
SONAR TRACKING CORRELATION, ASSOCIATION, AND FUSION

Over the past three decades, a large number of investigators The central problem in multisensor, multitarget sonar
tracking is the data association problem of partitioning con-have contributed to the theoretical and practical aspects of

sonar tracking. Our intent in this article is to expose key de- tacts into tracks and false reports. This problem is formulated
as multiscan processing, it is valid for either centralized fu-velopments that give the reader a sufficiently complete over-

view of many topics in tracking with particular emphasis on sion or decentralized tracking. The mathematical formulation
of the data association problems is separated from the algo-sonar tracking. Comprehensive treatment of these topics can

be found in Blackman (1), Waltz and Llinas (2), Antony (3), rithms that solve this problem. Before discussing problem for-
mulation, a brief review of data association follows.Bar-Shalom (4,5), and Bar-Shalom and Fortmann (6). The

invention of the Kalman filter is perhaps the single, most in- General approaches to single-scan processing include near-
est neighbor, global nearest neighbor (solved by the two-di-fluential technological advance that has made possible the

current mature state of sonar tracking. Necessarily, our expo- mensional assignment problem), probabilistic data associa-
tion (PDA), and joint PDA (JPDA). The former twosition includes a discussion of the Kalman filter. Although

during the early stages of development the Kalman filter pro- approaches are real-time, but decisions once made are irrevo-
cable, leading to poor track estimation, to fragmentation, andvided a computationally revolutionary mechanism for esti-

mating the state of a tracked object, the practical real-life ap- even to loss of tracks. The latter two approaches have been
successful for tracking in heavy clutter, but have had diffi-plications in sonar tracking were limited to single-target

tracking because of the limitations imposed by the computing culties with closely spaced targets. Another class of methods
is called deferred logic, or multiscan, processing. The mostcapabilities of the processing hardware. In sonar tracking,

the source of information consisted of only passive acoustic popular method is called multiple-hypothesis tracking (MHT).
These methods are well-suited to tracking a potentially largesensors. As computing resources became more readily avail-

able, multiple-target tracking capabilities were developed. number of targets in a cluttered environment.
The fundamental problem for multiscan processing is toThus emerged the concept of developing an overall inte-

grated surveillance scene containing multiple targets. Capa- maximize the probability of data partition into tracks and
false reports (8–10). The data association problems forbilities were developed for processing information from a

variety of sensor systems, in addition to acoustic sensors, multisensor and multitarget tracking are generally posed as
maximizing the posterior probability of the set of tracksto develop a sonar scene.

Multisensor, multitarget tracking systems have been rou- (given the data) according to
tinely used in a variety of applications during the past two
decades. In many applications, and especially in sonar envi- Maximize{P(π = �|ZN )|� ∈ �∗} (1)
ronments, because of their high clutter character, it became

where ZN represents N data sets or scans, � is a partition ofevident that a single hypothesis regarding the scene used to
indices of the data (and thus induces a partition of the datarepresent the interpretation of all the inputs from all the sen-
into tracks), �* is the finite collection of all such partitions,sor systems was not adequate. In Ref. 7, a new approach was
� is a discrete random element defined on �*, P(� � ��ZN) isproposed to represent the information using multiple simulta-
the posterior probability of a partition � being true given theneous interpretations in the form of multiple-scene hypothe-
data ZN, and P is the probability measure of a partition � ofses. Thus began a new era in sonar tracking, with a number
the cumulative data ZN into tracks and false reports. For theof approaches developed to deal with ambiguity, efficiency,
assignment formulation, under independence assumptions,and accuracy. Our discussion includes a fairly complete re-
this problem is equivalent to finding a solution ofview of many issues related to the multihypothesis tracking

(MHT) subject.
Much of the early development of algorithms and tech-

niques in sonar tracking focused on the topic of tracking the Minimize − ln
[

P(π |ZN )

P(π0|ZN )

]
≡

M1∑
i1=0

· · ·
MN∑

iN =0

cN
i1 ...iN

zN
i1 ...iN

state of individual objects. In the parlance of the more encom-
passing domain of data fusion, the individual target tracking

where cN
i1. . .iN

is the negative log of the likelihood ratio LN
i1. . .iN

,is considered to be occurring at Level 1—also known as object
refinement—of information processing. In the more recent
past, the focus of these developments has shifted to the higher
level of information content. The concepts of situation refine-

zi1 ...iN
=

{
1 if (zi1

, . . ., ziN
) are assigned to the track

0 otherwise
ment, threat refinement, and process refinement were the natu-

is a zero-one variable, and �0 is a reference partition con-ral evolutionary steps in the development of tracking. The re-
sisting of N false reports. The constraints for this problemlated theoretical topics include use of both knowledge-based
impose the requirement that each report zik

from scan k musttechniques and fuzzy-neural representations, and new devel-
be assigned to exactly one track of data (zi1

, . . ., ziN
).opments in sensor management and fusion strategies. Much

This problem is precisely what all approaches to associa-of the discussion that follows presents these areas in more
detail. tion and fusion try to solve. The difficulty is that the problem
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2 SONAR TRACKING

The JDL model defines the process of expanding from tra-
ditional statistical/mathematical techniques of fusion to in-
clude artificial intelligence for data assimilation, correlation,
and abstraction, resulting in a ‘‘hybrid’’ system that uses cog-
nitive processing technologies to add intelligence to the pro-
cess of data fusion and determination of target identification.
The advanced fusion technology analyzes the situation, as a
human operator would, with awareness of the situation be-
yond the data that is being reported by the current sensors.
With this awareness, the system can make inferences based
on knowledge of the environment, the current state of the sit-
uation, threat tendencies, and the assets it has available to
help resolve target identification.

Kalman Filtering

At the heart of data fusion algorithms is a tracking algorithm,
typically a Kalman filter. Under certain conditions (11,12),
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the Kalman filter provides an optimal estimator that mini-
Figure 1. High-level JDL four-level data fusion functional model. mizes the mean square error. In addition, the Kalman filter

can be implemented in an efficient recursive manner. In the
case where a nonlinear relationship exists between the mea-
surement vector and the state vector, for example, a range/is nonpolynomial (NP)-hard, so that any algorithm that solves
bearing measurement where the tracking coordinates areit is NP-hard, and all known algorithms that solve the prob-
x-y, an extended Kalman filter (EKF) or an iterated EKFlem optimally require a time that grows exponentially with
(IEKF) provides a suboptimal approximation.the size of the problem. A fundamental problem with sequen-

A summary of the Kalman filter is presented in Table 1.tial processing is that data association decisions are irrevoca-
The models describe the motion of the target, including theble. MHT corrects this problem by allowing changes in the
uncertainty of the model represented by system noise �k anddata association over the last N scans.
the relationship between the state and the measurement.Now consider N data sets Z(k), k � 1, . . ., N, with Mk
When a new measurement is processed, the first step of thereports �zk

ik
�Mkik�1, respectively, and let ZN denote the cumulative

Kalman filter is to predict the latest state estimate and itsdata set defined by Z(k) � �zk
ik
�Mkik�1 and ZN � �Z(1), . . ., Z(N)�,

respectively. The data sets Z(k) may represent different ob-
jects, and each data set can be generated from different sen-
sors. For track initiation, measurements are partitioned into
tracks and false alarms. In track maintenance, which uses a
moving window over time, one data set will be tracks and
remaining data sets will be scans of measurements. In sensor-
level tracking, the objects to be fused are tracks from multiple
sensors. In centralized fusion, the objects may be a combina-
tion of measurements that represent targets or false reports
and tracks that have already been filtered; the problem is to
determine which measurements emanate from a common
platform.

Fusion Strategies

The Joint Director of Laboratories (JDL) model divides the
data fusion processing into four levels. All four levels of pro-
cessing use and share the same data and information, as
shown in Fig. 1. Processing in Level 1 deals with object re-
finement, which is positional, kinematic, and attribute fusion
of single tracks within the ocean. In Level 2 situation refine-
ment processing, a description or interpretation of the current
relationships among objects and events in the context of the
environment is developed. Threat assessment, in Level 3 pro-
cessing, develops a threat-oriented perspective of the data to
estimate enemy capabilities, identify threat opportunities, es-
timate enemy intent, and determine levels of danger. Finally,
Level 4 processes refinement processing monitors and evalu-
ates the ongoing fusion process to refine the process itself, for
example, by tasking sensors to gather additional information
or resolve ambiguities.

Table 1. Summary of the Nonlinear Iterated
Extended Kalman Filter

Models

xk�1 � �k�1 xk � �k�1

zk�1 � h(xk�1) � �k�1

where �k is N(0, Qk) and �k is N(0, Rk)

Prediction

xk�1�k � �k�1 xk�k (1)

Pk�1�k � �k�1 Pk�k�
T
k�1 � Qk�1 (2)

Iterative Updates—For i � 0, 1, 2, 3, . . .
Note: The extended Kalman filter is obtained by setting i � 0.

ẑk�1, i � hk�1(xk�1, i) (3)

Hk�1, i �
�hk�1(x)

�x �
x�x

k�1, i

(4)

rk�1, i � zk�1 � ẑk�1, i � Hk�1, i(xk�1�k � xk�1, i) (5)

Ck�1, i � (Hk�1, i Pk�1�k H T
k�1, i � Rk�1)�1 (6)

Kk�1, i � Pk�1�k H T
k�1, i Ck�1, i (7)

xk�1, i�1 � xk�1�k � Kk�1, i rk�1, i (8)

Pk�1, i�1 � (I � Kk�1, i Hk�1, i)Pk�1�k (9)

Initial Conditions

xk�1,0 � kk�1�k
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covariance (or uncertainty) of the time of the measurement
[Eqs. (1) and (2) of Table 1]. The next step is to estimate the
expected measurement by using the predicted measurement,
as specified by Eq. (3). Next, the residual between the esti-
mated and actual measurement is computed [Eqs. (4) and
(5)], along with its estimated covariance [Eq. (6)]. Finally, the
Kalman filter gain [Eq. (7)] is computed and used to update
the state estimate and its covariance [Eqs. (8) and (9)].

Bearing-Only Tracking. One of the fundamental problems of
sonar tracking is performing localization from a set of mea-
surements obtained from a passive sensor, i.e., given a set of

Table 2. Assignment Problem Example

New Old

c1 c2 c3 c4 c5

New system track T1 0.5 0.0 0.0 — —
New system track T2 0.0 0.15 0.0 — —
New system track T3 0.0 0.0 0.03 — —
System track T4 0.4 0.0 0.0 — —
System track T5 0.3 0.2 0.0 — —
System track T6 0.05 0.8 0.7 — —
System track T7 0.0 0.7 0.6 — —
System track T8 — — — 0.3 —
System track T9 — — — — 0.8

passive bearings or line-of-bearing measurements, develop an
estimate of the target position and velocity. Much effort has
been focused on the issues of observability (the inherent infor-
mation contained in the measurement set to provide a local- ronmental information, such as direct path and convergence
ization) and coordinate systems (13,14). The fundamental re- zone propagation, can be directly modeled as a Gaussian sum.
sult on observability states that the relative motion between Thus, the sum of Gaussians can be used to model the nonlin-
the observing platform must be nonlinear. In simplest terms, ear bearing measurement. An advantage of the Gaussian sum
if the target is on a constant course/constant speed leg, the approach is that a linear Kalman filter can be used by run-
observer must maneuver at least once before a localization ning K filters, one for each term in the Gaussian sum.
solution can be computed. Details on localization can be found
in Refs. 15 and 16.

Optimal Assignment StrategiesIn order to isolate the problem of observability, researchers
have investigated the impact of coordinate systems used in We assume that part of the overall sonar system is a prepro-
the Kalman filter. One popular coordinate system is the in- cessor that associates measurements. For example, an auto-
verse polar coordinate system (�, �̇, r, ṙ/r), where � and �̇ matic line tracker on a gram provides the association of a
are the bearing and bearing rate, respectively, and r and ṙ/r specific narrowband signal source. Thus, contacts and mea-
are the range and normalized range rate, respectively (17). surements can be of two types: first, the sensor system pro-

vides an association of some of the measurements into con-
Gaussian Sum. Based on the fact that most density func- tacts, in which case the reported contacts in a scan are either

tions can be approximated arbitrarily close by a sum of new (not previously reported) or old; second, the sensor sys-
Gaussian density functions, the Gaussian sum approach tem does not perform association, in which case all the con-
(18,19) provides an attractive alternative to an inverse polar tacts reported in a scan are new.
coordinate system for bearing only tracking. Given a density The measurement data-to-track assignment problem is de-function f with a finite number of discontinuities, f can be

picted in Table 2. The assignment matrix is structured suchapproximated arbitrarily close by a finite sum of Gaussian
that the first M2 rows consist of possible new tracks and thedensity functions. Let
last M1 rows consist of tracks from the current hypothesis.
Note that the upper M2 � M2 block is simply a diagonal ma-
trix (a measurement can be assigned to only one new track).fk(xxx) =

K∑
k=1

αkN(xxx − µk;�k)

The objective of the assignment function is to find a ‘‘best’’
set of solutions. The optimal solutions to assignment prob-where N is the Gaussian density function with mean �k and
lems are given in Refs. 1 and 20. The ‘‘solution vector’’ assignscovariance 	k, with
each data measurement to some track in the hypothesis; each
data point either updates an existing track within the hypoth-
esis or is assigned to a new track. In this case, the optimal

K∑
k=1

αk = 1

assignment is c1 to T4, c2 to T7, c3 to T6, c4 to T8, and c5 to T9.
Note that for c2, the optimal is T7, not the largest likelihoodand �k 
 0 for all k. Then, selecting �k, �k, 	k, and K, fK can
that is associated with T6, because the c2/T7 and c3/T6 assign-approximate f to an arbitrary degree of closeness. Given a
ment pair has a higher likelihood (0.49) than the c2/T6 andline of bearing, a sum of Gaussians can be used to approxi-
c3/T7 assignment pair (0.48).mate a bearing wedge, as depicted in Fig. 2. In addition, envi-

Multiple-Hypothesis Tracking

The multiple-hypothesis tracker (MHT) data fusion algorithm
with clustering is, in essence, a two-layer algorithm: the first
(lower) layer consists of a multiple-hypothesis algorithm that
carries alternative hypotheses of how the data is partitioned
into tracks, and the second layer consists of cluster manage-
ment that breaks the problem into noninteracting, disjoint

β = 90° Line of bearing measurement

clusters. The lower layer multiple-hypothesis algorithm
matches data to tracks, updates tracks, generates hypotheses,Figure 2. Gaussian sum approximation to a line of bearing mea-

surement. and manages algorithm resources (both tracks and hypothe-
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ses). The second layer, cluster management, monitors each The lower level algorithms of track-data scoring, associa-
tion, track updating, hypothesis generation, and algorithm re-set of hypotheses to ensure that tracks within a cluster do not

interact with tracks that are in other clusters. source management have an extended Kalman filter at the
heart of the MHT. Track-data scoring is based on the valueA typical MHT implementation is depicted in Fig. 3. The

six primary processing functions are: of the density function of the normalized residual. This score
is computed for each existing track and each measurement in
a scan, except when the normalized residual itself is larger• Gating (track-data scoring)
than a fixed threshold (usually set at four to six standard de-• Clustering
viations).

• Assignment solution (association, track updating, hy- In the association step, a two-dimensional assignment al-
pothesis generation) gorithm (such as a modified Munkres algorithm) is used to

• N-scan pruning select the optimal assignment of measurements in a scan to
tracks in a hypothesis. Part of this assignment is the determi-• Renormalization
nation of a new track for each of the measurements. In order• Splitting
to generate additional hypotheses, the assignment algorithm
is run again on the original problem with modified costs of
the assignment matrix of the optimal assignment.

Once the optimal and suboptimal solutions are obtained,
the hypothesis scores are computed and compared. High-scor-
ing hypotheses are kept for further analysis, whereas low-
scoring hypotheses are pruned. A hypothesis score is recur-
sively obtained by multiplying the old hypothesis score by
each of the assignment scores of the track-data associations
determined by the two-dimensional assignment solutions.

Finally, N-scan pruning is used to accomplish two goals.
First, N-scan pruning helps keep the overall number of
hypotheses under control. More importantly, N-scan pruning
forces a hard decision on all measurements in the (N � 1)th
oldest scan. Thus, N-scan pruning is a sliding window that
allows the MHT algorithm to carry multiple hypotheses on
the most current data and make hard decisions on older data
(which is based on data up to the current time).

The following assumptions and conditions are made:

1. The measurement data of the scan are valid at the same
time tk.

2. Each measurement comes from a distinct target.

The first assumption is made to simplify the cluster gating
implementation; thus, tracks are predicted to the time of the
current scan only once for the entire scan of the measure-
ments. This assumption can be relaxed at the cost of addi-
tional time for execution. The second assumption is funda-
mental to hypothesis generation. Because each measurement
comes from a distinct target, the number of data association
combinations is limited as two measurements from the same
scan cannot be put into the same track. Thus, the fundamen-
tal number of hypotheses is limited.

Gating. All tracks are predicted to the time of the current
scan. The Kalman filter prediction equations are used to ex-
trapolate each track state and error covariance estimate to
the time of the current scan using Eqs. (1) and (2) of Table 1.
Next, the extrapolated state estimate is used to calculate the
predicted measurement vector using the state to measure-
ment transformation Eq. (3) of Table 1.

The normalized residual is computed as

r = rrrTCCC−1rrr

Load scan

Prediction

Scan measurement loop

Associate tracks

Update clusters

Next scan
measurement

Generate
hypotheses

N-scan prune

Renormalize

Score/prune
tracks

Split clusters

Output

where r is the residual vector from Eq. (5) of Table 1, and
C�1 is the inverse of the residual vector covariance matrixFigure 3. Core algorithm flow chart.
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from Eq. (6) of Table 1. The normalized residual r is a �2
m Assignment Solution. The primary objective of the assign-

statistic with m degrees of freedom, where m is the dimension ment solution function is to find the ‘‘best’’ set of solutions for
of the measurement vector zk. A probability of geometric asso- each hypothesis in each cluster. The solutions in each cluster
ciation Pg(r) is computed for a track-to-measurement candi- are ranked on score, with the lower scoring hypotheses
date if the normalized residual passes the gating criterion pruned; the top-ranked solutions are then used to generate

a set of new hypotheses for the cluster. Any new tracks are
initialized and existing tracks are updated.χ2

m ≤ n2

The score of the assignment is computed as the product of
the individual association probabilities. The solution score iswhere the value of n, the gate size, is a parameter that can
computed as the product of the assignment score and the so-be interpreted to mean an n � � track-to-measurement con-
lution’s generating hypothesis score. The optimal solution istainment.
used to obtain the set of next-best solutions. This step is ac-For each normalized residual that passes the gating crite-
complished by not allowing associations that are in the opti-ria, the probability of geometric association Pg(r) is computed
mal solution one data point at a time.as the likelihood density function of an N(0, C) normal ran-

The most important aspect of cluster management is thedom variable. This probability is evaluated as
allocation of the number of hypotheses that each cluster is
allowed to carry. The solutions in each cluster are ranked on
score, with the Nn highest scoring solutions retained; thePg(rrr) = 1

(2π)m/2|CCC| exp(−r/2)

lower scoring solutions are pruned if the number of solutions
is greater than Nn. An adaptive pruning mechanism is also

where C � HPHt � R (the residual vector covariance of the used. Solutions with scores less than an adaptive threshold
Kalman filter equations, see Table 1), m is the measurement

score are pruned. The adaptive threshold score is computed
dimension and r is the computed normalized residual. Scoring

as a ratio of the top-scoring solution.of the new track probability of association is based on the
New tracks are initialized for each measurement that islikelihood density function.

not assigned to an existing track in the generating hypothe-
sis. The track states and covariances are initialized according

Clustering. The basic purpose of clustering is to divide the to the type of measurement, e.g., range/bearing, latitude/lon-
large data fusion problem into a number of smaller ones that gitude, or bearing-only. Existing tracks that have a measure-
can be solved independently. Each cluster maintains a nonin- ment assigned are updated. Eqs. (3)–(10) of Table 1 are used
teracting set of tracks and data. Clustering is an adaptive to perform the track update.
process, driven by the interactions and ambiguity of the in-
coming data.

N-Scan Pruning. The two primary functions of N-scan prun-Clusters are initiated in two distinct ways. A new cluster
ing are ancestry update and N-scan pruning. Each hypothesisis initiated each time a data point is received that does not
that was generated must have its ancestry updated. Pruningfall within the correlation gates of any track contained in an
is accomplished by computing the sum of probabilities of cur-existing cluster. The new cluster then contains one hypothesis
rent hypotheses that have a common ancestry on the previ-consisting of a single track (the new track) with a probability
ous Nth scan. The ancestor set with the largest probability isof one. In addition, a new cluster is initiated when a given
kept and all other hypotheses are pruned. Each hypothesistrack is contained in all hypotheses of a previous cluster.
that was generated must have its ancestry updated. EachIn order that clusters remain distinct, they must be com-
generated hypothesis H
 points to the parent hypothesis H.bined when a new data point is received that fits with tracks
This ancestry update is kept for the last N scans of measure-from more than one cluster. Thus, when a data point falls
ment data.within the correlation gates of two or more clusters, the clus-

ters are merged. New hypotheses are formed from all combi-
nations of the hypotheses in the clusters being merged. The Renormalization. Hypothesis scores within a cluster are re-
set of tracks and data points in the new ‘‘super cluster’’ is the normalized such that the sum of the probabilities of all
union of those in the prior clusters. The number of hypotheses hypotheses within a cluster is one. Track scores are computed
in the new super cluster is the product of the number of for each track by summing the probabilities of the hypothesis
hypotheses in the prior clusters and the associated probabili- in which they occur. After all scoring and pruning is complete,
ties are the products of the prior probabilities. hypothesis scores within each cluster are renormalized such

An explicit example of cluster merging is now presented. that the probabilities of all hypotheses within a cluster sum
Let cluster C1 contain two hypotheses H(1)

1 and H(1)
2 with hy- to one. This simply involves adding the scores of all hypothe-

pothesis scores p(1)
1 and p(1)

2 , respectively. Let cluster C2 contain ses within a cluster and dividing each hypothesis by the re-
three hypotheses H(2)

1 , H(2)
2 , and H(2)

3 with scores p(2)
i , i � 1, 2, 3. sulting sum. Specifically, let cluster Ci, i � 1, . . ., NC, contain

Then the new merged cluster contains a total of six hypothe- hypotheses H(i)
j , j � 1, . . ., N(i)

C . Let p(i)
j be the probability of

sis, namely, H(1)
1 � H(2)

1 , H(1)
1 � H(2)

2 , H(1)
1 � H(2)

3 , H(1)
2 � H(2)

1 , etc., hypotheses H(i)
j ; then the renormalized hypothesis score for

where the hypothesis H(1)
i � H(2)

j is formed simply by taking hypothesis H(i)
j is

the union of the track sets contained in H(1)
i and H(1)

j . The prob-
ability of the new hypothesis pij is computed as the product of
the probability of the corresponding hypotheses pij � p(1)

i p(2)
j .

Pruning, if necessary, is based on the pij, and a normalization
of the new cluster hypothesis scores is performed.

p(i)
j∑N (i )

C
j=1

p(i)
j



6 SONAR TRACKING

Track Score and Prune. After the hypothesis scores of a clus- Minimize
ter are renormalized, a score is computed for each track in
the cluster by summing the probabilities of the hypotheses in
which the track is contained. Thus, the track score ranges

M1∑
i1=0

· · ·
MN∑

iN =0

ci1 ...iN
zi1 ...iN

from zero to one; it is equal to one if the track appears in all
hypotheses. If a track appears in cluster Ci, then the score

Subject toP(T) of track T is computed as

p(T ) =
∑

T∈H (i )
j

∈Ci

p(i)
j

where H(i)
j varies over all the hypotheses in cluster Ci, and

p(i)
j is the renormalized hypothesis score.

The final step of the MHT algorithm is cluster splitting,
which is the process of subdividing an existing cluster into
smaller, independent clusters. Clusters are split for two dis-
tinct reasons. A cluster is split when a track is contained in
all hypotheses of a previous cluster. This track is removed
from all hypotheses of the previous cluster and inserted into
a single hypothesis in the new cluster. In addition, clusters

M2∑
i2=0

· · ·
MN∑

iN =0

zi1 ...iN
= 1, i1 = 1, · · · M1

M1∑
i1=0

· · ·
Mk−1∑

ik−1=0

Mk+1∑
ik+1=0

· · ·
MN∑

iN =0

zi1 ...ik−1 ik+1 ...iN
= 1

for ik+1 = 1, . . ., Mk+1, and k = 1, . . ., N − 1
M1∑

i1=0

· · ·
MN−1∑

iN−1=0

zi1 ...iN
= 1, iN = 1, · · · , MN

zi1 ...iN
∈ {0,1} for all i1, . . ., iN

(2)

containing one hypothesis with more than one track are split.
Efficient algorithms for solving Eq. (2) are specified in Refs.
22–24.N-Dimensional Assignment

An alternative to MHT, which processes a single scan at a
Probabilistic Data Associationtime, is the N-dimensional (ND) assignment approach, which

simultaneously solves the assignment problem over N scans A popular method for tracking in highly cluttered environ-
of data. For notational convenience in representing tracks, we ments is joint probability data association (1,4). At time k, let
add a zero index to each of the index sets and a dummy re- the measurements zk

i , i � 1, . . ., mk fall within the associa-
port zk

0 to each of the data sets Z(k), and define a ‘‘track of tion gate of a track and let
data’’ as (z1

i1
, . . ., zN

iN
) where ik and zk

ik
can now assume the

values of 0 and zk
0, respectively. A partition of the data refers

to a collection of tracks of data wherein each report occurs Pg(rrri) = βmk (1 − PD)

(2π)m/2|CCCi|
exp(−ri/2)

exactly once in one of the tracks of data and such that all
data are used; the occurrence of a dummy report is un- where � � PNT � PFA is the sum of the new track and false
restricted. The dummy report zk

0 serves several purposes in alarm probabilities and PD is the probability of detection,
the representation of missing data, false reports, initiating of Ci � HPHt � Ri (the residual vector covariance of the Kalman
tracks, and terminating of tracks (9,21,24). filter equations, see Eq. (4) of Table 1), m is the measurement

Next, under appropriate independence assumptions, the dimension, and ri is computed normalized residual. We as-
track scores are computed as sume that the new track and false alarm rates follow a Pois-

son distribution. For convenience, let z0 represent a missed
measurement and Pg(r0) � �mk(1 � PD) the likelihood that
none of the measurements inside of the gate were generated

P(π = �|ZN )

P(π = �0|ZN )
= Lγ =

∏
i1 ...iN ∈�

Li1 ...iN

by the track.
where Li1 . . . iN

is the likelihood ratio containing probabilities Let
for detection, maneuvers, and termination as well as probabil-
ity density functions for measurement errors, track initiation,
and termination. Then, with ci1 . . . iN

� �ln Li1 . . . iN
, βi(k) = e(−ri/2)

b + ∑mk
j=1

e(−ri/2)

− ln
[

P(�|ZN )

P(�0|ZN )

]
=

∏
i1 ...iN ∈γ

ci1 ...iN
β0(k) = b

b + ∑mk
j=1

e(−ri/2)

Expressions for the likelihood ratios Li1 . . . iN
can be found in where

Refs. 7–10, 21. In track initiation, the N data sets all repre-
sent reports from N sensors, possibly all the same. For track b = β(2π)m/2(1 − PD)|CCC|1/2

maintenance, we use a sliding window of N data sets and one
data set containing established tracks. The formulation is the and C � Ci is assumed to be constant for all measurements
same as in the preceding except that the dimension of the within the gate. Then the updated mean is
assignment problem is now N � 1.

With the zero-one variable zi1 . . . iN
if i1 . . . iN � � and 0

otherwise, the problem can be formulated as the following N-
dimensional assignment problem:

xxxk|k =
mk∑
i=0

βi(k)xxxk|k(zzzk)
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and the covariance is and mutually exclusive set of hypotheses. These sets of
hypotheses are called ‘‘cuts.’’ Some examples of a cut are the
sets �Subsurface, Surface� and �Hostile Submarine, NeutralPk|k = β0(k)PPPk|k−1 + [1 − β0(k)][III − KKKkHHHk]PPPk|k−1 + P̃PPk
Submarine, Friendly Submarine, Surface�. A cut is considered
valid if every element in the cut is always independent of thewhere
others and the probabilities of every element in the cut sum
to unity. An example of an invalid cut is the set �Nuclear,
Surface�. This cut is invalid because not all nodes are repre-P̃PPk = KKKk

[ mk∑
i=1

βi(k)rrri(k)rrrT
i (k) − rrr(k)rrrT(k)

]
KKKT

k

sented.

is the ‘‘correction’’ term to the standard Kalman filter and Pearl Tree Evidence Propagation. Sensor-specific attribute
data and geometric heuristic information are used as evi-
dence to determine target identification. The likelihood ratio
�i measures the degree to which the evidence supports or re-

rrr(k) =
mk∑
i=1

βi(k)rrri(k)

futes the hypothesis hi represented by node i. That is, for a
is the weighted residual. piece of evidence e, the likelihood ratio is given by

When additional information is available, such as the am-
plitude information from a passive narrowband source,
improved performance can be achieved. A probabilistic data λi = Pr(e|hi)

Pr(e|not hi)
association-based maximum likelihood estimator, using am-
plitude information, has been developed (24a). Although a Positive support for hi is given if �i � 1.0; negative support is
small improvement in the Cramer–Rao lower bound is given for hi if �i � 1.0. Generally, the likelihood ratios for an
achieved, Monte Carlo simulations showed gains in increased entire cut are arbitrarily assigned rather than explicitly com-
accuracy and a reduction in false tracks, especially at low sig- puted.
nal-to-noise ratios. Let BEL(hi) be the measure of belief in the hypothesis rep-

resented by node i. Then, for every node i in a cut, an updated
belief is obtained byCLASSIFICATION AND IDENTIFICATION

Pr′(hi) = αλiPr(hi) (3)Beyond the localization of tracks, the classification of the indi-
vidual contacts is an important aspect of the overall sonar

where � is a normalization factor given bytracking problem.

Bayesian Inference Networks

Integrating or fusing attribute information over time is an
α =

[∑
i

λiPr(hi)

]−1

(4)

important processing mechanism required to derive target
Every subnode j below node i in a tree is updated byidentity. A taxonomic hierarchy is the perfect mechanism to

maintain belief over time for every identity level. For simplic-
ity, a taxonomic hierarchy, one form of Pearl tree or Bayesian Pr′(hj ) = αλiPr(hj ) (5)

evidential reasoning algorithm, is presented. A complete dis-
cussion of taxonomic hierarchies and general Bayesian net- Each supernode k above the nodes in a cut is updated by sum-
works is presented in Ref. 25. ming the updated beliefs of those nodes in a cut that are sub-

nodes of supernode k. That is,
Pearl Tree Structure. A Pearl tree is an N-node, as opposed

to binary, tree structure. Each tree node represents a specific
hypothesis. Each hypothesis can be divided into subhy-

Pr′(hk) =
∑

i a subnode
of k

Pr′(hi) (6)

potheses, or be a subhypothesis itself. Every node is initially
assigned an a priori measure of belief reflecting the prior As an example, suppose the nuclear hostile subsurface node
probability that the hypothesis is true. These measures of be- from the tree shown in Fig. 4 is injected with the likelihood
lief range from 0.0, reflecting no confidence, to 1.0, reflecting value � � 4. The updates to the nodes are shown outside the
complete confidence. The measure of belief of the tree’s root nodes in the figure.
node sum is always 1.0. In general, the probability of a spe-
cific node equals the sum of the probabilities of its subnodes.

Fuzzy Rule-Based Fusion Strategies
Figure 4 illustrates a simple Pearl tree for target identifi-

cation. In this example, the number inside the node name In cluttered and uncertain sonar environments, the informa-
tion provided by the sensor systems is not precisely specified.represents the node probability. Clearly, the evidence sug-

gests that the target is most likely a Hostile Submarine tar- In many situations, one or more components of the sensor
information are supplied with nonquantitative qualifiers.get, and of all possible Hostile Submarine platform types,

most likely a nuclear submarine. Even in this small example, Fuzzy representations can be used efficiently in these situa-
tions to extract the information for data fusion purposes (26–every identity level is enumerated.

In the example illustrated in the preceding, many different 28). Here, a fuzzy representation is simply the mapping from
an input measurement space to an output measurement us-paths exist through the tree that represent an independent
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Target
1.0

Surface
0.1

Subsurface
0.9

Hostile
0.07

Neutral 
0.02

Friendly
0.01

Hostile
0.7

Nuclear
0.65

Diesel
0.05

Nuclear
0.09

Diesel
0.01

Nuclear
0.09

Diesel
0.01

Neutral
0.1

Friendly
0.1

0.014

0.010

0.0010.0140.0010.0140.007

0.956 0.015
0.015

0.986

0.949

0.013 0.001

Figure 4. Simple Pearl tree for target identification.

ing linguistic variables. It gives us the ability to model impre-
cisions by incorporating qualitative components into a quanti- fvalid(µk,i) =

{
1 µk,i ≤ γk

0 elsetative analysis. The use of fuzzy logic in data association or
correlation (29–34) is a more recent development in sonar

Invoking the fuzzy intersection of the two membership func-tracking. Some of the relevant techniques for association are
tions in the preceding, the resulting membership function issummarized in what follows.
one that is the minimum of the two membership functions

The Use of Fuzzy Measures. Fuzzy measures provide a
fsimilar∩valid(µk,i) = min[ fsimilar(µk,i), fvalid(µk,i)]mechanism for assigning belief or plausibility to a set of crisp

events. We can structure the data correlation problem to fit
The term �0 � 1 is defined as the output if no intersectionswithin the framework of fuzzy measure theory. Furthermore,
are valid. The defuzzified output residual that is subsequentlythis treatment of data as fuzzy sets can be incorporated in
fed into the Kalman filter update equations becomessonar tracking problems through the multiple-hypothesis fu-

sion architecture to be described later. Here, fuzzy member-
ship functions and traditional statistical methods are used to
represent each crisp event. The primary mechanism is to use
a fuzzy implementation of the extended Kalman filter (EKF)
discussed earlier. This approach provides a powerful method
for data representation through the use of the nonquantita-

rrrk =

mk∑
i=1

fvalid∩similar(µk,i)rrrk,i

β0 +
mk∑
i=1

fvalid∩similar(µk,i)

=

mk∑
i=1

βk,irrrk,i

mk∑
i=1

βk,i

tive and unpredictable character of sensor measurements.
where �k,i is a weighting function based on the fuzzy intersec-In an environment in which clutter exists, to reduce the
tion of the ‘‘similar’’ and the ‘‘valid’’ membership function.effects of the clutter measurements without losing the infor-

mation contained in the true measurements from the target,
a weighting scheme for the measurements that uses fuzzy Processing Fuzzy Measurements. A fuzzy extended Kalman
logic has been developed by Priebe and Jones (35). The fuzzy filter (EKF) is an extension to the standard EKF in which a
filter defined in Ref. 35 uses only the distance information for set of fuzzy rules and models are used. We discuss two fuzzy
the fuzzy membership. However, the technique is derived on EKF algorithms. The first algorithm incorporates only fuzzy
the basis of general rules, and not rules specifically related to measurements. During the processing of the state estimates,
this distance measure. To incorporate more rules, we can sim- the algorithm defuzzifies the measurement information and
ply incorporate them with existing rules via fuzzy logic. computes a crisp state estimate. The second algorithm per-

We define the Mahalanobis distance for each observation mits all variables to be fuzzy numbers. The resulting state
as estimate vector comprises fuzzy numbers.

Using Fuzzy Measurements in the Extended Kalman Filter. Aµk,i = rrrT
k,i(RRRk + HPHHPHHPHT )−1rrrk,i

general way to admit a fuzzy set in the place of the measure-
where rk,i is the residual from sensor i. This distance serves ment vector over a general class of estimation procedures is
as the universe of discourse for the fuzzy predicate. For exam- introduced in what follows. This technique, first proposed by
ple, the fuzzy predicate ‘‘similar’’ is defined as Watkins (36), provides reasonable answers for situations in

which the actual measurement is rendered ambiguous. The
basic premise of this work is to incorporate a fuzzy member-fsimilar(µk,i) = e−µk,i /2

ship function and the concept of a fuzzy estimator into the
Kalman filter.A ‘‘valid’’ membership function is created to reduce the com-

putational requirements; the membership function is defined Given a new measurement z, an estimator maps the mea-
surement data to an estimate. Also, we assume that a suit-as
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able fuzzy membership function madj(z) has been defined a pri- Step 2. Compute the mean value of the fuzzy conclusion
membership function. This step is the first moment dis-ori for the measurement type. The fuzzy set madj is said to be

informative if the relation cussed in Result 3 here.
Step 3. The moment computed in Step 2 is the crisp value

to be applied to the EKF. From this point, apply the
standard EKF algorithm.

0 <

∫
madj(z)dz < ∞ (7)

holds where the integral is taken over �n for the n-vector z. A Fuzzy Extended Kalman Filter. In a recent paper, Hong
For an informative membership function, we define the es- and Wang (38) presented a technique that allows fuzziness to

timator x, using the normalized membership function as a propagate throughout the extended Kalman filter. They be-
weighting function, as lieve that, because the measurements are fuzzy, the state will

be fuzzy, as will the measurement’s noise covariance. This
fuzziness then propagates throughout the computed esti-
mates of the EKF.

To evaluate the equations involved with the Kalman filter,
it is necessary to avoid the problem that occurs after multiple

E(x) =

∫
x(z)madj(z)dz∫

madj(z) dz
(8)

fuzzy arithmetic operations, in which the fuzziness of the
Equation (8), which averages the estimates against the given data will continue to grow into an unacceptable range. The
fuzzy set, becomes our estimate. Although the EKF estimator following implementation is suggested to avoid this problem.
is commonly used, the estimator x can be any desired estima-

Step 1. Defuzzify the measurement noise covariance R*tor. Because it is normalized with respect to the membership
and the error covariance P*.function, Eq. (8) is a moment generating function. The follow-

ing two results provide a basis for the fuzzy estimator in Wat- Step 2. Compute the Kalman gain K by
kins (8).

Result 1. Given an informative fuzzy set madj and an esti-
KKK1∗

k = PPP∗HHHT(RRR + HPHPHP∗HHHT )−1

KKK2∗
k = PHPHPHT(RRR∗ + HPHHPHHPHT )−1

mator x that has a finite first moment with respect to
madj, Eq. (8) estimates the same quantity as does x. and then take the intersection of K1* and K2*.
Moreover, this estimate is optimal in the sense of aver- Step 3. Defuzzify the Kalman gain K*, the measurement
age squared-error with respect to madj. z*, and the state estimate x*.

Result 2. The estimate of Eq. (8) reproduces the original Step 4. Update the state estimate by computing
estimator x evaluated at z when the input data is crisp,
and when the point z is the ‘‘limit’’ of a sequence of
membership functions that converge to atomic measure
at z.

xxx1∗ = xxx∗
k|k−1 + KKK(z − h(xxx∗

k|k−1))

xxx2∗ = xxxk|k−1 + KKK∗(z − h(xxxk|k−1))

xxx3∗ = xxxk|k−1 + KKK(z∗ − h(xxxk|k−1))

With Eq. (8) and Results 1 and 2, we can now proceed to
and then take the intersection of x1*,,x2*, and x3*.develop the results to apply fuzzy measurements to an EKF.

Step 5. Update the error covariance by computingThe linearity of the Kalman filter with respect to the mea-
surement trivializes the implementation of the EKF to handle
fuzzy data as shown in the following results. PPP1∗ = PPP∗

k|k−1 − KHPKHPKHP∗
k|k−1

PPP2∗ = PPP∗
k|k−1 − KKK∗HPHPHPk|k−1

Result 3. Let madj be an informative fuzzy set and x(z) be
and then take the intersection of P1* and P2*.an update algorithm integrable with respect to madj.

Then, if x(z) is a matrix-linear function of the vector Step 6. Defuzzify the updated error covariance, the process
input z, the estimator defined by Eq. (8) is just the given noise covariance Q*, and the updated state estimation
function applied to the first moment vector mom1(madj) xk�k.
of madj. Step 7. Compute the error covariance prediction by com-

puting
In order for the EKF routine described in the preceding

paragraphs to be implemented, a set of both antecedent mem-
bership functions and consequence membership functions

PPP1∗ = 
PPP∗
k|k


T + QQQ

PPP2∗ = 
PPPk|k

T + QQQ∗

must exist for the sensor measurement. Examples of these
membership functions used in sonar and ground tracking are

and then take the intersection of P1* and P2*.given in Lobbia (37). The resulting implementation for the
Step 8. Compute the state estimation prediction asfuzzy EKF is achieved in the following three steps.

x*k�1�k � �(x*k�k), and return to Step 1.

Step 1. Apply the fuzzy inference. By using the knowledge
Neural Network Algorithms

about the premise of the fuzzy measurement and the
consequence membership function, we create the new A commonly occurring situation in sonar tracking is that the

dynamics of the target change or become unknown. Therefore,membership function of the fuzzy conclusion.
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the model representations used in the tracking system must Similarly, we incorporate the ANN into the covariance predic-
tion. We rewrite the error covariance prediction Pk�1�k asbe adaptively adjusted. In recent work, Lobbia and Stubberud

(39) have developed an adaptive state estimator that is an
EKF augmented by an artificial neural network (ANN). This
method was developed for use with control systems where the
dynamics of the system were not completely known. The

PPPk+1|k =
�


̃ + ∂g(xxxk|k,wwwk|k)

∂xxxk|k

�
k|k

PPP

�

̃ + ∂g(xxxk|k,wwwk|k)

∂xxxk|k

�T

+ QQQk

(16)
known dynamics were used by the EKF as its dynamical
model, while the ANN learned the unmmodeled dynamics of where x is the augmented state vector of Eq. (15) and
the system. Thus, the neural network-based EKF’s overall dy-
namical system approached that of the true plant. This tech-
nique can also be applied to learn the maneuver motion model
from the sensor measurements. A detailed development of


̃ =
[

 0
0 IIIw

]

this technique can be found in Refs. 39–41. A summary of
where the Jacobian of our a priori model � is defined bythis development is presented here. The general discrete-time

model that is applied to the EKF tracking algorithm is given
in Table 1.

The motion model of the target �k(xk) is usually not a fully

ij = ∂
k(xxx)i

∂xxx j

∣∣∣∣∣
xxx=xxxk|k−1known quantity, especially during a maneuver. Also, it is not

known when the target starts to implement a maneuver. For
The terms of the other EKF equations are augmented to han-these reasons there is an error function between the true tra-
dle the dimensionality increase resulting from the addition ofjectory of the target �k( � ) and the mathematical model was
the ANN weights into the state estimation vector. The pri-developed to approximate that trajectory �̂k( � ) given by
mary change is the augmentation of the Jacobian H with
zeroes, so as not to affect directly the estimated output withxxxk+1 = ϕ(xxxk) + νk (9)
the ANN weights.

As Eq. (16) shows, the new EKF is of significantly largerzzzk = h(xxxk) + ηk (10)
dimension than the standard EKF because of the weight

εk = φk(xxxk) − φk(xxxk) (11)
training. This increased complexity can reduce run-time effi-
ciency. However, with efficient programming techniques, we

Obviously, the smaller the error, the better will be the tracks can reduce the computational complexity of the routines. The
from the EKF. algorithm also has the advantage of being simply a larger

Using a simple multilayer feedforward ANN gk(xk, wk), EKF. Thus, we can incorporate the fuzzy capabilities into the
where xk is the track estimate and wk is the set of weights of algorithm with relatively minimal work. One other problem
the ANN as a function approximator, we can estimate �k. Un- can exist with this technique. The size of the ANN can affect
fortunately, the weights are a set of unknown quantities that convergence. If the ANN is too small, it may not have the
must be identified. To train the weights for the ANN, we use capability to learn the modeling error. If the ANN is too large,
a variation of the EKF training paradigm of Singhal and Wu the training can become too slow for useful implementation.
(42). We will not reconstruct their results here but, simply A feasible implementation of the neural network-based ex-
stated, we construct an EKF to estimate the states of the dy- tended Kalman filter is given in Ref. 39.
namical system

SENSOR MANAGEMENT IN FUSION SYSTEMSwwwk+1 = wwwk (12)

Efficient management of sensor resources in a dynamic envi-with the residual
ronment requires optimized coordination of the actions of the
controllable sensor system assets available to the platform. Inεk − gk(xxxk, ŵwwk) (13)
sonar applications, both passive and active assets need to be
managed. Passive sensor management involves optimal useThe resulting states of the EKF become the weights of the
of the information content of reports for data fusion and con-ANN. By integrating our ANN into the a priori mathematical
trol of the operational and processing environment in whichmodel, we let our total model become the sum of the approxi-
they operate. For active sensors, the management functionmate model �̂k(xk) and our ANN approximation gk(xk, wk) is
requires control of the actions of the sensor to focus its atten-given by
tion in desired surveillance space and correct operating condi-
tions. Among the information collection functions of the sur-xxxk+1 = φ̂k(xxxk) + gk(xxxk,wwwk) (14)
veillance process are those that use the sensors to search a
desired area for targets, detect and acquire targets, and trackHowever, note that Eq. (14) is dependent on the weight esti-
acquired targets. In the search mode, the sensor systems aremates of wk. Therefore, we must include the ANN and its
given a vague description of the target states; the controlledtraining in the EKF algorithm, thus redefining the estimated-
sensor systems have not detected the target yet, and the sen-state prediction as
sor controls are generated by the sensor management process
using the ‘‘null’’ information to optimize the actions of the
sensor system. The ‘‘null’’ information is given to the sensor
management process in the form of a report that states that

xxx =
[

xxxk+1|k
wwwk+1|k

]
=

[
φ̂k(xxxk|k) + gk(xxxk|k)

wwwk|k

]
(15)
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the execution of the control actions dictated by the process detections reported by the �th sensor over the interval
[0, t]. Some types of sensors also provide additional in-resulted in a failure to detect a signal. The detection mode is

used to transition the control actions from the search mode to formation about the target when a detection is made.
Let z�(t) denote the measurement generated by the �ththe track mode. In the track mode, the sensor systems gener-

ate positive reports in the form of measurements that are sensor when it detects a target; N(t) and z(t) will be the
composite information in the form of vector processes.functionally related to the state of the system.

The objectives of the control function are different in the 2. A negative report at time t is one in which no detections
search and track modes. In the search mode, the control pro- are recorded by the �th sensor over the interval [0, t],
cess strives to optimize sensor configurations to obtain a first i.e., N�(t) � 0. Therefore, there is no z�(t) associated in
detection. In the track mode, it continually tries to optimize this case. For the purpose of analysis, the information
the sensor configuration to avoid a first missed detection. It,t0

used in computing the a posteriori transition proba-
Therefore, ideally the system desires to minimize the time of bility density function p(x(t), t�x(t0), t0, It,t0

) is equiva-
first detection or to maximize the time for first failure to de- lently described by the sub-�-field Gt

t0
generated by

tect a tracked target. Because of a lack of suitable computa- N(t) and z(t) over the interval [t0, t]. For notational con-
tional structures for these times, other suitably formulated venience, when t0 � 0 we denote Gt

t0
simply by Gt.

and tractable measures of performance are used by the con-
trol process in obtaining sensor control strategies. In the The two important questions of concern are:
search mode, the detection probability is one such measure.
In the track mode, estimation accuracies are used as a mea- 1. Given all the information It,t0

, what is the optimal sensor
sure of performance. assignment policy, Y*t � �Y*(�), t � � � t�, and

2. Given It,t0
, and a sensor assignment Yt, what is the best

estimate x̂(t) of the target state x(t)?MATHEMATICAL FORMULATION AND REPRESENTATIONS
FOR THE SENSOR MANAGEMENT FUNCTION

To consider further the issues stated in the foregoing text
requires suitable measures of performance. For the sensor as-The general approach for deriving sensor control strategies
signment problem, a suitable selection criterion is the resul-consists of the following steps:
tant detection probability PD(Yt). For the state estimation
problem, the widely used performance measure is the error1. Optimal processing of information gathered by sensors,
covariance associated with the estimate x̂(t). Under certainto compute statistics that can be used by control algo-
conditions, maximization of PD(Yt) is equivalent to minimiza-rithms
tion of the error covariance (43).2. Optimal processing of the preceding statistics to com-

The first problem to address is a stochastic control prob-pute search strategies that are used to reconfigure the
lem. The sensor assignment can be affected by construction ofsensor system operation
optimal control policies U*t � �u*(�), t0 � � � ��, where the

3. Reconfiguration of the sensor system using the preced- state y�(t) of the �th sensor is controlled via the dynamics
ing sensor strategies

dyyyα (t) = aα (yyyα, uα, t) dt + dnnnα (t) (18)
In subsequent paragraphs, these steps are described in more
detail. where dn�(t) describes the noise process. To be able to solve

this problem, we must first determine the transition density
Evolution of Surveillance State and Its Probability Density p(x(t), y�(t), t�x(t0), t0, It,t0

, t0, Ut). This computation, in turn,
requires knowledge of the density p(x(t), t�x(t0), t0, It,t0

, t0, Yt).The fundamental quantity that underlies this investigation is
The solution to the second problem is well known. Thethe a posteriori transition density for the state of the target

minimum variance estimate x̂(t) is given bysystem given all the information up to the current time. A
brief discussion of the effects of information on the transition
probability density function and rules for its evolution are x̂xx(t) = E{xxx(t)|It,t0

,Yt } (19)

given in what follows.
Therefore, computation of x̂(t) also requires the knowledge ofLet x(t) denote the state of a target. The dynamics of such
the density p(x(t), t�x(t0), t0, It,t0

, Yt). The result that followsa target can be adequately described by a suitable stochastic
gives the rules of evolution for the a posteriori transition prob-differential equation
ability density function as already stated here. The derivation
permits use of the reports from multiple sensors. The ap-dx(t) = φ(xxx(t), t) dt + g(xxx(t), t) dβ(t) (17)
proach also incorporates effects of ‘‘positive’’ information in
the same framework. Furthermore, the approach presentedwhere �(t) is an independent increment process defining the
here will be able to accommodate joint search/detection/esti-noise. Let It,t0

denote all the information available at time t.
mation schemes. Finally, multitarget/multisensor systemsThis information is collected by many sensors in the system.
can also be considered under this formulation. These resultsLet y�(t) denote the state of the �th sensor. This sensor gener-
are stated without proofs.ates two types of reports:

Two types of measurements are considered. The continu-
ous measurement is given by1. A positive report is given when the sensor detects the

target. Over the time interval [0, t] a sensor may detect
dz(t) = h(xxx(t), t) dt + dωωω(t) (20)the target several times; N�(t) denotes the number of
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where w(t) is a Wiener process. The second class of measure- Pure Search Strategies
ments used here is jump processes. The number of detections

First consider the ‘‘pure’’ search case. There are M sensors
N(t) will be defined as a jump process with Poisson statistics.

surveying the area. During the time interval [t, t � �t], the
The following theorem gives the equations for the temporal

�th searcher counts the number of detections dN�(t). The
evolution of the transition probability density function for the

probability that the �th searcher detects the source during
state x(t) without the use of information It,t0

(43).
[t, t � �t] is given by �*� (x(t), y�(t))�t, where x(t) is the state
of the source and y�(t) is the state of the �th sensor at time

Theorem: Let x(t) be a Markov process generated by t. Let

dxxx(t) = f (xxx, t) dt + dβw + dβN (21)

Let p � p(x(t), t�x0, t0) denote the transition probability den-
sity function for process x(t). Then p satisfies the partial dif-

λ∗(xxx(t),yyy(t)) =




λ∗
1(xxx, y1)

...
λ∗

M(xxx, yM )


 (26)

ferential equation

where y(t) is the vector representing the state of all sensors.
Let dN(t) denote the composite report from all searchers

∂ p
∂t

= L+(p) (22)
defined

where

dNNN(t) �




dN1(t)
...

dNM (t)


 (27)

L+(·) = −
n∑

i=1

∂

∂xi
( fi·) + 1

2

n∑
i=1

n∑
j=1

QQQij
∂2(·)
∂xi∂x

+
n∑

i=1

λi[pai
∗·−·]

(23)
Assuming that the searchers are efficiently deployed, the
probability that two sensors will detect the source simultane-
ously in an interval �t is infinitesimal and will be ignored.In the preceding equations, Qij is the covariance matrix as-
Thus, possible outcomes for dN(t) aresociated with the Wiener process �w(t) and � is the rate pa-

rameter associated with the generalized Poisson jump pro-
cess �N(t), 1. dN(t) � 0, in which no detections are reported

2. dN(t) � e�, in which the �th sensor reports a detection,
and all others report no detections

βN (t) =
x(t)∑
i=1

aiU (t) (24)

Theorem: Evolution of density under ‘‘pure’’ search by mul-
tiple sensors.with U(t) the unit step function. Also,

Let x(t) be the vector Markov process defined in Eq. (21)
describing the behavior of the signal source. Let the measure-
ment process consist of unit jump process defined by Eq. (27)
and with statistics defined by the rate parameter �*(x(t),

pai
∗ p =

∫
pai

(ui − vi)p(u1, u2, . . ., vi, . . ., un, t|x(t0), t0) dvi

(25)
y(t)) in Eq. (26). Under the assumption that only one sensor
detects the source at any given time, the density p � p(x,where pai

(a) denotes the density for the random variable ai.
t�x0, t0, Gt

t0
) satisfies (Snyder’s equation)Equation (23) can be solved analytically for only very spe-

cialized cases. Therefore, numerical evaluation of p(x, t�x0, t0)
will be necessary in using these equations in practice.

The next quantity of interest in the conditional density
that describes how the information It,t0

affects the evolution of

∂ p
∂t

= L+(p) +
M∑

α=1

(λ∗
α − E{λ∗

α})(E{λ∗
α})−1

�dNα(t)
dt

− E{λ∗
α}
�

p

(28)
the transition density. The preceding unnumbered theorem is
to be used to determine the equations for the temporal evolu- where �*� � �*� (x(t), y�(t)) and the expectation E��*� (x(t), y�(t))�tion of p(x, t�Gt0

) for the following two cases: is with respect to the density p(x(t)�Gt
t0
). The operator L�( � )

was defined in Eq. (23).
1. The measurements are given by dN(t) alone with no ac-

companying continuous measurements. Search Under Negative Information
2. The measurements are given by dN(t) and dz(t) at

An important case of interest is one in which no sensor de-time t.
tects the source over the time interval [t0, t0 � T]. In this
case, dN(t) � 0 for t � [t0,, t0 � T] and the conditional density

The first case corresponds to a pure search policy in which evolves according to
the sensors register detections only without being able to ob-
tain further information about the state x(t). The second case
is a more general surveillance policy in which the sensors not
only perform the search but also are capable of providing
tracking information.

∂ p0

∂t
= L+(p0) −

M∑
α=1

[λ∗
α(xxx(t),yyyα (t)) − E{λ∗

α(x(t),yyyα (t))}]p0

(29)
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This equation is the partial integrodifferential equation that The conditional mean x̂(t) is defined by
describes the evolution of the transition density of the state
of the source when M sensors are searching and have failed
to detect the target.

x̂xx(t) =
∫

�n
xxx(t)p(x(t)|Gt

t0
) dxxx (30)

The solution to the preceding partial differential equation,
By integrating Eq. (30) with respect to Eq. (28), the behaviorp(x(t)�Gt

t0
, Yt), gives us the fundamental quantity of interest to

of x̂(t) is given bythe fusion and sensor management problems. From an overall
systems point of view, the fusion center uses the a posteriori
density p(x(t)�Gt

t0
, Yt) in many different ways:

1. The optimal sensor control strategies U*t � �u*(�), t0 �
� � t� are computed to maximize the probability of de-

dxxx∗

dt
= φ(xxx∗, t) +

M∑
α=1

PPP∗(t)DDDT (xxx∗, t)eα (λ∗T eα )−1

�dN(t)
dt

− λα(xxx∗,yyyα )

�T

eα

(31)

tection that depends both on xt � �x(�), t0 � � � t�
and Yt. where e� is the �th coordinate direction in �n, P*(t) is the

2. The time evolution of the optimal estimates x̂(t) of the first-order approximation to the covariance matrix, and
target state x(t) and the associated error covariance ma- D(x*, t) is the Jacobian matrix for �(x, y) with respect to x
trix P(t) are obtained by integrating with respect to the evaluated at x*(t). The evolution of P*(t) is given by
partial differential equation (29).

3. When a positive report is generated at tk, Bayes’ rule is
used to incorporate this information into the fusion pro-
cess.

4. When classification information is given to the fusion

dPPP∗(t)
dt

= BBB(xxx∗, t) +
M∑

α=1

PPP∗(t)HHHα (xxx∗t)PPP∗(t)eT
α

dN(t)
dt

−
M∑

α=1

PPP∗(t)EEEα(xxx∗, t)P∗(t)

(32)

center via cued transformations, it is correlated and
used to improve the estimates generated above.

where B(x*, t) � A(x*, t)P*(t) � P*(t)AT(x*, t) � Q(t), A(x*,
5. The differential equations in Eq. (18) here are similar t) is the Jacobian matrix for �(x, t), E�(x, t) is the Hessian for

to Kalman-Bucy filter equations and can be conve- ��(x, t) and H�(x, t) is the Hessian for ln[��(x, t)].
niently used in multitarget situations. The important case, in which there are no detections in a

given interval, is much easier to solve. Equations for this case
Numerical techniques to solve the nonlinear partial differ- are obtained by setting dN(t)/dt � 0 over the interval [tk,

ential equation in Eq. (29) are not readily available and need tk�1], where tk denotes the sequence of arrival times for the
to be investigated. Promising approaches are discussed here detections. At tk, where a detection is reported, the density is
that provide procedures that are computationally economical, updated using Bayes’ rule. Although this approach seems
albeit approximate to the second order. First, the differential computationally complex, the differential equations to be
equations for the mean and covariance are given under the solved for x*0 (t) and P*0 (t) (i.e., no detection case) are quite
assumption that the density vanishes rapidly as we approach similar to the continuous time Kalman filtering equations,
infinity. Solutions to these equations give the all-important and solutions are computationally feasible. The algorithm is
conditional mean estimate x̂(t) � E�x(t)�Gt

t0
� and its error co- described in what follows.

variance matrix. We assume that these two statistics define Let tk be the sequence of times at which detections are re-
with sufficient accuracy the a posteriori density as a nearly ported by any one of the sensors. For notational simplicity,
Gaussian density. For further considerations, the Gaussian denote Gk �

�
Gtkt0

and
form of density is used to derive sensor control strategies.

p(xxxk|Gk) � p(xxx(tk)|Gtk
t0

)
Joint Search and Track: The Surveillance Policy

Assume that at time tk�1 the fusion center has computedThe a posteriori density functions in Eq. (28) can be feasibly
p(xk�1�Gk�1). Also, during the interval [tk�1, tk] some of the sen-computed for the case in which no positive reports were made
sors detect the source. Let Nk be the index set for sensors thatby the sensors (i.e., dN(t) � 0). Although the equations are
did not report detections. The following procedure provides avalid for situations in which detections are reported by sen-
general technique for computing p(xk�Gk) using p(xk�1�Gk�1)sors (i.e., dN(t) � 0), their implementation is not computa-
and the information provided by the sensors during [tk�1, tk].tionally feasible. In the paragraphs that follow, we outline a
Denote by Gk the information provided by negative reportssimplified scheme for enfolding information provided by the
from sensors in the index set Nk.sensors reporting a detection. Two approaches are possible to

obtain computationally feasible approximations for the first
Step 0. Initialize p(x0�G0) using a priori information aboutand second moments of p(x(t)�Gt

t0
). The first approach analyti-

the target.cally integrates the partial differential equation. The second
approach uses Bayes’ rule to compute the conditional density

For k � 1, 2, . . .,at discrete time points at which detections are available. The
resulting equations provide a technique to compute x̂(tk) and

Step 1. Using Eq. (31), compute p0(xk�Gk) using p(xk�1�Gk�1)p(tk) in a recursive manner.
as the initial density.The conditional density p(x(t)�Gt

t0
) for the state of the target

under surveillance then evolves according to Eq. (28). Step 2. Compute p(xk�Gk) using Bayes’ rule and p(xk�Gk).
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In the preceding algorithm, Step 1 uses either the solution probability mass for the location density peaks in the surveil-
lance region around that cell. If the sensor scans the cell andto the partial differential equation (31) or the recursive for-

mulation of the representation for p(xk�Gk) given in Eq. (29). reports no detection, then the probability mass around that
cell depletes and the mass is spread throughout the remain-An alternative approach for computing p(xk�Gk) is to deter-

mine x̂k(Gk) and Pk(Gk) using differential equations (31) and der of the surveillance region. This contraction and spreading
of the probability mass is reflected in the average entropy of(32) and an approximate Gaussian form
the probability distribution after a report. As this distribution
starts peaking in a particular area, the entropy of the distri-p(xxxk|Gk) = N(xxxk|x̂xxk(Gk),PPPk(Gk))

bution decreases. As the probability distribution spreads, the
average entropy is increased. This effect of detection perfor-For computations in Step 2, two distinct cases must be consid-
mance on the entropy is intuitively appealing. Because theered. To simplify the analysis, assume that only one sensor
target is dynamic, if a detection is not made it gives the target(�th) reports a positive detection (Dk � 1) during [tk�1, tk].
time to move around in the surveillance region and, thus, in-Then, one of two things can result:
creases uncertainty. On the other hand, a detection in a par-
ticular cell localizes the target and reduces uncertainty.1. The �th sensor does not provide any further informa-

The optimization process involves three steps:tion about the source and Gk � (Gk, Dk � 1).
2. The �th sensor provides a measurement zk at time tk.

1. Computation of the posterior density after a reportAssume that this measurement has the form zk �
2. Computation of the average entropy of the posteriorhk(xk, yk) � vk. In this case,

density
3. Assignment of the sensor to a cell in the surveillanceGk = (Gk, Dk = 1,zzzk) (33)

region
In both cases, Bayes’ rule is applied to compute p(xk�Gk)

from p(xk�Gk). The methods discussed in the text provide the means to
Having computed the effects of a sensor report on the loca- accomplish Step 1. Step 3 is trivially accomplished once the

tion density of a signal source, the next step is to use this average entropy of the posterior density function is computed.
information for efficiently assigning several sensors. A recursive control policy for this case and computational re-

sults are given in Ref. 43.
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