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PARALLEL AND VECTOR
PROGRAMMING LANGUAGES

A parallel programming language is a formal notation for ex-
pressing algorithms. The meaning of this notation can be de-
fined by appealing to a parallel computational model.

Parallel programming languages have more complicated
data and control models than sequential programming lan-
guages. The data model in sequential languages is that of the
random access machine (RAM) model in which there is a sin-
gle address space of memory locations that can be read and
written by the processor. The analog in parallel languages is
the shared-memory model in which all memory locations re-
side in a single address space and are accessible to all the
processors (the word processors in this article always refers
to the logical processors in the underlying parallel execution
model of the language and not to hardware processors). A
more decoupled data model is provided by the distributed-
memory model in which each processor has its own address
space of memory locations inaccessible to other processors.
The choice of the data model determines how processors com-
municate with each other—in a shared-memory model, they
communicate by reading and writing shared locations, but in
a distributed-memory model, they communicate by sending
and receiving messages.

The control model in a parallel programming language de-
termines how processors are coordinated. The simplest paral-
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Figure 1. A classification of parallel pro-
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lel control model is lock-step (vector) synchronization. At ev- combination of scalar and vector operations. On array pro-
cessors such as the Connection Machine CM-2 (Thinking Ma-ery step of program execution, each processor is either turned

off or is required to perform the same operation as all other chines) (2) the scalar operations are usually performed by a
front-end high-performance workstation, while the vector op-processors. The active processors at each step work on differ-

ent data items, so this control model is also called the single- erations are performed on the array processor. Vector pro-
cessors such as the CRAY processor (3) can execute both sca-instruction–multiple-data (SIMD) model. SIMD-style parallel

execution can be exploited in performing vector operations lar and vector instructions. Therefore, the key problem in
designing a SIMD language is to design constructs that ex-like adding or multiplying the elements of a set of vectors.

Bulk synchronization is a more decoupled control model in pose as many vector operations as possible to the compiler.
which processors synchronize occasionally by using a barrier

Shared-Memory SIMD Languagesinstruction. No processor is allowed to execute a statement
past a barrier until all processors have arrived at that bar- The simplest vector operations involve the application of an
rier. Between the execution of successive barrier statements, arithmetic or boolean function to each element of an array (or
processors are autonomous and may execute different opera- arrays), thus computing the sum of two arrays by elements.
tions. Bulk synchronization can be used to exploit the data These operations can be expressed quite simply by overload-
parallelism that arises when a function f is applied to each of ing arithmetic and boolean operators. For example, the FOR-
the elements of a data structure such as a vector. All evalua- TRAN-90 (4) statement C = A + B specifies that the sum by
tions of f can be performed in parallel, so processors synchro- elements of arrays A and B is to be stored into array C.
nize only at the beginning and end of this computation. Since In many applications, however, vector operations must be
f may have conditionals inside it, the processors may end up performed on some but not all of the elements of an array.
performing different computations, which is permitted in the For example, in solving partial differential equations, it may
bulk synchronous model. The most decoupled form of synchro- be necessary to apply one operator to points in the interior of
nization is fine-grain synchronization in which two or more the domain and a different one to points at the boundaries.
processors can synchronize on their own whenever they need Operator overloading is not sufficient to permit the expression
to, without involving other processors. This form of parallel of conditional vector operations, so a variety of constructs for
execution is sometimes called multiple-instruction–multiple- describing sparse index sets have been invented.
data (MIMD) parallelism. The MIMD model is appropriate for Many SIMD languages provide the programmer with con-
exploiting task parallelism, which arises when autonomous structs for specifying the array section on which the vector
computations (tasks) can execute concurrently, synchronizing operation is to be performed. One approach is to use control
only for exclusive access to resources or for coordinating ac- vectors, first introduced in the Burroughs Illiac IV FORTRAN
cess to data that is being produced and consumed concur- language (5)—a value of true in a control vector indicates that
rently by different tasks. the vector operation should be performed for the correspond-

Figure 1 classifies the languages discussed in this article ing data element. An asterisk indicates a control vector of ar-
according to their control and data models. A survey of paral- bitrary length in which all elements are true. The following
lel programming languages can be found in Ref. 1. code shows the use of control vectors in this language. The

first array statement adds the elements of the A and C arrays
pointwise and assigns the results to A. Because only the oddLOCK-STEP SYNCHRONOUS PARALLEL LANGUAGES
elements of B are true, the second array assignment adds only
the odd elements of A and C and assigns the results to oddLock-step (SIMD) parallel languages are used mainly to pro-
elements of A.gram vector and array processors for performing scientific

computations in which matrices are the primary data struc- do 10 i = 1, 100,2
tures. Not surprisingly, most of these languages are exten- B(i) = .true.

B(i + 1) = .false.sions of FORTRAN. Programs in these languages contain a
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10 continue The following code shows an example of its use. The loop has
a two-dimensional index space in which all iterations can beA(�) = A(�) + C(�)
performed in parallel, and in each iteration (i, j), the as-A(B(�)) = A(B(�)) + C(B(�))
signment is performed if A(i, j) is less than zero. Note that

An important special case of conditional vector operations the forall construct permits assignment to constant-stride
is constant-stride vector operations in which the elementary array sections such as diagonals, which cannot be described
operations are applied to every kth element of the vector(s) using triplet notation.
for some integer k. On many vector computers, it is difficult

forall (i = 1:100:2, j = 1:100, A(i, j) .LT.to generate efficient code for these operations if control vec-
0)tors are used. The operands and results of vector operations
A(i, j) = B(i, j)are usually stored in memory, so it is usually not worth per-

forming an arithmetic operation in vector mode unless the Although reduction operations such as adding all the ele-
ments of a vector can also be done in vector mode, shared-loads and stores can also be done in vector mode. However,
memory SIMD languages have traditionally not had con-some computers [such as the CRAY-1 and CRAY-2 (3)] permit
structs to support these operations. However, most of themonly constant-stride loads and stores from memory. Unless
provide library routines that can be invoked by the program-the compiler can determine that the true entries in a control
mer to perform reduction operations in vector mode.vector occur with a fixed stride, it is forced to generate scalar

Other shared-memory vector languages are LRLTRAN (9)loads and stores.
from Lawrence Livermore Laboratories, BSP FORTRAN (10)The IBM VECTRAN language (6) addressed this problem
from Burroughs, and Cedar FORTRAN (11) from the Univer-by introducing array triplets, which can describe many con-
sity of Illinois, Urbana. Cedar FORTRAN permitted the ex-stant-stride array sections. An array triplet consists of three
pression of both SIMD and MIMD parallelism. None of theseexpressions separated by colons and specifies the start, end,
languages, other than FORTRAN-90 and MATLAB, is in use.and stride of the range of execution of a statement. If the

stride is 1, the last expression and its preceding colon can be
Distributed-Memory SIMD Languagesomitted. There is an obvious similarity between triplets and

the specification of DO loop index sets in FORTRAN. The fol- The CM-2 machine (2) from Thinking Machines was a distrib-
lowing code shows a use of triplets. After the last statement uted-memory array processor and its assembly language,
is executed, A(2) contains 1, A(4) contains 2, etc. Multidi- called Paris (parallel instruction set) (12), had FORTRAN, C,
mensional arrays can be handled by using a triplet for each and Lisp interfaces that permit programmers to write high-

level language programs with Paris commands embedded indimension of the array. Array triplet notation is also used
them. The resulting languages were called FORTRAN/Paris,in other array languages like MATLAB (7) and FORTRAN-
C/Paris, and Lisp/Paris, and they are examples of distrib-90 (4).
uted-memory SIMD languages.

do 10 i = 1, 10 The programming model of Paris has an unbounded num-
10 A (i) = i ber of virtual processors (VPs) that can be configured into
A(2:10:2) = A(1:5) Cartesian grids of various sizes. Each VP has local memory

for storing data, a context flag that controls instruction execu-Although triplet notation is powerful, it is not a replace-
tion, and a unique address that can be used by other VPs toment for control vectors since it cannot describe arbitrary in-
send it messages. Each VP can perform the usual arithmeticdex sets. Therefore, VECTRAN supplemented the triplet no-
and logical operations, taking operands from its local memorytation with where statements, an example of which is given
and storing the result back there (one of the operands can bebelow.
an immediate constant that is broadcast from the front-end
processor). The execution of these operations can be madewhere (A(1:100) .LT. 0)
conditional on the context flag. Interprocessor communicationA(1:100) = � A(1:100)
is performed by executing the send instruction. Since pro-otherwise
cessors operate in lock step, a separate instruction for receiv-A(1:100) = 0.0
ing messages is not required; rather, the execution of theendwhere
send instruction results in data transfer from the source VP

The where statement first evaluates a logical array expres- to the destination VP. Therefore, the send instruction has to
sion. Statements in the body of where are executed for each specify the address of the receiving processor and the memory
index for which the logical array expression is true, while addresses of the source and destination locations of the mes-
statements in the otherwise clause are executed for indices sage. A given VP may receive messages from several other
for which the logical expression is false. The clauses can con- VPs during a send operation. If so, the data in these mes-
tain only assignment statements where statements are in sages can be combined using a reduction operator specified in

the send instruction. A noteworthy feature of Paris is that itFORTRAN-90 as well.
was the first SIMD language to include a rich set of instruc-The approaches described so far for expressing conditional
tions for performing global reductions and parallel prefix op-vector operations are data-oriented in the sense they require
erations on data stored in the VPs.the programmer to specify the array section on which the vec-

tor operation must be performed. A complementary approach
is to embellish the control constructs in the language. One BULK SYNCHRONOUS PARALLEL LANGUAGES
such construct, which was introduced in the IVTRAN lan-
guage (8), is the forall statement in which the sparse index Lock-step synchronization provides a simple programming

model but it can be inefficient for programs with many data-set is specified in terms of the control variables of the loop.
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dependent conditionals. Since processors operate in lock step, !HPF$ INDEPENDENT, NEW(J)
DO I = 1, Nevery processor must participate in the execution of both

clauses of a conditional statement even though it performs DO J = IBEGIN(I), IEND(J)
X(IBLACK(I)) = X(IBLACK(I)) + X(IRED(J))computations in only one of the clauses. Bulk synchronization

is a more relaxed synchronization model in which processors END DO
END DOexecute instructions autonomously but must rendezvous at

intervals by executing a barrier instruction. No processor can
In HPF, the assignment of computational work to pro-

execute an instruction past a barrier until all processors have
cessors is not directly under the control of the programmer.

arrived at that barrier. The interval between two successive
Instead, it relies on a combination of data-distribution direc-

barriers is called a superstep.
tives and compiler technology to produce code with good local-

The requirement that all processors rendezvous at all bar-
ity, as described in Refs. 15 and 16. The two basic distribu-

riers means that the most natural approach to programming
tions are block and cyclic distributions. Block distributing an

in this model is to require all processors to execute the same
array gives each processor a set of contiguous elements of that

program even though they can take different paths through
array; if there are p processors and n array elements, each

that program to arrive at the same sequence of barrier in-
processor gets a contiguous block of n/p elements. In a cyclic

structions. This approach is sometimes called single-pro-
distribution, successive array elements are mapped to succes-

gram–multiple-data (SPMD) parallelism, but this term has
sive processors in a round-robin manner; therefore, element i

been abused sufficiently that we will not use it any further in
is mapped to processor i mod p. HPF also supports a block–

this article.
cyclic distribution in which blocks of elements are dealt to

Bulk synchronization is appropriate for exploiting data
processors in a round-robin manner. The compiler can exploit

parallelism in programs. The simplest kind of data parallel-
data distributions in assigning work by assigning an iteration

ism arises when a function is applied to each element of a
to a processor if that processor has most of the data required

data structure (like mapcar in LISP). A more subtle form of
by that iteration. Alternative strategies like the owner-com-

data parallelism arises when an associative operation such as
putes rule (16) are also popular.

addition or multiplication is used to combine all the elements
An HPF program for computing � is shown below. It ap-

of a data structure together. There is a well-known parallel
proximates the definite integral �1

0 4/(1 � x2) dx by using the
algorithm (‘‘tree reduction’’) for performing this operation in

rectangle rule, computing the value of (1/n) �n
i�1 4/�1 � [(i �

time proportional to the logarithm of the number of elements
0.5)/n]2�. In this program, n is chosen to be 1000. SUM is a

in the data structure (13). Data parallelism is also present in
built-in function for computing the sum of the elements of a

the computation of parallel prefix operations.
distributed array.

PURE REAL FUNCTION F(X)Shared-Memory Bulk Synchronous Languages
REAL, INTENT(IN) :: X

We use High-Performance FORTRAN (HPF) (14) as our ex- F = 4.DO/(1.DO + X�X)
ample. HPF is somewhat unique among parallel languages in END FUNCTION F
that it was designed by a group of no less than 50 researchers. PROGRAM COMPUTE_PI
It has two parallel loop constructs called the FORALL loop and REAL TEMP(1000)
the INDEPENDENT directive for expressing bulk synchronous !HPF$ DISTRIBUTE TEMP(BLOCK)
parallelism. The body of the FORALL must consist of a se- WIDTH = 1.DO/1000
quence of assignments without conditionals or invocations of FORALL (I = 1:1000)
general procedures, although side-effect functions, declared to TEMP(I) = WIDTH � F((I � 0.5DO)�WIDTH)
be PURE functions, can be invoked in a FORALL. These func- END FORALL
tions can contain conditionals. There is an implicit barrier at T = SUM(TEMP)
the end of every statement in a FORALL. The semantics of END
the FORALL is that all iterations of the first statement can

A second version of HPF called HPF-2 with support forbe executed concurrently, and when these are completed, all
irregular computations and task parallelism has been de-iterations of the second statement can be executed concur-
fined. IBM, PGI, DEC (now Compaq), and other companiesrently, and so on. The right hand side of each statement is
have HPF compilers targeted to distributed-memory comput-fully evaluated before the assignment is performed.
ers like the IBM SP-2 computer. However, the quality of theThe INDEPENDENT directive before a DO loop tells the com-
compiler-generated code is relatively poor in comparison topiler that the iterations of the loop can be done in parallel
handwritten parallel code, and source-level performance pre-since they do not effect each other. There is an implicit bar-
diction has proved to be difficult since performance dependsrier at the end of the loop but loop iterations do not have to
greatly on decisions about interprocessor communicationbe synchronized in any way. This directive is often used to
made by the compiler (17). For these reasons, interest in HPFexpose opportunities for parallel execution to the compiler, as
is on the wane.shown in the following code. The NEW clause asserts that J is

local to the outer loop. Iterations of the outer loop can be exe-
Distributed-Memory Bulk Synchronous Languagescuted concurrently if the values of IBLACK(I) are distinct

from the values of IRED(J) and if the IBLACK array does not The first theoretical study of bulk synchronous models was
have repeated values. This information cannot be deduced by done by Valiant, who proposed the bulk synchronous parallel
a compiler, so the INDEPENDENT directive is useful for con- (BSP) model (18) as a bridging model between parallel hard-

ware and software. A parallel machine in the BSP model hasveying this information.
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some number of processors with local memories, intercon- if (pid == 1) {A = 1; B = 18;}
if (pid == 2) {A = 5; B = 7;}nected by a routing network. The computation consists of a

sequence of supersteps; in each superstep, a processor re- memcpy((void �)pktPtr, (void �)&A, 4); //Store
A into packet bufferceives data sent by other processors in the previous su-

perstep, performs local computations, and sends data out to bspSendPkt((pid+1)%numProcs, pktPtr); //send
data to neighbor in ringother processors that receive these data in the following su-

perstep. A processor may send and receive any number of bspSynch(); //superstep synchronization
pktPtr = bspGetPkt(); //receive packetmessages in each superstep. Consecutive supersteps are sepa-

rated by barrier synchronization of all processors. Communi- memcpy((void �)&C, (void �)pktPtr, 4); //store
data in Ccation is therefore separated from synchronization.

Although BSP is a model and not a language, a number of C = C + B;
fprintf(stdout, ‘‘Process %d, C = %d�n’’, pid,libraries that implement this model on a variety of parallel

platforms have been written (19,20). In this article, we de- C);
bspSynch(); // superstep synchronizationscribe the BSP Green library (19), which provides the follow-

ing functions: }

One of the goals in the design of BSP is to permit accurate
1. void bspSendPkt(int pid, const bspPkt performance prediction of parallel programs. Performance

�pktPtr): Send a packet to the process whose address prediction of BSP programs is made using a model with three
is pid; the data to be sent are at address pktPtr. parameters: (1) the number of processors p, (2) the gap g,

2. bspPkt �bspGetPkt(): Receive a packet sent in the which reflects the network bandwidth available to each pro-
previous superstep; returns NULL if all such packets cessor, and (3) the latency L, which is the time required to
have already been received. send a packet through the network and perform a barrier syn-

3. void bspSynch(): Barrier synchronization of all pro- chronization. If a BSP program consists of S supersteps, the
cessors. execution time for superstep i is wi � ghi � L, where wi is the

longest computation time required by any processor in that4. int bspGetPid(): Return the process ID.
superstep and hi is the largest number of packets sent or re-5. int bspGetNumProcs(): Return the number of pro-
ceived by any processors in that superstep. This performancecesses.
model assumes that communication and computation are not

6. bspGetNumPkts(): Return the number of packets sent overlapped. The execution time for the program is W � gH �
in the previous superstep to this process that have not LS, where W � �wi and H � �hi.yet been received. A major contribution of BSP has been to highlight what

7. bspGetNumStep(): Return the number of the current can be accomplished with its minimalist approach to com-
superstep. munication and synchronization. However, the exchange of

a single message between just two processors requires the co-
The first three functions are called fundamental functions operation of all processors in the machine! The BSP count-

since they implement the core functionality of the BSP model, erargument is that worrying about optimizing individual
and the last four are called supplemental functions. This set messages makes parallel programming too difficult and that
of functions is somewhat limited, and a more user-friendly the focus should be on getting the large-scale structure of the
library would provide other supplemental functions such as parallel program right.
one to perform reductions, while remaining true to the BSP
spirit. For example, the BSPLib project (http://www.BSP-

FINE-GRAIN SYNCHRONOUS PARALLEL LANGUAGESWorldwide.org/) includes support for one-sided communica-
tion and high-performance unbuffered communication.

The most relaxed form of synchronization is fine-grain syn-The following program (from Ref. 19) uses the BSP Green
chronization in which two or more processors can synchronizelibrary functions to perform a trivial computation with three
whenever they need to without the involvement of other pro-processors connected logically in a ring. Each processor sends
cessors. This style of programming is usually called multiple-the value of a local variable A to its neighbor in the ring and
instruction–multiple-data (MIMD) programming. Fine-grainthen performs a local computation with the value it receives.
synchronization is appropriate for exploiting task parallelismThis takes two two supersteps. Note that some of the code
in which autonomous computations (tasks) need to synchro-(such as the calls to memcpy) is at a fairly low level of abstrac-
nize either to obtain exclusive access to shared resources ortion. The philosophy behind the decision to expose such de-
because they are organized as a pipeline in which data struc-tails to the programmer is that all expensive operations
tures are produced and consumed concurrently.should be evident when reading the program text.

void program(void) Shared-Memory MIMD Programming
{ int pid, numProcs, A,B,C;

We discuss FORTRAN/OpenMP (21), which is a new industrybspPkt pkt, �pktPtr;
standard API (Applications Programmer Interface) forpktPtr = &pkt;
shared-memory parallel programming and contrast it withpid = bspGetPid(); //get process ID
the more ‘‘expression-oriented’’ approach of Multilisp (22).numProcs = bspGetNumProcs(); /get number of

processes
if (pid == 0) {A = 3; B = 12;} //initialize A OpenMP. OpenMP is a set of compiler directives and run-

time library routines that can be used to extend FORTRANand B
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and C to express shared-memory parallelism. It is an evolu- !$OMP PARALLEL
!$OMP DO SCHEDULE(DYNAMIC,5), PRIVATE(x,temp)tion of earlier efforts like pthreads and the now-moribund
do i = 1, nANSI X3H5 effort. An OpenMP FORTRAN program for com-
x = w � (i � 0.5d0)puting � is shown below. A single thread of control is created
temp = f(x)at the start, and this thread executes all statements till the

!$OMP CRITICALPARALLEL directive is reached. The PARALLEL directive and
sum = sum + tempits corresponding END PARALLEL directive delimit a parallel

!$OMP END CRITICALsection. At the top of the parallel section, a certain number of
enddoslave threads are created that cooperate with the master to

!$OMP END PARALLELperform the work in the parallel section and then die at the
bottom of the parallel section. In our example, the only com-

OpenMP also has a parallel section directive. Each sectionputation in the parallel section is the do loop. Furthermore,
contains computations that can be performed in parallel withthe DO directive asserts that the iterations of the loop can be
the computations in the other sections of this construct.performed in parallel. Optional clauses in this directive per-
OpenMP is being supported by SGI, KAI (Silicon Graphicsmit the programmer to specify how iterations should be as-
Inc., Kuck and Associates Inc.), International Business Ma-signed to threads. For example, the SCHEDULE(DYNAMIC,5)
chines, and other companies.clause specifies that iterations are assigned to threads in

blocks of five iterations; when a thread completes its itera-
Multilisp. It is instructive to contrast OpenMP withtions, it returns to ask for more work, and so on. There is an

Multilisp (22), which is also a shared-memory MIMD parallelimplicit barrier synchronization at the bottom of the parallel
language, but one in which synchronization between produc-DO loop, as well as at the end of the parallel region. The bar-
ers and consumers of data can often be folded quite elegantlyrier synchronization may be avoided by specifying the clause
into the data accesses themselves. Multilisp is a parallel ex-NOWAIT at these points. Once the parallel region is done, all
tension of Scheme, which was intended for writing parallelthreads except the master die. The master completes the exe-
programs for the MIT Concert multiprocessor. There are twocution of the rest of the program.
parallel constructs, one for evaluating the arguments to aBy default, all variables in a parallel region are shared by
function in parallel (pcall), and another for computing aall the threads. Declaring a variable to be PRIVATE gives each
value in parallel with executing code that will eventually usethread Its own copy of that variable. By default, loop control
that value (future).variables like i in our example are PRIVATE. Note that all

The expression (pcall F A) is equivalent to the Schemethe threads in our program write to the sum variable. Declar-
procedure call (F A) except that the expressions F and A areing sum to be a REDUCTION variable permits the compiler to
evaluated in parallel. The function that expression F evalu-generate code for updating this variable atomically. The com-
ates to is invoked after that evaluation of the argument A ispiler may also generate more elaborate code such as per-
complete. The pcall construct can be nested; for example,forming the reduction in a tree of processors.
the expressions F and A may themselves contain pcall con-
structs.program compute_pi

The future construct can be used to fork off a computa-integer n,i
tion that is performed in parallel with execution of code thatdouble precision w,x,sum,pi,f,a
may ultimately need the value of that computation. For exam-f(a) = 4.d0/(1.d0 + a�a)
ple, the expression (pcall cons A B) evaluates A and B inprint �, ‘Enter the number of intervals’
parallel, and builds the cons cell when the evaluations areread �,n
complete. The construction of the data structure need notw = 1.0d0/n
wait for the termination of the computations of A and B sincesum = 0.0d0
these computations can immediately return ‘‘place holders’’!$OMP PARALLEL
for the ultimate values, replacing these place holders with the!$OMP DO SCHEDULE(DYNAMIC,5), PRIVATE(x),
actual values when those become available. This can be ac-REDUCTION(+: SUM)
complished by the invocation (pcall cons (future A)do i = 1, n
(future B)). While the computation of A and B is takingx = w � (i � 0.5d0)
place, the cons cell can be used to build other data structuressum = sum + f(x)
or be passed to other procedure invocations. An operationenddo
such as addition that tries to use the value of A or B before!$OMP END PARALLEL
that value is available is blocked until the correspondingpi = w�sum
place holder is replaced with the value; when that value be-print �,
comes available, that computation is allowed to continue. Thiscomputed pi = ‘, pi
is a form of fine-grain data-flow synchronization at the levelstop
of data structure elements.end

The following program shows a Multilisp version of
Fine-grain synchronization in OpenMP is accomplished by Quicksort (taken from Ref. 22). The partition procedure

the use of critical sections. The CRITICAL and END CRITI- uses the first element elt of list l to divide the rest of l into
CAL directives restrict access to the enclosed region to one two lists, one containing only elements less than elt and the
thread at a time. For example, instead of declaring SUM to be other containing elements greater than or equal to elt. These
a reduction variable as before, we can use a critical section to lists are themselves sorted in parallel recursively, and the re-

sulting lists, together with elt, are appended together toupdate it atomically as shown below.
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form the output. To reduce the overhead of explicitly ap- HPC��. HPC�� (24) is a C�� library and language ex-
tension framework. For exploiting loop level parallelism,pending lists, qs takes an additional argument rest that is
HPC�� has compiler directives called pragmas which arethe list of elements that should appear after the elements of
similar to the OpenMP directives. For example, parallel loopsl in the sorted list.
are exposed to the compiler by the HPC_INDEPENDENT direc-

(defun qsort (l) (qs l nil)) tive, used in the following code to compute the ComputePi
(defun qs (l rest) function.
(if (null l) rest

double ComputePi(int n) {(let ((parts (partition (car l) (cdr l))))
double w = 1.0/n;; sort the two partitions in parallel
double sum = 0.0;recursively
#pragma HPC_INDEPENDENT, PRIVATE x(qs (left-part parts)
for (int i = 1; i < n; i++) {(future (cons (car l) (qs (right-part
double x = w � (i � 0.5);parts) rest)))))))
#pragma HPC_REDUCE(defun partition (elt lst)
sum += f(x);}(if (null lst)

return sum;}(bundle-parts nil nil)
double f(double a) {(let ((cdrparts (future partition elt (cdr
return 4.0/(1.0 + a�a);lst))))

}(if (> elt (car lst))
(bundle-parts (cons (car lst) One of the innovative aspects of HPC�� is its extension

(future (left-part cdrparts))) of the standard template library (STL) to support data paral-
(future (right-part cdrparts))) lelism. The STL in C�� provides (1) containers that define

(bundle-parts (future (left-part aggregate data structures like vector, lists, and queues, (2)
cdrparts)) iterators for enumerating over the contents of containers, and
(cons (car lst) (3) algorithms that allow operations by element to be applied
(future (right-part cdrparts)))))))) to containers. HPC�� has a parallel standard template li-

(defun bundle-parts (x y) (cons x y)) brary (PSTL) that provides parallel versions of these.
(defun left-part (p) (car p)) The most important container class in PSTL is the Array
(defun right-part (p) (cdr p)) container (STL does not have multidimensional arrays that

are crucial for scientific programming). By default, array con-
It can be seen that this Multilisp program is a functional tainers are block-distributed but the programmer can specify

program to which future’s have been added. The problem of a custom distribution by providing a distribution object con-
deciding where it is safe and profitable to insert future’s in taining a function that maps array indices to processors. The
a general Multilisp program is a nontrivial one since par_for_each iterator in PSTL is the parallel analog of the
Multilisp is an imperative language in which expression eval- for_each iterator in STL. HPC�� also has a number of par-
uation can have side effects. The suggested programming allel algorithms such as par_apply for applying a function
style is to write mostly functional code and look for opportuni- to each element of a container, and par_reduction, which
ties to evaluate data structure elements as well as function is a parallel apply followed by a reduction with an associative
arguments in parallel. binary operation. The following code shows HPC�� code for

As in Scheme, the linked list is the key data structure in summing all the positive elements of a vector. The vector v
Multilisp. The role of lists in parallel programming is some- is block distributed. The parameters to the par reduction
what controversial because unlike arrays, lists are sequential algorithm are the associative combining operation, the func-
access data structures and this sequentiality can limit accel- tion to be applied to each element of the container, and the
eration in some programs. For example, consider applying a starting and ending parallel iterators for the reduction.
function f in parallel to each data item in a list. The list must

BlockDistribution d(100, 100/numcontexts());traversed sequentially to spawn the parallel tasks, so parallel
distributed_vector�double� v(100, &d);speed-up will be limited especially if the time for each func-
class GreaterThanZero{tion evaluation is small. If an array is used instead, the time
public:required for the entire computation may be as small as the
double operator() (double x){maximum of the times required for the individual function
if (x > 0) return x;evaluations. Although linked lists are not used very often in
else return 0;parallel programming, note the future construct and its asso-

}ciated dataflow synchronization can be used in the context of
};other data structures.
. . .The Linda language (23) also folds synchronization into
double total = par_reduction(plus�double�(),

data accesses, although in the case of Linda, synchronization
GreaterThanZero(),

is done during associative access of a shared tuple space.
v.parbegin(), v.parend());

. . .
Object-Oriented MIMD Languages

HPC�� is under active development. Planned enhance-
We describe HPC�� (24) and Java (25). There are both ments to the existing implementation include a library for

distributed active objects and an interface to CORBA via theshared-memory languages.
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IDL mapping. Another approach to extending C�� for paral- velopment of nonblocking SEND and RECEIVE constructs. A
nonblocking SEND permits the sending process to continuelel computing is the Charm�� effort (26).
execution as soon as the data has been shipped out to the
receiving process even if the receiving process has not exe-Java
cuted a RECEIVE command; the nonblocking RECEIVE con-

Java is a new object-oriented programming language that has struct is like a probe that permits the receiving process to
a library of classes that support programming with threads. check for availability of data without getting stuck if the data
The thread library is intended primarily for writing multi- has not yet been received.
threaded uniprocessor programs such as GUI managers. A In addition to these SEND/RECEIVE commands, MPI has
parallel Java program consists of a number of threads execut- a number of collective communication calls that are useful for
ing in a single global object namespace. These threads are doing reductions, broadcasts, etc., collectively among process
instances of user-defined classes that are usually subtypes of groups. These collective operations can be implemented using
the Thread class in the Java library that override the run send and receive commands, but it is often possible to exploit
method of the Thread class to define what threads must do the topology of the interconnection network to implement
once they are created. Threads are first-class objects that can them more efficiently. MPI permits processes to belong to any
be named, passed as parameters to methods, returned from number of process groups (called communicators in MPI ter-
methods, etc. In addition, methods inherited from the Thread minology). All processes are members of the universal group
class permit a thread to be suspended, resumed, put to sleep MPI_COMM_WORLD.
for specified intervals of time, etc. Java also supports the no- The following code computes the value of �. The invoca-
tion of thread groups. Threads in a group can be suspended tions of MPI_COMM_SIZE and MPI_COMM_RANK permit a pro-
and resumed collectively. cess to determine the number of processes in the system and

Synchronization in Java is implemented using monitors. A its own ID. The broadcast of the value of n is performed by
invoking MPI_BCAST. The parameters to this call are the (1)monitor is associated with every object that contains a
the starting address of the data to be broadcast, (2) the num-method declared to be synchronized. Whenever control enters
ber of values to be broadcast, (3) the type of the data, (4) thea synchronized method in an object, the thread that invoked
ID of process initiating the broadcast, (5) the process group tothat method acquires the monitor for that object until the
which the broadcast is performed, and (6) an error flag.method returns. Other threads cannot call a synchronized
Global reductions may be performed with a similar invo-method in that object until the monitor is released.
cation.Java was not intended to be a language for parallel scien-

tific computation. For example, it does not support multidi- program compute_pi
mensional arrays nor are there any constructs for performing include ‘mpif.h’
collective communication operations like reductions. How- double precision mypi,pi,w,sum,s,f,a
ever, there are efforts under way to use Java as a coordina- integer n, myid, numprocs,i,rc
tion language for multiplatform computational science appli- f(a) = 4.d0/(1.d0 + a�a)
cations (27). call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myrid, ierr)
Distributed-Memory MIMD Languages call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs,

ierr)
One of the earliest distributed-memory MIMD languages is

if (myid .eq. 0) then
communicating sequential processes (CSP) (28) which print �, ‘Enter number of intervals’
spurred a lot of work on the theory and practice of message- read �, n
passing language constructs. More recent languages in this endif
area have taken a message-passing library like PVM (Parallel call
Virtual Machine) (29) or MPI (Message Passing Interface) MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
(30) and grafted it onto a sequential language to obtain a dis- w = 1.0d0/n
tributed-memory parallel programming language. We will use sum = 0.0d0
FORTRAN/MPI to discuss this class of languages. In this pro- do i = myid+1,n,numprocs
gramming model, a certain number of processes are assumed x = w�(i � 0.5d0)
to exist, each having a unique name (usually a non-negative sum = sum + f(x)
integer) and its own address space. Processes communicate enddo
by sending and receiving messages. A process can send data mypi = w�sum
to another process by executing a SEND command, specifying call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,
the data to be transferred and the name of the recipient. The MPI_SUM,0,MPI_COMM_WORLD,ierr)
receiving process gets the data by executing a RECEIVE com- if (myid .eq. 0) then
mand, specifying the name of the sending process and the print �, ‘computed pi =’, pi

endifvariable into which the data should be stored.
call MPI_FINALIZE(rc)There are a number of variations on this basic SEND–
stopRECEIVE theme. Blocking SEND–RECEIVE constructs re-
endquires the two processes to rendezvous before the data trans-

fer takes place, which allows data to be transferred from one
process to another without buffering in the operating system. IMPLICITLY PARALLEL PROGRAMMING LANGUAGES
However, if one process gets to the rendezvous considerably
in advance of the other one, it cannot do useful work till the Many of the parallel programming languages described pre-

viously are in active use, but none of them is particularly ab-other process catches up with it. This problem led to the de-
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stract since they are all close to particular implementation program Compute_pi; — Program to approx. pi
config var n : integer = 100; — Changeablemodels of parallel computing. It is likely that as better com-
on Cmd Linepiler and run-time systems technology becomes available, lan-

region R = [1..n]; — Problem spaceguages for programming parallel machines will become more
procedure f(a : double) : double; — Fcn forabstract. This evolution would then parallel the evolution of
rectangle rulesequential programming language that started out being very
return 4 / (1 + â 2);close to the hardware on which programs ran, but have since

procedure Compute_pi(); — Entry pointevolved to higher levels of abstraction. For example, early se-
var Intval : [R] double; — A vector of rect.quential languages like FORTRAN had GOTO statements
pt.swhich were manifestations of jump instructions in the under-

pi : double; — Scalar resultlying hardware, but GOTO statements have since been re-
[R] beginplaced by more abstract structured programming constructs.

Intval := (Index1 � 0.5) / n; — FigureSimilarly, variables in FORTRAN were names for fixed-mem-
interval ptsory locations and existed for the duration of the program just

pi := +� f(Intval) / n; — Approximate,like memory addresses in the machine model, but the data
sum, divmodels of modern programming languages are built on ab-

writeln(‘‘Computed pi = ‘‘, pi);— Output tostract notions like type, scope, and lifetime.
standard outAlthough existing compiler and run-time systems technol-

end;ogy is inadequate to permit efficient parallel programming in
high-level abstract programming languages, many such lan- Regions in ZPL may also be defined by applying operations
guages have been proposed. In this section, we describe ZPL like shifts to previously defined regions. Although ZPL com-
(Z-level Programming Language), an imperative array lan- pilers have been written for a variety of parallel platforms, it
guage that relies on parallelizing compiler technology to find remains to be seen if the performance of the compiled code is
opportunities for parallel execution, the functional languages sufficient to persuade programmers to move away from writ-
Id and Haskell, and the logic programming languages Con- ing explicitly parallel programs in a language like FORTRAN
current Prolog and PARLOG. An even more ambitious ap- with MPI.
proach is taken by Unity (31), which attempts to derive paral-
lel programs from high-level specifications written in a Functional Languages
variation of temporal logic. One approach to addressing the difficulty of determining non-

interference of statements in languages like FORTRAN or C
ZPL is to use functional language. These languages are based on

the notion of mathematical functions that take values as in-In a FORTRAN or C program, statements that read and up-
puts and produces values as outputs. When executing a func-date disjoint memory locations can be executed concurrently.
tional language program, all functions whose inputs are avail-

Therefore, it is possible in principle to use a sequential pro-
able can be evaluated in parallel without fear of interference.

gramming language like FORTRAN to program a parallel This data-driven parallel execution model is the foundation of
machine if one has a parallelizing compiler that can extract a number of functional languages like VAL (34), ID (35), and
opportunities for parallel execution from sequential pro- SISAL (36). An alternative execution model called lazy evalu-
grams. An early compiler of this sort was PARAFRASE (32), ation evaluates a function only if its inputs are available and
which took FORTRAN programs and attempted to find paral- it has been determined that the result of the function is re-
lel DO loops through program analysis. However, automatic quired to produce the output of the program. Lazy evaluation
parallelization has proved to be difficult in general, although permits the programmer to define and use infinite data ob-
there has been noteworthy success in some problem domains jects such as infinite arrays or infinite lists (as long as only a
like numerical linear algebra. finite portion of these infinite objects is required to produce

ZPL (33) is an imperative array language without explic- the output), a feature that has been recommended for promot-
itly parallel constructs that relies on compiler technology to ing modularity. Miranda (37) and Haskell (38) are languages
identify opportunities for parallel execution. A novel feature that are based on the lazy evaluation model. Neither lan-
of this language is its region construct, an alternative to the guage is intended for parallel programming, but there is in-
triplet notation for describing the constant-stride index sets terest in defining a parallel verison of Haskell.
that was presented earlier. A disadvantage of the triplet nota- Operations like I/O do not fit naturally into the functional
tion is that it must be repeated for every subarray reference model since they are effects and not functions. Haskell uses
with this index sets (as in A[1:n] = B[1:n] + C[1:n].) monads to integrate I/O into a purely functional setting. A
ZPL permits a more compact expression of such statements monad provides the illusion of an object with updatable state
by providing the region construct that permits the definition on which all actions are sequenced in a well-defined manner,
and naming of index sets. The declaration region R = which is sufficient for performing I/O. Monads permit the in-
[1..n] can be viewed as defining a template of virtual pro- troduction of a limited form of side effects into functional lan-
cessors of the appropriate size. Regions can be used with both guage in a controlled manner, but these side effects are lim-
data declarations and blocks of statements, as shown in the ited since monads cannot be used to define objects that can
following code. An integer Intval is allocated on each virtual be updated concurrently.
processor of the region; similarly, the statements in the block Two problems have limited the impact of functional lan-
are executed by each virtual processor. Index1 is a keyword guages on the parallel programming community. The first is

aggregate update problem, which refers to the difficulty of ma-that permits each virtual processor to determine its index.
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nipulating data structures like large arrays efficiently. Data ify that the father relation contains the tuples �Adam,Abel�,
�Adam,Cain�, and �Abel,Bill�. The parent relation is de-structures are treated as values in functional languages, so

they cannot be updated in place. The effect of storing a value scribed by a rule: for all X and Y, the tuple �X,Y� is contained
in the parent relation if it is contained in the mother rela-v into element i of array A must be obtained by defining a

new array B that is identical to A except in the ith position tion (informally, X is the parent of Y if X is the mother of Y).
The grandfather clause is defined implicitly as well: for allwhere it has the value v. A naive implementation that makes

a copy of A will be very inefficient. A variety of compiler opti- X, Y and Z, the tuple �X,Y� belongs to the grandparent rela-
tion if �X,Z� and �Z,Y� belong to the parent relation.mizations (39) and language constructs [like I structures in Id

(40)] have been proposed to address this problem but it is
father(Adam, Abel).not clear to what extent these address the problem. A second
father(Adam, Cain).problem is locality. In principle, an interpreter for a func-
father(Abel, Bill).tional language can keep a work list of expressions whose in-
mother(Eve, Abel).puts are available and evaluate these expressions in any or-
mother(Eve, Cain).der. Unless this is done carefully, it will have an adverse
parent(X,Y) :� mother(X,Y).effect on locality, making it difficult to exploit caches and
parent(X,Y) :� father(X,Y).memory hierarchies. One solution is to remove caches from
grandparent(X,Y) :� parent(X,Z),parent(Z,Y).the implementation model and rely on multithreaded pro-
:� grandparent(Adam,W).cessors like dataflow processors that are latency tolerant. A

complementary solution is to use compiler techniques to ex- In terms of formal logic, the symbol :� stands for logical
tract long sequential threads of computation from functional implication, and the symbol , on the right-hand side of clauses
programs, and exploit locality in the execution of these stands for conjunction. Variables like X and Y are universally
threads. However, there appears to be little commercial inter- quantified over the clause in which they appear. Each clause
est in building multithreaded processors at this time; further- is therefore a Horn clause, and the program is a conjunction
more, the problem of sequentializing functional programs of Horn clauses.
does not appear to be any easier than the problem of paral- Given the relations, it is possible to make a variety of que-
lelizing imperative language programs. ries such as asking if a given tuple occurs in a relation. Bot-

tom-up query evaluation starts from the facts and uses the
Logic Programming Languages rules repeatedly to compute the tuples in the relations of the

program, terminating when enough information has been ob-Although functional languages eliminate the notion of se-
tained to answer the query. This kind of data-driven evalua-quential control from the programming model, they still re-
tion obviously exposes a lot of parallelism but it can lead totain the notion of directionality in the sense that the inputs
an unbounded amount of useless computation in general.of a function are distinct from its output. Logic programming
Top-down query evaluation generates subproblems from thelanguages provide an even higher level of abstraction by elim-
original query and solves them recursively to answer theinating directionality through the use of relations (predicates)
query. The query grandfather(Adam,W) can be answered ifinstead of functions. A logic program consists of a set of
we can find a Z and W such that parent(Adam,Z) and par-clauses that describe relations either explicitly by enumerat-
ent(Z,W). The first subproblem can be solved in two ways:ing the tuples in the relation or implicitly in terms of other
either by solving mother(Adam,Z) or by solving fa-relations. Clauses that describe a relation explicitly are called
ther(Adam,Z). These explorations can be described com-facts, while those that describe relations implicitly are called

rules. The first three facts in the program shown below spec- pactly by an AND-OR tree, shown in Fig. 2.

Grandfather (Adam, W)

Parent (Adam, Z)

Mother (Adam, Z) Father (Adam, Z)

Father (Adam, Abel) Father (Adam, Cain)

Father (Adam, Abel) Father (Adam, Cain) Father (Abel, Bill)

Mother (Z, W)

Mother (Eve, Cain) Mother (Eve, Abel)

Father (Z, W)

Parent (Z, W)

And

Or

Or Or

Or

Or

Figure 2. And-or tree.
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