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ganglion and lateral geniculate cells is transformed in the oc-
cipital lobe into information about edges and their position,
length, orientation, and movement. Although this represents
a high degree of abstraction, the visual association areas of
the occipital lobe are only an early stage in the integration of
visual information.

Modular neural networks are used in a broad variety of
applications. One example is character recognition. In Fig.
1(a) three levels of modules are represented. Each module has

–

:

NEURAL NETS BASED ON BIOLOGY

The idea of building modular networks comes from the anal-
ogy with biological systems, in which a brain (as a common
example) consists of a series of interconnected substructures,
like auditory, vestibular, and visual systems, which in turn
are further structured on more functionally independent
groups of neurons. Each level of signal processing performs
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its unique and independent purpose, so that the complexity

Figure 1. An example of a modular neural network for characterof the output of each subsystem depends on the hierarchical
recognition. (a) The modules at the first level recognize specific fea-level of that subsystem within the whole system. For in-
tures, and the modules at the second level recognize letters, whichstance, in the striate cortex (area 17 of Broadman’s areas of
are made of the features from the first level. The modules at the thirdthe brain), simple cells provide increased activity when a bar
level recognize words made of letters from the second level. (b) Gen-

or slit of light stimulates a precise area of the visual field at eral neural network architecture. (c) A network object consists of a
a precise orientation. The cell output is further processed by container of module objects. The intermodular connectivity is a prop-
complex neurons, which respond best to straight lines moving erty of each module. The object also stores some general parameters
through the receptive field in a particular direction with a common to all network’s counterparts (i.e., parameters of noise, min

and max boundaries of weight, max value of weight change, etc.)specific orientation. Therefore, the dot-like information from

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



NEURAL NETS BASED ON BIOLOGY 273

its unique function, providing some output to the modules in
the next level. In this case the modules in the top level recog-
nize the specified features of the letters A, D, and C, the mod-
ules at the second level recognize the letters themselves, and
modules of the third level recognize groups of letters, and so
on. The usage of modular neural networks is most beneficial
when there are cases of missing pieces of data. Because each
module takes its input from several others, a missing connec-
tion between modules would not significantly alter that mod-
ule’s output.

NETWORK ARCHITECTURE

At a level of high abstraction the network should look like an
object in Fig. 1(b). It receives some input from templates
stored in a file, propagates it through all modules, and pro-
vides some output in a meaningful format.
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The ‘‘network object’’ consists of a series of levels of mod-
ules, similar to Fig. 1(a). It also provides some common data Figure 2. (a) A node object (neuron) has a ‘‘charge,’’ analogous to the

charge at the axon hillock in a biological neuron. The object has afor each module, such as mean and sigma values for noise,
container of all connections that provide references to other neuronsmax weight, and bound.
which receive the ‘‘action potentials’’ (charges) generated by this nodeA more detailed representation of a network object is given
and propagated through each of these connections. (b) A layer objectin Fig. 1(c). This example contains N levels of modules Level
is a container of node objects (neurons).0 to Level N. Initially each module at a current level is con-

nected to all modules in the next level. However, it is possible
to remove certain intermodular connections to make the net-
work more problem-oriented. Each module has an identifier provides a mechanism for implementing a delay (in number
specific to the level at which the module is located. of iterations) that occurs before a signal is detected at the

Each module has two containers. In the first container it synapse of this connection.
stores all layers of neurons. In the second container it keeps The lateral inhibition is identified by the fact that the con-
track of all connections to other modules within the network. nection points to a node which is located on the same layer as
The information in both containers is specific to this particu- the one that owns the connection:
lar module. A module is not aware of any type of processing
going on in the rest of the network, though it knows which

1. The number of output nodes in all modules may equalparticular network it belongs to in order to provide correct
the number of templates in the training set.references (stored in the second container) to the rest of the

2. The output value xi of any output node of each modulemodules.
is in range 0 � xi � 1.Each module also has two additional arrays, where it

stores its responses to each template in the training set and 3. While training, a desired output vector (Odesired
i ) of any

where it saves its output after each iteration during training module in the network can have only one dominant
and after computing the outputs during the testing cycle. value per template (i.e., if the number of templates in

A connection of a module is simply an integral reference the training set is four, then for the first template:
equal to the destination module index in the network’s con- Odesired

1 � �1,0,0,0�, for the second template: Odesired
2 �

tainer of all modules. A container of layers consists of the �0,1,0,0�, etc.).
layer objects [Fig. 2(a)].

4. The number of modules per network and layers/nodes/
A layer object consists of a container of node objects. It

connections per module are limited mainly by the avail-is just a framework for efficient storage of nodes to ease the
able memory of a computer.propagation of signal through this module during training.

A node object (neuron) is shown in Fig. 2(b). It consists of
a container of connection objects and a place to store a current

EXECUTING THE NETWORK‘‘charge’’ that is accumulated by the node. This charge is
equivalent to the one seen by the axon hillock in a biological

The process of executing the network engine is described inneuron. A node object knows how to add additional ‘‘charge’’
three major steps:to itself, how to zero its ‘‘charge,’’ and how to send this charge

to all of its connection objects. This process is similar to the
propagation of action potentials in a biological system. 1. Initializing

The connection object is a general liaison between nodes. 2. Training
Its functionality is similar to a branch of a terminal dendrite

3. Testingof a neuron ending to a synapse. A connection object has a
place to store current connection weights (and its old value
used in training), and it maintains a delayed queue, which Details are given in Appendix 1.
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RESULTS

We performed three different tests on the modular network.
The objective for the tests was to compare the difference in
terms of the accuracy of recognition of templates containing
missing features between a traditional network made of a sin-
gle module and a network containing multiple modules. The
single module network was used as a control in all tests.

In all cases the networks converged to 99% for the training
set of templates. The testing set of templates was made of the
training templates missing some features (a missing feature
is defined as a feature whose value is 0).

The first test was done on five templates in the training
set. Each template consists of forty-five features representing
three letters of the alphabet from A to F [Fig. 3(a)]. Five tem-
plates ABF, BCD, EDC, FEB, and DFA were used in the
training set for both networks. The modular network was con-
figured to have three modules in the input level and one mod-
ule in the output level [Fig. 3(b)]. Each module in the input
level received 15 features (representing one letter) per tem-
plate. The control network consists of one module only, which
received all 45 features per template as its input.

The testing cycle consists of fifteen templates: AB0, A0F,
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0BF, BC0, B0D, 0CD, ED0, E0C, 0DC, FE0, F0B, 0EB, DF0,
Figure 4. (a) The configuration of the network in the second test. (b)

D0A, and 0FA. The control network recognized three tem- The configuration of the network in the third test.
plates as ‘‘similar’’ to the templates from the training set,
whereas the modular network recognized thirteen.

In the second test we used six templates containing sixteen
each module at the input level of the network [Fig. 4(a)]. The

features each. The features were arranged in four groups of
control network received all sixteen features per template as

four-bit binary representations of digits from 1 to 15: 7 9 13
its input.

14, 9 13 14 15, 13 14 15 3, 14 15 3 9, 15 3 9 11, and 3 7 11 13.
The testing set consists of 24 templates derived from each

Each of these digits (four-bit representations) was inputted to
template in the training set by omitting one digit (making its
four-bit representation equal to 0000).

The control network recognized 11 templates, whereas the
modular network recognized 20 templates.

In the third test we used seven templates containing fif-
teen features each. The features were arranged in five groups
of three-bit binary representations of digits from 1 to 7. The
templates were 1 2 3 4 5, 2 3 4 5 6, 3 4 5 6 7, 4 5 6 7 1, 5 6 7
1 2, 6 7 1 2 3, and 7 1 2 3 4. The modular network consists of
five modules in the input level (receiving one digit, i.e., three
features per module) and one module in the output level [Fig.
4(b)]. The control network received all fifteen features per
template.

The testing set contains 35 templates derived from the
templates in the training set in the same way as in the sec-
ond test.

The control network recognized 24 templates, whereas the
modular network recognized 29 templates.

DISCUSSION

The networks showed convergence of 99% in all tests which
we performed. The tests demonstrate a direct advantage of
using modular networks when one deals with missing fea-
tures. The tests also confirm our anticipation that the greater
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the number of features per input module, the more advanta-
geous is the usage of modular neural networks in the case ofFigure 3. (a) A template for the first test contains a binary represen-
missing features. One possible application of this approach istation of alphabetic letters A through F. Each letter is encoded by 15
in face recognition, when certain parts of a face image (likebits, as shown in the figure. (b) The configuration of the network in

the first test. nose or eyes) are not available in some images.
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For further improvement of the algorithm, different mance of the network, not to mention long training times be-
cause of slow convergence (3). Sometimes there are featureschemes can be used to compute the local and/or global error

factor in the ALOPEX optimization and a more reliable algo- extraction methods, which reduce the number of data points.
However, there are times when even then the amount of datarithm for adjusting the noise with respect to the global error.

As stated earlier, one type of modular neural network is a is large. Because it is desirable to have the minimum number
of weights that yield good performance, a modular neural net-multilayer perceptron that is not fully connected. However,

just deleting random connections does not make a modular work may be a good solution. Each module is effectively able
to compress its data and extract subfeatures which then areneural network. In the book Neural Networks—A Comprehen-

sive Foundation (1), Simon Haykin defines a modular neural used as input to a fully connected neural network. Without
this modularity, the number of weights in the network wouldnetwork as follows:
be far greater.

A neural network is said to be modular if the computation per-
formed by the network can be decomposed into two or more mod-

APPENDIX 1ules (subsystems) that operate on distinct inputs without commu-
nicating with each other. The outputs of the modules are mediated

Step 1: Initializing the Networkby an integrating unit that is not permitted to feed information
back to the modules. In particular, the integrating unit both (1) During this step all required actions are taking place to pre-
decides how the outputs of the modules should be combined to pare the network object for training. If the network is notform the final output of the system, and (2) decides which modules

trained, then the following algorithm is executed.should learn which training patterns.

1. Get a name of a file containing the training set of tem-The idea of modular neural networks is analogous to bio-
plates.logical systems (1,2). Our brain has many different subsys-

2. Read templates into the object, get the number of mod-tems that process sensory inputs and then feed these results
ules, the number of levels, the number of modules perto other central processing neurons in the brain. For instance,
level in the network, the number of features per inputconsider a person who meets someone they have not seen for
module.a long time. To remember the identity of this person, multiple

3. Add required number of modules to the network object.sensory inputs may be processed. Foremost perhaps is the
Assign the level numbers to each module. Set up thesense of sight whereby one processes what the person looks
output table of each module.like. That may not be enough to recognize the person because

the person may have changed over the course of a number of 4. For each module connect it to all modules at the next
years. However, the person’s looks coupled with the person’s level.
voice, the sensory input from the ears, may be enough to pro- 5. For each module add three layers to its layer container.
vide an identity. If those two are not enough, perhaps the For each layer add nodes using the following rule:
person wears a distinctive cologne or perfume that the olfac-
tory senses will process and add as input to the central pro- If this is the first layer of the input module, the number of
cessing. In addition, the sense of touch may also provide more nodes equals the number of features that this module re-
information if the person has a firm handshake or soft hands. ceives. If this is not an input module, the number of input
In this way our biological system makes many different obser- nodes equals the number of templates in the training set
vations each processed first by some module and then the re- times the number of modules from which this module receives
sults are sent to be further processed at a central location. its inputs.
Indeed, there may be several layers of processing before a fi- If this is the output layer of a module, the number of nodes
nal result is achieved. equals the number of templates in the training set.

In addition to different modules that process the input, the For any intermediate layer (i), the number of nodes is com-
same sensor may process the input in two different ways. For puted using the following equation:
example, the ears process the sound of a person’s voice. The
pitch, tonality, volume, and speed of a person’s voice are all xi = x0 + [(xn − x0)/N) · i
taken into account in identifying someone. However, perhaps

where N is the total number of layers, and x0, xi, xn are themore important is what that person says. For instance, the
number of nodes in the first, ith, and last layers.person may tell you their name, a piece of data that is highly

critical to identification. These data are passed to the central
6. For each node in each module, add connections suchprocessing to be used to match that name with the database

that each node gets connected to all nodes in the follow-of people’s names that one has previously met. It is easy to
ing layer. Assign a random weight to each newly addedpostulate that what someone says is processed differently and
connection. If lateral inhibition is on, also add connec-perhaps feeds to a different module in the next layer than
tions between current node and all (or limited) nodes athow they say it, even though the same raw data are used.
the current layer. The weight of the lateral connectionAlthough the concept of a modular neural network is based
is a Gaussian function of the distance between the cur-on biological phenomena, it also makes sense from a purely
rent node and the affected node.practical viewpoint. Many real-world problems have a large

amount of data points. Using this large number of points as
Step 2: Training the Network

input to a fully connected multilayer perceptron results in a
very large number of weights. Just blindly trying to train a The training process relies on a modification of the ALOPEX

algorithm, which was originally developed by Tzanakou, Mi-network with this approach most often results in poor perfor-
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chalak, and Harth for receptive field mapping in the visual
pathway of frogs. In this paper, we use the following scheme
for implementation of the optimization procedure:

W (n) = W (n − 1) + γ · �W (n) · E · k + r(n)

where:

W(n) � new value of the connection’s weight
W(n � 1) � old value of the connection’s weight

� � a function of the global error value
�W(n) � the difference [W(n � 1) � W(n � 2)]

E � global error value
k � a constant equal to �1 if E(n � 1) � E(n � 2) 	

E, Error

E (Error)

maxγ

maxγ

, Gamma N, Iterationγ

  (Gamma)γ

(a) (b)

Global Error 
versus Gamma

Gamma and Error 
versus Iterations

0, and �1 otherwise. This makes sense because Figure 5. The graph in part (a) shows the relationship between the
we would like the change of the weight to de- global error E and the value of gamma (�). The parameter � serves
crease when the error decreases (Table 1). as a modulator of the term � 
 �W(n) 
 E 
 k in the optimization algo-

r(n) � added Gaussian noise used to prevent the pro- rithm. The graph in part (b) shows the ideal relationship of gamma
cess from freezing at the local minimum/ and error values with respect to the number of iterations.
maximum.

or elseWe define the module global error term (E) as the summation
E�i � (E�i )2.of all local errors for each template:

Figure 5 shows the relationships between the global error ver-
sus �, on the one hand, and � and the error curves versus theE =

m∑
i=0

Ei

iteration number, on the other. The noise term is also ad-
justed accordingly so that the increase of the noise factor canWe use the error term as opposed to the �E in the traditional
become more sensitive to the change of error as the errorapproach, because we want the global error to have a greater
gets smaller.impact on the change of weights when the error value is big.

During the training cycle and for time saving purposes, weAs the global error becomes smaller, it will lessen the effect
do not need to wait until the modules A . . . N, from which aon the change of the local weight correspondingly. The � pa-
module Xi is receiving its input, are trained before we startrameter will modulate the change of weights being a function
training the current module Xj. As soon as a module getsof error.
trained, it sets one of its data member flags. Therefore, stepA local error of a template is the summation of the abso-
1 involves just checking for all modules having set theirlute differences between the desired and actual values of the
trained flag. Step 2 involves additional processing.module’s output nodes to a given template. We use three dif-

ferent approaches for computing the local error E�i .
Executing the Next Iteration

E ′
i = ∣∣Outdesired

i − Outobserved
i

∣∣
1. For each template Ti in the training set, proceed with

step 2.
If E�i � threshold, then 2. For each level Li in the network’s hierarchy, starting

if the desired output Outdesired
i is 1, we set E�i � exp(2 
 E�i ) with an input level, and until the output level is

� 1, reached, compute the output of each module belonging
(This is done because we would like the values on the di- to the level Li and store that output in the module’s

agonal of the output matrix to have an increased rate output table.
of convergence.) 3. For each module, update weights of all connections be-

otherwise E�i � exp(E�i ) � 1, tween its nodes based on the output computed in step 2.

Computing a Module’s Output

Set up the input of a module.
For each layer li of a module, proceed with the following

two steps.
If lateral inhibition is on, for each node Nj in the level li,

propagate the node’s charge through all its lateral con-
nections, adding any resulting charge to the ‘‘postsynap-
tic’’ node’s buffer.

For each node Nm, add the content of its buffer (updated
by lateral inhibition) to its charge Vk. Propagate the sig-

Table 1

�W E �E k �W 
 E 
 k W(new)

�0 � �0 �1 �0 decreased
�0 � �0 1 �0 increased
�0 � �0 �1 �0 decreased
�0 � �0 1 �0 increased

Line 1: An increase of W results in an increase of E; hence W will decrease.
Line 2: An increase of W results in a decrease of E; hence W will increase. Line
3: A decrease of W results in an increase of E; hence W will decrease. Line 4: A
decrease of W results in a decrease of E; hence W will increase.
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Reading Listnal Vk through each connection Cj of the current node
Nm. That is to say, add a product Vk 
 Cweight

j to a buffer of S. Deutsch and E. Micheli-Tzanakou, Neuro-Electric Systems, New
the ‘‘postsynaptic’’ node. Once the signal is propagated York: New York Univ. Press, 1987.
through all connections, set the current charge of the J. A. Freeman and D M. Skapura, Neural Networks; Algorithms, Ap-
node Nm, as well as the value of its buffer to 0. plications, and Programming Techniques, Chap. 1, Reading, MA:

Addison-Wesley, 1998.When the last layer is processed, store the charges accu-
E. Harth and E. Tzanakou, ALOPEX: A stochastic method for de-mulated in the nodes of the last layer in the module’s

termining Visual Receptive Fields, Vision Res., 14: 1475–1482,output table.
1974.

R. Hecht-Nielsen, Neurocomputing, Reading, MA: Addison-Wesley,Setting Up the Input
1990.

G. Held, Data Compression, New York: Wiley, 1987.If a module is located at the input level of a network, ob-
F. Hlawatsch and G. Boudreaux-Bartels, Linear and Quadratic Time-tain the input values for the charges of nodes in its in-

Frequency Signal Representations, IEEE Signal Process. Mag., 9put layer directly from a template Ti.
(2): 21–67, 1992.

For any other module Mc, its input is obtained from output
M. Hu, Visual pattern recognition by moment invariants, IRE Trans.tables of the modules from which the current module

Inf. Theory, 8: 179–187, 1962.
Mc gets its input. (Note: Since each module maintains a

R. Lippmann, An introduction to computing with neural networks,map of its connections to other modules, we can deter-
IEEE Acoust. Speech Signal Process. Mag., 4 (2): 4–22, 1987.

mine which modules are connected to the current mod-
K. Mehrotra, C. Mohan, and S. Ranka, Bounds on the number of sam-ule Mc). ples needed for neural learning, IEEE Trans. Neural Netw., 2:

548–558, 1991.
Updating Weights L. Melissaratos and E. Micheli-Tzanakou, A parallel implementation

of the ALOPEX process, J. Med. Syst., 13 (5): 243–252, 1989.
Compute a module’s global error E and determine the sign E. Micheli-Tzanakou, Neural networks in biomedical signal pro-

(k) of �E. cessing, in J. Bronzino (ed.), The Biomedical Engineering Hand-
book, Boca Raton, FL: CRC Press, 1995, Chap. 60, pp. 917–932.For each layer Li in the current module, proceed with the

following step. E. Micheli-Tzanakou, et al., Comparison of neural network algo-
rithms for face recognition, Simulation, 64 (1): 15–27, 1995.For each node Nm of the layer Li, proceed with the following

Y. Shang and B. Wah, Global optimization for neural network train-step.
ing, Computer, 29 (3): 45–54, 1996.For each connection Cj of the node Nm add the following

E. Tzanakou, R. Michalak, and E. Harth, The ALOPEX process: Vi-term to its weight:
sual receptive fields with response feedback, Biol. Bybern, 35:
161–174, 1979.r(n) + γ · �W (n) · E · k

P. Wasserman, Advanced Methods in Neural Computing, New York:
Van Nostrand-Reinhold, 1993.(Note: The procedures for computing the global error after ad-

P. Wasserman, Neural Computing: Theory and Practice, New York:justing the noise and the parameter � are described in ‘‘Train-
Van Nostrand-Reinhold, 1989.ing the Network.’’)

D. Zahner and E. Micheli-Tzanakou, Artificial neural networks:
Definitions, methods, applications, in J. Bronzino (ed.), The Bio-

Step 3: Testing the Network medical Engineering Handbook, Boca Raton, FL: CRC Press, 1995,
Chap. 184, pp. 2699–2715.Once the network is fully trained (that is to say, the global

error of each module satisfies a set threshold), we can proceed
EVANGELIA MICHELI-TZANAKOUwith testing. At this stage we obtain the input templates from
SERGEY ALEYNIKOVa file and apply them to the network object. For each tem-
Rutgers Universityplate, we repeat the following steps:

1. Get input values from template.
NEURAL NETS, FEEDFORWARD. See FEEDFORWARD2. Compute output of a network (in the same order as dur-

ing training). NEURAL NETS.
3. Output results.
4. With next template do steps 1–4.
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