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SONAR TARGET RECOGNITION

Sonar target recognition deals with identifying the source and
nature of sounds by employing various signal-processing
strategies. Target recognition includes detection (knowing
something is out there), classification (knowing whether or
not it is a target of interest), and identification (knowing the
type of target). Sonar targets, such as submarines, surface
ships, autonomous underwater vehicles, mines, and intrud-
ers, may be quiet or emit various sounds that can be exploited
for passive sonar target recognition.

There are passive and active modes of sonar target recog-
nition. In passive sonar operation, typical sound emissions ex-
ploited for target recognition are as follows (1):

1. Transients. Unintentional (dropping a tool, hull pop-
ping from a depth change, periscope cavity resonances,
etc.) and intentional (low-probability-of-intercept sig-
nals for navigation and communication) signals with
short time duration and wideband characteristics

2. Machinery Noise. Noise caused by the ship’s machinery
(propulsion and auxiliary)

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



684 SONAR TARGET RECOGNITION

3. Propeller Noise. Cavitation at or near the propeller and The main objective of sonar automatic target recognition
(ATR) is information management for sonar operators. Unfor-propeller-induced resonances over the external hull
tunately, sonar ATR is confronted with many challenges in4. Hydrodynamic Noise. Radiated flow noise, resonance
these situations. Active target echoes must compete with re-excitation, and cavitation noise caused by the irregular
verberation, clutter (any threshold-crossing detection clusterflow of water past the moving vessel
from nontarget events), and background ambient noise while
passive signals must be detected in the presence of interfering

While transients occur infrequently, the latter three types sources encompassing biologics, background noise, and ship-
exist continuously. They collectively give rise to line-compo- ping traffic. Furthermore, environmental variation in shallow
nent (i.e., sinusoidal) and continuous spectra, which are water can alter signal structures drastically, thus degrading
known as passive narrowband (PNB) and passive broadband target-recognition performance. These challenges must be
(PBB), respectively. Passive sonar processors perform signal overcome through a synergistic combination of beam forming,
processing on raw data generated by a number of passive so- signal processing, image processing, detection, situationally
nar arrays mounted throughout the vessel, present both audio adaptive classification, tracking, and multisensor fusion.
and video channels to sonar operators, and generate contact Sonar ATR is an interdisciplinary field that requires di-
reports by comparing extracted signature parameters or fea- verse knowledge in acoustics, propagation, digital signal pro-
tures—harmonic lines characteristic of propeller types, tran- cessing, stochastic processes, image understanding, hardware
sient characteristics, cavitation noise properties, and so on— and software tradeoffs, and human psychology. The foremost
with templates stored in the passive sonar database. Sonar task here is to convert a large amount of raw data from multi-
operators listen to audio channels and watch displays before ple sensors into useful knowledge for situational awareness
validating or correcting the processor-generated contact re- and human decision making. The challenge is to design a ro-

bust system that provides a high probability of correct recog-ports.
nition (PCR) at low false-alarm rates (PFA) in complex and non-The second mode of sonar operation is active. Active sonar
stationary environments.can be used to ensonify quiet targets. Echo patterns can give

To design an effective sonar target-recognition system, weconsiderable insights into target structures, which can be use-
must explore a number of algorithms in the areas of signalful for active target detection and classification. For instance,
projection or filtering, interference suppression, feature ex-low-frequency sonars penetrate the body of the vessel, elic-
traction, feature optimization, and pattern classification (4).iting echoes caused by both specular reflection and the sound
The five crucial components of sonar target recognition arewaves interacting with discontinuities in the body (2). High-
the following.frequency sonars are commonly used to image an unknown

target after being cued by other long-range sensors. Mid-
1. Signal sorting in various spaces, such as time, fre-frequency sonars are used in tactical situations for target rec-

quency, geometric space, and transformation spaceognition by taking advantage of both specular echo patterns
and moving target indication (MTI) based on Doppler after 2. Signal processing that takes advantage of the underly-
reverberation suppression (3). The operational concept of ac- ing physical mechanism by which target signatures are

generatedtive sonar is very similar to that of radar. Active sonar pro-
cessors perform beam forming, replica correlation, normaliza- 3. Compact representation of signal attributes (features)
tion, detection, localization, ping-to-ping tracking, and display 4. Design of a classifier that takes advantage of the under-
formatting. Sonar operators differentiate underwater targets lying good-feature distribution
from background clutter using echo returns. 5. Performance quantification in terms of operationally

Since the end of the Cold War, there has been a prolifera- meaningful criteria
tion of regional conflicts in which the US Navy must project
power in littoral waters in order to maintain peace. This para- In short, the key to achieving excellent target-recognition per-
digm shift has forced the US Navy to focus on shallow-water formance is an integrated and systematic approach that
sonar processing. The shallow-water environment is charac- spans the entire spectrum of sonar processing in a mutually
terized in general by (1) a high level of the ambient noise, (2) reinforcing manner.
complex propagation or multipath, and (3) a lot of clutter from In this context, we introduce an integrated sonar ATR par-
merchant ships, marine biologics, and complex bottom topog- adigm that addresses the five components effectively as
raphy. Furthermore, new quieter threats, such as diesel-elec- shown in Fig. 1. Data projection deals with representing sig-
tric submarines, are a major challenge to passive sonar target nals as compactly as possible while preserving crucial signal
detection and recognition especially when coupled with the attributes. Since we do not have the a priori knowledge about
shallow-water environment. As a result, most advanced sonar good features, we initially extract as many pertinent features
processors rely on a combination of active processing and full- as possible. Feature ranking involves finding features that
spectrum passive processing that takes advantage of every add value to target recognition and deleting the ones that do
available signal bandwidth for improved sonar target-recogni- not.
tion performance. The use of an active sonar to compensate Classifiers estimate class-conditional probability density
for poor passive detection performance of quieter threats in functions (pdfs) to map input features onto an output decision
shallow water, however, can pose problems because of too space. It is essential that this mapping algorithm be devoid
many echo returns unless automatic detection and recogni- of model-mismatch errors to achieve upper bounds in classifi-
tion algorithms reduce the number of returns to a manage- cation performance. The performance upper bounds in classi-

fication are conceptually similar to the Cramer-Rao lowerable level for sonar operators.
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appropriate projection spaces in which signal attributes
can be better captured and be less sensitive to extraneous
variables, such as interference and environmental noise.

Figure 1. The integrated ATR paradigm combines signal filtering, feature optimization, and
classification to achieve maximum sonar target-recognition performance.

bounds (CRLBs) in parameter estimation (5). Model-mis- INTEGRATED SONAR ATR PROCESSING
match errors can occur if the classifier structure does not
model the underlying good-feature pdf adequately. The CRLB In this section, we introduce the integrated sonar ATR pro-

cessing and explain the role of each processing block withinconcept allows us to assess whether poor performance is at-
tributable to sensor limitation (sensors not providing enough the system’s context. Figure 2 depicts a general sonar-pro-

cessing flowchart.useful information) or algorithm limitation (algorithms not
capturing all the useful information in data). Joint time-space processing sorts multiple signals as a

function of time of arrival (TOA), direction of arrival (DOA),This article is organized as follows. We first study how var-
ious aspects of signal transformation, signal classification, and spectral band. That is, any separation in TOA, DOA, or

frequency will be sufficient for signal deinterleaving. Beamand data compression can be combined in order to extract the
maximum amount of useful information present in sensor forming handles DOA sorting while wideband pulses are used

for TOA sorting in active sonar. Each separated signal willdata. Next, we apply sonar target-recognition theories to chal-
lenging real-world problems—active sonar classification and then be projected to appropriate transformation spaces. The

main purposes of signal projection are data compression andpassive full-spectrum processing for transient signal classifi-
cation. Finally, we explore new, advanced concepts in sonar energy compaction.

For example, a continuous wave (CW) time-domain signaltarget recognition. Throughout this article, our focus is on the
general framework of sonar target recognition so that the can be projected onto the frequency domain by the Fourier

transform. This signal-projection operation yields two relatedreaders can appreciate the big picture on how sonar targets
are recognized. benefits: compression of the entire time-domain data into one
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frequency bin and signal-to-noise ratio (SNR) improvement by Now, we discuss signal projection, feature optimization, and
target recognition thoroughly.a factor of 10 log NFFT, where NFFT is the size of the fast Fou-

rier transform (FFT). Not only does signal projection improve
the probability of discriminating multiple sinusoids by virtue Signal Projection and Feature Extraction
of data compression, but it enhances the algorithm robustness

The main objective of signal projection is low-dimensional sig-in parameter estimation thanks to the SNR gain. The key
nal characterization, which naturally leads to subspace filter-concept here is that multiple projection spaces be investigated
ing. Figure 3 illustrates the basic concept of signal projection.as a function of signal characteristics to obtain orthogonal,
Let y � f (x), where x and y represent raw and projected data,mutually reinforcing information for improved detection and
respectively. The f ( � ) is a projection operator that transformsclassification.
x and y in order to compactly represent x in y. The behaviorIn general, most traditional detectors, such as a replica
of x is governed by the probability law derived from its compo-correlator or an m-out-of-n detector (m detections in n oppor-
nents: target and clutter. That is, the probability law consiststunities, where M � N constitutes detection), rely on a single
of two conditional pdfs, P(x�target) and P(x�clutter). In gen-parameter—integrated energy after constant-false-alarm-
eral, the overlap between the two class-conditional pdfs israte (CFAR) processing—for detection (6). This approach is
quite high, rendering target recognition difficult in x.acceptable as long as the number of false returns that exceeds

Signal projection alleviates this problem by projecting xthe detection threshold remains reasonable. Unfortunately,
onto y in which both target and clutter components are cap-the number of false alarms can be rather significant in today’s
tured with a much smaller set of parameters (dimension re-operating environments.
duction or energy compaction) (5). More important, capturingInstead of relying on the amplitude feature alone, we ex-
target and clutter components in a reduced dimension im-tract and fuse multiple signal attributes using a classifier.
proves the probability of separating target and clutter in y—ATR can be performed in sequential steps, borrowing from
subspace filtering. Therefore, the criteria for selection of pro-the divide-and-conquer paradigm. In Fig. 2, we first perform
jection algorithms are the amount of energy compaction andtarget-versus-nontarget discrimination, followed by target
the extent to which various signals can be separated.identification. The latter processing itself can be broken into

We present two examples to illustrate the effectiveness ofhierarchical steps depending on the complexity of target types
signal-specific data projection. In adaptive interference sup-(7). Furthermore, both static and dynamic features, coupled
pression, the interference component can be modeled more ef-with integration of frame-based classification scores, can be

used to improve the confidence level of target identification. ficiently in the projected vector space spanned by y. After in-

Figure 2. For high-performance sonar target rec-
ognition, many processing elements—beam form-
ing, signal projection, tracking, and pattern recog-
nition—must work in cooperation within the overall
systems framework. In this article, we focus on the
boldfaced blocks.
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Figure 3. Conceptual framework of signal projec-
tion—dimension reduction and subspace filtering.
In general, dimension reduction occurs when the
number of basis functions in y for representing a
signal is less than that in x. nx and ny refer to noise

Ideally, signal projection or
y = f(x) must achieve both
dimension reduction (Ry<Rx)
and separation of multiple
classes—target and clutter
in this case—to facilitate
automatic target recognition
(ATR).

Target and clutter inseparable in x

Target and clutter separable in y

x = xtarget + xclutter + nx

y = ytarget + yclutter + ny

x̂clutter = f –1( ŷclutter)

x̂target = x – x̂clutter

ŷclutter = yclutter
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x3
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P(yclutter)

P(ytarget)
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in x and y, respectively.

terference modeling, its structure in x can be estimated sion for a CW waveform. Note that PCI was able to recover a
low-Doppler target hidden in reverberation.through reverse transform and coherently subtracted from

the original time-series data as shown in Fig. 3. One such The second example deals with time-frequency representa-
tion of sonar transients. Although the short-time Fourierapproach is the principal component inversion (PCI), where

the interference structure is modeled as a linear combination transform (STFT) is the most widely used time-frequency dis-
tribution function, Ghitza’s ensemble interval histogramof orthogonal basis vectors derived from a Toeplitz data ma-

trix (8). This approach has been applied successfully to rever- (EIH) deserves a special mention here because of the impor-
tance of aural processing in sonar target recognition. EIH isberation suppression for CW, hyperbolic frequency-modulated

(HFM), and linear frequency-modulated (LFM) waveforms. based on an auditory neural model (9) that consists of two
parts: the preauditory part comprising a bank of cochlearFigure 4 shows the results of PCI on reverberation suppres-

Figure 4. PCI estimates the interference structure
using principal components and coherently subtracts
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Figure 5. EIH is an auditory neural model that
provides robust transient signal characterization,
particularly at low SNR. This transient contains a
dual-tone structure, which is preserved better with
EIH than with STFT.
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bandpass filters whose cutoff frequencies are logarithmically Features can be broadly categorized into static and dy-
namic types. For very short events, we can extract static fea-spaced for multispectral analysis and the postauditory part

that performs spectral content estimation via multiple level- tures that characterize the entire event period. For events
with longer durations, it is often advantageous to computecrossing detectors as shown in Fig. 5. Note that EIH captures

the time-frequency characteristics of the transient with a key features at a fixed time interval so that their transition
characteristics over time can be further exploited for signaldual-tone structure more accurately than STFT, particularly

at low SNR. discrimination. It is intuitive that a hybrid classifier that can
accommodate both static and dynamic features usually out-After signal projection, features are extracted from each

projection space. Feature extraction is a process by which sig- performs classifiers that rely exclusively on either static or
dynamic features alone.nal attributes are computed from various projection spaces

and fused in a compact vector format. Good features should
possess the following desirable traits: Feature Optimization

Feature optimization is an integral part of sonar target recog-1. Large interclass mean separation and small intraclass
nition and involves feature normalization and ranking basedvariance
on an appropriate criterion. Normalization is necessary to2. Insensitive to extraneous variables (little dependence
prevent numerical ill-conditioning. Feature ranking can beon SNR)
broadly categorized into two types (4):

3. Computationally inexpensive to measure
4. Uncorrelated with other features 1. Derive M features y � [y1 � � � yM]t from the original N
5. Mathematically definable features (M � N) by applying an M � N linear transfor-

mation matrix A or a nonlinear mapping function g( � )6. Explainable in physical terms
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In general, parametric classifiers make strong assump-
tions regarding the underlying class-conditional pdfs while
nonparametric classifiers estimate class-conditional pdfs from
the available training sonar data. On the other hand, bound-
ary-decision classifiers construct linear or nonlinear bound-
aries that separate multiple classes (targets) according to
some error-minimization criteria. The key concept here is that
some classifiers do better than others for certain feature sets.
Therefore, synergy between a classifier and a good-feature
subset must be maximized whenever possible. For example, if
class-conditional pdfs exhibit unimodal, Gaussian character-
istics, a simple parametric classifier may suffice. In contrast,
if class-conditional pdfs are multimodal and non-Gaussian,
nonparametric classifiers with adaptive vector quantization
would be preferred to parametric classifiers. In essence, a sys-
tem designer must perform judicious trade-offs in the areas
of target-recognition performance and computational require-
ments during training and actual sonar system operations as
a function of the amount of available training data, antici-
pated feature-space perturbation by environmental variation,
and the need for in situ adaptation.

REAL-WORLD EXPERIMENTS

In this section, we apply theories to two challenging, real-
world problems. These examples illustrate how various sig-
nal-processing concepts in echo processing, filtering, and pat-
tern recognition can be integrated to detect the presence of
sonar targets.

Classifiers are nothing but a many-to-one mapping operator
that attempts to estimate the class-conditional-density

functions.
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Figure 6. Classifiers map the vector space spanned by selected fea-
Active Sonar Target Recognitiontures onto a decision dimension.

One of the most difficult challenges in active sonar processing
is differentiating target returns from false returns. In impul-
sive-echo-range (IER) processing, an additional challenge isto the original feature vector x such that
dealing with stochastic impulsive source variability. In order
to resolve range ambiguities, impulsive sources are transmit-y = Ax or y = g(x) (1)
ted at a variable repetition rate in a multistatic environment.
The goal of active sonar target recognition is to remove as2. Rank individual features according to their contribution
much clutter as possible while maintaining an acceptable tar-to the overall recognition performance. This can be fur-
get-recognition performance for an eventual confirmation byther divided into computationally efficient single-di-
sonar operators. In this section, we present an active target-mensional feature ranking, computationally expensive
echo recognition algorithm using an integrated pattern-recog-multidimensional feature ranking, and feature ranking
nition paradigm that spans a wide spectrum of signal andin a compressed feature dimension as a compromise.
image processing—target physics, exploration of projectionThe multidimensional ranking approach is equivalent
spaces, feature optimization, and mapping the decision archi-to a combinatorial problem of finding the best M-feature
tecture to the underlying good-feature distribution (4,10).subset out of the N original features. We will denote

this method as a feature-subset selection approach.
Projection-Space Investigation. In general, selection of a

projection space is domain specific and largely motivated by
Automatic Target Recognition—Mapping Features to Classifiers

inputs from experienced sonar operators and phenomenology.
For example, operators often listen for distinct ‘‘metallic’’The fundamental issue in classifier design is quantifying the

extent to which a classifier captures all the useful information sounds for aural discrimination. This observation implies that
various speech-processing algorithms can be applicable to so-present in input features (training data) while remaining

flexible to potential mismatch between training and test data. nar target recognition. Moreover, energy detector and time-
frequency distribution (TFD) outputs seem to provide a goodIn order to achieve the performance of the optimal Bayes clas-

sifier, we need to approximate the class-conditional pdfs from operator aid for visual discrimination. The complex time-
varying echo structures dictate the use of frame-based pro-the available training data and design a classifier architec-

ture based on the estimated class-conditional pdfs. This ap- cessing to capture time-dependent signal attributes. Trans-
formation algorithms should be able to perform both noiseproximation can take a form of parametric, nonparametric,

and boundary-decision types. Figure 6 describes the relation- (ambient noise and reverberation) suppression and separa-
tion of target and clutter components.ship between feature extraction and classification succinctly.
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Figure 7. The overall processing flow chart.
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Figure 7 depicts the overall processing strategy consisting fier structure is equivalent to finding the best mapping func-
of detection-cluster or snippet segmentation, feature extrac- tion between input parameters (features) and desired outputs
tion, feature optimization, fusion, and classification. First, we (class label—target or clutter). Now we describe projection
perform snippet segmentation based on CFAR detection- spaces with good features in detail.
threshold crossing. Each segmented snippet is projected onto
various projection spaces. 1. Temporal Space. Derived mainly from the energy detec-

We extract features from seven projection spaces con- tor and linear predictor outputs, temporal features pro-
sisting of smoothed energy or A-scan output, FFT spectrum,

vide clues on target extent and highlight structuresTFD using STFT, the reduced interference distribution (RID)
(bow and stern planes, railings, and periscopes) as a(11), and EIH, higher-order spectrum (HOS) (12), principal
function of aspect. For seamounts with a few distinctcomponent analysis (PCA), a compressed phase map (13), and
scatterers, the envelope structure is complex and asym-a speech-related processing domain using linear prediction,
metrical as measured by shape skewness and kurtosis,cepstral, and � cepstral coefficients. Instead of extracting
while the cylindrical target at broadside yields a sym-high-dimensional features from raw TFD and HOS projection
metrical, Gaussian envelope shape. Good features fromspaces, we utilize an image coding algorithm to achieve fur-
this projection space are pulse width, rise and fallther data compression (14). After feature extraction, we per-
times, and amplitude and shape statistics.form thorough feature analyses for feature optimization and

2. Time-Frequency Distribution with Image Compression.ranking to select the optimal feature subset based on an ap-
Features from the TFD attempt to capture spectral andpropriate class separability criterion. Finally, we evaluate the
temporal variations associated with the highlight struc-target-recognition performance using the selected feature
ture and secondary arrivals from helical and flexuralsubset and construct the best classifier topology. In essence,

given the optimal feature subset, selection of the best classi- waves (15). We explore the following three TFDs to as-
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sess the impact of time-frequency resolution on active Nr = arg min
k

d(k) (5)
classification: STFT, RID, and EIH.

3. Compressed Phase Map. A phase map is a convenient
d. Use the estimated signal subspace projection opera-way of representing time-embedded samples in a multi-

tor to project a full-rank matrix � to the compresseddimensional state space and is quite effective in captur-
phase space:ing dynamics of low-dimensional, deterministic signals.

A typical example can be found in nonlinear dynamical R = U
∑

Ut (6)
system modeling (13). For this application, we capture
transitional signal characteristics from sample-to-sam- �r = Ut

1 : Nr
� (7)

ple differences of the energy detector output. For re-
turns from smooth-surface objects, sample-to-sample where U1:Nr

and �r denote a left singular matrix with
deviations of the differencer output are small and their a rank Nr and a compressed phase map, respectively.
trajectory follows a well-defined path with small fractal

4. Speech-Processing Features. The primary motivationdimension. Fractal dimension provides information on
for extracting speech-processing related features is thathow much of the state space is filled by the trajectory.
the eye (visual) and the ear (aural) process the sameOn the other hand, returns from complex-scattering ob-
information in a somewhat different fashion. For exam-jects, such as seamounts and wrecks, exhibit large tra-
ple, the eye is capable of processing a large amount ofjectory fluctuations, leading to a diffused phase map
information in a short time, but tends to be deficient inwith large fractal dimension. The same concept of sub-
details. On the other hand, the ear has a much higherspace filtering is used to capture desirable signal transi-
dynamic range and resolution and thus can better dis-tional characteristics efficiently. That is, we use the sin-
tinguish details but is slower than the eye. The maingular value decomposition (SVD) to project noisy points
objective for applying frame-based speech processing toin the state space Rd onto a new space RNr, where d and
IER clutter reduction is to capture detailed acousticNr represent the original embedding dimension (the to-
transitional characteristics that cannot be captured ad-tal number of consecutive time samples used in con-
equately from the visual projection spaces. Echoes fromstructing the state space) and the reduced dimension
objects with various structural properties—rib, air-representing the signal subspace, respectively. The
filled cavity, solid filling (seamounts), chemical fillingcomputational procedures are explained below.
(mines)—can possess distinct sound characteristics,

a. Generate a differencer output as follows: which can be compactly represented with linear predic-
tion, cepstral, and � cepstral coefficients. Linear pre-
dictive coding estimates spectral phase and amplitudep(n) = x(n) − x(n − 1)

x(n)
(2)

variation over time while cepstral coefficients attempt
to separate spectral envelope from the underlying har-

where x(n) is the normalized energy detector output. monic structure. We use standard ergodic hidden Mar-
b. Construct a phase map matrix � of size d � K using kov models (HMMs) to characterize both target and

time-delay embedding of the differencer output, clutter echoes (17,18). We extract features from concate-
nated log-likelihood ratio scores as well as transition
and observation statistics associated with each state (2).Pn = {pn pn−1 . . . pn−d+1}t

� = {P1P2 . . . Pn . . . PK} (3)

Real-Data Analysis Results. In this section, we present our
clutter-reduction performance results based on real-dataK is N � d, where N and d denote a total length of
analysis and compare our performance with that of the base-differencer output pn and the embedding dimension,
line processing that consists of CFAR detection and rule-respectively.
based clutter rejection. For this analysis, we use segmentedc. Perform the SVD on the covariance matrix R � ��t.
detection clusters from the shallow-water real-active-data setEstimate the matrix rank using the minimum de-
and ground truth information obtained during data recon-scription length (MDL) criterion (16) to obtain ortho-
struction. After extracting features from the seven projectionnormal projection operators:
spaces, we perform a comprehensive feature analysis for fea-
ture pruning and optimization prior to classification perfor-
mance analysis. We evaluate target-recognition performance
using the top 10 to 15 features.

Borrowing from the divide-and-conquer paradigm, we per-
form hierarchical sequential pruning classification in two
steps: primitive and fine classification (7). During the first
stage of primitive classification, the pulse width is used to

d(k) = − (p = k)Nav log10

� p∑
i=k+1

λ1/p−k
i

1
p − k

p∑
i=k+1

�
+ 0.5k(2p − k) log10 Nav

(4)

reject obvious false contacts. We use a conservative prescreen-
ing threshold to ensure that there is little risk of false dis-where Nav is the averaged sample size, p is the di-

mension of R, �i is the ith eigenvalue arranged in missal of genuine target echoes. Not only is this approach
computationally attractive due to the reduced number of de-descending order of magnitude, and k � 0, 1, . . .,

p � 1. The rank of R is equal to the value of k that tection clusters to process during the computationally inten-
sive second stage, but it provides an additional benefit of notminimizes d(k),
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having to waste degrees of freedom on modeling obvious false shown in Fig. 8, MVG and PNN perform quite well while
KNN and NNC perform poorly. (KNN and NNC are nonpara-contacts later in fine classification. For the second-stage fine

classification, we derive clutter-reduction performance from metric classifiers that estimate class-conditional pdfs from a
small fraction of training data. This procedure can backfire ifan average of 64 independent runs to minimize performance

bias caused by uneven class population. class-conditional pdfs are unimodal.) Boundary-decision clas-
sifiers, such as FBPN, perform well initially as decisionWe evaluate performances of multivariate Gaussian classi-

fier (MVG), k-nearest-neighbor classifier (KNN), nearest- boundaries are relatively simple for a small decision dimen-
sion. Nevertheless, as the decision dimension increases, theneighbor classifier (NNC), probabilistic neural network

(PNN), and fast backpropagation neural network (FBPN) (4) class boundaries become more complex and FBPN’s perfor-
mance suffers. In summary, MVG and PNN provide the bestto determine the most appropriate classifier architecture.

Since the underlying multidimensional feature pdfs exhibit performance because their mapping structures match the un-
derlying good-feature pdfs.unimodal characteristics with reasonable class separation as

Figure 8. Performance rank-order curves
are useful in determining an appropriate
decision dimension in classification. Since
good-feature pdfs (solid, target; dotted, clut-
ter) seem unimodal and slightly non-
Gaussian with some class overlap, PNN
and MVG perform the best.
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multimodal overlap measure (MOM) defined as

MOMi =
∫

yi

Min[P(yi|target), P(yi|clutter)] dyi (8)

where yi is the ith feature (the lower the MOM, the better the
corresponding feature in differentiating the target from clut-
ter), we were able to achieve over 90% false-alarm reduction
from the baseline/no-screener approach. The bottom ROC
curves show clutter-reduction performance comparison be-
tween the computationally inexpensive features (derived from
the A-scan, FFT, and STFT outputs) and features extracted
from the seven projection spaces in the traditional PD-versus-
PFA format. With the top 15 features, we were able to achieve
an additional 4.5% improvement in overall correct class-
ification performance (88.6% to 93.1%) for snippets that
exceed the lowest SNR threshold. This improved performance
translates to a 5% increase in P(target�target) (PD jumped
from 0.85 to 0.90) and a 50% reduction (7.8% to 3.9%) in
P(target�clutter).

Passive Sonar Target Recognition

In order to maximize recognition performance of passive tar-
get emissions, it is important that we understand and exploit
the underlying signal microstructure. PBB acoustic signa-
tures often exhibit a microstructure that has time-varying,
low-dimensional characteristics if projected onto an appro-
priate transformation space. With this in mind, we investi-
gate how our knowledge of signature characteristics can be
reflected on the PBB algorithm design to enhance target-

P
D

P
D

0

0.2

0.4

0.6

0.8

1

300250200

10–3 10–2 10–1

PFA

100

100

150

Risk reduction performance
with modern hardware constraint

RR one-dim.
  ranking
RR multidim.
  ranking

No screener
Baseline screener
RR one-dim. feature
  ranking
RR multidim. feature
  ranking

100
False alerts per ping per 24 buoys

Risk reduction vs. baseline performance
with 1970s hardware constraint

500

recognition performance in shallow water. For this analysis,
Figure 9. Classification ROC curves demonstrate clutter-reduction we use SWell-EX1 and PBB data sets provided by the Naval
performance improvement with our sequential hierarchical classifi-

Research and Development (NRaD) and the Office of Navalcation approach at four different SNRs. The bottom figure shows the
Research (ONR), respectively (19).improved clutter-reduction performance with the modern hardware

Our processing strategy is based on exploitation of any mi-constraint at the lowest SNR only. RR stands for risk reduction.
crostructure inherently present in the target signature byPD � P(target/target). PFA � (target/clutter). Arrows show perfor-

mance improvement. projecting raw data onto various projection spaces, identifica-
tion of key parameters or ‘‘features’’ crucial in determining
the presence of a signal, designing a classifier topology that
best matches the underlying feature distribution, and thor-Figure 9 shows receiver operating characteristics (ROC)
ough detection performance analysis and comparison withcurves for the baseline and risk-reduction processing with the
that of a traditional energy detector to quantify performancetwo computational resource constraints in an operationally
gains as a function of input SNR.meaningful format. For this analysis, we use both one-dimen-

sional and multidimensional feature-ranking algorithms to
Technical Approach. Figure 10 depicts the PBB processingassess the clutter-reduction performance. The motivation for

flowchart consisting of subspace projection, feature extrac-using the computationally expensive multidimensional fea-
tion, and classify-before-detect processing. We initially projectture-ranking algorithm is that it enables us to derive the per-
raw data onto a time-frequency map using the STFT to cap-formance upper bounds for a given data set and a feature
ture time-varying striation patterns visible in the PBB targetset. The baseline processing consists of a constant-false-
signature. The next step is to emphasize important target sig-alarm-rate normalizer, a short-time averager, and a thres-
nature attributes with image compression and Viterbi line ex-hold detector. The baseline rule-based screener uses pulse
traction.width and fall time for clutter rejection. We used the base-

Image compression takes advantage of transform codingline performance as a benchmark with which our risk-
and principal component filtering to emphasize desirable sig-reduction performance was compared. Operating points are
nal components while suppressing noise. The Viterbi line ex-derived from the echo returns after detection as a function
tractor works as an adaptive, variable-length line integratorof SNR.
that enhances the time-varying striation pattern present inOur real-data analysis results indicate that we can achieve
the PBB signature. Figure 11 demonstrates the effectivenessmaximum classification performance with approximately 10
of the Viterbi line extractor in recovering weak time-varyingto 15 features. Note that using the first risk-reduction algo-

rithm with one-dimensional feature ranking based on the frequency lines.
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The objective of the classify-before-detect processing is to
utilize a more favorable decision space spanned by multiple,
mutually reinforcing discriminatory features than the tradi-
tional amplitude decision space based on the integrated en-
ergy, particularly at low SNR. Finally, we compare the perfor-
mance of our classify-before-detect algorithm with that of the
conventional energy detector in terms of ROC curves and pro-
cessing gain as a function of input SNR.

Real-Data Analysis Results. In this section, we present real-
data analysis results. Figure 12 shows STFT spectrograms
of the typical PBB target signature before and after various
transformations: singular value decomposition (SVD), two-di-
mensional (2-D) discrete cosine transform (DCT), and com-
pressed 2-D DCT. The signal that we are interested in de-
tecting occupies the middle half of the spectrograms.

We initially extract a total of 64 features from the three
projection spaces and perform thorough feature optimization
and classification performance analysis using the Integrated
Pattern-Recognition Toolbox. We achieve the maximum recog-
nition performance using 8 to 10 features. We evaluate the
extracted feature set with five classifiers that represent the
three broad classifier categories: parametric, nonparametric,
and boundary decision. Since good-feature pdfs are both non-
Gaussian and multimodal, nonparametric classifiers based on
vector quantization or k nearest neighbors outperform the
others.

We quantify performances of the classify-before-detect al-
gorithm in terms of the ROC curves and processing gain as a
function of input SNR and compare them with those of the
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traditional energy detector. For performance evaluation of our
Figure 10. The PBB classify-before-detect flow chart. algorithm, we use randomly partitioned, independent train-

ing and test data sets for algorithm tuning and cross valida-
tion. Figure 12 displays the ROC curve comparison of our

Figure 11. The Viterbi line extractor can effectively
recover weak wandering frequency lines.
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Figure 12. PBB acoustic signature and
SWell-Ex1 ambient noise spectrograms
and the CBD algorithm performance sum-
mary. N and S � N denote noise and sig-
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classify-before-detect algorithm with the energy detector. We while the output SNR is derived from the STA and cumula-
tive log-likelihood ratio (LLR) pdf plots using the deflectionalso summarize and compare the processing gain of the two

detectors. index criterion. Note that output SNR in decibels is 10
log(��2/2�s�n), where �� is the mean difference between theOverall, we achieve an average of 10 dB additional detec-

tion performance improvement with the classify-before-detect signal-plus-noise and noise-only pdfs. �s and �n denote stan-
dard deviations of signal-plus-noise and noise-only pdfs, re-approach over the traditional energy detector. The integration

sizes for the short-term averager (STA) and the classify-be- spectively. Since the STA processing involves STFT, envelope
detection, and two-dimensional integration (signal subbandfore-detect processing are 10 and 5 frames, respectively. We

deliberately compare the performance of our algorithm with and time), the output SNR is not a simple function of the
temporal integration size.the 5 frame integration to that of the STA with 10 frames to

provide a slightly pessimistic performance comparison. That The advantage of the classify-before-detect algorithm can
be better appreciated by a qualitative look at the pdf plots ofis, using the integration size of 10 for the classify-before-de-

tect processing would have resulted in a higher processing the STA and classify-before-detect cumulative LLR outputs.
Figure 12 shows the signal-plus-noise and noise-only pdfs ofgain. The input SNR is measured with respect to the full band
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the two processing outputs at input SNRs of �15 and �25 where �1 � �i, i � 1. Sb and Sw refer to the interclass and
within-class scatter covariance matrices, respectively.dB. At �25 dB, the two pdfs at the STA output completely
For a two-class problem, � can be directly computed byoverlap, rendering detection in the amplitude space very dif-

ficult if not impossible. On the contrary, pdf plots derived
from the cumulative LLR output show a good separation, in- ω = S−1

ω (µ1 − µ2) (11)
dicating that a judicious selection of features combined with

where �i is the ith class mean vector. The LLR scorean appropriate classifier topology is crucial in achieving an
can be approximated as �ty, where y is an input testadditional detection performance improvement.
feature vector. Frequently, it is possible that the two
classes may share the same mean vectors, but can be
differentiated by the difference in the covariance matri-EMERGING TECHNOLOGIES IN
ces. In this case, we can use the generalized likelihoodSONAR TARGET RECOGNITION
ratio test (GLRT) concept to derive the weight vector as
the eigenvector of R�1

1 R2 associated with the largest ei-The two key areas for future research are accurate quantifi-
genvector, where Ri is the ith class covariance matrix.cation of classification performance upper bounds and situa-
In short, depending on the estimate of ��,tionally adaptive target recognition. In this section, we first

explore the underlying concepts of data compression, class
separability, and sufficient statistics in the context of estimat-
ing performance upper bounds in classification. Next, we pro-

ω =
{

S−1
ω (µ1 − µ2) �µ > γ

eigenvector of R−1
1 R2 otherwise

(12)

vide insights into developing a reconfigurable feature-classi-
fier architecture to accommodate environmental variability. A successive implementation of LFC coupled with token

pruning (i.e., feature vectors or tokens that fall into sep-
arable regions are pruned so that the next stage LFCClassification Cramer-Rao Bounds
works with the remaining feature tokens—successive

Let us make a suite of measurements y that can be described approximation of class-conditional pdfs) at each stage
by the probability function p�(y), where � parametrizes p(y) forms the backbone of a discriminant neural network
and p�(y) � p(y��). If z � f (y), where the dimension of z is (DNN) architecture (4).
smaller than that of y and p�(y�z) � p(y�z), then we say that z 2. Multivariate Gaussian Classifier (MVG). This is a para-
captures all the useful information in y. Furthermore, z is metric classifier that assumes that the multidimen-
more memory efficient than y since f ( � ) compresses y into a sional feature pdf can be characterized by its mean vec-
sufficient statistic (7,20). tor � and covariance matrix R. Mathematically, it

Sufficient statistics are closely related to class separability. computes the Mahalanobis distance associated with
In general, optimality score J is measured by each class and selects the class with the shortest dis-

tance:

d(i) = (y − µi )
tR−1

i (y − µi ) (13)J(y, h, z�) = 1
Ny

∫
y=h(z�)

CS[pθ1
(y|z�), . . ., pθNc

(y|z�)] dy (9)

iy = arg min
1≤i≤Nc

d(i) (14)
where Ny is the dimension of y, z� is the overlapped region
(between two classes) in z that gets projected onto y via a LLRij = d(i) − d( j) (15)
mapping operator h( � ) (h( � ) is in essence f�1( � ) and a func-
tion of a classifier structure), and CS( � ) is a class separability where i and Nc refer to the class index and the number of
function that measures the degree of feature space overlap classes, respectively. iy is the selected class label for an in-
between classes. In essence, a classifier performs the f ( � ) op- put test feature vector y.
eration. Therefore, � is equivalent to class label while y and z
denote an input feature vector and a classification LLR score, For this problem, the two class-conditional pdfs—p�1

(y)
respectively. In short, the degree of sufficient statistics can be and p�2

(y)—are both normal with the same covariance matrix,
measured by class separability in the multidimensional fea- but with different mean vectors. Naturally, MVG or LFC with
ture space �. � that maximizes the Rayleigh quotient is the Bayes clas-

This concept can be reinforced with an interesting two- sifier.
class, two-feature problem as shown in Fig. 13. In this case, In order to measure the extent to which MVG captures

useful information present in the two input features, the fol-we use the following two classifiers:
lowing class separability function is used:

1. Linear Fisher’s Classifier (LFC). This is a simple bound- CS = |pθ1
(y|z�) − pθ2

(y|z�)| (16)
ary-decision classifier that computes a weight vector �
that maximizes the Rayleigh quotient �tSb�/�tSw�,

where z� is the region in z with high class overlap. As ex-where � is the first eigenvector of the following general-
pected for a class separability measure, CS � 0 whenized eigenvalue problem.
p�1

(y�z�) � p�2
(y�z�). The areas in z with relatively little class

overlap are excluded since prediction errors in those regions
are minimal. That is, we zero in on the area with most predic-Sbx = λSwx (10)
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Theoretically, MVG is the Bayes classifier for
this problem of known class-conditional pdfs.
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Figure 13. For a two-class problem with multivariate Gaussian pdfs, MVG is the Bayes classi-
fier. MVG and LFC with a suboptimal weight vector of [�0.45, 0.89] yield J of 0.036 and 0.196,
respectively. The J score of zero means that the two class-conditional pdfs in y derived from the
overlapped region in z (i.e., �) completely overlap—capturing all the useful information in the
original feature space y.

tion errors to investigate the extent to which prediction per- amount of class overlap in z. More important, the optimality
score J for MVG is much lower than that for LFC. Based onformance can be further improved.

For comparison, LFC with a suboptimal weight vector � of numerous experiments with a number of known and un-
known class-conditional pdfs, J of less than 0.0375 implies[�0.45, 0.89] in z � �ty was implemented. As expected, MVG

performs far superior to LFC as evidenced by a smaller that a classifier is in essence the Bayes classifier (21). That



698 SONAR TARGET RECOGNITION

is, the correct classification performance of around 70% in here were supported by the Naval Air Warfare Center under
Contract No. N62269-94-C-1179, the Office of Naval Researchthis case cannot be further improved by changing the classi-

fier architecture. Instead, we should concentrate on gathering under Project No. RJ14C42, and the Naval Research Labora-
tory under Contract No. N00014-93-C-2246.additional input data to improve the information content.
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