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The development of artificial neural networks has been moti-
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vated by the desire to find improved methods of solving prob-
lems that are difficult for traditional computing software or Figure 1. A feedforward network allows signals to flow from the in-
hardware. The success of early neural networks led to the put neurons (X1, . . ., Xn) through the hidden layer (Z1, . . ., Zp) to

the output layer (Y1, . . ., Ym).claim that they could solve virtually any type of problem. Al-
though this was quickly shown to be overly optimistic, re-
search continued during the 1970s into the use of neural net-
works, especially for pattern association problems. The early Architectures
1980s marked the beginning of renewed widespread interest

One of the most basic distinctions between different types ofin neural networks. A key player in the increased visibility
neural networks is based on whether the network architec-of, and respect for, neural networks is physicist John Hopfield
ture allows for feedback among the neurons. A simple lay-of the California Institute of Technology. Together with David
ered, or feed-forward, network is illustrated in Fig. 1. A fullyTank of AT&T Laboratories, Hopfield developed a group of
interconnected recurrent network is shown in Fig. 2.recurrent networks that are known as Hopfield neural net-

works (HNN). The first of these, the discrete Hopfield neural
Weightsnetwork (DHNN), was designed as a content addressable

memory (CAM). The continuous Hopfield neural network In addition to the design of the ANN architecture, a major
(CHNN) can also serve as a CAM, but is most widely used for consideration in developing a neural network is the determi-
combinatorial optimization problems. nation of the connection weights. For many networks this is

One of the reasons that Hopfield’s work caught the atten- done by means of a training phase, in which known examples
tion of the scientific community and the public was the close of the desired input–output patterns are presented to the net-
connection between the models and the successful develop- work and the weights are adjusted according to a specified
ment of neural network chips by researchers at AT&T and by training algorithm. This is especially typical of feed-forward
Carver Mead and coworkers. Hopfield’s emphasis on practical networks. In the standard Hopfield networks, the weights are
implications made the engineering connection very strong. By fixed when the network is designed.
making explicit the relationship between the HNN and elec-
trical circuits, Hopfield opened the field of neural networks to
an influx of physical theory. Although many of the concepts
incorporated in the HNN had antecedents in earlier neural
network research, Hopfield and Tank brought them together
with both clear mathematical analysis and strong emphasis
on practical applications (1).

ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) approach to problem solv-
ing is inspired by certain aspects of biological nervous sys-
tems. An ANN is composed of a large number of very simple
processing elements (neurons). The neurons are intercon-
nected by weighted pathways. The pattern of connection
among the neurons is called the network architecture. At any
time, a neuron has a level of activity, which it communicates
to other neurons by sending it as a signal over these path-
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ways. Since the weights on the pathways contain much of the
important information in the network, the information is dis- Figure 2. A fully interconnected network allows signals to flow be-

tween neurons.tributed, rather than localized as in traditional computers.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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Network Operation terns. When a modified form of one of the stored patterns is
presented as input, the HNN is able to recall the original pat-To use a neural network, after the weights are set, an input
tern after a few iterations.pattern is presented and the output signal of each neuron is

Before the weights of an associative memory neural net-adjusted according to the standard process for the specific
work are determined, the patterns to be stored must be con-ANN model. In general, each neuron sends its output signal
verted to an appropriate representation for computation. Usu-to the other neurons to which it is connected; the signal is
ally each pattern is represented as a vector with componentsmultiplied by the weight on the connection pathway; each
that are either 0 or 1 (binary form) or �1 (bipolar form); theneuron sums its incoming signals. Each neuron’s output sig-
bipolar form is often computationally preferable for associa-nal is a nonlinear function of its summed input. In a feed-
tive memory applications. The same representation is alsoforward network these computations are performed one layer
used for patterns that are presented to the network for recog-at a time, starting with the input units, and progressing
nition.through the network to the output units. For a recurrent net-

work, such as an HNN, the updating of each neuron’s activity
level continues until the state of the network (the pattern of Optimization
activations) converges. The process differs for the discrete and

The second primary area of application for Hopfield neuralcontinuous forms of HNN; before discussing the details, we
networks is combinatorial optimization problems. The use ofsummarize the primary types of applications for which Hop-
a continuous HNN for solving optimization problems was firstfield neural networks are used.
illustrated for the traveling salesman problem (TSP), a well-
known but difficult optimization problem (3) and a task as-
signment problem (2). Since then, HNN have been applied to

APPLICATIONS OF RECURRENT NEURAL NETWORKS
optimization problems from many areas, including game the-
ory, computer science, graph theory, molecular biology, VLSIMemory in biological systems is fundamentally different than
computer-aided design, reliability, and management science.in a traditional digital computer, in which information is
Many examples are included in Ref. 4.stored by assigning an address, corresponding to a physical

The HNN approach is based on the idea that the networklocation, where the data are written. On the other hand, your
weights and other parameters can be found from an energymemory of an event is a combination of many sights, sounds,
function; the network configuration (pattern of neuron activa-smells, etc. The idea of associative memory came from psy-
tions) that produces a minimum of the energy function corre-chology rather than engineering, but during the 1970s much
sponds to the desired solution of the optimization problem.of the neural network research (especially work by James A.
The appropriate choice of energy function for a particularAnderson at Brown University and Teuvo Kohonon at the
problem has been the subject of much research.University of Helsinki) focused on the development of mathe-

matical models of associative (or content addressable) mem-
ory. The use of an energy function analysis facilitates the un-

DISCRETE HOPFIELD NETWORKSderstanding of associative memories that can be constructed
as electronic ‘‘collective-decision circuits’’ (2).

The iterative autoassociative network developed by HopfieldThe process used by biological systems to solve optimiza-
(5,6) is a fully interconnected neural network, with symmetriction problems also differs from that used in traditional com-
weights and no self-connections, that is, wij � wji and wii = 0.puting techniques. Although no claim is made that neural
In a discrete Hopfield neural network (DHNN) only one unitnetwork approaches to optimization problems directly model
updates its activation at a time (this update is based on thethe methods used by biological systems, ANNs do have some
signals it receives from the other units). The asynchronouspotential advantages over traditional techniques for certain
updating of the units allows an energy (or Lyapunov) functiontypes of optimization problems. ANNs can find near-optimal
to be found for the network. The existence of such a functionsolutions quickly for large problems. They can also handle sit-
forms the basis for a proof that the network will converge touations in which some conditions are desirable but not abso-
a stable set of activations. Nonsymmetric weights can lead tolutely required. Neural network solutions (and in particular
an unstable network.HNN) have been investigated for many applications because

of their potential for parallel computation and computational
advantage when they are implemented with analog VLSI Operation
techniques.

Setting the Weights. The earliest version of the DHNN usedMany other forms of recurrent neural networks have also
binary input vectors; later descriptions are often based on bi-been developed. Networks with specific recurrent structure
polar inputs. The weight matrix to store a pattern, repre-are used for problems in which the signal varies with time.
sented as the column vector, p � (p1, . . ., pi, . . ., pn)T is theNeural networks for the study of learning, perception, devel-
matrix p pT � I. The matrix p pT is known as the outer oropment, cognition, and motor control also utilize recurrent
matrix product of the vectors p and pT, in contrast to the in-structures.
ner or scalar product pT p. Subtracting the identity matrix
has the effect of setting the diagonal entries to 0, which is

Associative Memory necessary to allow the network to reconstruct one of the
stored patterns when a degraded or noisy form of the patternOne important use of an HNN is as an autoassociative mem-

ory, which can store (or memorize) a certain number of pat- is presented as input. For example, to find the weight matrix
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to store the pattern p � (1,�1,1)T, we first compute the outer We present x � (1,�1,�1,1,1)T as an input (or probe)
product vector, which differs from the second stored pattern in only

the last component. To update the network, compute Wx �

(4,�3,4,4,�2)T. If the third neuron is chosen, its activation
will change from �1 to 1, since it received a signal of 4. Using
the updated vector of activations, (1,�1,1,1,1)T gives Wx �

ppppppT =




1
−1

1


 [1 − 1 1] =




1 −1 1
−1 1 −1

1 −1 1


 .

(6,0,4,6,4)T. If neuron 1, 3, 4, or 5 is chosen, its activity will
not change, and eventually neuron 2 will be chosen. Since we

Then are using the convention that a neuron’s activity is set to 1
if it receives a non-negative signal, neuron 2 will change its
activation and the updated vector of activations becomes
(1,1,1,1,1)T, which is the first stored pattern but not the stored
pattern that is most similar to the probe. If the fifth neuron

W = ppppppT − I =




0 −1 1
−1 0 −1
−1 −1 0


 .

had been chosen for the first update (instead of the third neu-
ron) the network would have reached the second stored pat-

The weight matrix W in which several patterns are stored is tern immediately.
the sum of the individual matrices generated for each pattern. This example illustrates both the operation of a discrete

Hopfield network for use as an associative memory and some
Updating the Activations. To use a DHNN to recall a stored of the issues that must be considered. These include questions

pattern, an input stimulus pattern x is presented to the net- concerning the circumstances under which convergence to a
work (one component to each neuron). Typically the input is stable state is guaranteed, the question as to whether that
similar to one of the stored memories. Each neuron transmits stable state will be one of the stored patterns (and if so, will
its signal to all of the other neurons. The signal received by it be the closest pattern to the input?), and the relationship
the ith neuron is �jxjwji; by the symmetry of the weights, this between the number of stored memories and the ability of the
is also the ith row of the product Wx. One neuron, chosen at network to recall the patterns with little or no error.
random, updates its activation. Its activation is 1 if the signal
it received was non-negative, that is, if �jxjwji � 0; the activa-
tion is �1 if �jxjwji � 0. The new pattern is again broadcast Issues
to all neurons, and another neuron is chosen to update its

Convergence. For any iterative process it is important toactivation. The process continues until the network reaches a
understand its convergence characteristics. It can be shownstable state, a configuration of activations that does not
that the general DHNN will converge to a stable limit pointchange.
(pattern of activation of the units) by considering an energy
function for the system. An energy function is a function that

Example. To illustrate the use of a DHNN, consider the fol- is bounded below and is a nonincreasing function of the state
lowing simple example, adapted from Ref. 7. Suppose we wish of the system. For a neural network, the state of the system
to store the three bipolar patterns is the vector of activations of the units. Thus, if an energy

function can be found for an iterative neural network, the
ANN will converge to a stable set of activations.

The general DHNN allows an external signal yi to be main-
tained during processing, so that the total signal received by

p1 = ( 1 1 1 1 1)T

p2 = ( 1 − 1 − 1 1 − 1)T

p3 = (−1 1 − 1 − 1 − 1)T
neuron Xi is yi � �jxjwji. The threshold for determining
whether a neuron is ‘‘on’’ or ‘‘off ’’ may be set to any desired

The weight matrix to store these three patterns is W1 � W2 constant �i; when chosen to update its activation, a unit will
� W3 � W: set its activation to ‘‘on’’ if

yi +
∑

j

x jwji ≥ θi

and a unit will set its activation to ‘‘off ’’ if

yi +
∑

j

x jwji < θi

An energy function for the general DHNN described here, is
given by

E = −0.5
∑
i �= j

∑
j

xix jwi j −
∑

i

xiyi +
∑

i

θixi (1)




0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


 +




0 −1 −1 1 −1
−1 0 1 −1 1
−1 1 0 −1 1

1 −1 −1 0 −1
−1 1 1 −1 0




+




0 −1 1 1 1
−1 0 −1 −1 −1

1 −1 0 1 1
1 −1 1 0 1
1 −1 1 1 0




=




0 −1 1 3 1
−1 0 1 −1 1

1 1 0 1 3
3 −1 1 0 1
1 1 3 1 0
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If the activation of the net changes by an amount 
xi, the g is a monotonically nondecreasing function of the input sig-
energy changes by the corresponding amount nal received by unit Ui. Most commonly g is taken to be the

sigmoid function v � 0.5[1 � tanh(�u)], which has range
(0, 1). The parameter � controls the steepness of the sigmoid
function. The differential equations governing the change in�E = −

�
yi +

∑
i �= j

x jwi j − θi

�
�xi (2)

the internal activity of each unit are closely related to the
energy function that will be minimized as the network activa-To show that 
E � 0, consider the two cases in which the
tions evolve. Either the evolution equation, or the energyactivation of neuron Xi will change.
function, may be specified and the other relationship derived
from it. A standard form for the energy function is1. If Xi is on, it will turn off if yi � �jxjwji � �i. This gives

a negative change for xi. Since the quantity yi �
�i�jxjwij � �i in the expression for 
E is also negative,
we have 
E � 0. E = 0.5

n∑
i=1

n∑
j=1

wi jviv j +
n∑

i=1

θivi (3)

2. On the other hand, if Xi is off, it will turn on if yi �
�jxjwji � �i. This gives a positive change for xi. Since

the corresponding evolution equation is:yi � �i�jxjwij � �i is positive in this case, the result is
again that 
E � 0.

Therefore, the energy cannot increase. Since the energy is
d
dt

ui = − ∂E
∂vi

= −
n∑

j=1

wi jv j − θi (4)
bounded, the network must reach a stable equilibrium where
the energy does not change with further iteration. This proof
uses the fact that the energy change only depends on the Thus the evolution, or relaxation, of a Hopfield network is
change in activation of one unit, and that the weight matrix based on gradient descent to minimize the energy function.
is symmetric. Setting the diagonal weights to 0 corresponds Continuous Hopfield neural networks that are used to
to the assumption that biological neurons do not have self- solve constrained optimization problems have several stan-
connections. From a computational point of view, zeroing out dard characteristics. Each unit represents a hypothesis; the
the diagonal makes it more likely that the network will con- unit is ‘‘on’’ if the hypothesis is true and ‘‘off ’’ if the hypothesis
verge to one of the stored patterns rather than simply repro- is false. The weights are fixed to represent both the con-
ducing the input pattern. straints of the problem and function to be optimized. The so-

lution of the problem corresponds to the minimum of the en-
Storage Capacity ergy function. Each unit’s activation evolves so that the

energy function decreases.In addition to knowing the circumstances under which a Hop-
In the next sections, we illustrate the use of CHNN forfield network is guaranteed to converge, it is also useful to

constraint satisfaction and constrained optimization, first forunderstand how many patterns may be stored in, and recalled
a very simple example, and then for the well-known N-queensfrom, such a network. Although more patterns may be stored
and traveling salesman (TSP) problems.if the pattern vectors are orthogonal, that structure cannot be

assumed in general. Therefore, most results are based on the
assumption that the patterns to be stored are random. Hop- Simple Example
field found experimentally that P, the number of binary pat-

To introduce the use of a CHNN, consider the network shownterns that can be stored and recalled with reasonable accu-
in Fig. 3, in which it is desired to have exactly one unit on.racy, is given (approximately) by P � 0.15n, where n is the
The weights must be chosen so that the network dynamicsnumber of neurons. For a similar DHNN, using bipolar pat-
correspond to reducing the energy function.terns, it has been found (7) that P � n/2 log2n.

In order to have a network that converges to a pattern ofAs the number of stored patterns is increased, the network
activations that solves a specified problem, it is common tobecomes less able to correctly recall the patterns; this is gen-

erally known as network saturation. Recall is also more diffi- design the energy function so that its minimum will be
cult if the stored patterns are similar to each other (further achieved for a pattern of activations that solves the given
from orthogonal).

CONTINUOUS HOPFIELD NETWORK

In contrast to the discrete form, the activations of the neurons
in a continuous Hopfield network can take on a continuous
range of values (most often between 0 and 1). The network
dynamics are specified by differential equations for the
change in activations. These differential equations are inti-
mately connected to the underlying energy function for the

w12 = w21 w13 = w31

w23 = w32
X2

2θ 3θ

1θ

X1

X3

network.
For a continuous Hopfield network, we denote the internal Figure 3. A simple Hopfield network to illustrate the interrelation-

ship between the weights and the energy function.activity of a neuron as ui; its output signal is vi � g(ui), where
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problem. For this example, the energy function might be for- The constraints are
mulated as

1. One and only one queen placed in each row
2. One and only one queen placed in each column
3. At most one queen placed on each diagonalE = C

�
1 −

∑
i

vi

�2

An energy function can be constructed for this problem, as
so that its minimum value (0) is achieved when exactly one follows:
of the units is on and the other two units each have activation
of zero. Expanding the energy equation

E = C
�
1 − 2v1 − 2v2 − 2v3 + v2

1 + v1v2 + v1v3 + v2v1

+ v2
2 + v2v3 + v1v3 + v2v3 + v2

3
�

and comparing it to the standard form given in Eq. (3) show
that �i � �2C and wij � C. (Note that there is a self-connec-
tion on each unit; this does not interfere with the convergence
analysis for a CHNN.) The energy function also includes a
constant term C.

The differential equations governing the change in the in-

E = C1

2

∑
x

∑
i

∑
j �=i

vxivx j + C2

2

∑
i

∑
x

∑
y �=x

vxivyi

+ C3

2

∑
x

�∑
i

vxi − 1

�2

+ C4

2

∑
i

�∑
x

vxi − 1

�2

+ C5

2

∑
x

∑
i

∑
1≤x+k; i+k≤N

k �=0

(vxivx+k; i+k)

+ C6

2

∑
x

∑
i

∑
1≤x+k; i−k≤N

k �=0

(vxivx+k; i−k)

(5)

ternal activity ui for each neuron are given by

The first constraint is represented by the first and third
terms in the energy function; the second constraint is repre-

d
dt

ui = − ∂E
∂vi

= 2C[1 − (v1 + v2 + v3)]
sented by the second and fourth terms in the energy function;
the third constraint is represented by the fifth and sixth
terms in the energy function (one term for the diagonal, andThe N-Queens Problem
one for the antidiagonal). The corresponding motion equation

The problem of how to place eight queens on an 8-by-8 chess- for unit Uxi is
board in mutually nonattacking positions was proposed in
1848 and has been widely studied since then. It is used as a
benchmark for many methods of solving combinatorial opti-
mization problems. In a neural network approach, one neuron
is used for each square on the chessboard. The activation of
the neuron indicates whether a queen is located on that
square. Since a queen commands vertically, horizontally, and
diagonally, only one queen should be present on any row or
column of the board. The arrangement of the neurons for a

duxi

dt
= − C1

∑
j �=i

vx j − C2

∑
y �=x

vyi − C3

�∑
i

vxi − 1

�

− C4

�∑
x

vxi − 1

�
− C5

∑
x

∑
1 �=x+k; i+k≤N

k �=0

vx+k; i+k

− C6

∑
1≤x+k; i−k≤N

k �=0

vx+k; i−k

(6)

smaller five-queens problem is shown in Fig. 4. Even for this
small problem, the diagram would become very cluttered if

One example of a valid solution to the five-queens problemwe tried to show all of the connection pathways. To imple-
is represented by the network configuration in which neuronsment the energy function and evolution equations given in
U15, U23, U31, U44, and U52 are on and all others are off. ForEqs. 5 and 6, the units in each row and each column are fully
further discussion of CHNN solutions to this problem, seeinterconnected; similarly the units along each diagonal and
Refs. 4 and 8.each antidiagonal are also fully interconnected (4).

The Traveling Salesman Problem

The TSP is a well-known example of a class of computation-
ally difficult problems for which the amount of time required
to find an optimal solution increases exponentially as the
problem size increases. In the TSP, every city in a given set
of n cities is to be visited once and only once. A tour may
begin with any city, and ends by returning to the initial city.
The goal is to find a tour that has the shortest possible
length.

With a Hopfield network, the TSP is represented by a n �
n matrix of neurons in which the rows of the matrix represent
cities and the columns represent the position in the tour when
the city is visited. For example, if unit U24 is on for the TSP,

U11 U14 U15U13U12

U21 U24 U25U23U22

U31 U34 U35U33U32

U41 U44 U45U43U42

U51 U54 U55U53U52
it indicates that the second city is visited as the fourth stop
on the tour. A valid solution is achieved when the networkFigure 4. The arrangement of neurons for a five-queens problem.

Connection pathways are shown only for unit U23. reaches a state of a permutation matrix, that is, exactly one
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erning equations for the network dynamics. The activations
are updated iteratively until the network converges; the final
configuration of activations gives the network’s solution to
the TSP.

The choice of network parameters has a significant effect
on the quality of solutions obtained. The relative sizes of the
coefficients in the energy equation influence the network ei-
ther to emphasize valid tours (at the expense of tour length)
or to seek short tours (which may not be valid). A very steep
sigmoid function may force the network to converge quickly
(but not necessarily to a good solution), while a shallow slope

U11 U14 U15U13U12

U21 U24 U25U23U22

U31 U34 U35U33U32

U41 U44 U45U43U42

U51 U54 U55U53U52

on the sigmoid function may result in the final activations not
Figure 5. The arrangement of neurons for a five-city traveling sales- being close to 0 or 1.
man problem. Connection pathways are shown only for unit U23.

Simulation Results. The energy function in the original pre-
sentation of a Hopfield network solution of the TSP was given

unit on in each row and each column. The arrangement of the as
neuron for a five-city TSP is shown in Fig. 5, with connection
pathways shown only for unit U23. A widely used energy func-
tion for the TSP is

E = A
2

∑
x

∑
i

∑
j �=i

vxivx j + B
2

∑
i

∑
x

∑
y �=x

vxivyi

+ C
2

�
N −

∑
x

∑
i

vxi

�2

+ D
2

∑
x

∑
y �=x

∑
i

dxyvxi(vy,i+1 + vy,i−1)

(9)

The third term in this form of the energy function encourages
N neurons to be on, but does not try to influence their loca-

E = C1

2

∑
x

∑
i

∑
j �=i

vxivx j + C2

2

∑
i

∑
x

∑
y �=x

vxivyi

+ C3

2

∑
x

�∑
i

vxi − 1

�2

+ C4

2

∑
i

�∑
x

vxi − 1

�2

+ C5

2

∑
x

∑
y �=x

∑
i

dxyvxi(vy,i+1 + vy,i−1)

(7)

tion. The original differential equation for the activity of unit
Uxi was given byThe first four terms in the energy function represent the va-

lidity constraints: the first term is minimized (zero) if each
city is visited at most once. Similarly, the second term is zero
if at most one city is visited at each stage in the tour. The
third and fourth terms encourage each row and column in the
network matrix to have one neuron on. The fifth term gives
the value of the corresponding tour length. This term repre-

d
dt

uxi = − uxi

τ
− A

∑
j �=i

vx j − B
∑
y �=x

vyi + C

�
N −

∑
x

∑
i

vxi

�

− D
∑
y �=x

dxy(vy, i+1 + vy, i−1)

(10)
sents the TSP objective function. It is desired to make its
value as small as possible while maintaining the validity of The first term on the right-hand side of this equation is a
the tour. decay term, which can be motivated by analogy to electrical

To guarantee convergence of the network, the motion dy- circuits but does not have a corresponding term in the energy
namics are obtained from the energy function according to the equation. The parameter values that Hopfield and Tank used,
relationship namely,

A = B = 500, C = 200, D = 500,

N = 15, α = 50, τ = 1

give very little emphasis to the decay term, so the lack of
corresponding energy term has relatively little significance.
The parameter N must be taken to be larger than the actual

duxi

dt
= − ∂E

∂vxi
= −C1

∑
j �=i

vx j − C2

∑
y �=x

vyi − C3

�∑
j

vx j − 1

�

− C4

�∑
y

vyi − 1

�
− C5

∑
y �=x

dxy(vy, i+1 + vy, i−1)

(8)
number of cities in the problem to counterbalance the contin-
uing inhibitory effect of the distance term; since the minimumwhere the internal activation u and the output signal v for
of the distance component of the energy function is positive,any unit are related by the sigmoidal function v � 0.5[1 �
the corresponding term in Eq. (10) acts to try to turn a unittanh(�u)].
off even when there are no constraint violations.For simulations, each neuron is updated using Euler’s

Although Hopfield and Tank (3) reported a very high ratefirst-order difference equation
of success in finding valid tours (16/20 trials) with about �� of
the trials producing one of the two shortest tours, other re-
searchers have been unable to match these results. The coor-

uxi(t + �t) = uxi(t) +
�duxi

dt

�
�t

dinates of the Hopfield and Tank 10-city test problem were
generated randomly; the same locations have been used as aThe neurons’ activations are initialized with random values,

and the activations are allowed to evolve according to the gov- benchmark for other neural network solutions. Many varia-
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tions have been investigated, including alternative energy Note that the weights must be symmetric for the equations
given here to be valid. This symmetry follows from the factfunctions, methods of choosing parameter values, and proce-

dures for setting the initial activations. that connections in a standard Hopfield network are bidirec-
tional, that is, the connection from unit i to unit j and theWilson and Pawley (9) provide a detailed statement of the

Hopfield–Tank algorithm, together with an analysis of their connection from unit j to unit i are the same connection. Re-
sults for asymmetrical Hopfield networks are discussedexperiments. Using the Hopfield–Tank parameters, with


t � 10�5, they found 15 valid tours in 100 attempts (45 froze below.
and 40 failed to converge in 1000 epochs).

Choice of Coefficients. The relative importance assigned toWilson and Pawley tried a number of variations of the
each of the terms in the energy function plays a very impor-Hopfield and Tank algorithm, in attempting to obtain a suc-
tant role in determining the quality of the solutions obtained.cess rate for valid tours which would approach that achieved
A variety of experimental investigations into the appropriateby Hopfield and Tank. They experimented with different pa-
coefficients have been reported. Theoretical results have alsorameter values and different initial activity configurations
been obtained; the choice of energy function coefficients is dis-and imposed a large distance penalty for visiting the same
cussed further in the section on recent developments.city twice, none of which helped much. Fixing the starting

city helped on the Hopfield–Tank cities, but not on other ran-
Local Minima. One shortcoming of the CHNN, as with anydomly generated sets of cities.

optimization procedure that always moves in the direction ofOne variation that did improve the ability of the network
improving the solution, is convergence to a local optima thatto generate valid tours was a modification of the initialization
is not the global optimum. One method of combating this dif-procedure. The Willshaw initialization is based on the ratio-
ficulty is to add noise to the updating process, so that occa-nale that cities on opposite sides of the square probably
sionally the network moves in a different direction. A generalshould be on opposite sides of the tour. The starting activity
framework that includes the Boltzmann machine, Hopfieldof each unit is biased to reflect this fact. Cities far from the
network, and others is known as the Gaussian machine (10).center of the square received a stronger bias than those near
A Gaussian machine is described by three parameters: � (thethe middle. The formula, in terms of the ith city and jth posi-
steepness of the sigmoid function), T (temperature), and 
ttion, where the coordinates of the ith city are (xi, yi):
(the time step). The operation of a Gaussian net consists of

Calculating the input to unit Ui:
bias(i, j) = cos

[
arctan

�
yi − 0.5
xi − 0.5

�
+ 2π( j − 1)

n

]
�

(xi − 0.5)2 + (yi − 0.5)2

Although special analysis that relies on the geometry of the
neti =

N∑
j=1

wi jv j + θi + ε

problem can improve the solution to the actual TSP, it does
where � is the random noise, which depends on temper-not generalize easily to other applications.
ature T.

Changing the activity level of unit Ui:Issues

Proof of Convergence. For an energy function of the form
of Eq. (3), the Hopfield network will converge if the activa-

�ui

�t
= −ui

τ
+ neti

tions change according to the differential equation given in
Eq. (4), as the following simple calculations show. If vi � Applying the output function:
g(ui) is monotonically nondecreasing, then dvi/dui � 0. Since

vi = f (ui) = 0.5[1 + tanh(αui)]

The standard Hopfield neural network corresponds to T � 0
dE
dt

=
∑

i

dvi

dt
∂E
∂vi

= −
∑

i

dvi

dt
dui

dt
= −

∑
i

dvi

dui

dui

dt
dui

dt
(no noise).

the energy is nonincreasing, as required.
In the original presentation of the continuous Hopfield net- RECENT DEVELOPMENTS

work (6) the energy function is

Hopfield neural networks are being used for applications in
many areas of engineering. The most recent examples can be
found in conference proceedings, either for meetings that fo-

E = −0.5
n∑

i=1

n∑
j=1

wi jviv j −
n∑

i=1

θivi + 1
τ

n∑
i=1

∫ vi

0
g−1

i (v) dv

cus on neural network applications or for gatherings of re-
If the weight matrix is symmetric and the activity of each searchers in a particular specialty. In the next sections, we
neuron changes with time according to the differential equa- consider some directions in which the basic Hopfield neural
tion: network model is being generalized. Methods of adapting the

weights in HNN, both for CAM and optimization problems,
are being developed. Investigation into HNN with nonsym-
metric weights are giving theoretical results for conditions

d
dt

ui = −ui

τ
+

n∑
j=1

wi jv j + θi (11)

under which such network are guaranteed to converge. Re-
search also continues into the determination of the storagethe network will converge. The argument is essentially the

same as before. capacity of the DHNN.
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Adaptive Weights Constrained Optimization. The appropriate choice of the
weights in a Hopfield net for constrained optimization has

Much of the neural network research has focused on networks
been the subject of much experimental work. It is well known

in which either the activities of the neurons evolve or the
that using larger values for the coefficients of the constraint

strengths of the synapses (weights) adapt, but not both. How-
terms helps guide the network toward valid solutions, but

ever, a complete model of a biological process requires dynam-
may result in poor quality solutions. On the other hand, in-

ical equations for both to specify the behavior of the system.
creasing the value of the coefficient of the objective term helps

On the other hand, applications of Hopfield networks to con-
to improve the quality of a solution, but it may result in an

strained optimization problems repeatedly illustrate the im-
invalid solution because of a constraint violation.

portance and difficulty of determining the proper weights to
Recently, Park (8) introduced a method for determining

ensure convergence to a good solution. Progress is being made
the coefficients of the energy function (and thereby the

in both of these areas.
weights) adaptively as the network evolves. As the network
evolves in the direction of minimization of the total energy,

Learning Patterns. Dong (11) has developed an energy func- each term in the energy function competes with the other
tion for a system in which both activations and weights are terms to influence the path to be followed. To find good coeffi-
adaptive and applied it to the study of the development of cients for the energy function, the components of the energy
synaptic connection in the visual cortex. His dynamical equa- are monitored and the coefficients adapted, depending on how
tions for the activity of the neurons are essentially the same far each component of the energy function is to its goal (mini-
as given in Eq. (11). The adaptation of the weights follows a mum value), until a balanced relationship among the coeffi-
differential form of Hebbian learning, based on the ‘‘recent’’ cients is reached. Using a steepest-ascent procedure with nor-
correlation of the activities of the neurons that are on either malization, the coefficients are updated after every epoch of
end of the weighted pathway; this leads to Hebbian learning iteration until they reach a state of near equilibrium. While
with a decay term. The weights remain symmetric throughout this may seem counterintuitive at first, it has the desired ef-
the process, so that the convergence analysis follows an en- fect of increasing the coefficients of those terms that are con-
ergy function approach as described previously. tributing the most to the value of the energy function. It is

As a simple example, consider two neurons and the weight those terms that most need to be reduced during network iter-
w on the connection path between them. Dong’s dynamical ation. The final coefficient values are used to set the weight
equations for this illustrative special case are connections, and the network is run again to solve the

problem.
A sample of the coefficient evolution for the 10-city TSP is

illustrated in Fig. 6. In this example, the coefficient of the
objective term (representing tour length) in the energy func-
tion, is fixed as C5 � 0.5; the other coefficients (on the con-
straint terms) evolve subject to the restriction that C1 �
C2 � C3 � C4 � 1. When the network was rerun with the
converged coefficients, 94% of the trials resulted in valid
tours; the length of the generated tours ranged from 2.69 to

a
du1

dt
= −u1 + wv1

a
du2

dt
= −u2 + wv2

v = f (gu)

b
ds
dt

= −s + v1v2

w = f (hs)
3.84, with a mean length of 2.83. The efficacy of this method
is even more striking on larger problems. Although the re-The function f is piecewise linear, with a range between �1
sults vary depending on the choice of the fixed value for theand 1; that is, f (x) � �1 if x � �1, f (x) � x if �1 � x � 1,
coefficient of the objective term, 20- and 30-city problemsf (x) � 1 if x � 1. The energy function is

E(v1, v2, w) = −wv1v2 + 1
2g

v2
1 + 1

2g
v2

2 + 1
2h

w2

The origin (0,0,0) is a stable point, corresponding to un-
learned connections and no neuron activity. If the constants
g and h are greater than 1, the configurations (1,1,1),
(�1,�1,1), (1,�1,�1), and (�1,1,�1) are stable points. Each
of these configurations has the property, which holds in gen-
eral for stable points, that the weight on the connection is
sgn(vi vj). The training of the network is conducted by pre-
senting each pattern to be learned as the external input sig-
nal for a brief period of time, and cycling through the patterns
until the weights have converged. The behavior of the system
during learning depends on the strength of the external input
to the system relative to the size of the weights between neu-
rons. When the input signals dominate, the network can learn
several input patterns; for weaker input signals, the network
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ultimately chooses only one of the patterns to memorize.
These ideas provide the basis for a model of the first stage of Figure 6. Evolution of coefficients on the constraint terms of the

TSP; coefficient C5 � 0.5.cortical visual processing in mammals.
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(generated in a manner similar to that used by Hopfield and asymptotically stable for any diagonal matrix D that has di-
agonal elements in the interval [�1,1] (14).Tank for the 10-city problem) were successfully solved, with

a high rate of valid solutions, for C5 in the range of 0.2 to 0.5.

Asymmetric Weights
Storage Capacity The stability of asymmetric Hopfield networks is of practical

interest, both for more general models (e.g., connectionist ex-Another area of active research for Hopfield networks used as
pert systems) and for the implementation of theoreticallyCAM is the storage capacity of the network. Many investiga-
symmetric networks (since it is almost impossible to preservetions are based on the assumption that the patterns are ran-
the symmetry of the connections exactly in hardware).dom (independent, identically distributed uniform random

Many results for nonsymmetric connections depend on thevariables.) The question is, how many patterns (vectors with
absolute value of the weights; however, these may be overlycomponents of �1 or �1) can be stored and retrieved (from a
restrictive. For example, if wij � �wji for all i,j, the networkminor degradation of a stored pattern)? A small fraction of
is absolutely stable, but results relying on absolute value con-errors may be allowed in the retrieved pattern. Hopfield sug-
siderations will not establish the fact. It has also been showngested, based on numerical simulations, that P, the number
that if the largest eigenvalue of W � WT is less than 2, thenof patterns that can be stored and retrieved, is given by P �
the network is absolutely stable. A more convenient corollarycn with c � 0.15.
of this result is that ifMore recently, Martingale techniques have been applied

(12) to a different joint distribution of the spins (patterns),
extending the theoretical results to situations beyond those
investigated previously (7). Assuming that the patterns have

∑
i; j

(wi j + wji )
2 < 4

the same probability distribution, are orthogonal in expecta-
tion, and are independent, Francois shows that there are en- then the network is absolutely stable (15).
ergy barriers (which depend on d, the acceptable fraction of To study computational models based on asymmetric Hop-
errors in the reconstructed pattern) surrounding each memo- field-type networks, a classification theory for the energy
rized pattern. For almost perfect recall (d � 1/n) the storage functions associated with Hopfield networks has been intro-
capacity can be as large as c � [2(1 � g) ln n]�1 with g � 2. duced, and convergence conditions deduced for several differ-

ent forms of asymmetric networks. For example, two net-
works have been developed, using a triangular structure, toStability Results
solve the maximum independent set of a graph problem. Al-

Investigations into the stability of more general Hopfield-type though this problem can be solved with a standard Hopfield
models have considered asynchronous updates for a continu- network, the triangular network is a more simple and effi-
ous-valued, discrete-time Hopfield model (13) and the design cient procedure. See Ref. 16 for details.
of a continuous-valued, continuous-time analog-to-digital con-
verter (14). In general, stability arguments rely on sophisti-
cated mathematical theory and are not easily summarized in SUMMARY AND CONCLUSIONS
a brief presentation.

One approach to the investigation of asynchronous updates Hopfield neural networks comprise a rich and varied realm of
is based on the Takeda-Goodman synchronous model: the overall field of artificial neural networks. Applications can

be found in many areas of engineering. Continuing investiga-
tion into the theoretical and practical considerations govern-x(k + 1) = TF(x(k)) + (I − B)x(k) + u
ing the convergence properties of the networks provide a firm
foundation for the use of Hopfield models and their extensionwhere T is the interconnection matrix of the neural network

(usually assumed symmetric), F is a diagonal nonlinear func- to more generalized settings. Work continues on differences
in performance that may occur when the networks are imple-tion (usually assumed monotonic, often sigmoidal), and u is a

vector of inputs (assumed constant). With the further as- mented with fully parallel (asynchronous) updating of the ac-
tivations.sumptions that T is D-stable (see definition in the next para-

graph), F is continuously differentiable, and B � I, the previ-
ous stability results have been extended by considering a
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