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SELF-ORGANIZING FEATURE MAPS

Neurons are the basic building blocks of the nervous system,
and they successfully communicate information and perform
rather complex pattern processing and recognition. Neural
processes are characterized by intensive connections, inher-
ent parallelism, self adaptation, and organization.

The growing scientific field of artificial neural networks
uses mathematical modeling and computer simulation to
achieve robust learning and pattern information processing
analogous to the nervous system by interconnecting simple
yet nonlinear computational elements.

Several potential application areas have been considered
recently, ranging from control systems to speech synthesis
and image processing. The preliminary results are promising
and have opened up new research alternatives to the conven-
tional computer programming paradigm and even artificial
intelligence and expert systems.
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Figure 1. Lateral activation pattern.
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Figure 2. Output neuron lattice. Figure 4. Initial weights, second class.

Artificial neural networks are broadly classified by the SELF-ORGANIZATION PRINCIPLES
type of their connective structure, input–output transfer

Self-organizing feature maps topologically emulate salientfunction, and learning paradigm, which describes how the
features in the input signal space at the neural network out-connective weights are adjusted to adapt the network’s dy-
put without explicitly using supervision or even reinforce-namic performance to achieve application goals.
ment of correct output behavior.The so-called self-organization and feature mapping in un-

The network’s output neurons are usually conveniently ar-supervised neural networks is typically associated with the
ranged in single one-dimensional or two-dimensional layers.special adaptive behavior of connective weights in a training
Full connectivity to the inputs is tacitly assumed. Lateral pos-phase, intended to selectively extract salient input features
itive and negative feedback connections are also applied tounder either a deterministic or a stochastic environment. A
help in convincingly deciding the outcome of competitiveself-organized learning style capitalizes on the competition
learning. Winning a competition lets a specific output neuronamong output neurons and their surrounding neighborhoods
reach ‘‘on state’’ and thus updates its weights and the weightsto code input distribution which consistently improves with
of its surrounding neighborhood. Normalization of alltraining experience.
weights, in addition to controlling the size of surroundingThe network weights asymptotically approach exemplars
neighborhoods, usually improves the network performance byof distinguished input clusters, which is reminiscent of simu-
equalizing the relative changes in weight connections.lated annealing and similar approaches in the related field of

Neuron activities and interactions can be represented by aglobal optimization.
set of discrete nonlinear mathematical equations, as proposed
by Kohonen.

Therefore, the strengths of interconnective weights are ex-
pressed in an n � m weight matrix W(k), and the lateral feed-
back coefficients are similarly collected in an n � n matrix
C, which has a symmetrical band structure. Furthermore, the
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Figure 3. Initial weights, first class. Figure 5. Converged weights, first class.
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Figure 6. Converged weights, second class.
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width of this band structure determines the effective size of
neighborhoods surrounding each output neuron: Let n be the Figure 8. Convergence of learning algorithm.
total number of output layer neurons, and let Y(k) � Rn be
the neuron outputs at the kth discrete itration step. Let X(k)
� Rm and U(k) � Rn be the input stimuli vector and the net Then the output neuron activity is modeled by
weighted sum.

Finally, consider a nonlinear activation function desig- YYY (k + 1) = �[VVV (k)] (1)
nated by �: Rn � Rn

VVV (k) = UUU (k) + βC(k)Y (k) (2)

UUU (k) = W (k)XXX (k) (3)

and � reflects a scalar relaxation factor that increases or de-
creases the effect of lateral feedback connections.

The set of Eqs. (1)–(3) may be solved assuming typical cen-
ter-surrounding input vector patterns X(k). Considerable sim-
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Figure 10. Topology of neighborhoods. Figure 12. Initial lattice weights.

plification is effected if � is taken to be piecewise linear and
if (WWWi,XXX ) = ‖WWWi − XXX‖2 =

m∑
j=1

(Wij − Xj )
2 (5)

C(k) = C (4)
i*(X) � number of neuron widths (Wi, X) 
 global minimum

These assumptions produce an emergent output neuron be- WWWi(k + 1) = WWWi(k) + α(k)[XXX −WWWi(k)] (6)
havior that amounts to ignoring lateral feedback and using a
variable-size surrounding neighborhood that depends on k. where Wi(k) � Rm is the weight vector at the kth iteration,
The concept of neighborhood allows gradually decoupling to- X � Rm is the input vector, and �(k) is a scalar learning rate.
pological groups of output layer neurons, which is similar to Several possible learning rate expressions are as follows:
fuzzy system membership functions.

α(k) = α (7)

LEARNING ALGORITHMS
α(k) = 1

k
(8)

Self-organized feature mapping is essentially a transforma-
tion from the input signal space to a topologically ordered but α(k) = αo exp

�−k
Jα

�
(9)

reduced-dimensional output neuron activity pattern. X �
Rmn is the input vector, Wi � Rm is the associated connection
weight.

α(k) = αo exp
�−k2

Jα

�
(10)

The dot vector product Wi.X is generally a scalar measure
of the geometric projection of the input vector on a subspace α(k) = αo

1
ln(1 + k)

(11)
spanned by the weights.

x � R10

Therefore, a designated neuron has the most match, ex-
pressed in its connective weight, to the input features. The
same idea can be conceptualized by letting the output neu-
rons compete for replication of input vectors, by using the Eu-
clidean distance.

Iteration #: 3012
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A training set of 1000 input vectors is presented to the
neural network without the benefit of supervision or rein-
forcement. Initial weights are random and have small values.
The results obtained after several iterative epochs are pre-
sented along with the corresponding network parameters.
Several statistically independent simulations are run to en-
sure that the network orients its weights toward the impor-
tant input distribution characteristics. The renormalization
of weights is effective in keeping the network on track. Self-
organization is evident following sufficient presentations of
input and learning iterations.Displayed map plot at 

iteration #: 4000

Classification of Scanned Two-Dimensional ImagesFigure 14. Converged lattice weights.

Input images exhibit considerable center-surround correla-
tion, which aids in forming output neuron prototypes that dis-
tinguish among image classes. Each scanned image is slicedNow an appropriate neighborhood size is postulated a pri-
into N parts. The reliability of classification depends on N.ori and later on allowed to be relaxed by size reduction.
Subsequently each part is subdivided into N segments, andThese parametric neighborhood indicator functions are
then the average image intensity over all parts is calculated.useful

Ten output neurons are assumed, arranged in a one-di-
Rectangular mensional layer. Four image classes were considered with

10% noise added as an illustration. More than 80% classifica-Trapezoidal
tion accuracy was possible after tuning the experimental net-Gaussian
work parameters. The observations at neural network out-
puts are independent and identically distributed, so that aEach of these functions allows the neuron activity patterns,
statistical estimate of performance is valid.discussed earlier, to various approximation degrees.

The connective weight quantization to reduce the overallThis adaptive learning updates the weights of the winning
computational task does not affect performance, especiallyneuron and its surrounding neighbors according to a modified
under the continuous control of neighborhood size reduction.Hebbian rule.

The presentation of results to visualize input–output map-
ping requires plotting a set of piecewise linear curves that

COMPUTER SIMULATIONS show how the output neurons are affected by input classes.
Because the output layer in this case is required to be one-

To gain insight into the self-organized feature map and the dimensional, the algorithm gave only suboptimal results.
effect of some parameters used in the algorithm, we consider
two distinct illustrative computer simulations.

CONCLUSION AND ADVANCED APPLICATIONS

Clustering of Two-Dimensional Data
The self-organizing feature map neural network has been il-
lustrated to provide an effective and natural approach for to-Here, two-dimensional distributed data sets are addressed.

The objective is to extract and approximately replicate the pological classification of sensory input signals. The network
performance hinges, however, on the neighborhood indicatorsalient features in input vector topological clusters by using

100 output neurons arranged in a 10 � 10 two-dimensional function and the learning rate to achieve proper convergence.
Normalization and preprocessing of input vectors also en-layer.
hances the extraction of invariant and salient features em-
bedded in the input space.

The recognition abilities are robust to noisy corruption of
inputs and to inaccuracies representing connective weights.

Applications of self-organizing feature maps abound in en-
gineering. They have been exploited in robot control, equaliza-
tion of communications channels, texture classification, vehic-
ular radar navigation, biomedical diagnosis, and detecting
overlaps in manufacturing group technology.

Advanced applications involve combining self-organization
learning paradigms with least mean squares supervision to
achieve high performance. The role of the feature map is to
distill key features from input space and to ease the classifi-
cation task, especially in the presence of complicated bound-
aries between classes.

Hierarchical self-organization also presents opportunities4
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for future advances in streamlining computation on multipro-
cessor systems.Figure 15. Overlapping inputs distribution.



772 SELF-TUNING REGULATORS

BIBLIOGRAPHY

D. Kleinfeld, Sequential state generation by model neural networks,
Proc. Natl. Acad. Sci. USA, 83: 9469–9473, 1986.

E. Knudsen, S. DuLac, and S. Easterly, Computational maps in the
brain, Annu. Rev. Neurosci., 10: 41–65, 1987.

T. Kohonen, Correlation matrix memories, IEEE Trans. Comput., C-
21: 353–359, 1972.

T. Kohonen, Self-organized formation of topologically correct feature
maps, Biological Cybern., 43 (1): 59–69, 1982.

T. Kohonen, An introduction to neural computing, Neural Networks,
1: 3–16, 1988.

T. Kohonen, Physiological interpretation of the self-organizing map
algorithm, Neural Networks, 6: 895–905, 1993.

M. Kuperstein, Neural model of adaptive hand-eye coordination for
single postures, Science, 239: 1308–1311, 1988.

A. Lapedes and R. Farber, A self-optimizing non-symmetrical neural
net for content addressable memory and pattern recognition,
Physica, 22D: 247–259, 1986.

Y. Linde, A. Buzo, and R. Gray, An algorithm for vector quantizer
design, IEEE Trans. Commun., 28: 84–95, 1980.

W. Little and G. Shaw, A statistical theory of short term memory,
Behav. Biol., 14: 115–133, 1975.

S. Luttrell, Self-organization: A derivation from first principles of a
class of learning algorithm, Proc. IJCNN 89, 2: 1989, pp. 495–498.

C. von der Malsburg, Outline of a theory for ontogenesis of iso-orien-
tation domains in visual cortex, Biological Cybern., 45 (1): 49–
56, 1982.

H. S. ABDEL-ATY-ZOHDY

M. A. ZOHDY

Oakland University

SELF-TIMED CIRCUITS. See ASYNCHRONOUS CIRCUITS;
ASYNCHRONOUS SEQUENTIAL LOGIC.


