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NEURAL ARCHITECTURE IN 3-D

The idea behind 3-D neural architecture is to create a pattern
recognition system using neural components. The brain is
taken as a model, and although little is known about how
pattern recognition is accomplished there, much more is
known about the cells that constitute the lowest levels, which
process and analyze the features of an environment most di-
rectly. By constructing cells with similar properties to the bio-
logical cells, we may gain an advantage in information conser-
vation and proper utilization of neural architectures.

The most important characteristic of brain cells is their
receptive field (RF). With this in mind, we can search for an
adaptive mechanism that, by changing connective strengths,
can give the desired RFs. Then, since we will know what in-
formation the algorithmic components are providing, when a
method is found that provides the desired cell types, we may
be able to trace back via the algorithm to see what informa-
tion the neurons give. In this article, a new neural network
architecture is presented that encompasses functions similar
to those in a biological brain, such as lateral and feedback
connections of neurons. The neurons are randomly distrib-
uted on 2-D–planes. Each neuron on each plane can connect
to a neighborhood of neurons at the next layer (plane), as well
as receive feedback from neurons on that layer, or any other
layer in the immediate or distant vicinity. In addition, lateral
inhibitory connectivity within a layer adds to the flexibility
and generalization abilities of the neural network.

ARCHITECTURE

The architecture developed is that of a hierarchy of 2-D cell
layers, each successive layer farther removed from the envi-
ronment (Fig. 1). The first layer receives inputs from the ex-
ternal world, and each successive layer from the preceding
layers. In addition, the cells may receive lateral connections
from neighboring cells within the same layer, depending on
the particular choice of the architecture. The interlayer feed-
forward connections are chosen so that a cell feeds its connec-
tions onto a neighborhood of cells in the lower layer. This
neighborhood may have definite bounds, so that all cells
within it make connections, or it may have indefinite bounds,
so that the probability of a connection decreases as a
Gaussian with distance.
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est overlap in their neighborhoods, they tend to have firing
patterns which are most similar. This will cause cells in layer
2, which have synapses originating from nearby cells, to want
to be alike.

The actual training of the connections can be done in dif-
ferent ways:

1. Synapses can be changed according to a variation of
Hebb’s rule (1) as follows:

Cij = δOiOj (3)

where � is a small positive constant. Due to the correla-
tion between neighboring level 1 cells, the synapses to
the cells in subsequent layers will tend to want to be all
alike without additional constraints. In order to guaran-
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tee both positive and negative synapses to every cell, an
Figure 1. A schematic representation of the neural architecture. additional resource constraint is imposed, which takes

the form

The component cells themselves choose their outputs ac-
cording to a weighted sum of all inputs passed through a

∑
j

Cij = 0 (4)

function �, such as
The third restriction is a bounding of the connections to
the interval [�1, 1]. A synapse is allowed the freedom
to switch from positive to negative and vice versa. ThisOi(t) = σ

�
αi

∑
j

CijOj (t − 1)

�
(1)

is not expected to alter the main results, but only to
prevent many of the synapses from disappearing withwhere Oi(t) is the output of neuron i at time interval t; Cij are
zero strength. Convergence usually occurs within 1000the connection strengths, bounded in [��,�], where � is usu-
to 5000 iterations, and faster convergence can beally 1.0; and 	 is a constant. In simulations, � is usually a
achieved with larger �. Usually the final state of thesigmoid of the form
synapses is at either the excitatory or the inhibitory
limit. A network was created with three layers and 128

σ (x) = 0.5a[1 + tanh(bxc)] (2)
cells per layer. A square stimulus was assumed with
32 � 32 pixels size. The maximum distance that thesewhere a, b, c, are constants that fix the maximum value,
cells can affect is r, with minimum weight �1 and maxi-steepness, and bias of the sigmoid respectively. However, if
mum weight �1. The network had a total of 7071 con-we wish to allow the inhibitory components of the RF to be
nections. In the training mode, the minimum stimulusused by subsequent layers, then the sigmoid function must
value was assumed to be zero and the maximum equalhave a nonzero firing level for those negative inputs. This
to 10. No noise was imposed on the system. The resultssuggests the use of spontaneous firing activity for all neurons.
obtained show the emergence of cells with edge-typeAn additional requirement for keeping the neurons useful and
RFs in layer 2 as is the case in the biological visualresponsive is to keep them from being pushed too far into the
cortex [Fig. 2(a)]. The orientation of the edge appears tosaturation level. Since each neuron receives several inputs,
be totally arbitrary, even between neighboring cells. Inthat can easily occur. If it does, input deviations will not be
layer 3, these edge cell RFs often conflict to form RFssensed well, if at all. To prevent saturation from happening,
that have oblong centers and surrounds of the opposite	 is usually chosen equal to the reciprocal of the number of
polarity, but many times these centers draw to theconnections to neuron i, so that the neuron simply passes a
edges with further ‘‘learning.’’ Thus the final RFs oftenweighted average of the inputs through the sigmoid.
look like an elliptical center touching the outside of the
field, mostly surrounded by a horseshoe-shaped region
of opposite polarity [Fig. 2(b)]. Figure 3 shows the re-SIMULATIONS
sults from a similar network, except that the minimum
weight value is �0.5, that is, there is less inhibitoryA simulation usually consists of a sequence of presentations

of random input patterns to the first layer, and a learning effect. Notice that excitation spreads more and that the
maximum amplitudes are much larger. Also notice thatrule imposed on the connections by analysis of the firings of

the neurons. A random input is chosen so as to prevent the the layer 3 RF is much longer than the one in layer 2.
In the frequency domain, these RFs show more fine tun-cells from being biased towards any specific environmental

feature. Since neighboring inputs are uncorrelated, first-layer ing as we move to deeper layers of the system. Figures
4 and 5 represent the power spectra of Figs. 2 and 3cells that receive their influences are expected to have syn-

apse patterns that will similarly wander aimlessly in the respectively. Also notice that the edge effects are more
obvious in the spectra of layer 3, again as is the case inlearning process. The first layer provides a spatial average of

the overlying inputs. Since neighboring cells have the great- the visual cortex.
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Figure 3. Receptive field organization for (a) layer 2 and (b) layer 3Figure 2. Receptive field characteristics for the neurons described in
when the inhibitory effects are less than in Fig. 2. Compare the am-the text. (a) RF of layer 2. (b) RF of layer 3. Notice the center–
plitudes and the spread of the RFs with those of Fig. 2.surround organization of layer 2 and the elongated character of

layer 3.

2. The wider the variance of the firing rate of the cells,
the more information the cells can carry. With such a
supposition, we can use an optimization routine to find
the values of the synapses to a cell such that the vari-
ance in the firing rate of the cell is maximized. The opti-
mization system is a variation of the ALOPEX (algorith-
mic logic of pattern extraction) process (2). In this
process two random connection patterns are presented,
and the variance V of the cell output is estimated with
a number of random input patterns. Since we want the
pattern of connection strengths to affect the variance
and not the strength of the connections themselves, the
variance is modified as

Vi =
(1/N)

∑
j (O

j
i
− Oavg

i
)∑

j Cij
(5)

The connections are then changed according to the rela-
tion between the last change in connections and the last
change in the variance, with an added noise term to
prevent local minima, as follows:

Cij = β[Cij(t) − Cij(t − 1)][Vi(t) − Vi(t − 1)] + noise term
(6)

Remarkably, with this modification, the same edge-sen-
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(b)sitive cell RFs emerge after only about 100 iterations

and remain the same until about 400 iterations. This Figure 4. Power spectrum of the RF in Fig. 2: (a) layer 2, (b) layer
3. Notice the fine tuning in layer 3.shows that the combination of Hebb’s rule and ALOPEX
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before optimization. In order to better distinguish be-
tween inputs, the synapses should be changed so that
more of the neuron range can be utilized. An intriguing
choice is for the neuron to perform a type of principal-
component analysis (Karhunen–Loeve feature extrac-
tion). Principal-component analysis may be approxi-
mated by a search for the vector (described by the con-
nection weight values) that maximizes the variance of
the cell firing level. The choice of this property may
serve to partition the input space into recognizable cate-
gories at the output. This analysis approximates the
Karhunen–Loeve search for the eigenvector with the
maximum eigenvalue. For layers of neurons that have
a large amount of information in common with near
neighbors, the use of low-level lateral inhibition should
prevent the system from settling on the same vector for
each neuron, providing instead a graded topography to
the layer.

Depending on the partitioning of the input space, this pro-
cessing mode of neurons could provide many different behav-
iors. If the input space has clusters, the neuron may provide
classification. If, on the other hand, the inputs are randomly
distributed in space, the neuron can choose any feature vec-
tor, but might be constrained by near-neighbor interactions
as to how it forms topographic maps.
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Figure 5. Power spectra of RFs in Fig. 3: (a) layer 2, (b) layer 3.
Compare with Fig. 4. The edge effect is much more pronounced. DISCUSSION

In the neural network architecture presented, certain as-is something desirable. It might also mean that the way
sumptions are made and various constraints are imposed, soin which the architecture of the network is set up biases
that it resembled as much as possible the biological equiva-it towards neurons with edge detection capabilities.
lents of feature detectors and edge detectors. A consequenceWork by others (3) has indicated that certain forms of
is that the neural network can ‘‘learn’’ from stimuli alone,Hebb’s rule can be used to perform principal-component
without a set of templates to compare the stimuli with. Inanalysis, a a variance maximization of sorts.
particular, the neural network can implement unsupervised

3. In addition, both feedforward and feedback connections training with a variation of Hebb’s learning rule (2). The con-
can be used, with feedback having a wider connective nection strengths (weights) among the neurons of this net-
neighborhood than the feedforward connections. All work thus become the means of storing memories of the pre-
connections are variable. If the inhibitory connections sented stimuli, so that the same stimulus, if reapplied, will
are spread over a much wider area, they tend to cancel bring the same output to the neural network. These outputs
the excitatory influence, making the Hebb changes inef- can become the templates for a new neural network—in a
fective. In future work we will include feedforward con- different region or even the same region implementing a dif-
nections of cells with a Gaussian distribution, and with ferent function. In recollection, external stimuli must be cor-
inhibitory connections and excitatory connections hav- related with memories already stored as templates. In the
ing a different spatial standard deviation. The present case of using another neural network for this purpose, the
number of maximum synapses allowed does not give us ALOPEX training algorithm (1) can be applied with supervi-
the ability to obtain statistical significance for initial sion in the form of previously stored memories.
random strength generation. The storage–recollection process is a dynamic one, and

4. Lateral connections on each layer are allowed and used, these networks need be coordinated well in order that new
thus adding an extra feature of similarity to the biologi- ‘‘experiences’’ can affect both networks in a proper fashion.
cal system. If each input signal value is thought of as a Damage within a network will affect storage or recognition
dimension in parameter space, any particular input will or both.
constitute a point in that space. The synapses of a neu-
ron can then be thought of as describing a vector in the
same space, and the output of the neuron as the projec- BIBLIOGRAPHY
tion of the input point onto the synapse vector. If the
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