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Control-Flow Architecture

All conventional computers are based on the ideas proposed
by the group from the University of Pennsylvania Moore
School that built the ENIAC (1). Some of the key characteris-
tics of a computer from this group are (1) serial execution of
instructions and (2) using single memory to store both the
instructions and the data. The group’s ideas were driven by-
the need to come up with an architecture that was simple and
yet flexible.

The attribute of serial execution gave a simple execution
mechanism based on a special register called the program
counter (PC) which is updated to point to a memory location
that contains the next instruction to be executed. The data
that are used as instruction operands are stored at different
locations in the same memory. The result produced by execut-
ing an instruction is stored back into the memory. The follow-
ing sequence of instructions represent a program that com-
putes the two roots of a quadratic equation, ax2 � bx � c �

0. The formula to compute the roots is

b ± √
b2 − 4ac
2a

1. mult t1, b, b ;t1 <= b*b
2. mult t2, a, c ;t2 <= a*c
3. mult t2, t2, 4 ;t2 <= 4*a*c
4. sub t1, t1, t2 ;t1 <= b*b-4*a*c
5. sqrt t1 ;t1 <= sqrt(b*b-4*a*c)
6. neg t3, b ;t3 <= -b
7. add r1, t3, t1 ;r1 <= -b+sqrt(b*b-4*a*c)
8. sub r2, t3, t1 ;r2 <= -b-sqrt(b*b-4*a*c)
9. mult t1, a, 2 ;t1 <= 2*a
10. div r1, r1, t1 ;Compute r1
11. div r2, r2, t1 ;Compute r2

In conventional computers, instruction execution order is
implied by the order in which the instructions appear in a
program. In the previous example, instruction 2 is executedDATA-FLOW AND
after instruction 1 and instruction 3 is executed after instruc-MULTITHREADED ARCHITECTURES
tion 2. Control instructions such as jump and conditional
branch allow instructions to be fetched from memory loca-This article describes the development of data-flow architec-
tions that are not located immediately after the current in-tures. The execution model of a data-flow computer is radi-
struction.cally different from that of a conventional computer in that

In the Moore School group’s basic execution model, someexecutability of a data-flow instruction is dependent only on
instructions may be unnecessarily executed serially. In thethe availability of its input operands. The article starts by
previous example, instructions 1 and 2 may be executed con-discussing the differences between conventional and data-
currently since the two instructions are data independent,flow architectures. The article goes on to describe a number
that is, one instruction does not need the result of the otherof representative data-flow and multithreaded architectures
instruction to execute. In addition, because the same memorythat are products of active research done in the area during
location is used to store different values, artificial data de-the late 1970s to early 1990s.
pendencies may occur. In the example, instruction 9 dependsA data-flow architecture is defined as a hardware imple-
on instruction 8. Actually, this is an example of artificial datamentation of a computer system whose computation mecha-
dependency created by the reuse of variable t1. Instruction 9nism is based on a data-driven execution model. Multithread-
becomes independent of instruction 8 if a new variable t4 ising is a term commonly used by a number of different
used instead.disciplines of computer science and engineering. In this arti-

It is true that in modern computer systems, various hard-cle, a multithreaded architecture is defined as a hardware im-
ware and software optimizations are employed to exploit in-plementation of a computer system that is designed to im-
struction level parallelism (2,3) as just discussed. However,prove upon the computation mechanisms of pure data-flow
the basic execution model is still that of serial executionarchitectures. In general, a multithreaded architecture is a
where program control is centralized through a programhybrid whose computation mechanism is borrowed from the

data-driven as well as the control-driven execution model. counter.
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run-time. This means that multiple data tokens of different
instances can travel on a program graph edge. With a dy-
namic data-flow architecture, it is possible to unfold a loop
at run-time, that is, multiple loop iterations can be executed
concurrently. With a static data-flow architecture, a loop
needs to be parallelized through replication of the loop body
nodes by a compiler, for example before the program is exe-
cuted (4).

In a static data-flow computer, a program graph node can
be represented by a template which specifies the operation to
be performed, space to store the input operands with associ-
ated valid bits, and a list of pointers to the destination graph
nodes that need the result of the operation. A data token
would need three fields; Data, Port number, and Destination
template address fields. The Port number field specifies
whether the data is the left or the right input operand. Repre-
sentation of a node as an instruction template in a memory is
shown in Fig. 2.

A static data-flow computer system has three functional
units: Update unit, Fetch unit, and Processing unit. The Up-
date unit receives the incoming data tokens and stores the
value in the specified instruction templates. If it finds that all
input operands are ready, the address of the template is in-
serted into a ready queue for processing. The Fetch unit re-
moves a template pointer from the head of the ready queue
and fetches the instruction template from the template mem-
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ory and prepares the instruction for execution by the Pro-
Figure 1. The data dependency graph of a program that computes cessing unit. The Processing unit generates data tokens as
the two roots of a quadratic equation. a result of executing specified operation. Figure 3 shows a

schematic diagram of a static data-flow architecture.
A dynamic data-flow computer needs to have a different

Data-Flow Architectures
architecture from that of a static data-flow computer because
a program graph node can have multiple instances at run-Unlike the serial execution model used in a conventional com-

puter, the execution model of a data-flow machine is inher- time. For example, the instruction templates used in the
static architecture is not suitable for the dynamic architectureently parallel. In this execution model, the executability of an

instruction is determined solely by the availability of the in- since many data tokens that belong to different instances may
be destined to the same node at the same time. Also, a mecha-put operands. A program for a data-flow computer is a repre-

sentation of data dependency graphs where the nodes repre- nism is needed to detect data tokens that belong to the same
instance of a node.sent instructions and the edges the data dependency

relationship between nodes. The example used in the previous A solution to handle multiple instances of nodes in the dy-
namic architecture is to assign a unique name to each activa-subsection is represented as a data dependency graph in

Fig. 1. tion. This is achieved by assigning tags to data tokens. Data
tokens belonging to the same activation would have the sameWe see from the graph that the input operands of the NEG

and the three MULT nodes at the top of the graph are the tag value. This tag value would be different from the other
data tokens that are destined for the same program graphthree coefficients a, b, and c. This means that these nodes can

execute as soon as the values become available. In the same node. The U-interpreter is an abstract data-flow machine us-
ing such a scheme (5). By looking at the tag values of theway, the rest of the nodes are executed as their input op-

erands become available. There is no centralized control incoming data tokens, it is possible to group those data tokens
that belong to the same instance of a given program node.mechanism that manages the execution of the instructions.

Instead, the execution mechanism is entirely distributed. The
data-driven execution model can be viewed as data traveling
on the edges of a graph in the form of data tokens. When a
node ‘‘fires’’ as a result of its input operands becoming avail-
able, the input data tokens are consumed and a new data
token is produced which is sent to other nodes that depend
on it to execute.

Data-flow architectures are divided into static and dy-
namic architectures. In a static data-flow architecture, there
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can only be a single instance of a node at run-time. This
means that at a given time, only one data token can travel on Figure 2. Instruction template that represents a program graph
an edge of a program graph. On the other hand, a dynamic node has fields to specify the operation, store input operands and

destination node addresses.data-flow architecture allows multiple instances of a node at
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though syntactically similar, Sisal’s if-else construct is
quite different from that of C semantically. In C, if-else is
a control statement that determines which statements are to
be executed. In Sisal, on the other hand, if-else is an ex-
pression that returns values depending on the value of the
specified condition. The following code segments show the
equivalent C and Sisal program statements using the if-
else construct. The upper code segment is in C and the lower
code segment corresponds to the equivalent Sisal code (7).
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Figure 3. Schematic diagram of a static data-flow architecture. Up-
date unit readies instructions according to the arriving data tokens.
Processing unit has multiple execution units so that independent in-
structions can be executed concurrently.

if (i >= j) �
large = i;
small = j;

�
else �

large = j;
small = i;

�

large, small := if i >= j then
i, j

else
j, i

end if;

With this approach, a dynamic data-flow architecture In the following example, the if-else expression is used in-
needs a special storage where the incoming data tokens are side a larger expression. The if-else expression returns ei-
compared to the other tokens already waiting in the storage. ther a value corresponding to the sum or the difference of a
If a match is found, the matching tokens are sent to the in- and b based on the condition add. The returned value is then
struction Fetch Unit. This special memory is usually called used in an expression that multiplies it to c. Obviously, this
the Matching store and is viewed as an associative memory kind of a statement is illegal in C. The equivalent C code is
where the tag of an incoming token is compared associatively shown on the left.
with all the data tokens waiting in the storage. Naturally, a
data token of a monadic node does not need to wait in the
memory.

In this section, we have presented a brief overview of the
execution model of data-flow architectures and compared it to
that of conventional architectures. In the remainder of this
article, we discuss the programming languages for the data-
driven execution model and present some experimental data-
flow and multithreaded computers.

PROGRAMMING LANGUAGES

if (add)
ans = a + b;

else
ans = a - b;

final_ans = ans * c;

final_ans := if add then
a + b

else
a - b

end if * c;

FOR DATA-DRIVEN EXECUTION
Sisal has the let expression which provides locality of ef-

fect. Locality of effect means that the data dependencies ex-In a data-flow computer, instruction sequencing is deter-
isting amongst instructions within a given scope are the datamined solely by the availability of the input operands. There-
dependencies of those instructions within the entire scope offore, a programming language for a data-flow computer
the program. Following is an example of using the let ex-should be such that it is easy to extract the data dependency
pression. In the equivalent C program, the variables x and yrelationships between operations. This information provides
may be global variables in which case it would be difficultthe only constraint to instruction scheduling at run-time. This
to determine the data dependencies among the instructionssection presents an overview of Sisal which is an application
involved. In the Sisal version, the names x and y are guaran-programming language suitable for data-flow computers (6).
teed to be visible only within the let expression.In an applicative language, processing occurs by ‘‘applying’’

operators to values which in turn produces other values (4).
In Sisal, there are no side-effects as there is no concept of
memory. When an operator is applied to operand values,
those values are consumed by the operator and result values
are produced. This kind of computation model fits well with
that of data-flow architectures.

Sisal has program structures that look similar to that of
typical modern imperative languages. For example, Sisal has
the if-else construct which looks similar to that of C. Al-

x = p + 3.7;
y = q + 2.4;
x_times_y = x * y;

x_times_y := let
x := p * 3.7;
y := q + 2.4

in
x * y

end let;
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Following is an example of one of Sisal’s two basic looping all research machines and have dynamic data-flow architec-
constructs. Which loop construct to use depends on whether tures. We have chosen these machines due to their signifi-
there are loop carried dependencies or not. If each iteration cance in the data-flow architecture research. The first of the
of the loop is independent, the parallel loop construct is used. three was developed by a team from the University of Man-
Otherwise, the sequential loop construct is used. The one chester in the UK (8,9,10). This is the first implementation
used in the last example is the sequential construct since the based on a dynamic data-flow architecture. SIGMA-1 was de-
indices of the array may repeat, creating loop carried depend- veloped by the Computer Architecture Group from Electro-
encies. technical Laboratory (ETL) in Japan. This is the largest im-

plementation of any data-flow machine built thus far. It
consists of 128 processing nodes (11,12). The Monsoon data-
flow computer was designed by a team from the Laboratory of
Computer Science at Massachusetts Institute of Technology
(MIT) in cooperation with Motorola. The significance of Mon-
soon is in its token matching mechanism (13,14). Although
static data-flow architectures are not included in this article,
Dennis’ work in the development of a static data-flow archi-
tecture has stimulated the development of various data-flow
projects (15,16).

The common characteristic of these three early data-flow

for (i = 1; i <= N; i++)
hist[f[i]] = hist[f[i]] + 1;

hist := for initial
temp := array_fill(1,N,0);
i := 0

while i <= N repeat
i := old i + 1;
temp := old temp[f[i]:

old temp [f[i]] + 1]
returns value of temp
end for; machines is that their actual implementations closely reflect

the abstract machine implied by the data-driven executionNote that in Sisal, arrays are treated just like scalar val-
model. For example, as data tokens are viewed as flowingues. That means an element of an array cannot be updated.
from one node to another on a program graph, data valuesInstead a new array is created based on the old array in
are physically transported as data packets. Also, instructionwhich the corresponding array element is an updated value.

The keyword old is used for such a purpose as shown in the scheduling is done dynamically based on the firing rule de-
figure. Semantically, the loop in the example produces a new fined in the data-driven execution model.
array every iteration. The statement returns value of
temp returns the array from the last iteration. Manchester Data-Flow Computer

An example of using the parallel loop construct is shown
The Manchester data-flow computer has a four-stage asyn-next. The loop expression in the upper example returns an
chronously pipelined structure. The four hardware compo-array which is bound to ans. The lower example is a matrix
nents are connected via a ring network that is capable of han-multiplication. The innermost loop returns a value which is
dling up to 10 million packets per second. In addition to thethe inner product of two vectors a[i,�] and b[�,j]. The
four main components, the computer has an I/O (input/out-keyword sum specifies the summation reduction operation.
put) switch that connects it to the host. It is also possible toTherefore, the innermost loop returns a value bound to elem
use the I/O switch in a multiprocessor configuration. Figurewhich becomes an element of the resulting matrix c.
4 shows the schematic diagram of the machine.

The Token queue unit is a 32 K Word of hardware circular
first in first out (FIFO). A word is 96 bits wide which is the
length of a data token. The function of the token queue unit
is to store the initial data tokens as well as buffer the incom-
ing data tokens so that the token flow through the pipeline
ring is smooth. The data token format is shown here with the

for (i=1; i<=N; i++)
ans[i] = q + (y[i] * (r *

z[i+10] + t * z[i+11]));

ans := for i in 1, N
returns array of

q + (y[i] * (r *
z[i+10] + t * z[i+11]))

end for;

for (i=1; i<=N; i++)
for (j=1; j<=N; j++)

for (k=1; k<=N; k++)
c[i][j] += a[i][k]*b[k][j];

c := for i in N cross j in 1, N
elem := for k in 1, N
returns value of sum

a[i,k] * b[k,j]
end for

returns array of elem
end for;

DATA-FLOW ARCHITECTURES
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This section presents three data-flow computers that were
built between 1980 and the early part of the 1990s. They are Figure 4. The architecture of the Manchester dataflow machine.
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field name and the number of bits shown in parenthesis. The
tag field is used to identify the activation to which the data
token belongs. The marker bit is used to indicate to which
mode (user or system) the token belongs.

Token � [data(37).tag(36).destination(22).
marker(1)].

The Matching unit is the module that is responsible for
instruction scheduling. An instruction is scheduled dynami-
cally when its input operands become available. The avail-
ability of the input operands are determined by comparing
the necessary fields of the incoming tokens to each other. Al-
though the matching store can be viewed as an associative
memory, the Manchester machine uses a hardware hash ta-
ble to match tokens due to the high cost of associative
memory.
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The hash table consists of eight banks of memory that can
store 1.25 million data tokens. A 16-bit hashing function is Figure 5. Sigma-1 has dedicated hardware structure handlers in ad-

dition to the processing elements. The organization of the processingapplied to the tag and the instruction address field of the in-
element is shown at left while that of the structure controller iscoming token. The resulting value is used to access the hash
shown at right.table banks in parallel. If a match is found, the matching to-

kens are formed into a single token and sent to the Instruc-
tion Unit. If a match is not found, the incoming token is

to store aggregate data types such as arrays. A two-stagestored in the matching store. If the hash table space over-
Omega network connects the processing and the store ele-flows, the token is stored in the Overflow unit.
ments. There are 32 group nodes in which each node consistsThere are only dyadic and monadic nodes in the program
of four processing nodes and four structure store elements.graph which the Manchester machine executes. The Matching
Within a node, communication between elements is done viaunit can match tokens at a rate of 1.11 million matches per
a local network. Figure 5 shows the schematic diagram of thesecond for dyadic nodes and can pass 5.56 million tokens per
processing and the structure store element.second for monadic nodes. The Matching unit operates at a

The SIGMA-1 processing element consists of five hardwareclock cycle time of 180 nsec.
modules. The function of the buffer unit is similar to the To-The Instruction unit uses the instruction address
ken Queue unit of the Manchester machine, that is, it buffersfield of the data token sent by the Matching unit. The instruc-
incoming data tokens. The Buffer unit can store up to 8 Ktion address field is further divided into the segment and the
tokens where a token is 89-bits long. The format of a token isoffset fields of 6-bits and 12-bits, respectively. The segment
as follows:and the offset values are used as in virtual memory, that is,

the value in the segment field is used to access a 20-bit seg-
ment base address from the segment table. The offset is then

Token � [pe(8).itag(8).tag(32).c(1).type(8).
data(32)].

added to compute the instruction address. An instruction can
The pe field specifies the processing node that executes thehave up to two destinations. Therefore, a duplicate (dup) op-

corresponding instruction. The itag field is used to indicateerator is needed if there are more than two destinations. Once
the type of a token, that is, a user or a maintenance. The tagan instruction is fetched, the instruction and the remaining
field further breaks into four subfields. The format is showntoken fields are formed into a packet and sent to the Pro-
here:cessing unit for execution.

The Processing unit can have up to 20 functional units. Tag � [i(10).base(8).offset(10).flg(4)].
Each functional unit is implemented using a bit-slice pro-

The i field indicates to which the loop iteration a data to-cessor. The Processing Unit operates at a clock cycle time of
ken belongs. The loop iteration number is used to identify the57 nsec and the fastest instruction takes 16 cycles to execute.
instance of a data token when a loop is unfolded dynamically,The largest number of functional units tested successfully is
resulting in multiple iterations that are active concurrently.fourteen. The resulting data is formed into a 96-bit data token
The base and the offset fields are used to compute the ad-which is either circulated back to the token queue unit or out
dress of the instruction. The flg field specifies the tokento the host computer.
matching function that should be performed by the MatchingThe Manchester machine used Sisal as the programming
unit. One such function is the ‘‘sticky’’ matching function.language. More detailed information on compilation and per-
When the flg field of a data token is set to sticky, that tokenformance issues can be found in Refs. 8 and 17.
does not disappear after being consumed as an input operand
of an instruction. This is useful when the value of a data to-

Electrotechnical Laboratory SIGMA-1
ken is a loop invariant. Without the sticky function, a value
that is consumed multiple times must be created as manySIGMA-1 is developed by the Electrotechnical Laboratory in

Japan and it is the largest data-flow computer built thus far. times as it is consumed.
The three hardware modules, the Buffer unit, the FetchIt consists of 128 processing elements and 128 structure store

elements. Structure store is a special memory subsystem used unit, and the Matching Unit form the first stage of the two
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stage pipeline that is driven by a 10 MHz clock. A ready in-
struction and its input operands are sent to the Destination
unit and the Execution unit. The two units operate in paral-
lel. The Destination Unit forms the resulting data tokens as
specified in an instruction while the Execution Unit executes
the instruction. The Execution Unit has an Integer
arithmetic/logic unit (ALU), a floating-point ALU, a multi-
plier, and a structure address generator.

The programming language used by SIGMA-1 is called
DFC (data-flow C) which is a variant of C. It obeys the single
assignment rule. More information on the SIGMA-1 can be
found in Refs. 11, 12, and 18.
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Figure 6. Organization of the Monsoon processor.

One common feature in all dynamic data-flow computers is a
hardware module that performs token matching. Ideally, to-
ken matching is done using an associative memory that, upon ken is the Fetch unit. This is the direct consequence of the
receiving a token, automatically produces the matching token ETS mechanism which needs the offset embedded as part of
from a pool of tokens stored in the matching store. A match- an instruction to compute the frame memory address that
ing token is found by associatively matching the tag of the stores the matching data token. When the matching token is
incoming data token with the tags of all the tokens waiting found, the tokens are sent to the Functional unit for execu-
in the matching store. Using associative memory to imple- tion. The tag is computed concurrently. The resulting value
ment the matching unit, however, is expensive. That is why and the tag are then formed into a data token and is circu-
hardware hash table was used in the Manchester machine. lated back into the Fetch Unit or sent out to the network to
Monsoon is the first dynamic data-flow computer to come up be processed by a different processor.
with a mechanism called the Explicit token store (ETS) that Monson uses Id as its programming language (19). Id is a
provides fast token matching without using associative token functional language developed for data-flow execution.
matching (14).

In the ETS mechanism, a compiler is used to determine MULTITHREADED ARCHITECTURES
the relative storage location that an incoming data token
checks to see whether its matching token is waiting or not. Analyzing the performance of data-flow architectures pointed
This mechanism is similar to a common technique used in out some drawbacks. The basic approach in all data-flow ar-
imperative languages in which a compiler assigns local vari- chitectures was the faithful implementation of the data-
ables of a function on its activation frame. For each function driven execution model in hardware. This meant providing a
in a program graph, the compiler maps each edge to a location token matching capability that checks for the availability of
in the corresponding activation frame. An instruction is then the input operands for every scheduling instruction. This exe-
generated with the offset of the input operands embedded as cution model is inherently parallel since the availability of
part of the code. Since the storage location of every data token the input operands is the only constraint that determines the
for a given activation is known with respect to the base ad- executability of an instruction.
dress of its frame memory, associative memory is no longer One drawback of the data-flow architectures was the ex-
needed. pensive hardware required for token matching. The approach

The tag field of a data token in Monsoon consists of the taken by the MIT Monsoon is a solution in the right direction.
base address of its frame memory FP and the address of the The second problem with the data-flow architectures was that
instruction IP. The value of FP for a given instance is known every instruction is scheduled dynamically depending on the
at run-time when the corresponding activation frame is cre- status of its input operands. In fact, this is the essence of the
ated. Finding the matching token of an incoming data token data-driven execution model which makes it a parallel execu-
is achieved by following the procedures that follow: tion model. The problem, however, is that even those instruc-

tions that are known at compile-time to execute in sequence
1. The IP subfield of the incoming data token is used to are scheduled dynamically.

fetch the instruction to get the offset value. Executing a stream of sequential instructions in a data-
2. The offset value is used in conjunction with the FP sub- flow computer is inefficient, that is, an instruction that needs

field to compute the address in the frame memory. the result of another instruction cannot start until that in-
3. The matching token is waiting in the corresponding struction completes execution and the result is available.

frame address if the presence bit is set. In that case, This, however, is not the case in conventional processors. For
the matching tokens are sent to the execution unit. If example, a stream of sequential instructions may be at differ-
the presence bit is not set, then the incoming token is ent stages of execution in a pipeline and the result of an in-
stored and the presence bit is set. struction may be sent to the next instruction using techniques

such as data forwarding which reduces pipeline stalls (2).
The idea of multithreaded architectures grew out of theThe schematic diagram of the Monsoon processor is shown

in Fig. 6. Unlike the other earlier dynamic data-flow ma- realization that it would be beneficial to combine the advan-
tages of the data-flow and conventional architectures. The ap-chines, the first module that processes an incoming data to-
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proach is that a program code is partitioned either automati- The programming environment for the EM-4 multipro-
cessor is an extended C that supports multithreading. Acally or manually into multiple threads in which a thread is

a group of instructions that are executed in sequence. At run- thread is represented as a function and therefore, the granu-
larity of a thread is under the full control of a programmer. Atime, threads are scheduled dynamically according to the

data-driven execution model. Once a thread is scheduled, function can be executed as a function through conventional
function calling mechanism or as a thread by calling it usinghowever, the instructions inside the thread are executed as in

conventional processors. There were a number of proposals a special thread invoking library function.
for multithreaded architectures (20,21,22).

In this article, we present two multithreaded architec- P-RISC
tures, EM-4 (22) and P-RISC (parallel-reduced instruction set

The P-RISC architecture is proposed by the same group thatchip) (20). EM-4 from ETL is the only proposed architecture
developed Monsoon at MIT. The starting point of the architec-that was actually built into a prototype. P-RISC evolved from
ture, however, was not data-flow. Instead, P-RISC startedMonsoon and further refined to *T (pronounced ‘‘start’’) (21)
from conventional sequential architecture and added data-for actual implementation.
flow features to exploit fine-grain parallelism. In the P-RISC
architecture, data do not travel as tokens as long as values

EM-4 are produced and consumed inside the same processor. A
thread is completely specified by a descriptor <FP.IP> whereEM-4 has evolved from SIGMA-1 which had a pure data-flow
FP is the base address of the activation frame and IP is thearchitecture. EM-4 is a hybrid machine whose architecture
instruction address.has inherited from both the data-flow and conventional archi-

The two key mechanisms of data-flow architectures are to-tectures. The current implementation of the EM-4 multipro-
ken matching and forwarding of a result as a token to itscessor consists of 80 processing nodes connected via a five-
destination after instruction execution. In data-flow ma-stage circular omega network (Fig. 7). Each processing node
chines, these mechanisms were implemented in hardwareis based on the EMC-R processor which is driven by a 12.5
and therefore, is transparent to software. In P-RISC architec-MHz clock. The processor has four hardware modules. The
ture, these mechanisms are broken down into primitive oper-Switching unit routes data tokens to itself or to other pro-
ations and made into instructions, hence RISC approach. Thecessing nodes. If a token is destined to the local processor, it
result is a simple architecture that is mostly conventional,is inserted into the Input buffer unit. The Input Buffer Unit
but with four new additional instructions that enable it tohas 32 words organized as a FIFO. There is an extra 8 K
behave like a data-flow processor. The four new instructionsWord of secondary buffer located in an off-chip memory.
are listed here.A thread is scheduled for execution if its input operands

are available. Once a thread is scheduled for execution, in-
structions are executed using only the latter two pipeline 1. fork IPt
stages of the processor, the Fetch unit and the Execution unit. 2. join x
Once scheduled, a thread runs to completion if no remote

3. start v c dmemory read instruction is executed. If a remote memory
4. loadc a x IPrread instruction is executed, the thread is suspended by the

processor and another ready thread is scheduled for execu-
tion. The suspended thread is scheduled for execution when The instruction fork is used to schedule a thread for exe-

cution. When fork IPt is executed at address IP, a threadthe data from the remote memory read becomes available.
Long delays caused by remote memory operations in parallel starting at address IPt is scheduled for execution. A thread

is scheduled for execution when its thread descriptor is en-machines can effectively be hidden by performing useful work
while a remote memory read is in progress (23). queued to a scheduling queue. As the fork instruction sched-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

P0,0

P1,0

P2,0

P15,0

P0,1

P1,1

P2,1

P15,1

P0,2

P1,2

P2,2

P15,2

P0,3

P1,3

P2,3

P15,3

P0,4

P1,4

0
1

2
3

4
5

30
31

0
1

2
3

4
5

30
31

P2,4

Maintenance unit

M
e

m
o

ry

M
e

m
o

ry
co

n
tr

o
l u

n
it

P15,4

Execution
unit

Fetch/
matching

unit

Input buffer
unit

Switching
unit

Figure 7. The architecture of the EM-4 multiprocessor.
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flow architecture was good at exploiting parallelism, it was
not very efficient at executing sequential stream of instruc-
tions. The lessons learned from the first generation of data-
flow architectures led to the development of the multi-
threaded architectures. The multithreaded architecture is a
hybrid that has features from both the data-flow and conven-
tional architectures.

At present, virtually all commercially available parallel
and sequential machines are based on processors that have
conventional architectures. It is also true that the data-flow
ideas form the basis of techniques employed in many of to-
day’s high-performance processors that exploit instruction
level parallelism (27). Although many people see the com-
puter of the future to be configured as multiprocessors, there
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is no consensus on its architecture. As the data-flow architec-Figure 8. The architecture of the P-RISC processor.
ture is evolving from pure data-flow to one that is hybrid, the
conventional architecture is also making a similar evolution.
As such, the architecture of the future computer would most

ules a thread, the current thread continues execution at ad-
likely be a hybrid that is efficient in executing sequential as

dress IP+1.
well as parallel code.

The join instruction is used to determine whether input
operands of an instruction are available. If they are, the cor-
responding instruction can be executed. When join x located BIBLIOGRAPHY
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