a comparably powerful uniprocessor
system, especially if commodity (off-the-shelf) components are
used. However, the relatively lower cost of such systems
comes at a premium. In order to make use of the available
concurrency, the programs that run on these systems must
have multiple threads of control. These parallel programs are
highly complex and may require significant programmer ef-
fort before they can be made to run correctly and efficiently.

Debuggers and performance analysis tools assist program-
mers in writing correct, efficient programs. A debugger is a
tool that helps programmers pinpoint mistakes in the pro-
gram that lead to incorrect behavior. Debugging is more of an
art than a science, since identifying the erroneous behavior is
only the first step. The programmer must then go backward
to find the flaw in the program that gives rise to the incorrect
behavior at a later point. A performance analysis tool helps
identify the reasons for a program to perform below expecta-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



PARALLEL PROGRAMMING TOOLS 643

how to performance tune parallel programs, a process that
involves (1) monitoring program executions and (2) collecting
and analyzing the run-time information.

DEBUGGING PARALLEL PROGRAMS

Debugging a program involves finding mistakes or flaws in
the program. In general, determining program flaws statically

Parallel
program Feedback

Programmer

Debug/
performance tune

(i.e., without running the program) is not possible. Hence, de-
Figure 1. Debugging and performance tuning. bugging involves executing the program, determining the

point at which the program behavior departs from the ex-
pected, and working backward to find the flaw that causes the

tions. Since there may be any number of reasons for poor per- incorrect behavior. Debugging thus requires the programmer
formance, performance analysis is also an inexact science. to determine the root cause of incorrect behavior and then

Debugging and performance tuning are generally cyclic correct it.
processes, as illustrated in Fig. 1. Debugging typically in- Erroneous program behavior can be determined by halting
volves repeating program executions, collecting more and the program execution and examining the state of its compo-
more information from each run, until the program flaw has nents (threads or processes). When the state of the compo-
been identified. In performance tuning, the program is modi- nents do not match with what is expected, the program be-
fied based on information gathered when executing the pro- havior is incorrect. For example, a property of the program
gram. Typically, the execute–modify cycle has to be repeated could be that after reaching a particular point in the execu-
several times before all the performance problems can be ad- tion, the variable x is always positive. If the execution is
dressed. halted after this point and x is negative, there is a flaw in

All of the difficulties of debugging and performance tuning the program.
sequential programs are present in parallel programs as well. Detecting incorrect program behavior is only the first step
Debugging and tuning a parallel program is complicated by in the debugging process. This is because after determining a
the interaction between the multiple concurrent components point in the execution at which the program behavior is incor-
(threads or processes) of a parallel program execution. In par- rect, the programmer must work backwards to determine the
ticular, interprocess interactions often cause the program be- flaw in the program that gives rise to the erroneous behavior.

For instance, in the previous example, x may be negative be-havior to be nonrepeatable, which makes both correctness
cause an earlier assignment to y was made incorrectly. Thisand performance problems hard to pinpoint. Thus, while it
is the program flaw, and it leads to x being negative at amay be possible to build cheap, high-performance parallel
later point.computers, it takes sophisticated tools to make parallel pro-

Typically, a cyclic debugging technique is used to deter-gramming truly effective on such systems.
mine the root cause of the flawed behavior (1). Once the pres-A wide variety of programming languages and models can
ence of a bug has been established, the programmer reexe-be used for writing parallel programs. Programming para-
cutes the application and halts it at successively earlierdigms such as logic, data flow, and functional programming
points. At each point, the programmer postulates propertiesare considered more natural vehicles for expressing parallel-
about the program and verifies whether the program satisfiesism (for more information on these topics, see LOGIC PROGRAM-

these properties by examining the internal state. The intentMING AND LANGUAGES, DATA-FLOW AND MULTITHREADED ARCHITEC-

is to find the earliest point in the program execution whereTURES, and FUNCTIONAL PROGRAMMING). However, imperative
the state of the components deviates from the norm, therebyprograms (i.e., programs written in languages such as For-
determining the root cause of the problem.tran, Pascal, and C, which explicitly specify the sequence of

Thus, two mechanisms are required to debug a program.steps that must be followed by the computer to solve the prob-
First, we need a mechanism to halt or stop a program execu-lem at hand) are currently the best when it comes to ex-
tion. Second, we need a mechanism to reexecute—that is, re-tracting performance out of parallel systems. Since perfor-
play a program execution. A sequential program can be easilymance is one of the motivating factors for using a parallel
halted by stopping the single component that is executing.system, this article concentrates on the debugging and perfor-
Since sequential programs are usually deterministic (i.e., formance analysis of imperative parallel programs.
a given input, the program execution always follows the sameTools for debugging and performance tuning parallel pro-
path and produces the same results), reexecution is also eas-grams share the need to monitor program executions. This
ily accomplished. For a parallel program, the presence of con-monitoring must be done without disturbing the phenomenon
currently executing components complicates halting and re-being observed. These tools differ in other capabilities they
playing executions.must support. Debuggers must provide the ability to interact

The mechanisms for halting and replaying parallel pro-with the program execution. Performance analysis tools must
grams form the basis of parallel program debuggers. Usingmanage the large quantities of data that are collected from
these two mechanisms, programmers can set breakpoints,program executions.
halt the program execution, and examine the state of the com-The rest of this article is organized as follows. In the sec-
ponents.tion entitled ‘‘Debugging Parallel Programs’’ we explain two

mechanisms that must be in place for debugging parallel pro-
Halting a Parallel Program Executiongrams. We also describe how to detect race conditions in

shared-memory parallel programs. Then, in the section enti- A halt command has a well-defined meaning for a sequential
program. The single, running process can be halted and itstled ‘‘Performance Tuning Parallel Programs’’ we describe



644 PARALLEL PROGRAMMING TOOLS

state examined. In the case of a parallel program, it may not instant replay technique was developed by John Mellor-Crum-
mey and Tom LeBlanc (3,4). Note that any concurrent pro-be feasible to ensure that the halt command will reach all

components simultaneously. Consequently, the components gram can be modeled as a set of components (threads or pro-
cesses) that interact or communicate through shared objects.may be halted in a different state from that requested by

the programmer. For example, in message passing programs, the sending and
receiving of messages can be modeled as accesses to aFor a parallel program execution, the challenge is in halt-

ing the concurrent components in a consistent state. This is shared buffer.
best illustrated by the following example. Let a process P
reach a point A in the parallel program execution. If we want Detecting Race Conditions
to halt P at this point, what are the constraints on halting

When the different components of a parallel program commu-
the other processes? Ideally, we would like to halt the other

nicate through shared memory, the accesses to shared mem-
processes at the same instant that P reaches A. However, in-

ory locations must be ordered. This ordering is achieved by
stantaneously halting all the processes may not be possible.

synchronizing the different components. If the synchroniza-
What can we do? If P were to be halted at point A, all of the

tion is not present or is defective, the access ordering may not
events that have occurred on P prior to its reaching A must

be enforced, causing the program to contain time-dependent
be propagated eventually to the other processes. Let no other

bugs known as race conditions (5). Race conditions are espe-
process be allowed to proceed beyond a point that requires P

cially pernicious because of their dependence on time: The
to proceed beyond A. The global state of the parallel program

parallel program may behave perfectly normal for 99 execu-
execution that obeys this constraint is known as a meaningful

tions, yet misbehave on the hundredth one.
global state, a concept introduced by Chandy and Lamport (2).

In parallel programs that are designed to be deterministic,
Such states suffice for purposes of debugging, because from

race conditions can cause the program to exhibit nondeter-
the viewpoint of process P, any computation on the other pro-

minism. For example, consider a sequential program that con-
cesses that takes place after process P reaches point A is de-

sists of a single loop. This program can be parallelized by as-
pendent only on events that have already happened on pro-

signing different iterations of the loop to different processors.
cess P.

If the synchronization required to perform this assignment is
When debugging a sequential program, programmers typi-

not present, the program may behave nondeterministically.
cally specify predicates about the program state. The debug-

This race condition is termed a general race.
ger monitors the execution and halts it when the predicates

Race conditions can also arise in parallel programs that
are satisfied. The points where the program is halted are

are designed to be nondeterministic. As an example, consider
called breakpoints. When a programmer specifies a break-

a task-queue-based program where a set of worker processes
point for a parallel program, at least one of the executing pro-

picks tasks off a queue. This task-queue-based computation
cesses will halt at the breakpoint. The remaining processes

paradigm could be used in an automated chess-playing pro-
will eventually block when they reach a point where they re-

gram. Now if two concurrent tasks can potentially access a
quire the halted processes to proceed before they can. The

shared location simultaneously and one of the accesses is a
global state of the processes at this point will be consistent,

write, the outcome of the two accesses is time-dependent. The
and it can be examined by the programmer.

absence of a specific order between these two accesses can
cause erroneous behavior, and it is termed a data race.

Replaying Parallel Program Executions Race conditions are very hard to detect. Even in simple
programs with no loops, race detection is NP-hard when cer-Cyclic debugging depends on the repeatability of program ex-
tain synchronization constructs are allowed (for more infor-ecutions. When the program behavior is detected to be errone-
mation on NP-hardness, see COMPUTATIONAL COMPLEXITY THE-ous, cyclic debugging involves reexecuting the program so
ORY). Most of the research in this area focuses on providingthat it can be halted at an earlier point. Implicit in this tech-
programmers with approximate information. For example,nique is the requirement that the second execution be identi-
there are several techniques that will report a nonempty sub-cal to the first.
set of the races in a program (6). This means that while someConsider two executions of the same program for the same
of the races that exist may be missed, a report that a programset of inputs. Informally, if the computation sequence and the
is race-free will be accurate.sequence of values assigned to memory locations are the same

From a practical viewpoint, there are several approachesin both cases, then the two executions are identical. For a
that execute the parallel program and inform the program-deterministic sequential program, any two executions for the
mer of potential race conditions for that particular data set.same input will be identical. In general, the presence of con-
In other words, the information provided by these approachescurrency in a parallel program makes any two executions
is valid only for the particular data set with which the pro-nonidentical.
gram is run. An exciting algorithmic development in this fieldThe basic technique for replaying a parallel program exe-
is the research by Feng and Leiserson (7), who show that datacution relies on tracing the order of accesses to shared objects.
races in deterministic Cilk programs can be detected in timeFirst, a program execution is monitored, and the order of ac-
that is essentially linear in the time it takes to run the Cilkcesses to various shared objects is recorded. Then, when the
program serially.execution needs to be replayed, the new execution is con-

strained to follow the recorded ordering on accesses to shared
Tools for Debugging Parallel Programsobjects. A central theorem in execution replay is that if a sec-

ond execution is constrained to follow the same access order P2D2 is a portable parallel/distributed debugger developed at
NASA Ames Research Center (8). P2D2 uses gdb, the Gnuas the first, the two executions will be indistinguishable. This



PARALLEL PROGRAMMING TOOLS 645

debugger for sequential programs (9), as the underlying de- A parallel program execution can be divided into phases.
Each phase corresponds to a portion of the code, with the re-bugger. A front end manages the individual gdb sessions and

communicates with them. Debugger commands are qualified quirement that all components operate in the same phase at
any given time. A natural metric to use is the time spent inwith the set of processes where they should be applied. P2D2

provides the ability to set breakpoints, examine the state of different phases. Speeding up the phases of the program
where most of the time is being spent can maximize gains.the processes in detail, and single step the program execution.

P2D2 has been ported to several target architectures, includ- This principle of speeding up the common case is explained
by Amdahl’s law (15) and is illustrated by the following exam-ing the IBM SP-2, and parallel machines made up of net-

worked SGI and Sun workstations. ple. Let 75% of the running time of a program be spent in
phase A, and let the remaining 25% be spent in phase B.A number of vendors are working on providing source-level

debuggers for high-performance Fortran (HPF) programs (for Then, speeding up the execution of the code executed in phase
A by a factor of three will speed up the overall execution by amore information on HPF, see PARALLEL AND VECTOR PROGRAM-

MING LANGUAGES). Typically, an HPF program is compiled to a factor of two. In contrast, speeding up the code executed in
phase B by a factor of three will speed up the overall execu-message passing or shared memory parallel program by a

data parallel compiler. In order for debug information from tion only by a factor of 1.2.
Another metric that can be used is the degree of concur-the resultant parallel program execution to be useful, infor-

mation gathered from the execution must be correlated with rency exhibited over the course of the execution (16). Bottle-
necks in the program correspond to periods in the executionthe original source program, which is just an annotated se-

quential program. TotalView from Dolphin Interconnect Solu- when not all the processors are busy. By keeping track of the
number of processors at work in different parts of the pro-tions Inc. is one commercial debugger that has some support

for debugging HPF programs (10). The Pablo project at the gram, these bottlenecks can be pinpointed. This information
can be used to change the program and increase the parallel-University of Illinois is also working on this problem (11).

Sun Microsystems has developed a static debugger called ism that can be extracted.
The time spent accessing program data structures is an-LockLint to check for data races and improperly used locks

in multithreaded programs (12). LockLint uses programmer- other important metric (17). Many times, a bottleneck may
not be attributable to any particular point in the program exe-inserted annotations in the program to conduct its analyses.

Several race detection tools have also been developed by the cution. It may be the memory accesses to a particular data
structure, distributed throughout the program, that are caus-research community. RecPlay is a tool that enables the usage

of cyclic debugging techniques for shared memory programs ing the performance degradation. A metric that targets the
memory access behavior of a program can be used to detect(13). For general races, RecPlay uses execution replay to en-

able the programmer to employ intrusive cyclic debugging this scenario.
The amount of interprocess interactions, along with thetechniques. RecPlay detects and reports data races back to

the programmer. RecPlay has been implemented for SPARC- time spent in them, is another useful metric (18). Interprocess
interactions such as communication and synchronization arebased systems. Perkovic and Keleher (14) have also developed

an on-the-fly data race detection tool for shared memory par- inherent in a parallel program, and they constitute the mech-
anism by which different program components communicate.allel programs.
These interactions typically cost a few orders of magnitude
more than local memory accesses. Very frequent interprocess

PERFORMANCE TUNING PARALLEL PROGRAMS
interactions may indicate that a different algorithm that re-
quires less frequent communication should be used.

Developing a correct, bug-free parallel program requires a
substantial amount of effort. Often, after investing this effort,

Execution Monitoringthe application performance may only be a small fraction of
the peak system performance. Even for sequential programs, Execution monitoring consists of observing the parallel pro-
the complexity of present-day computer systems dictates the gram execution in order to collect data about interesting
use of performance tuning tools. The additional complexity events. This can be achieved in one of two ways. First, we can
introduced by the presence of concurrency makes such tools a use a hardware monitor to collect information about specific
requirement for understanding and improving the perfor- events. Alternately, we can add software instrumentation in-
mance of parallel applications. structions to the parallel program in order to monitor the exe-

There are three steps in the performance analysis process: cution. In both cases, the monitoring process produces data,
execution monitoring, data collection, and data analysis. which must be collected and analyzed.
These correspond to monitoring the program execution, col-
lecting information about the execution, and analyzing the in-

Hardware Monitoring. Hardware monitoring can be done in
formation to determine the causes for poor performance.

two ways. We can use external hardware devices such as logic
analyzers or bus analyzers to record specific events. Alter-

Performance Metrics
nately, we can use processors that have onboard (internal)
performance monitoring counters to watch for interestingThe purpose of performance tuning is to reduce the running

time of an application. Many indicators or metrics can be used events.
Programs typically execute millions of instructions in eachin determining why the running time is higher than expected.

These include time, the degree of concurrency, the memory second. External hardware devices such as bus and logic ana-
lyzers can collect information about the events caused by theaccess behavior of the program, and the amount and fre-

quency of intercomponent (threads or processes) interactions. execution of many of these instructions. For example, the ex-



646 PARALLEL PROGRAMMING TOOLS

ternal analyzers can be programmed to watch for the bus ware monitoring, sampling can also be used here to reduce
the perturbation effects. Sampling involves using either hard-transactions that may be caused by load and store instruc-

tions. External devices can be programmed in more flexible ware cycle counters or the system clock to generate interrupts
at periodic intervals (for more information on interrupts, seeways than the onboard event counters. However, external de-

vices suffer from a very significant disadvantage: They re- INTERRUPTS).
Perturbation can also be reduced using execution replayquire access to the actual hardware on which the program ex-

ecutes. (see section entitled ‘‘Replaying Parallel Program Execu-
tions’’). Instrumentation is first added to the program to re-Most modern processor architectures (e.g., the SGI

R10000, Digital Alpha, and Intel x86) possess the capability cord the partial order on all interprocess interactions. This
instrumentation is fairly lightweight and perturbs the execu-to monitor several events through programmable event count-

ers that are internal to the processor (19). As these counters tion only slightly. The recorded partial order information is
then used to replay the execution. The replay run is fully in-are already integrated with the processor logic, no extra hard-

ware is needed to use them. Typically, these counters can be strumented, but is forced to follow the same path as the first
record run.used to measure events such as cache misses, branch mispre-

dictions, translation lookaside buffer (TLB) misses, and so on.
At periodic intervals, the values of these counters can be re- Data Collection
corded to obtain information about the program execution.

Once events during execution have been monitored, the next
Hardware monitors can observe execution events at a very

step is to collect the data.
fine level of detail (i.e., at the level of individual instructions).

External hardware devices can record this information in
However, since the monitoring infrastructure is separate from

external storage. On-chip event counters often use interrupts
that used for normal program execution, hardware monitor-

to collect data related to specific events. When a performance
ing does not perturb the program execution.

counter overflows, it generates an interrupt which is serviced
One drawback of fine-grained monitoring is managing the

by the processor. The interrupt software can determine the
enormous amount of performance data that gets generated.

context in which the interrupt was triggered and records this
This information overload problem can be alleviated by sam-

information in a buffer set aside for this purpose (19). Soft-
pling the program execution and recording only selected

ware instrumentation techniques also record event data into
events. Typically, a few thousand samples for every second

preallocated buffers. When the buffer gets full, it is stored on
of program execution are collected. Depending on the kind of

disk for later processing.
performance measurement counters provided by the architec-

Both strategies use special formats when recording the
ture, the samples can provide information on the time spent

data in order to reduce the perturbation caused by the data
in different parts of the program, on cache misses, on branch

collection process. Carefully designed data formats are used
mispredictions, and so on. Introducing an element of ran-

to reduce the amount of data accesses that must be made.
domness when choosing the sampling interval ensures that

Using well-designed data structures can also reduce the num-
the sampling interval does not ‘‘beat’’ with phases in the pro-

ber of cache misses that may be encountered when storing
gram execution (19).

the recorded data.

Software Monitoring. Software monitoring requires instru-
Data Analysis

menting the program being executed. This is done by adding
instructions to the program, which monitor the program exe- The most challenging task in the performance tuning process

lies in analyzing the collected data. Information gatheredcution and gather information about selected events. For ex-
ample, we can obtain information about the memory accesses from the program execution must also be correlated with the

source code for it to be useful.of the program by instrumenting the loads and stores in the
program. The data analysis problem is especially difficult. Data col-

lected at run time is often very closely related to the hard-A clear advantage of software instrumentation is its flexi-
bility. Event monitoring can be much more selective since it ware. For example, cache misses and TLB misses represent

information at the level of the machine architecture. Unlessis done entirely in software. For example, it is fairly easy to
ensure that only memory accesses to a particular data struc- this raw information is processed, the responsibility of digest-

ing it will lie with the programmer.ture get recorded. The disadvantage of software instrumenta-
tion is that it can cause the program execution to slow down. Correlating the performance information with the program

code and data structures is also not easy. Often the programWorse still, the instrumentation can slow down the concur-
rent processes at different rates, perturbing the execution be- being performance tuned is very different from the one writ-

ten by the programmer. For example, a sequential HPF pro-havior of the application. This perturbation may cause the
performance tuning data to be collected from an execution gram is compiled to a message passing parallel program be-

fore execution (for more information on this, see PARALLEL ANDthat has very little in common with the typical behavior of
the application. VECTOR PROGRAMMING LANGUAGES). Performance data gathered

from the message passing executable must be correlated withThe run-time overheads of software instrumentation can
be alleviated by dynamically instrumenting the parallel pro- the original HPF program (which has no message passing

calls), in order for it to be useful (11).gram while it is executing (20). This involves deferring the
decision on what to instrument until execution time, and then Visualization is a useful technique to cope with the large

quantity of data produced by long-running programs (11). Theperiodically modifying the running program. By monitoring
the program execution, instrumentation can be added selec- data are usually plotted in different formats to enable the pro-

grammer to easily spot trends or patterns that indicate a per-tively based on perceived bottlenecks. As in the case of hard-



PARALLEL PROGRAMMING TOOLS 647

formance problem. The plots can be as simple as a listing of BIBLIOGRAPHY
the time spent in different functions, or as complicated as a

1. M. Garcia and W. Berman, An approach to concurrent systemsgraph that shows the amount of interprocess contention on a
debugging, Proc. 5th Int. Conf. Distributed Comput. Syst., 1985,per-data structure basis. The end goal is to make it easier for
pp. 507–514.the programmer to detect trends in the data.

2. K. M. Chandy and L. Lamport, Distributed snapshots: Determin-A new research direction advocates reducing the burden
ing global states of distributed systems, IEEE Trans. Comput., 3:on the programmer by moving away from data presentation
63–75, 1985.to automatically analyzing run-time data (21). This approach

3. T. J. LeBlanc and J. M. Mellor-Crummey, Debugging parallelfocuses on prescribing solutions to the performance problems
programs with Instant Replay, IEEE Trans. Comput., C-36: 471–detected in the program. Prescriptive feedback can be pro-
482, 1987.vided by casting the problem of improving program perfor-

4. J. M. Mellor-Crummey, Debugging and analysis of large-scalemance as an optimization procedure on a model of the system
parallel programs, PhD thesis, Univ. of Rochester, 1989. This dis-on which the program is being executed. Automatically solv-
sertation has an excellent introduction on the various issues thating the optimization problem allows the tool to directly pre-
must be addressed when debugging parallel programs.scribe how the program should be changed.

5. R. H. B. Netzer, Race condition detection for debugging shared-
memory parallel programs, PhD thesis, Univ. of Wisconsin, Madi-

Current Performance Tuning Tools son, 1991. This dissertation provides an introduction to race de-
tection in shared-memory parallel programs. It is also availableParadyn is a performance measurement tool that dynamically as technical report CS-TR-91-1039 from the University of Wis-

instruments the program being traced and searches the exe- consin.
cution for bottlenecks (20). The base metric used is the time

6. D. P. Helmbold and C. E. McDowell, Race detection—Ten years
spent in various operations. A search model, consisting of a later, in M. L. Simmons et al. (eds.), Debugging and Performance
set of hypotheses about potential performance problems, is Tuning for Parallel Computing Systems, New York: IEEE Com-
incorporated within Paradyn. During execution, Paradyn re- puter Society Press, 1996. This book has a collection of papers
fines this set, until a few hypotheses accurately reflect the that form an excellent starting point for several of the topics ad-

dressed in this article.performance bottleneck in the program. One problem with
this approach is that performance bottlenecks cannot often 7. M. Feng and C. E. Leiserson, Efficient detection of determinacy
be attributed to any one point in the code. For instance, the races in Cilk programs, Proc. 9th ACM Symp. Parallel Algorithms

Architectures, 1997, pp. 1–11. More information on race detectionperformance degradation might be caused by accesses to a
work in Cilk is available from http://theory.lcs.mit.edu/~cilk/pa-particular data structure whose references are distributed
pers.html.through the program.

8. R. Hood, The p2d2 Project: Building a Portable Distributed De-MemSpy presents data-oriented statistics for tuning the
bugger, Proc. 1996 ACM SIGMETRICS Symp. Parallel Distributedmemory performance of parallel programs (17). MemSpy sim-
Tools, 1996. For more information on p2d2, see http://ulates the parallel program and measures different types of
science.nas.nasa.gov/Groups/Tools/Projects/P2D2.cache misses. It then correlates this information to code and

9. Free Software Foundation Inc., Debugging with gdb: The Gnudata structures in the program. The programmer typically
Source-Level Debugger, 1997. This manual, gdb software, anduses this information to rearrange the data structures in the
more information on other Gnu projects can be found at ftp://program.
prep.ai.mit.edu/pub/gnu.

Rx is a tool that focuses on the automatic analysis of data
10. Dolphin Interconnect Solutions Inc., TotalView Multiprocess De-gathered from parallel program executions (21). Instead of

bugger User’s Guide, 1997. For more information on TotalView,leaving the programmer with the task of digesting execution see http://www.dolphinics.com/tw/tvover.htm.
data, Rx analyzes the data and prescribes solutions to perfor-

11. V. S. Adve et al., An integrated compilation and performancemance problems. It does so by having a model for the underly-
analysis environment for data parallel programs, Proc. Su-

ing system, and solving an optimization procedure on the percomput. 1995. pp. 1370–1404. This paper is online at the
model. Pablo project website: http://www-pablo.cs.uiuc.edu.

The Digital Continuous Profiling Infrastructure (DCPI) is 12. Sun Microsystems Inc., SPARCworks/iMPact: Tools for Multi-
a robust performance tuning tool for Digital Alpha platforms threaded Programming, 1995. Catalog number: 802-3542-10.
(19). DCPI samples the program execution using the Alpha

13. M. Ronsse and K. De Bosschere, An on-the-fly data race detector
processor’s performance counters to collect information about for REC-PLAY, a record/replay system for parallel programs,
execution events. A suite of auxiliary tools can be used to dis- Poster session 16th ACM Symp. Operating Systems Principles,
play and summarize the collected data. Sampling permits an 1997. Also available at http://www.cs.washington.edu/sosp16/
extremely low overhead (around 2%) for the profiling process. wipWWW.html.
Furthermore, DCPI profiles the entire system, including both 14. D. Perkovic and P. Keleher, Online data-race detection via coher-
user level and operating system code. ency guarantees. Proc. Second USENIX Symp. on Operating Sys-

Intel’s Visual Tuning Environment (VTune) is a commer- tem Design and Implementation, 1996.
cial performance tuning tool for Intel platforms running Win- 15. J. L. Hennessy and D. A. Patterson, Computer Architecture: A
dows-NT and Windows95 (22). Using time-based and event- Quantitative Approach, San Mateo, CA: Morgan Kaufmann Pub-
based sampling, it noninvasively monitors both user level and lishers, 1990.
operating system program activity. Currently, VTune targets 16. T. E. Anderson and E. D. Lazowska, Quartz: A tool for tuning
only time; that is, it only supplies information on the time parallel program performance, Proc. Int. Conf. Measurement Mod-

eling Comput. Syst., 1990.spent in different parts of the program.



648 PARTIAL DISCHARGES

17. M. Martonosi, A. Gupta, and T. E. Anderson, Tuning memory
performance of sequential and parallel programs, IEEE Comput.,
28 (4): 32–40, 1995.

18. R. Rajamony and A. L. Cox, Performance debugging shared mem-
ory parallel programs using run-time dependence analysis, Proc.
1997 ACM SIGMETRICS Int. Conf. Measurement Modeling Com-
put. Syst., 1997.

19. J. M. Anderson et al., Continuous profiling: Where have all the
cycles gone? ACM Trans. Comput. Syst., 15 (4): 357–390, 1997.
For more information on DCPI, see http://www.research.digital.
com/SRC/dcpi.

20. B. P. Miller et al., The Paradyn parallel performance measure-
ment tools, IEEE Comput., 28 (11): 37–46, 1995. More informa-
tion on the Paradyn project including software distributions can
be found at http://www.cs.wisconsin.edu/paradyn.

21. R. Rajamony, Prescriptive Performance Tuning: The Rx approach,
PhD thesis, Rice Univ., Houston, TX, 1998. For more information
on Rx, see http://www.cs.rice.edu/CS/Systems/Rx.

22. Intel Inc., VTune: Developers Manual, 1997. More information on
VTune, including demonstration versions of the software, can be
obtained from http://support.intel.com/support/performancetools/
vtune.

Reading List

Cherri M. Pancake, Parallel Debugger Bibliography. This is an online
bibliography, available at http://www.cs.orst.edu/~pancake/
papers/biblio.html, and is an excellent place to find papers and
dissertations on the subject of parallel and distributed debuggers.

The Parallel Tools Consortium, This consortium has a Web site:
http://www.ptools.org, which is a wonderful resource for getting
information about the latest parallel tools projects. In particular,
they have a Web page that lists a set of parallel tools projects
around the world.

RAMAKRISHNAN RAJAMONY

IBM Austin Research Laboratory

ALAN L. COX

Rice University


