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NEURAL NETS, RECURRENT

Recurrent neural nets (RNNs) are the most general class of neural nets (see Neural Net Architecture); they are
nonlinear dynamic systems (see Nonlinear Systems) in which processing units, or neurons, are connected in
such a way that the graph of connections contains cycles: that is, signals may flow in such a way that outputs
from a processing unit may feed back as inputs to that processing unit, in general after having been processed
by other units. Unlike in feedforward neural networks (see Feedforward Neural Nets), the presence of feedback
makes time a relevant magnitude; as will be seen later, this explains the use of RNNs in temporal processing
applications. In the most general class of RNNs, some units may receive inputs from outside the network; in
addition, some of the units may be designated as outputs of the RNN. Units not designated as outputs are
usually called hidden or state units.

There are three important ways in which RNNs may be classified:

• As to the nature of the output of processing units, RNNs may be classified as continuous-state, that is, when
the outputs of processing units may take any value within an interval of real numbers, and discrete-state,
when outputs take values on a finite set (usually binary).

• As to the treatment of time, RNN may be classified in two main classes: discrete-time recurrent neural
networks (DTRNNs) and continuous-time recurrent neural networks (CTRNNs). DTRNNs use processing
units whose outputs change instantaneously in response to any change in their inputs; therefore, it is
convenient for outputs to be updated in discrete time steps, and a synchronizing device such as a clock is
implied in the design of a DTRNN. CTRNNs use processing units whose output varies continuously in time
in response to the instantaneous values of inputs; therefore, no clock is needed.

• As to the way in which they are used, RNNs may be classified in two broad groups: temporal-processing
RNNs and relaxation RNNs. In temporal-processing RNNs we are interested in (a) the final output of the
DTRNN after processing a time-varying input pattern, or (b) the time-varying output pattern produced by
the RNN, starting in a particular initial state, by feeding either a time-varying input pattern, a constant
input, or no input at all. Relaxation RNNs are started in a particular state and allowed to evolve in time
until they reach a stationary state and outputs are read (although some networks may reach a periodic
motion or limit cycle or show chaotic behavior instead of settling to a fixed point). The reader is advised
that some authors (even some journals) use the denomination recurrent neural networks to refer only to
temporal-processing RNNs.

The main emphasis of this article will be on discrete-time RNNs for sequence or temporal processing but
we will also briefly cover relaxation DTRNNs and CTRNNs, the latter both for temporal processing and of the
relaxation type.

1
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DISCRETE-TIME RECURRENT NEURAL NETS FOR SEQUENCE PROCESSING

Sequence Processing. The word sequence (from Latin sequentia, i.e., “the ones following”) is used
to refer to a series of data, each one taken from a certain set of possible values U, so that each one of them
is assigned an index (usually consecutive integers) indicating the order in which the data are generated or
measured. Since the index usually refers to time, some researchers like to call sequences time series, as in “time
series prediction” (1). In the field of signal processing, this would usually be called a discrete-time sampled
signal; researchers in this field would identify the subject of this discussion as that of discrete-time signal
processing (2).

In most of the following, we will consider, for convenience, that U is a vector space in the broadest possible
sense. Examples of sequences are:

• Words on an alphabet (where U is the alphabet of possible letters and the integer labels 1, 2, . . . are used
to refer to the first, second, . . . letter of the word)

• Acoustic vectors obtained every T milliseconds after suitable preprocessing of a speech signal (here U is a
vector space, and the indices refer to sampling times)

What can be done with sequences? Without having the intention of being exhaustive and formal, one may
classify sequence processing operations in the following broad classes (classification inspired by 3, p. 177):

• Sequence Classification, Sequence Recognition In this kind of processing, a whole sequence u =
u[1]u[2]. . .u[Lu] is read, and a single value, label, or pattern (not a sequence) y, taken from a suitable
set Y, is computed from it. For example, a sequence of acoustic vectors such as the one mentioned above
may be assigned a label that describes the word that was pronounced, or a vector of probabilities for each
possible word. Or a word on a given alphabet may be recognized as belonging to a certain language. For
convenience, Y will also be considered to be some kind of vector space.

• Sequence Transduction or Translation, Signal Filtering In this kind of processing, a sequence u =
u[1]u[2]. . . u[Lu] is transformed into another sequence y = y[1]y[2] . . . y[Ly] of data taken from a set
Y. In principle, the lengths of the input Lu and the output Ly may be different. Processing may occur in
different modes. Some sequence processors read the whole input sequence u and then generate the se-
quence y. Another mode is sequential processing, in which the output sequence is produced incrementally
while processing the input sequence. Sequential processing has the interesting property that, if the result
of processing of a given sequence u1 is a sequence y1, then the result of processing a sequence that starts
with u1 is always a sequence that starts with y1 (this is sometimes called the prefix property). A special case
of sequential processing is synchronous processing: the processor reads and writes one datum at a time,
and therefore, both sequences grow at the same rate during processing. For example, Mealy and Moore
machines, two classes of finite-state machines, are sequential, finite-memory, synchronous processors that
read and write symbol strings. Examples of transductions and filtering include machine translation of
sentences and filtering of a discrete-time sampled signal. Note that sequence classification applied to each
prefix u[1], u[1]u[2], . . . of a sequence u[1]u[2]u[3] . . . is equivalent to synchronous sequence transduction.

• Sequence Continuation or Prediction In this case, the sequence processor reads a sequence u[1]u[2] . . .

u[t] and produces as an output a possible continuation of the sequence û[t + 1]û[t + 2]. . .. This is usually
called time series prediction and has interesting applications in meteorology and finance, where the ability
to predict the future behavior of a system is a primary goal. Another interesting application of sequence
prediction is predictive coding and compression. If the prediction is good enough, the difference between
the predicted continuation of the signal and its actual continuation may be transmitted using a channel
with a lower bandwidth or a lower bit rate. This is extensively used in speech coding (4)—for example, in
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digital cellular phone systems. Sequence continuation is not very different from sequence transduction: the
key difference is that in the former, one cannot assume the presence of causality.

• Sequence Generation In this mode, the process generates an output string y[1]y[2] . . . from a single input
u or no input at all. For example, a text-to-speech system may generate the audio signal for each syllable
in its dictionary.

State-Based Sequence Processors. Sequence processors may be built around a state; state-based
sequence processors maintain and update at each time t a state x[t], which stores the information about the
input sequence they have seen so far (u[1], . . ., u[t]), which is necessary to compute the current output y[t] or
future outputs. State is computed recursively: the state at time t, x[t], is computed from the state at time t − 1,
x[t − 1], and the current input u[t] using a suitable next-state function:

The output is then computed using an output function, usually from the current state [as in Moore
machines in automata theory (5); see also the next subsection]:

but sometimes from the previous state and the current input [as in Mealy machines in automata theory (5);
see also the next subsection]:

Such a state-based sequence processor is therefore defined by the set of available states, its initial state
x[0], and the next-state (f ) and output (h) functions (the nature of the inputs and outputs is defined by the task
itself). The state of a state-based sequence processor may in general be hidden; that is, the current state may
not in general be inferrable by studying a finite-length window of past inputs, a finite-length window of past
outputs, or both, but sometimes it is. In any of the last three cases, state is said to be observable (6).

DISCRETE-TIME RECURRENT NEURAL NETS AS NEURAL STATE MACHINES

Neural nets may be used and trained as state-based adaptive sequence processors. The most general architec-
ture is a DTRNN, that is, a neural net in which the output of some units is fed back as an input to some others.
In DTRNNs, processing occurs in discrete steps, as if the net were driven by an external clock, and each of the
neurons is assumed to compute its output instantaneously; hence the name.

DTRNNs may therefore be applied to any of the four broad classes of sequence-processing tasks mentioned
before: in sequence classification, the output of the DTRNN is examined only at the end of the sequence; in
synchronous sequence transduction tasks, the DTRNN produces a temporal sequence of outputs corresponding
to the sequence of inputs it is processing; in sequence continuation or prediction tasks, the output of the DTRNN
after having seen an input sequence may be interpreted as a continuation of it; finally, in sequence generation
tasks, a constant or no input may be applied in each cycle to generate a sequence of outputs.

In a DTRNN with nX hidden units and nY output units receiving nU input signals, we will denote by xi[t]
(respectively yj[t]) the state of hidden (respectively output) unit i = 1, . . . nX (respectively j = 1, . . . nY ) at time t.
The kth external input signal at time t will be called uk[t]. Inputs, hidden states, and outputs may be expressed
as vectors u[t], x[t], and y[t] respectively. The discrete-time evolution of the hidden state of the network may be
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expressed, in general terms, as in Eqs. (1) to (3), with functions f and h realized as single-layer or multilayer
feedforward neural networks (see Feedforward Neural Nets; unlike in Eqs. (1) to (3), bold lettering is used here
to emphasize the vectorial nature of states, inputs, outputs, and next-state and output functions).

It is therefore natural to see DTRNNs, (7, Chap. 15; 3 Chap. 7; 8) as neural state machines (NSMs), and to
define them in a way that is parallel to the definitions of Mealy and Moore machines used in formal language
theory (5). This parallelism is inspired by the relationship established by Pollack (9) between deterministic
finite automata (DFAs) and a class of second-order DTRNNs, under the name of dynamical recognizers.

A neural state machine N is a sextuple

in which

• [S0,S1]n
X is the state space of the NSM, with S0 and S1 the endpoints of defining the range of values for the

state of each unit, and nX the number of state units.
• U = RU

n is the set of possible input vectors, with nU the number of input lines.
• [S0,S1]n

Y is the set of outputs of the NSM, with nY the number of output units.
• f : X × U → X is the next-state function, a feedforward neural network that computes a new state x[t] from

the previous state x[t − 1] and the input just read, u[t]:

• h is the output function, which in the case of a Mealy NSM is h : X × U → Y, that is, a feedforward neural
network that computes a new output y[t] from the previous state x[t − 1] and the input just read, u[t]:

and in the case of a Moore NSM is h : X → Y, a feedforward neural network that computes a new output
y[t] from the newly reached state x[t]:

• x0 is the initial state of the NSM, that is, the value that will be used for x[0].

Most classical DTRNN architectures may be directly defined using the NSM scheme; the following sections
show some examples (in all of them, weights and biases are assumed to be real numbers). The generic block
diagrams of neural Mealy and neural Moore machines are given in Fig. 1 and 2 respectively.

Neural Mealy Machines. Omlin and Giles (10) have used a second-order recurrent neural network
[similar to the one used by other authors (11, 9)], which may be formulated as a Mealy NSM described by a
next-state function whose ith coordinate (i = 1, . . ., nX ) is

where g: R → [S0, S1] (usually S0 = 0 or −1 and S1 = 1) is the activation function [also called transfer function,
gain function, and squashing function (3, p. 4)] of the neurons, and an output function whose ith coordinate
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Fig. 1. Block diagram of a neural Mealy machine.

(i = 1, . . ., nY ) is

Throughout this article, a homogeneous notation will be used for weights. Superscripts indicate the
computation in which the weight is involved: the xxu in Wijk

xxu indicates that the weight is used to compute
a state (x) from a state and an input (xu); the y in Wy

i (a bias) indicates that it is used to compute an output.
Subscripts designate, as usual, the particular units involved and run parallel to superscripts.

Activation functions g(x) are usually required to be real-valued, monotonically growing, continuous (very
often also differentiable), and bounded; they are usually nonlinear. Two commonly used examples of differen-
tiable activation functions are the logistic function gL(x) = 1/(1 + e− x), which is bounded by 0 and 1, and the
hyperbolic tangent gT(x) = tanh x = (1 − e− 2x)/(1 + e− 2x), which is bounded by −1 and 1. Activation functions
are usually required to be differentiable because this allows the use of training algorithms based on gradients.
There are also a number of architectures that do not use sigmoidlike activation functions but instead use radial
basis functions (7, Chap. 5; 3, p. 248), which are not monotonic but instead are Gaussianlike functions that
reach their maximum value for a given value of their input. DTRNN architectures using radial basis functions
have been used by various authors (see, e.g., 12, 13).

Another Mealy NSM is Robinson and Fallside’s recurrent error propagation network (14), a first-order
DTRNN that has a next-state function whose ith coordinate (i = 1, . . ., nX ) is given by



6 NEURAL NETS, RECURRENT

Fig. 2. Block diagram of a neural Moore machine.

and an output function h(x[t − 1], u[t]) whose ith component (i = 1, . . ., nY ) is given by

Jordan nets (15) may also be formulated as Mealy NSMs. Both the next-state and the output function use
an auxiliary function z(x[t − 1], u[t]) whose ith coordinate is

with i = 1, . . ., nZ. The ith coordinate of the next-state function is
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(with α ε [0,1] a constant), and the ith coordinate of the output function is

are computed.
Neural Moore Machines. Elman’s simple recurrent net (16), a widely used Moore NSM, is described

by a next-state function identical to the next-state function of Robinson and Fallside’s net, Eq. (10), and an
output function h(x[t]) whose ith component (i = 1, . . ., nY ) is given by

However, an even simpler DTRNN is the one used by Williams and Zipser (12), which has the same
next-state function but an output function that is simply a projection of the state vector yi[t] = xi[t] for i = 1,
. . ., nY with nY ≤ nX . This architecture is also used in the encoder part of Pollack’s RAAM (18) when encoding
sequences.

The second-order counterpart of Elman’s (16) simple recurrent net has been used by Blair and Pollack
(19) and Carrasco et al. (20). In that case, the ith coordinate of the next-state function is identical to Eq. (8),
and the output function is identical to Eq. (15).

Second-order DTRNNs such as the one used by Giles et al. (11) and Pollack (9) may be formulated as a
Moore NSM in which the output vector is simply a projection of the state vector f i(x[t]) = xi[t] for i = 1, . . .,
nY with nY ≤ nX , and may then be viewed as the second-order counterpart of 17. The classification of these
second-order nets as Mealy or Moore NSMs depends on the actual configuration of feedback weights used by
the authors. For example, Giles et al. (11) use one of the units of the state vector x[t] as an output unit; this
makes their net a neural Moore machine in which y[t] = x1[t] (this unit is part of the state vector, because its
value is also fed back to form x[t − 1] for the next cycle).

Architectures without Hidden State. There are a number of discrete-time neural net architectures
that do not have a hidden state (their state is observable because it is simply a combination of past inputs
and past outputs) but may still be classified as recurrent. One such example is the NARX or Narendra–
Parthasarathy net (21), which may be formulated in state-space form by defining a state that is simply a
window of the last nI inputs and a window of the last nO outputs. Accordingly, the next-state function simply
incorporates a new input (discarding the oldest one) and a freshly computed output (discarding the oldest one)
in the windows and shifts each one of them one position. The nX = nInU + nOnY components of the state vector
are distributed as follows:

• The first nInU components are allocated to the window of the last nI inputs: ui[t − k] (k = 0, . . ., nI − 1) is
stored in Xi+knU[t].

• The nOnY components from nInU + 1 to nX are allocated to the window of the last nO outputs: yi[t − k] (k
= 1, . . ., nO) is stored in xnI nU+i+(k − 1)nY>[t].

The next-state function f performs, therefore, the following operations:
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• Incorporating the new input u[t] and shifting past inputs:

• Shifting past outputs:

• Computing new state components using an intermediate hidden layer of nZ units:

with

The output function is then simply

with 1 ≤ i ≤ nY . Note that the output is computed by a two-layer feedforward neural net. The operation of a
NARX net N may then be summarized as follows (see Fig. 3):

Its operation is therefore a nonlinear variation of that of an autoregressive moving-average (ARMA) model or
that of an infinite-time impulse response IIR filter.

When the state of the discrete-time neural net is simply a window of the last inputs, we have a net usually
called a time-delay neural net (TDNN), but also NetTalk, after a successful application (22) to text-to-speech
conversion. In state-space formulation, the state is simply the window of the last nI inputs, and the next-state
function simply incorporates a new input in the window and shifts it one position in time:
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Fig. 3. Block diagram of a NARX network (the network is fully connected, but for clarity not all arrows have been drawn).

with nX = nUnI; and the output is usually computed by a two-layer perceptron:

with

The operation of a TDNN N may then be summarized as follows (see Fig. 4):

Their operation is therefore a nonlinear variant of that of a moving-average MA model or that of a finite-time
impulse response FIR filter.

The weights connecting the window of inputs to the hidden layer may be organized in blocks sharing
weight values, so that the components of the hidden layer retain some of the temporal ordering in the input
window. TDNNs have been used for tasks such as phonetic transcription (22), protein secondary structure
prediction (23), and phoneme recognition (24, 25).
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Fig. 4. Block diagram of a TDNN (the network is fully connected, but for clarity not all arrows have been drawn).

APPLICATION OF DTRNNs TO SEQUENCE PROCESSING

DTRNNs have been applied to a wide variety of sequence-processing tasks; here is a survey of some of them:

Channel Equalization. In digital communications, when a series of symbols is transmitted, the effect of the
channel (see Multipath Channels) may yield a signal whose decoding may be impossible without resorting
to a compensation or reversal of these effects at the receiver side. This sequence transduction task (which
converts the garbled sequence received into something as similar as possible to the transmitted signal) is
usually known as equalization. A number of researchers have studied DTRNNs for channel equalization
purposes (26, 12, 27).

Speech Recognition. Speech recognition (see Speech Recognition and also Speech Processing) may be formu-
lated either as a sequence transduction task (for example, continuous speech recognition systems aim at
obtaining a sequence of phonemes from a sequence of acoustic vectors derived from a digitized speech
sample) or as a sequence recognition task (for example, as in isolated-word recognition, which assigns a
word in a vocabulary to a sequence of acoustic vectors). DTRNNs have been extensively used in speech
recognition tasks (14, 28, 29).

Speech Coding. Speech coding (see Speech Coding) aims at obtaining a compressed representation of a speech
signal so that it may be sent at the lowest possible bit rate. A family of speech coders are based on the
concept of predictive coding: if the speech signal at time t may be predicted using the values of the signal
at earlier times, then the transmitter may simply send the prediction error instead of the actual value of
the signal, and the receiver may use a similar predictor to reconstruct the signal; in particular, a DTRNN
may be used as a predictor. The transmission of the prediction error may be arranged in such a way that
the number of bits necessary is much smaller than that needed to send the actual signal with the same
reception quality (4). For instance, in 30 DTRNN predictors are used for speech coding.
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System Identification and Control. DTRNNs may be trained to be models of time-dependent processes such
as a stirred-tank continuous chemical reactor: this is usually referred to as system identification. Control
goes a step further: a DTRNN may be trained to drive a real system (a “plant”) so that the properties
of its output follow a desired temporal pattern. DTRNNs have been extensively used both in system
identification (see, e.g., 31, 32) and control (see, e.g., 21, 33, 34, 35).

Time Series Prediction. The prediction of the next item in a sequence may be of interest in many applications
besides speech coding. For example, short-term electrical load forecasting is important for controlling
electrical power generation and distribution. Time series prediction is a classical sequence prediction
application of the DTRNN. See, for example, 36, 37).

Natural Language Processing. The processing of sentences written in any natural (human) language (see
Natural Language Understanding) may itself be seen as a sequence-processing task, and has been also
approached with DTRNNs. Examples include discovering grammatical and semantic classes of words
when predicting the next word in a sentence (16) and training a DTRNN to judge the grammaticality of
natural language sentences (38).

Grammatical Inference. In recent years, there has been a lot of interest in the use of DTRNNs to learn formal
grammars and language recognizers, with an emphasis on the induction of simple finite-state language
recognizers (39, 9, 11, 40, 41) or finite-state transducers (42) from input–output strings. Parallel work has
studied the computational power of DTRNNs in connection with finite-state computation (43, 44, 45, 10,
46) or Turing machines (47).

LEARNING IN DTRNNs

Learning Algorithms for DTRNNs. When we want to train a DTRNN as a sequence processor, the
usual procedure is to choose the architecture and parameters of the architecture: the number of input neurons
(nU) and the number of output neurons (nY ) will usually be determined by the nature of the input sequence
itself and by the nature of the processing we want to perform; the number of state neurons (nX ) will have to
be determined through experimentation or used as a computational bias restricting the computational power
of the DTRNN when we have a priori knowledge about the computational requirements of the task. It is also
possible to modify the architecture as training proceeds (see e.g. 48), as will be mentioned later. Then we train
the DTRNN on examples of processed sequences; training a DTRNN as a discrete-time sequence processor
involves adjusting its learnable parameters. In a DTRNN these are the weights, biases, and initial states (x0)
(learning the initial state is not very common in the DTRNN literature (49)—surprisingly, because it seems
rather straightforward to do so). To train the network we usually need an error measure, which describes how
far the actual outputs are from their desired targets; the learnable parameters are modified to minimize the
error measure. It is very convenient if the error is a differentiable function of the learnable parameters (this is
usually the case with sigmoidlike activation functions, as we have discussed in the subsection “Neural Mealy
Machines”).

A number of different problems may occur when training a DTRNN—and, in general, any neural
network—by error minimization. These problems are reviewed in the next subsection.

Learning algorithms (also called training algorithms) for DTRNNs may be classified according to diverse
criteria. All learning algorithms [except trivial algorithms such as a random search (50)] implement a heuristic
to search the many-dimensional space of learnable parameters for minima of the error function chosen; the
nature of this heuristic may be used to classify them. Some of the divisions that will be described in the
following may also apply to nonrecurrent neural nets.

A major division occurs between gradient-based algorithms, which compute the gradient of the error
function with respect to the learnable parameters at the current search point and use this vector to define
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the next point in the search sequence, and non-gradient-based algorithms, which use other (usually local)
information to decide the next point. Obviously, gradient-based algorithms require that the error function
be differentiable, whereas most non-gradient-based algorithms may dispense with this requirement. In the
following, this will be used as the main division.

Another division relates to the schedule used to decide the next set of learnable parameters. Batch
algorithms compute the total error function for all of the patterns in the current learning set and update
the learnable parameters only after a complete evaluation of the total error function has been performed.
Pattern algorithms compute the contribution of a single pattern to the error function and update the learnable
parameters after computing this contribution. This formulation of the division may be applied to most neural
net learning algorithms; however, in the case of DTRNNs used as sequence processors, targets may be available
not only for a whole sequence (as, for instance, in a classification task) but also for parts of a sequence (as
in a synchronous translation task in which the targets are known after each item of the sequence). In the
second case, a third learning mode, online learning, is possible: the contribution of each partial target to the
error function may be used to update some of the learnable parameters even before the complete sequence has
been processed. Online learning is the only possible choice when the learning set consists of a single sequence
without a defined endpoint or when patterns can only be presented once (for a detailed discussion of gradient-
based learning algorithms for DTRNNs and their modes of application, the reader is referred to 51, which gives
an excellent survey with an emphasis on continuously running DTRNNs).

A third division has already been mentioned. Most learning algorithms for DTRNNs do not change the
architecture during the learning process. However, there are some algorithms that modify the architecture of
the DTRNN while training it [for example, Fahlman’s recurrent cascade correlation (48) adds neurons to the
network during training].

Gradient-Based Algorithms. The two most common gradient-based algorithms for DTRNNs are back-
propagation through time (BPTT) and real-time recurrent learning (RTRL). Most other gradient-based algo-
rithms may be classified as using an intermediate or hybrid strategy combining the desirable features of these
two canonical algorithms.

The simplest kind of gradient-based algorithm—used also for feedforward neural net—is a gradient-
descent learning algorithm, which updates each learnable parameter p of the network according to the rule

where αp is a positive magnitude (not necessarily a constant) called the learning rate for the parameter p, and
E is either the total error for the whole learning set (as in batch learning) or the error for the pattern just
presented (as in pattern learning). Most gradient-based algorithms are improvements on this simple scheme
(for details see e.g. 7), pp. 220, 233ff.; 3, pp. 103ff. 123ff. 157); all of them require the calculation of derivatives
of error with respect to all of the learnable parameters. The derivatives for a DTRNN may be computed (or
approximated) in different ways, which lead to a variety of methods.

Backpropagation through Time. BPTT may be considered as the earliest training algorithm for
DTRNNs. The most commonly used reference for BPTT is 52, although earlier descriptions of BPTT may
be found (see, e.g., 53). The central idea of BPTT is the unfolding of the discrete-time recurrent neural network
into a multilayer feedforward neural network (FFNN) each time a sequence is processed. The FFNN has a
layer for each “time step” in the sequence; each layer has nX units, that is, as many as there are state units in
the original networks. It is as if we were using time to index layers in the FFNN. Next state is implemented by
connecting state units in layer t − 1 and inputs in time t to state units in layer t. Output units (which are also
repeated in each “time step” where targets are available) are connected to state units (and input units when
the DTRNN is a Mealy NSM) as in the DTRNN itself.
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The resulting FFNN is trained using the standard backpropagation (BP) algorithm, but with one restric-
tion: since layers have been obtained by replicating the DTRNN over and over, weights in all layers should be
the same. To achieve this, BPTT updates all equivalent weights using the sum of the gradients obtained for
weights in equivalent layers, which may be shown to be the exact gradient of the error function for the DTRNN.

In BPTT, weights can only be updated after a complete forward step and a complete backward step, just
as in regular BP. When processing finite sequences, weights are usually updated after a complete presentation
of the sequence.

The time complexity of BPTT is one of its most attractive features: for a first-order DTRNN in which the
number of states is larger than the number of inputs (nX > nU), the temporal cost of the backward step used
to compute the derivatives grows as nX

2, that is, the same as the cost of the forward step used to process the
sequence and compute the outputs. The main drawback of BPTT is its space complexity, proportional to the
length of the sequence, which comes from the need to replicate the DTRNN for each step of the sequence. This
also makes it a bit trickier to program than RTRL.

For more details on BPTT the reader is referred to 7 (p. 751) and 3 (p. 182).
Real-Time Recurrent Learning. RTRL has been independently derived by many authors; the most

commonly cited reference for it is 17 [for more details see also 3 (p. 184) and 7 (p. 756)]. This algorithm
computes the derivatives of outputs and states with respect to all weights as the network processes the string,
that is, during the forward step. No unfolding is performed or necessary. For instance, if the network has a
simple next-state dynamics such as the one described in Eq. (10), derivatives may be computed together with
the next state. The derivative of states with respect to, say, state–state weights at time t, will be computed
from the states and derivatives at time t − 1 and the input at time t as follows:

with g′( ) the derivative of the activation function, δik Kronecker’s delta (1 if i = k and 0 otherwise) and

the net input to state unit i. The derivatives of states with respect to weights at t = 0 are initialized to zero.
Derivatives with respect to the components of the initial state x[0] may also be easily computed (49, 54, 19) by
initializing them accordingly (that is, ∂xi[0]/∂xj[0] = δij).

Since derivatives of outputs are easily defined in terms of state derivatives for all architectures, the
parameters of the DTRNN may be updated after every time step in which output targets are defined, even
after having processed only part of a sequence. This is one of the main advantages of RTRL in applications
where online learning is necessary; the other one is the ease with which it may be derived and programmed for
a new architecture. However, its time complexity is much higher than that of BPTT; for first-order DTRNNs
such as the above, with more state units than input lines (nX > nU), the dominant term in the time complexity
is nX

4. A detailed derivation of RTRL for a second-order DTRNN architecture may be found in 11.
The reader should be aware that the name RTRL is applied to two different concepts: RTRL (17) may

be viewed solely as a method to compute the derivatives or as a method to compute derivatives and update
weights (in each cycle). One may use RTRL to compute derivatives and update the weights after processing a
complete sample made up of a number of sequences (batch update), after processing each sequence (pattern
update), and after processing each item in each sequence. In these last two cases, the derivatives approach the
true gradient as the learning rate approaches zero. For batch and pattern weight updates, RTRL and BPTT
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are equivalent, since they compute the same derivatives. Hybrid or compromise algorithms combining the best
features of RTRL and BPTT have also been proposed (see, e.g., 55).

Other Derivative-Based Methods. It is also possible to train a DTRNN using the extended Kalman
filter (EKF), a nonlinear extension of Kalman filters (see Kalman Filters), of which RTRL may be shown to be
a special case (56); the EKF has been successfully used in many applications, such as neurocontrol (33). The
EKF is also related to recursive least squares (RLS) algorithms.

Non-gradient Methods. Gradient-based algorithms are the most used of all learning algorithms for
DTRNNs. But there are also some interesting non-gradient-based algorithms. Of those, two batch learning
algorithms are worth mentioning:

• Alopex (57) biases random weight updates according to the observed correlation between previous updates
of each learnable parameter and the change in the total error for the learning sample. It does not need any
knowledge about the net’s particular structure; that is, it treats the net as a black box, and, indeed, it may
be used to optimize parameters of systems other than neural nets; this makes it specially attractive when
it comes to test a new architecture for which derivatives have not been derived yet.

• Cauwenberghs’s (58) algorithm uses a related learning rule: the change effected by a random perturbation
π of the weight vector W on the total error E(W) is computed, and weights are updated in the direction of
the perturbation so that the new weight vector is W − µ[E(W + π) − E(W)] π, where µ acts as a learning
rate. This algorithm performs gradient descent on average when the components of the weight perturbation
vector are mutually uncorrelated with uniform autovariance, with error decreasing in each epoch for small
enough π and µ, and with a slowdown with respect to gradient descent proportional to the square root of
the number of parameters.

Architecture-Coupled Methods. A number of training algorithms for DTRNNs are coupled to a
particular architecture: for example, BPS (59) is a special algorithm used to train local feedback nets, that is,
DTRNNs in which the value of a state unit xi[t] is computed by using only its previous value xi[t − 1] and not
the rest of the state values xj[t − 1], j �= i (in particular, BPS is neither a special case of BPTT nor of RTRL;
it is local in both space and time). But sometimes not only are learning algorithms specialized on a particular
architecture, but also they modify the architecture during learning. One such algorithm is Fahlman’s recurrent
cascade correlation (48), which is described below.

Recurrent Cascade Correlation. Fahlman (48) has recently proposed a training algorithm that establishes
a mechanism to grow a DTRNN during training by adding hidden state units, which are trained separately
so that their output does not affect the operation of the DTRNN. Training starts with an architecture without
hidden state units,

and a pool of nC candidate hidden units with local feedback, which are connected to the inputs, are trained to
follow the residual error of the network:
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with i = 1, . . ., nC. Training adds the best candidate unit to the network in a process called tenure. If there are
already k tenured hidden units, the state of candidate i is

Tenure adds the best of the candidates to the network as a hidden unit labeled k + 1 (where k is the
number of existing hidden units), its incoming weights are frozen, and connections are established with the
output units and subsequently trained. Therefore, hidden units form a lower triangular structure in which
each of the units receives feedback only from itself and the output is computed from the input and each of the
hidden units:

Learning Problems. When one comes to train a DTRNN to perform a certain sequence processing
task, the first thing that should be checked is whether the DTRNN architecture chosen can actually represent
or approximate the task that we want to learn. However, this is seldom possible, either because of our incom-
plete knowledge of the computational nature of the sequence-processing task itself, or because of our lack of
knowledge about the tasks that a given DTRNN architecture can actually perform. In most of the following,
we will assume that the DTRNN architecture (including the representation used for inputs, the interpretation
assigned to outputs, and the number of neurons in each layer) has already been chosen and that further learn-
ing may only occur through adjustment of weights, biases, and similar parameters. We will review some of the
problems that may occur during the adjustment of these parameters. Of these, some may appear regardless of
the kind of learning algorithm used, and others may be related to gradient-based algorithms.

Multiple Minima. The error function for a given sample is usually a function of a fairly large number
of parameters. For example, small DTRNN, say, an Elman net (see the subsection “Neural Moore Machines)
with two inputs, two output units, and three state units has 21 weights, 5 biases, and, in case we decide to
adjust them, 3 initial state values. Assume we have already found a minimum in the error surface. Due to the
structure of connections, choosing any of the six possible permutations of the three state neurons would yield
exactly the same value for the error function. But, in addition to this, it is very likely that the 26-dimensional
space of weights and biases is plagued with local minima, some of which may actually not correspond to the
computational task we want to learn. Since it is not feasible for any learning algorithm to sample the whole
26-dimensional space, the possibility that it finds a suboptimal minimum of the error function is very large.
This problem is especially important with local-search algorithms such as gradient descent: if the algorithm
slowly modifies the learnable parameters to go downhill on the error surface, it may end up trapped in any
local minimum. The problem of multiple minima is not even a specific problem of DTRNN; it affects almost
all neural net architectures. For a study of local minima in DTRNNs and, in particular, for conditions under
which local minima may be avoided in DTRNNs, see 60.

Long-Term Dependences. The problem of long-term dependences, when training a DTRNN to perform
tasks in which a late output depends on a very early input that has to be remembered, is more specific to
DTRNNs, because it is a sequence-processing problem; one of the most exhaustive studies of this problem may
be found in 61. The problem may be formulated as follows: when the sequence-processing task is such that the
output after reading a long sequence depends on details of the early items of the sequence, it may occur that
learning algorithms are unable to acknowledge this dependence due to the fact that the actual output of the
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DTRNN at the current time is very insensitive to small variations in the early input, or, what is equivalent,
to the small variations in the weights involved in the early processing of the event (even if the change in the
early input is large); this is known as the problem of vanishing gradients (see also 7, p. 773). Small variations
in weights are the modus operandi of most learning algorithms, in particular, but not exclusively, of gradient-
descent algorithms. Bengio et al. (61) prove that the vanishing of gradients is especially severe when we want
the DTRNN to robustly store information about a very early effect.

RELAXATION DISCRETE-TIME RECURRENT NEURAL NETS

When DTRNNs are used in such a way that we are only interested in the output(s) they produce after letting
them evolve for a sufficiently large number of input steps, we may assume either that we have no inputs or
that we have a constant input that may be modeled as a bias to the corresponding units. We are interested in
the final output of the network after either (a) having placed it in a particular initial state or (b) having placed
it in a standard initial state and having set the inputs (or biases) to particular values. Formulations (a) and
(b) are equivalent. Most of the DTRNN architectures defined in the previous section may be adapted for this
kind of processing. Following formulation (a), and using a definition parallel to the one given in the subsection
“Discrete-time Recurrent Neural Nets as Neural State Machines,” a relaxation neural state machine (RNSM)
N is a quadruple

in which all of the elements have the same definition as in Eq. (4). The way in which a RNSM is used is,
however, different. The RNSM computes a function F : X → Y as follows: after setting the initial state x[0] to
the desired input vector x, it is allowed to perform state transitions until it reaches the stationary state; in a a
continuous-state RNSM, the output y = F(x) is

In practice, the network is allowed to evolve either for a fixed number of time steps or until two successive
output vectors differ less than a predetermined tolerance. It may be said that the network computes the
function F by successive approximations. Of course, it may be possible that, instead of settling to a finite state,
the network starts to repeat values in a cyclic fashion or shows chaotic behavior.

There are a number of architectures that may be classified as RNSM, the most representative being
perhaps Hopfield networks. Hopfield networks are among the most widely used RNSM architectures. The
original Hopfield net (62) is a discrete-state RNSM in which the function h is the identity (and therefore Y =
X) and the function f is defined as follows: a random unit i is chosen in the range i = 1, . . . , nX ; then, the ith
component of f has the form

and the rest of the components are
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where gH(x) is 1 if x ≥ 0 and −1 otherwise, and the weights have the property that Wij
xx = Wji

xx and Wii = 0
for all i = 1, . . . , nX (they are symmetric; nonsymmetric weights may yield a network that does not settle to
a fixed point but instead oscillates in what is called a limit cycle). This is the asynchronous update mode; the
synchronous variant or Little model (63) uses Eq. () for all of the components. A typical application of Hopfield
nets is the recall of a “clean” binary pattern xp stored in advance, starting from a “noisy” version of it; for
example, to recover the transmitted bits from a noisy signal in digital cellular communications (64). Storing
patterns in Hopfield nets is easy: one may store up to approximately nX /log nX binary patterns (3, p. 19) by
using a version of Hebb’s rule (7, p. 55):

where np is the number of patterns and d(p) is the pth pattern. The continuous-state version of Hopfield
networks (65) has the hyperbolic tangent as an activation function.

CONTINUOUS-TIME RECURRENT NEURAL NETS

CTRNNs may also be either used for temporal processing or allowed to obtain a solution by relaxing. The
following subsections briefly review these two approaches.

Continuous-Time Recurrent Neural Nets for Temporal Processing. In CTRNNs, the time vari-
ation in the state of each one of the units at time t is a function of the instantaneous state of one or several
units at the same time: the activation of the whole net is a continuous function of time. CTRNNs may be used
to process continuous-time signals (CTSs) much as DTRNNs may be used to process sequences (discrete-time
signals): a CTRNN may be used to recognize or classify a CTS, to transform a CTS into another CTS, or to
generate a CTS.

If we use a notation parallel to the one used for DTRNNs, the time evolution of state unit i may be
expressed as

Similar equations will apply to the output vector y. One of the most usual forms for the previous equation is,
in a single-layer, fully connected CTRNN,

where τx
i is the time constant of state unit i, Wxx

ij is the matrix of weights connecting state units to state units,
Wxu

ij is the matrix of weights connecting inputs to state units, Wx
i is the bias of state unit i, δxx

ij is the delay
matrix for state-unit–state-unit connections, and δxu

ij is the delay matrix for input–state-unit connections. The
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corresponding equation for the output units, defined in analogous terms, is

Such a network may be trained, for example, to describe a particular continuous-time trajectory (66).
There exist continuous-time counterparts of DTRNN-training algorithms similar to BPTT and RTRL (for

a review, see 67). Batch training algorithms try to minimize the time integral of the error

whereas online algorithms rather try to minimize the instantaneous error �ny
i = 1 [yi(t) − di(t)]2 at each time.

Differentiation of Eqs. (37) and (39) with respect to any weight w [also with respect to any time constant
τ (68)] yields a system of differential equations, which may be numerically integrated forward in time [as
the dynamics of the CTRNN, Eqs. (37) and (39), is simulated] to obtain the instantaneous values of the
derivatives of states with respect to each weight (∂xi/∂w, ∂yi/∂w). These values may be either (a) used for the
numerical integration of the derivative of the total error with respect to the weight ∂E/∂w (for batch updating
of derivatives) or (b) used online to compute the instantaneous time derivative of each weight dw/dt, which
may then be numerically integrated in a forward fashion.

Relaxation Continuous-Time Recurrent Neural nets. As with DTRNNs (see the preceding section),
the state units of a CTRNN may also be initialized with a certain pattern, and the CTRNN allowed to evolve
until it reaches a fixed point; then the states of output units are read, without paying much attention to the
actual temporal evolution that occurred (the reader is reminded that it may be possible for a CTRNN to settle
to a non-fixed-point behavior such as a limit cycle or even chaos). A CTRNN used in this way may be used
to compute functions that transform vectors into vectors. Pineda (69) and Almeida (70) independently found
an efficient gradient-descent training algorithm for these networks. This algorithm (see also 3, p. 172) builds
another CTRNN (the error-propagation network) that has the same topology and settles to the derivative of
the error function.

FURTHER READING

The interested reader may find excellent chapters on recurrent neural nets in textbooks (such as Chap. 15 in
7 or Chap. 7 in 3) as well as complete monographs devoted to the subject (71, 72).
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