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CONSTRUCTIVE LEARNING AND
STRUCTURAL LEARNING

Trainable pattern classifiers find a broad range of applica-
tions in data mining and knowledge discovery (1,2), intelli-
gent agents (3,4), diagnosis (5), computer vision (6), and auto-
mated knowledge acquisition (2,7–9) from data. Multilayer
networks of threshold logic units (TLU) (10–15) offer an at-
tractive framework for the design of trainable pattern classi-
fication systems for a number of reasons including potential
for parallelism and fault and noise tolerance; significant rep-
resentational and computational efficiency over disjunctive
normal form (DNF) expressions and decision trees (11); and
simpler digital hardware implementations than their continu-
ous counterparts, such as sigmoid neurons used in networks
trained with an error backpropagation algorithm (16,17).

A TLU implements an (N � 1)-dimensional hyperplane
which partitions an N-dimensional Euclidean pattern space
into two regions. A single TLU neural network is sufficient to
classify patterns in two classes if they are linearly separable.
A number of learning algorithms that are guaranteed to find
a TLU weight setting that correctly classifies a linearly sepa-
rable pattern set have been proposed in the literature (11,18–
24). However, when the given set of patterns is not linearly
separable, a multilayer network of TLUs is needed to learn a
complex decision boundary that is necessary to correctly clas-
sify the training examples.

Broadly speaking, there are two approaches to the design
of multilayer neural networks for pattern classification:

1. A priori Fixed Topology Networks. The number of lay-
ers, the number of hidden neurons in each hidden layer,
and the connections between each neuron are defined a
priori for each classification task. This is done on the
basis of problem-specific knowledge (if available), or in
ad hoc fashion (requiring a process of trial and error).
Learning in such networks usually amounts to search-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



CONSTRUCTIVE LEARNING AND STRUCTURAL LEARNING 227

ing (typically in an error gradient guided manner) for a lem-specific knowledge (e.g., in the form of production
rules) into the initial network configuration or heuristicsuitable setting of numerical parameters and weights

in a weight space defined by the choice of the network knowledge (e.g., about the general topological con-
straints on the network) into the network constructiontopology.
algorithm.2. Adaptive Topology Networks. The topology of the target

network is determined dynamically by introducing new
neurons, layers, and connections in a controlled fashion Several constructive algorithms that incrementally construct
using generative or constructive learning algorithms. In networks of threshold neurons for two-category pattern classi-
some cases, pruning mechanisms that discard redun- fication tasks have been proposed in the literature. These in-
dant neurons and connections are used in conjunction clude the tower (29,30), pyramid (30), tiling (31), upstart (32),
with the network construction mechanisms (25,26). perceptron cascade (33), and sequential (34) algorithms. Re-

cently, provably correct extensions of these algorithms to han-
dle multiple output classes and real-valued pattern attributesStructural Learning Algorithms for Neural Networks offer
were proposed [see (12–14)]. With the exception of the se-the following advantages over the conventional backpropaga-
quential learning algorithm, these constructive learning algo-tion style learning approaches (12,27,28):
rithms are based on the idea of transforming the hard task of
determining the necessary network topology and weights to1. Limitations of Learning by Weight Modification Alone
two subtasks: (a) incremental addition of one or more thresh-Within an Otherwise a priori Fixed Network Topology.
old neurons to the network when the existing network topol-Weight modification algorithms typically search for a
ogy fails to achieve the desired classification accuracy on thesolution weight vector that satisfies some desired per-
training set. (b) training the added threshold neuron(s) usingformance criterion (e.g., classification error). For this
some variant of the perceptron training algorithm [e.g., theapproach to be successful, such a solution must lie
pocket algorithm (11)] to improve the classification accuracywithin the weight-space being searched, and the search
of the network. In the case of the sequential learning algo-procedure employed must in fact, be able to locate it.
rithm, hidden neurons are added and trained by an appro-This means that unless the user has adequate problem-
priate weight-training rule to exclude patterns belonging tospecific knowledge that could be brought to bear upon
the same class from the rest of the pattern set.the task of choosing an adequate network topology, the

The constructive algorithms differ in terms of their choicesprocess is reduced to one of trial and error. Constructive
regarding restrictions on input representation (e.g., binary,algorithms can potentially offer a way around this prob-
bipolar, or real-valued inputs); when to add a neuron; wherelem by extending the search for a solution, in a con-
to add a neuron; connectivity of the added neuron; weight ini-trolled fashion, to the space of network topologies.
tialization for the added neuron; how to train the added neu-2. Complexity of the Network Should Match the Intrinsic
ron (or a subnetwork affected by the addition); and so on. TheComplexity of the Classification Task. It is desirable
interested reader is referred to Ref. 10 for an analysis (in geo-that a learning algorithm construct networks whose
metrical terms) of the decision boundaries generated by somecomplexity (as measured in terms of relevant criteria
of these constructive learning algorithms. Each of these algo-such as number of nodes, number of links, connectivity,
rithms can be shown to converge to networks that yield zeroetc.) is commensurate with the intrinsic complexity of
classification errors on any given training set wherein thethe classification task (implicitly specified by the train-
patterns belong to one of two classes (i.e., two-category classi-ing data). Smaller networks yield efficient hardware im-
fication). To keep the discussion that follows focused, we useplementations. Everything else being equal, the more
a specific constructive algorithm—DISTAL—to illustrate thecompact the network, the more likely it is that it exhib-
key ideas.its better generalization properties. Constructive algo-

DISTAL can be viewed as a variant of the instance-based,rithms can potentially discover near-minimal networks
nearest-neighbor, and radial-basis function-based approachesfor correct classification of a given dataset.
to pattern classification. DISTAL replaces the iterative weight3. Estimation of Expected Case Complexity of Pattern Clas-
update of neurons that is typically used in constructive learn-sification Tasks. Many pattern classification tasks are
ing algorithms by a comparison of pair-wise distances amongknown to be computationally hard. However, little is
the training patterns. Because the interpattern distances areknown about the expected case complexity of classifica-
computed only once during the execution of the algorithm, ourtion tasks that are encountered, and successfully
approach achieves a significant speed advantage over othersolved, by living systems, primarily because it is diffi-
constructive learning algorithms.cult to mathematically characterize the statistical dis-

tribution of such problem instances. Constructive algo-
rithms, if successful, can provide useful empirical DISTAL
estimates of expected case complexity of real-world pat-
tern classification tasks. DISTAL differs from other constructive learning algorithms

4. Trade-Offs Among Performance Measures. Different mentioned above in two respects: Firstly, it uses spherical
constructive learning algorithms offer natural means of threshold units (a variant of the TLU) as hidden neurons. The
trading off certain subsets of performance measures regions that are defined (or separated) by TLUs are un-
(e.g., learning time) against others (network size, gener- bounded. This motivates us to use spherical threshold units
alization accuracy). that cover locally bounded regions (8). A spherical threshold

neuron i has associated with it a weight vector Wi, two thresh-5. Incorporation of Prior Knowledge. Constructive algo-
rithms provide a natural framework for exploiting prob- olds � �i,low and �i,high, and a suitably defined distance metric
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d. It computes the distance d(Wi, Xp) between a given input where
pattern Xp and Wi. The corresponding output op

i � 1 if �i,low 	
d(Wi, Xp) 	 �i,high and 0 otherwise. The spherical neuron thus Na,x(Na,y) is the number of patterns in the training set that
identifies a cluster of patterns that lie in the region between have value x(y) for attribute a
two concentric hyperspherical regions. Wi represents the com- Na,x,c(Na,y,c) is the number of patterns in the training set that
mon center and �i,low and �i,high respectively represent the have value x(y) for attribute a and output class
boundaries of the two regions.

cSecondly, DISTAL does not use an iterative algorithm for
C is the number of output classesfinding the weights and the thresholds. Instead, it computes
q is a constant (Euclidean, 2; Manhattan, 1)the interpattern distance once between each pair of patterns

in the training set and determines the weight values for hid-
If there is a missing value in either of the patterns, the dis-den neurons by a greedy strategy (one that attempts to cor-
tance for that component (of the entire pattern vector) isrectly classify as many patterns as possible with the introduc-

tion of each new hidden neuron). The weights and thresholds taken to be 1.
are then set without the computationally expensive iterative Let Xp � [Xp

1, � � � , Xp
n] and Xq � [Xp

1, � � � , Xq
n] be two pat-

process (see the section on Network Construction for details). tern vectors. Let maxi, mini and �i be the maximum, mini-
The use of a one-time interpattern distance calculation in- mum, and the standard deviation of values of the ith attribute

stead of a (usually) iterative, expensive, and time-consuming of patterns in a dataset, respectively. Then the distance be-
perceptron training procedure makes the proposed algorithm tween Xp and Xq, for different choices of the distance metric d
significantly faster than most other constructive learning al- is defined as follows:
gorithms. In fact, the time and space complexities of DISTAL

can be shown to be polynomial in the size of the training set.
1. Range, value-difference based Euclidean:

Distance Metrics

Each hidden neuron introduced by DISTAL essentially repre-
sents clusters of patterns that fall in the region bounded by
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two concentric hyperspherical regions in the pattern space.
The weight vector of the neuron defines the center of the hy- 2. Range, value-difference based Manhattan:
perspherical regions and the thresholds determine the bound-
aries of the regions (relative to the choice of the distance met-
ric used). The choice of an appropriate distance metric for the
hidden layer neurons is critical to achieving a good perfor-
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mance. Different distance metrics represent different notions
of distance in the pattern space. They also impose different

3. Range, value-difference based maximum value:inductive biases (7,8) on the learning algorithm. Conse-
quently, many researchers have investigated the use of alter-
native distance functions for instance-based learning (6,35–
38). The number and distribution of the clusters that result
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from specific choices of distance functions is a function of the
distribution of the patterns as well as the clustering strategy

Similarly, 4 � �i can be used instead of maxi � mini forused. Because it is difficult to identify the best distance metric
standard-deviation-based metrics, and dol(Xp

i , Xq
i ) can bein the absence of knowledge about the distribution of patterns

used instead of dvd(Xp
i , Xq

i ) for overlap-based metrics inin the pattern space, we chose to explore a number of differ-
above formulas.ent distance metrics proposed in the literature.

The distance between two patterns is often skewed by at- 4. Dice coefficient:
tributes that have high values. Normalization of individual
attributes overcomes this problem in the distance computa-
tion. Normalization can be achieved by dividing each pattern 1 −
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attribute by the range of possible values for that attribute or
by four times the standard deviation for that attribute (38).

Normalization also allows attributes with nominal and/or 5. Cosine coefficient:
missing values to be considered in distance computation. The
distance for attributes with nominal values (say with attri-
bute values x and y) is computed as follows (38): 1 −
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• Overlap: dol(x, y) � 0 if x � y; 1 otherwise.
6. Jaccard coefficient:• Value difference:
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7. Camberra: are computed again in the output layer to compare with the
desired classification.

Example. Although DISTAL works on tasks with multicate-

n∑
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i
|
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+ X q
i
|

gory real-valued patterns, we illustrate its operation using
the simple XOR problem. We assume the use of the Manhat-
tan distance metric. There are four training patterns (S �Network Construction
�X1, X2, X3, X4�):

Let S � �X1, X2, � � � , XN� represents the N training patterns.
DISTAL calculates the pairwise interpattern distances for the
training set (using the chosen distance metric d) and stores
them in the distance matrix D . Each row of D is sorted in
ascending order. Thus, row k of D corresponds to the training
pattern Xk and the elements D [k, i] correspond to the dis-
tance of Xk to the other training patterns. D [k, 0] is the dis-

Input Class

X1: 0 0 A
X2: 0 1 B
X3: 1 0 B
X4: 1 1 A

tance to the closest pattern and D [k, N] is the distance to the
farthest pattern from Xk. Simultaneously, the attribute values This yields the following distance matrix after sorted:
of the training patterns are stored in D �. D � is essentially
the entire training set with D �[k, i] representing the ith attri-
bute value of the kth training pattern. Each column (attri-
bute) of D � is sorted in ascending order.

The key idea behind DISTAL is to generate a single layer of

D =

�
0 1 1 2
0 1 1 2
0 1 1 2
0 1 1 2

�
hidden neurons each of which separates a subset of patterns
in a training set using D (or D �). Then, they are fully con- The first row of the matrix is the distance of X1, X2, X3, and
nected to M output TLUs (one for each output class) in an X4 from pattern X1. The second row of the matrix is the dis-
output layer. The representation of the patterns at the hidden tance of X2, X1, X4, and X3 from X2. The third row of the matrix
layer is linearly separable (34). Thus, an iterative perceptron is the distance of X3, X1, X4, and X2 from X3. The last row of
learning rule can be used to train the output weights. How- the matrix is the distance of X4, X2, X3, and X1 from X4.
ever, the output weights can be directly set as follows: The X1 excludes the maximum number of patterns from a sin-
weights between output and hidden neurons are chosen such gle class (i.e., Sk � �X2, X3�, class � B). A hidden neuron is
that each hidden neuron overwhelms the effect of the hidden introduced for this cluster with Wh

1 � [0 0], �low � �high � 1,
neurons generated later. If there are a total of h hidden neu- Wo

B1 � 1, Wo
A1 � 0. X2 and X3 are now eliminated from further

rons (numbered 1, 2, . . ., h from left to right) then the consideration (i.e., S � S � Sk � �X1, X4�). The remaining
weight between the output neuron j and the hidden neuron i patterns (Sk � �X1, X4�, class � A) can be excluded by any
is set to 2h�i if the hidden neuron i excludes patterns belong- pattern (say, X1 again) with another hidden neuron with
ing to class j and zero otherwise. W h

2 � [0 0], �low � 0, �high � 2, Wo
A2 � 1, Wo

B2 � 0, Wo
A1 � Wo

A1 �
Let Wh

l be the weights between the lth hidden neuron and 2 � 0, Wo
B1 � Wo

B1 � 2 � 2. Now the algorithm stops since the
inputs. Let Wo

m be the weights between the output neuron for entire training set is correctly classified (i.e., S � S � Sk �
class m and hidden neurons, and Wo

ml be the weight between �). Figure 2 shows the network construction process.
the output neuron for class m and the lth hidden neuron, re-
spectively. Figure 1 summarizes the process of network con- Structural Learning Using Feature-Subset Selection
struction.

In pattern classification tasks, the choice of features (or attri-
butes) used to represent patterns affect the following:

Use of Network in Classification

Learning Time. The attributes used to describe the pat-The outputs in the output layer are computed by the winner-
terns implicitly determine the search space that needstake-all (WTA) strategy. The output neuron m that has
to be explored by the learning algorithm. The larger thethe highest net input produces 1 and all the other neurons
search space, the more time the learning algorithmproduce 0s. The WTA strategy and the weight setting ex-
needs for learning a sufficiently accurate classificationplained in the previous section guarantee 100% training accu-
function (7,39).racy for any finite noncontradictory set of training pat-

Number of Examples Needed. All other things being equal,terns.
the larger the number of attributes used to describe theEach test pattern is fed into the network and the outputs
patterns, the larger is the number of examples need toare computed by the WTA strategy. If there is one or more
learn a classification function to a desired accuracyhidden neuron that produces 1 (i.e., there exists one or more
(7,39).hidden neuron that include the test pattern within their

thresholds), the outputs are computed by the WTA strategy Cost of Classification. In many real-world pattern classifi-
in the output layer. Otherwise (i.e., all hidden neurons pro- cation tasks (e.g., medical diagnosis), some of the attri-
duce 0s and all output neurons produce 0s as well), the dis- butes may be observable symptoms and others might
tance between the test pattern and the thresholds of each hid- require diagnostic tests. Different diagnostic tests
den neuron is computed. The hidden neuron that has the might have different costs as well as risks associated

with them.minimum distance is chosen to produce 1. Then the outputs
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Figure 1. Pseudo-code for DISTAL.

Initialize the number of hidden neurons: h � 0;
while S � � do

1. Double all existing weights (if any) between hidden and output neurons: Wo
m � Wo

m �

2 �m

2. Increment the number of hidden neurons: h � h � 1

3. Interpattern distance based:
Identify a row k of D that excludes the largest subset of patterns in S that belong to
the same class m as follows:

(a) For each row r � 1, . . ., N do

i. Let ir and jr be column indices (corresponding to row r) for the matrix D

such that the patterns corresponding to the elements D [r, ir ], D [r, ir � 1], . . .,
D [r, jr ] all belong to the same class and also belong to S.

ii. Let cr � jr � ir � 1 (the number of patterns excluded).

(b) Select k to be the one for which the corresponding ck is the largest: k � arg maxr cr

(c) Let Sk be the corresponding set of patterns that are excluded by pattern Xk,
d k

low � D [k, ik ] (distance to the closest pattern of the cluster) and d k
high � D [k, jk ]

(distance to the farthest pattern of the cluster).

4. (a) Define a spherical threshold neuron with Wh � Xk, �low � d k
low , �high � d k

high .

(b) S � S � Sk

5. Connect the new hidden neuron to output neurons: W o
mh � 1; W o

nh � 0 �n � m

end while

This presents us with a feature subset selection problem in SUMMARY
automated design of pattern classifiers. The feature subset
selection problem refers the task of identifying and selecting Constructive algorithms offer an attractive approach to the

design of pattern classifiers. Some promising research direc-a useful subset of attributes to be used to represent patterns
from a larger set of attributes. Satisfactory solution of this tions include combining network pruning with network con-

struction; incorporation of prior knowledge in network con-problem is particularly critical if instance-based, nearest-
neighbor, or similarity-based learning algorithms like struction (42); and the use of constructive algorithms for

cumulative multitask learning.DISTAL are used to build the classifier. This is due to the fact
that such classifiers rely on the use of interpattern distances
that are intricately linked to the choice of features used to
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BIBLIOGRAPHYRefs. 40 and 41 for discussion of a variety of alternative ap-
proaches to feature subset selection. Feature selection typi-

1. U. Fayyad et al., Advances in Knowledge Discovery and Data Min-cally improves the performance of DISTAL.
ing, Cambridge, MA: MIT Press, 1996.

2. V. Honavar, Machine learning: Principles and applications, in
J. G. Webster (ed.), Encyclopedia of Electrical and Electronics En-
gineering, New York: Wiley, 1999.

3. J. Bradshaw, Software Agents, Cambridge, MA: MIT Press, 1997.

4. V. Honavar, Intelligent agents, in J. Williams and K. Sochats
(eds.), Encyclopedia of Information Technology, New York: Marcel
Dekker, 1998.

5. K. Balakrishnan and V. Honavar, Intelligent diagnosis systems.
Int. J. Intelligent Syst., in press.

6. R. Duda and P. Hart, Pattern Classification and Scene Analysis,
New York: Wiley, 1973.

Output A B

0 1

1
1

0

(a) (b)

0

Hidden

Input

A B
2

00

0

1

2
0

0 0
0

1
1

7. T. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.Figure 2. Process of network construction for the example in
DISTAL (a) after the first neuron is introduced and (b) after the second 8. P. Langley, Elements of Machine Learning, Palo Alto, CA: Morgan

Kaufmann, 1995.neuron is introduced (final network).



CONTACTORS 231

9. V. Honavar, Toward learning systems that integrate multiple 30. S. Gallant, Perceptron based learning algorithms, IEEE Trans.
Neural Networks, 1: 179–191, 1990.strategies and representations, in V. Honavar and L. Uhr (eds.),

Artificial Intelligence and Neural Networks: Steps Toward Princi- 31. M. Mézard and J. Nadal, Learning feed-forward networks: The
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