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neural networks at the time. Minsky and Papert did not take
into account, however, that multilayer versions of the per-
ceptron are capable of solving an arbitrary dichotomy.

The advent of backpropagation in the mid-1980s renewed
major interest in neural networks since it provided for a prac-
ticable algorithm to train multilayer perceptrons (7). The
simplicity of standard backpropagation is one of the reasons
why multilayer perceptrons are still the most widely used
kind of neural networks. Other factors include the adaptabil-
ity, ease of implementation, and demonstrated utility to a va-
riety of applications in pattern recognition, control, and pre-
diction.

This article gives a brief review of the perceptron concept
and attempts to point out some critical issues involved in the
design and implementation of multilayer perceptrons. The or-
ganization of the article is as follows: First we introduce the
reader to the neural network terminology as well as the con-
cepts of single-layer and multilayer perceptrons. We discuss
several training algorithms of multilayer perceptrons, deal
with the neural network’s ability to model the data, address
VLSI implementations of multilayer perceptrons, and finally
present a statistical perceptron model called stochastic per-
ceptron.

GENERAL NEURAL NETWORK CONCEPTS

Since the early days of computer science it has become evi-
dent that conventional computers lack certain abilities that
every human being possesses. In particular, these machines
do not display a form of intelligent behavior. There have been
two approaches geared at improving this situation. One is
based on symbolism and the other one is based on connection-
ism. The former approach models intelligence in terms ofPERCEPTRONS
computer programs which are able to manipulate symbols
given a certain amount of ‘‘knowledge’’ and following a certainOne of the most exciting developments during the early days
set of rules. The connectionist approach to introducing intelli-of neural networks was the perceptron. The perceptron which
gence to computer systems relies on the hope that it is possi-was introduced by Frank Rosenblatt (1,2) is based on a net-
ble to model the structure of the biological neural systemswork of binary decision units (3) which model nerve cells in
such as the human brain. A biological nervous system con-the human brain. The perceptron is used to classify or recog-
sists of a network of neurons which continually receive andnize patterns, that is, to perceive. In other words, the per-
transmit signals. A simple model of a biological neuron con-ceptron acts as a function from a set of patterns to a set of
sists of a processing element receiving several inputs.classes. Rosenblatt’s perceptron convergence theorem pro-

In Fig. 1 the symbols x1, . . ., xn represent the strengths ofvided an algorithm which enables the perceptron to learn ev-
the impulses. The synaptic weights or connection strengths—ery mapping it can represent (2,4,5,6). This learning ability
denoted by the symbols w1, . . ., wn—interpret the role thatof perceptrons gave rise to the hope that it would be possible
the synapses play in the transmission of impulses. The outputto construct a model of the human brain in terms of a
signal is represented by the symbol y. The dependence of themultiple-layer perceptron.

These high expectations were crushed in the eyes of many
researchers by Minsky and Papert (4), who pointed out the
limitations of single-layer perceptrons. Minsky and Papert’s
main observation was that some very simple pattern recogni-
tion problems, namely the linearly inseparable problems, can-
not be solved by means of a single-layer perceptron. Their
most famous counterexample is the XOR-problem which con-
sists of associating the binary patterns (0, 0) and (1, 1) with
one class, and associating the patterns (1, 0) and (0, 1) with
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another class. They also addressed the scaling problem, that
is, the fact that training times increase very rapidly for cer- Figure 1. A simple model of a neuron. The strength of the outgoing
tain problems as the number of input lines increases. Their impulse is modeled by f ([�n

i�1 wixi] � �]), where �n
i�1 wixi is a weighted

criticism of neural networks is valid and mathematically ac- sum of the incoming impulses x1, . . ., xn. The symbol f denotes an
activation function and the symbol � denotes a threshold.curate and it led to a highly pessimistic view of the future of
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output y on the inputs x1, . . ., xn is given by the following
rule:

y = f

([
n∑

i=1

wi · xi

]
− θ

)
(1)

where � is a threshold value or bias and f is the neuron’s
activation function. One of the most commonly used activation
functions is the Heaviside step function given by

f : RRR → RRR

x →
{

1 if x ≥ 0

0 else

(2)

The neurons in an artificial neural network are sometimes
also called nodes or units.

Neural Network Topologies
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The topology of a neural network refers to its framework and
Figure 2. A multilayer feedforward neural network with L hiddenits interconnection scheme. In many cases the framework of
layers. We speak of an (L � 1)-layer neural network since there area neural network consists of several layers of nodes. The liter-
L � 1 layers of weights. At each node the weighted sum of the inputsature on neural networks distinguishes between the following
is computed followed by an application of the activation function.

types of layers:

• Input Layer. A layer of neurons which receive external
thors prefer not to distinguish between learning and train-input from outside the network
ing.) The purpose of neural network training and learning is

• Output Layer. The layer of neurons which produces the effective recall and generalization in the application phase.
output of the network Recall consists of presenting and processing the same data

• Hidden Layer. A layer composed of neurons whose inter- which was used in the training and learning phase. Effective
action is restricted to other neurons in the network generalization is the ability of the network to perform well on

new data and it is one of the main goals in the design of learn-
A neural network is called a single-layer neural network if it ing rules. The first learning rules emerged from the psycho-
has no hidden layers of nodes, or equivalently if it has just logical studies of Donald Hebb and Frank Rosenblatt (8,1).
one layer of weights. A multilayer neural network is equipped Hebb’s neurophysiological postulate stated that the synaptic
with one or more hidden layer of nodes. A feedforward neural connection strength between two neurons increases when one
network refers to a neural network whose connections point neuron repeatedly or persistently takes part in the activation
in the direction of the output layer. A recurrent neural net- of the other neuron or vice versa. Although the Hebbian
work has connections between nodes of the same layer and/ learning rule represents a form of unsupervised learning, it
or connections pointing in the direction of the input layer. A can also be used in a supervised manner. Rosenblatt con-
schematic representation of an exemplar feedforward neural ceived a supervised learning rule for pattern recognition,
network is given in Fig. 2. where a teacher is necessary in order to indicate how to clas-

sify objects. The artificial neural network model he proposed
Training and Learning in order to solve these problems was the perceptron.

One of the principal components of intelligence is the ability
to learn. Learning can be achieved in a neural network by INTRODUCTION TO PERCEPTRONS
adjusting the connection weights of the network. There are
two basic forms of learning in a neural network: supervised Single-Layer Perceptrons
learning and unsupervised learning. Supervised learning re-

The single-layer perceptron serves as a classifier. It associateslies on the presentation of some input data and the corre-
input patterns with one of two classes, say class 0 and classsponding target data. During the learning process a weight
1. The single-layer perceptron merely consists of an inputadjustment takes place which aims at minimizing the differ-
layer and one node in the output layer. An input pattern x �ence (error) between the target data and the output corre-
(x1, . . ., xn) is classified as a class 1 pattern ifsponding to the input data. In unsupervised learning, only

input data are given to the network. In this setting, learning
is based on grouping patterns into clusters. The weights are
adjusted such that similar patterns produce the same output.

n∑
i=1

wixi ≥ θ

Training refers to the actual presentation of input and possi-
bly target data to the neural network. A neural network where w � (w1, . . ., wn) denotes the vector of the synaptic

weights and where � denotes the threshold parameter. Thelearns by being trained. (We have to mention that many au-
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pattern x is classified as belonging to class 0 if

n∑
i=1

wixi < θ

Figure 3 provides a schematic representation of a single-
layer perceptron. The perceptron’s activation function is the
Heaviside step function of Eq. (2). As a matter of convenience
we used w0 to denote the bias ��. In this notation, the per-
ceptron computes the output y as

Class 0 point
Class 1 point

(0,1) (1,1)

(0,0) (1,0)f

(
w0 +

n∑
i=1

wixi

)

Figure 4. Representation of domain for XOR. The XOR-problem pro-
vides a simple example which illustrates the deficiencies of a single-and the bias can be treated as an additional weight if we ex-
layer perceptron. The problem consists of dividing the four patternstend the input pattern x as follows: x � (x0, x1, . . ., xn),
plotted above into two classes. A single-layer perceptron cannot solvewhere x0 � 1.
this simple classification problem since the decision boundary of aThe equation
single-layer perceptron is a line in the two-dimensional case.

ing arbitrary classification problems into two classes (2). The

n∑
i=1

wixi = θ

algorithm modifies the weights at time k � 1 in the direction
determines a hyperplane which is called the perceptron’s deci- of the current error E(k) which is defined as the difference of
sion surface. In the case where n � 2, the decision surface is the target output and the actual output at time k.
a line. Two classes of patterns are called linearly separable if The algorithm can be described as follows. Suppose we are
the two classes can be separated by means of a perceptron given a set of training patterns x1, x2, . . ., xP. The order in
decision surface. Clearly, patterns belonging to two different which the patterns are processed does not matter. Initialize
classes cannot always be divided by such a decision surface. the step counter k to be 0 and the counter p indicating the
The XOR-problem provides a simple example of a situation pattern number to be 1. Let w(0) � (w1(0), . . ., wn(0)) denote
where two classes of patterns are not linearly separable. XOR the initial vector of the weights.
is a binary operator on �0, 1�2 such that for all (a, b) � �0,
1�2: 1. Set x � xp and compute the activation y(k) for input

pattern x.
2. Compute the current output error E(k) as follows:a XOR b =

{
0 if a = b

1 else
(3)

E(k) = t p − y(k) (4)

Thus, the XOR-operator divides the pattern space �0, 1�2 into
where tp is the target value for the pattern x � xp andtwo the subsets C0 � �(0, 0), (1, 1)� and C1 � �(0, 1), (1, 0)�.
y(k) is the output value at time k.The points in the domain of the problem are plotted in Fig. 4.

3. Modify the vector w(k) � (w1(k), . . ., wn(k)) of the con-Open dots represent points in C0. Solid dots represent points
nection weights at time k by adding the factor � � E(k) �in C1.
x, that is:

Single-Layer Perceptron Learning
www(k + 1) = www(k) + η · E(k) · xxx (5)

In 1962 Rosenblatt presented the perceptron convergence the-
orem which induces a supervised learning algorithm for solv- If the threshold activation function f is replaced by the

identity function, this updating scheme is known as the
delta rule (60).

4. Increment the step counter k. Update the counter p rep-
resenting the pattern number by setting:

p := p(mod P) + 1 (6)

Figure 5 illustrates an application of the perceptron learn-
ing algorithm. Class 1 points have been plotted with dia-
monds and Class 0 points have been plotted with crosses. The

1 = x0

i = 0

n

x1

.

.

.

xn

wn

wixiΣ

w0w1
f

lines plotted in the figure represent decision surfaces afterFigure 3. Functionality of a single-layer perceptron. The threshold
k � 0, 20, 40, and 80 training patterns have been presented� is incorporated into this figure in terms of an additional weight or
to the single-layer perceptron.bias w0. This figure expresses the fact that a single-layer perceptron

This algorithm is guaranteed to find a weight adjustmentcomputes f (w0 � �n
i�1 wixi) for inputs x1, . . ., xn, where f is the Heavi-

side step function drawn inside the circle on the right side. which solves the classification problem in a finite number of
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tion is given as follows:

f (x) = a
1 + e−bx+c + d (7)

The parameters a, b, c, and d control the height, the slope,
and the horizontal and vertical justification of the curve. Fig-
ure 7 shows sigmoidal functions for different parameter
values.

In the previous section, we noted that single layer per-
ceptrons can separate patterns positioned on different sides
of a hyperplane. A two-layer perceptron with threshold units

k = 20 k = 40

k = 80

k = 0

can form a single convex region as a decision boundary. This
property is due to the fact that the output unit can be usedFigure 5. The perceptron’s decision surface after step k of the learn-
computing a multivariable logical AND of the hidden units bying algorithm. This figure illustrates an application of the perceptron

learning algorithm. Class 1 points have been plotted with diamonds setting the bias to �m, where m is the number of hidden
and Class 0 points have been plotted with crosses. The lines plotted units. Setting the threshold parameter to �1 would generate
in the figure represent decision surfaces after k � 0, 20, 40, and 80 a multivariable OR function. Thus, three-layer perceptrons
training patterns have been presented to the single-layer perceptron. with threshold activation functions can approximate arbitrary

decision boundaries provided that the number of hidden units
is variable. Formally, the approximation can be achieved in

steps if the given two classes are linearly separable. However, terms of a fine grid of hypercubes. Gibson & Cowan as well
the algorithm does not converge at all when the classes are as Blum & Li have pointed out that two-layer perceptrons
linearly inseparable and it is difficult to recognize this situa- with threshold activation functions are incapable of approxi-
tion beforehand. Minsky and Papert recognized the heart of mating arbitrary decision regions (9,10). Of course, this state-
the problem: single-layer perceptrons only have one layer of ment does not preclude the fact that there exist examples of
adaptive weights (4). A suitable data representation may complex, nonconvex decision regions which can be generated
transform an originally linearly inseparable problem into a by two-layer perceptrons with threshold units (11,12). Feed-
linearly separable one. However, once chosen, the data repre- forward neural networks with two layers of weights and sig-
sentation is fixed. moidal activation functions are able to approximate arbitrary

decision regions to arbitrary accuracy. This theorem follows
Multilayer Perceptrons from a result stating that these perceptrons are able to ap-

proximate arbitrarily well any continuous mapping from �nMultilayer perceptrons are feedforward neural networks with
to �. Feedforward neural networks with differentiable activa-at least one hidden layer of nodes. Thus, they have at least
tion functions such as sigmoidal functions can be trained effi-two layers of adaptive weights. Figure 6 illustrates the frame-
ciently using the backpropagation algorithm.work and the connection scheme of a two-layer perceptron.

The framework of a multilayer perceptron may include a bias
parameter in every layer of nodes. As before, this situation

TRAINING AND LEARNING IN MULTILAYER PERCEPTRONS
can be modeled by extending the input vectors by an addi-
tional component of 1.

Backpropagation
The activation functions of multilayer perceptrons are ei-

ther threshold functions or belong to the family of sigmoidal Training in multilayer perceptrons is performed in a super-
vised form and aims at minimizing a previously defined errorfunctions whose graphs are characterized by a monotonically

increasing s-shaped curve. A generic sigmoid activation func- function. Rosenblatt’s perceptron learning algorithm deter-

Figure 6. Two-layer perceptron. Note that this picto-
rial representation includes the biases, which are de-
noted by w0, j and v0,k. Assuming a common activation
function f for all hidden nodes and output nodes, the
activations hj and ok are computed as follows: hj �

x11 x2

. . . . . .

xi xn
Input nodes xi 

Hidden nodes hj

Output nodes ok . . .
. . .

. . .
. . .

1
h1 h2 hj hm

o1 o2 ok om

Weights vjk from hidden node hj to output node ok

Weights wjk from input node xi to hidden node hj

f (�n
i�0 wij xi) and ok f (�n

j�0 vjk hj), where 1 � x0 � h0.
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Figure 7. Sigmoidal functions with dif-
ferent parameter values. Sigmoidal func-
tions are commonly used as activation
functions in multilayer perceptrons. A bi-
polar logistic function with a � 2, b � 1,
c � 0, and d � �1 is shown on the left
and the hyperbolic tangent function with
a � 2, b � 2, c � 0, and d � �1 is shown
on the right.
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mines a sequence of weight adjustments such that the error E is nothing but a finite approximation of
will vanish in a finite number of steps. The weights are modi-
fied according to their error contribution. Similar learning al-
gorithms do not exist for feedforward neural networks with lim

P→∞

P∑
p=1

E p

threshold activation functions and multiple layers of weights.
Fortunately, there are proven methods for the minimiza- The description of the algorithm for evaluating the deriva-

tion of differentiable functions such as sigmoids which resem- tives of Ep with respect to the weights will reveal that these
ble threshold functions. Gradient descent, the simplest and derivatives can be expressed as a product of the activation of
most commonly used of these optimization methods, relies on a certain node and another parameter � corresponding to an-
the partial derivatives of the (error) function in order to deter- other node. The algorithm performs the following basic steps:
mine a local minimum. Strictly speaking, backpropagation
only refers to the calculation of the error function derivatives. 1. Present the pattern xp to the network and compute the
The importance of backpropagation lies in the fact that the activations of the nodes
evaluation of the error function derivatives can be performed

2. Compute the �-parameters for the output units [Eq.in O(W) operations, where W is the number of weights and
(15)]biases in the network, instead of O(W2) which are required to

3. Use the �-parameters of the units in the layer l � 1 toevaluate the partial derivatives directly. Most training algo-
compute the �-parameters of the units in the lth layerrithms for multilayer perceptrons consist of a backpropaga-
[Eq. (17), backpropagation]tion phase and a weight modification phase. Many authors

4. Evaluate the required derivatives by using the productrefer to the entire training algorithm as backpropagation.
representation of the derivatives mentioned above [Eq.Suppose the training set consists of P patterns x1, . . .,
(14)]xP. Each pattern vector xp, where p ranges from 1 to P, pro-

duces an output vector yp � (yp
1, . . ., yp

m). The total error E is
We now describe in detail the general method for evaluat-measured in terms of the errors Ep where Ep is the error gen-

ing the derivatives of the error function Ep in a multilayererated by an individual pattern xp. In most cases, the error
feedforward neural network with differentiable activationcan be written as
functions. Suppose that the pattern xp has been presented to
the network. From now on its output is simply denoted by
y � (y1, . . ., ym) instead of yp � (yp

1, . . ., yp
m). Let zl

i be theE =
P∑

p=1

E p (8)

activation of the ith node in the lth layer of nodes. The weight
connecting the ith unit of layer l to the jth unit of layer l � 1One of the most common choices for the error measure Ep is
is denoted by wl

ji.
Each unit of a hidden layer or the output layer first com-

putes a weighted sum of its inputs of the formE p = 1
2

m∑
l=1

(
t p
l − yp

l

)
(9)

where tp � (tp
1, . . ., tp

m) is the target output for the pattern
sl+1

j =
∑

i

wl
ji · zl

i (10)

vector xp. The errors E and Ep can be viewed as functions of
all the weights in the network. Due to the representation of The activation of the jth unit of layer l � 1 is obtained by
E as a sum of the individual errors Ep, the problem of de- applying a differentiable activation function g to the sum
termining the derivatives of Ep with respect to the weights sl�1

j :
reduces to the problem of determining the derivatives of Ep

with respect to the weights. Hecht-Nielsen employs zl+1
j = g

(
sl+1

j

)
(11)

The activation functions may vary in different layers of nodes.
However, we chose to ignore this distinction so as to avoid an

lim
P→∞

1
P

P∑
p=1

E p

unnecessary clutter of notation.
Since the weights wl

ji only influence the error Ep via thethe expected value of the random variable Ep, as the error
function in his description of back-propagation (53). Note that summed input sl�1

j to the jth node of layer l � 1, an applica-
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tion of the chain rule gives: simplest of these algorithms uses gradient descent for weight
adjustment (generalized delta rule) and is described below:

Set k � 0 and execute Steps 1 and 2 until a stopping crite-
rion is met.

∂E p

∂wl
ji

= ∂E p

∂sl+1
j

·
∂sl+1

j

∂wl
ji

(12)

1. Perform the backpropagation phase for all training pat-
By Eq. (10) terns x1, . . ., xP which produces the gradients �E1,

. . ., �EP

2. Update the weights as follows:∂sl+1
j

∂wl
ji

= zl
i (13)

Denoting �Ep/�sl�1
j by �l�1

j , we can write

www(k + 1) = www(k) + �www(k)

where �www(k) = −η

P∑
p=1

∇E p|www(k)

(18)

Increment the counter k.

∂E p

∂wl
ji

= δl+1
j · zl

i (14)

If L represents the number of layers of neurons, then the Note that in the preceding training algorithm the weights
symbols �L

1, . . ., �L
m denote the �-parameters of the output are updated every time the whole set of training patterns has

units. These parameters can be immediately computed as fol- been presented to the network. The algorithm is said to oper-
lows: ate in batch, off-line, or deterministic mode. If the training set

is large, this technique leads to a slow learning process since
it involves a sweep through the whole training set for each
weight update. An alternative method is the real-time, on-

δL
j = ∂E p

∂sL
j

= ∂E p

∂yj
· g′(sL

j

)
(15)

line, or stochastic mode where the weights are adjusted after
each pattern presentation as follows:Using the chain rule for partial derivatives again, we obtain

Set k � 0, p � 1, and execute Steps 1 and 2 until a stop-the following formula for the �’s of the hidden units. These
ping criterion is met.parameters are denoted by the symbol �l

j where l ranges from
2 to L � 1.

1. Perform the backpropagation phase for the training
pattern xp yielding partial derivatives �Ep

2. Update the weights as follows:δl
j = ∂E p

∂sl
j

=
∑

k

∂E p

∂sl+1
k

· ∂sl+1
k

∂sl
j

=
∑

k

δl+1
k · ∂sl+1

k

∂sl
j

(16)

In view of Eq. (10), the partial derivative of sl�1
k with respect

www(k + 1) = www(k) + �www(k)

where �www(k) = −η∇E p|www(k)

(19)
to sl

j is given by wl
kj � g�(sl

j). Note that pulling the factor g�(sl
j)

out of the summation yields the following backpropagation
Increment the counter k. The new value of p is givenformula:
by p(mod P) � 1.

Since both versions of this algorithm are based on gradientδl
j = g′(sl

j

) ·
∑

k

wl
k j · δl+1

k (17)

descent, they only implement a search for a local minimum.
The chances for attaining the global minimum of the errorThe term on the right hand side is computed in Step 3 of the
function can be increased by executing several independentbackpropagation algorithm in order to determine the �’s of
training procedures with randomly initialized weights. An-layer l once the �’s of layer l � 1 are known.
other possibility would be to choose a more complex architec-
ture with a larger number of weights, since the local minima

Multilayer Perceptron Training
are usually lower in this case.

In many instances, multilayer perceptron learning re-We now discuss some training algorithms for multilayer per-
ceptrons which utilize error back-propagation. From now on quires a huge number of sweeps through the whole training

set or epochs until the error function reaches an acceptablywe will simply enumerate the weights in the form w1, w2,
. . ., wW, where W is the total number of weights. Thus the low value. The principal reason for the phenomenon is that

the error surface often has narrow ravines, that is, regionsweights form a vector w � (w1, w2, . . ., wW. The gradient
�E of an error function E with respect to the weights consists whose curvature is very large in one direction and rather

small in the orthogonal direction. In this situation, the choiceof the partial derivatives �E/�w1, �E/�w2, . . ., �E/�wW.
Before training it is necessary to initialize the weights of the learning parameter � is problematic. A large step size

may cause divergent oscillations across the ravine. A smalland biases. The vector of these initial weights is denoted by
w(0) � (w1(0), w2(0), . . ., wW(0)). Furthermore, a step size value for � will lead to a slow learning process since the

weight vector will first slowly converge to the bottom of theparameter � must be chosen. The training algorithms alter-
nate between a backpropagation phase and a weight modifi- ravine before it crawls along the bottom and finally reaches a

local minimum. The technique presented in the next sectioncation phase. The latter phase consist of adding a vector
�w(k) to the current weight vector w(k) at time k, where the constantly adapts the step size in order to improve the learn-

ing speed of the multilayer perceptron.modification �w(k) depends on the step size parameter �. The
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Adaptive Step Size Technique problems. One of the major problems concerning simple gradi-
ent descent with momentum is the fact that its effectiveness

In this technique each weight wi, where i � 1, . . ., W, has
depends on an appropriate choice for the step size parameter

an individual step size parameter �i which is changed at ev-
� and the learning parameter �, both of which have to be

ery iteration. The rate of change depends on the signs of suc-
chosen by trial and error. Instead of adopting this time-con-

cessive gradient components. In real-time mode, we obtain
suming random approach we might prefer to choose the pa-

the following equations:
rameters � and � automatically.

One of these automatic approaches is called bold driver
technique (16,17). The first step is to check how the error
function has changed after each step of the gradient descent.

Increase in Error. The weight vector is reset to its previous
value, the step size parameter is multiplied by a number � 

1 (typical choice: 0.5), and the momentum coefficient � is set
to zero. [The local minimum must have been overshot. There-

ηi(k + 1)

=
{

ρ · ηi(k)

σ · ηi(k)

if
∂E p

∂wi
|www(k+1) and

∂E p

∂wi
|www(k) have the same sign

else
where ρ > 1 and σ < 1 (20)

fore, a new attempt to reduce the error is made with a smaller
By this simple strategy, an individual step size �i will be in- step size and without momentum.]
creased if the current weight update is performed in the same Decrease in Error. The weight change is accepted and the
direction as the previous one, that is, further weight updates step size parameter � is multiplied by a number � � 1 (typical
in this direction are required. The step size parameter �i is choice: 1.1). [A decrease in error suggests that the algorithm
decreased if the current weight adjustment is performed in a is on its way toward a local minimum.]
different direction than the previous one, that is, the weight
wi was previously changed by a too large amount. The adap- Line Search
tive step size technique is able to deal particularly well with

All the techniques for weight adjustment we have discussedravines which are more or less parallel to some axis corre-
so far proceeded in a certain direction with a certain step sizesponding to an individual weight wji. If the error surface
given by the learning parameters. The procedure of lineforms a ravine that is oblique to all axes, Silva and Almeida
search is based on the following idea: Once the direction ofsuggest a combination of this technique with the momentum
the next step is fixed, the optimal reduction of an error func-technique presented next (13,14).
tion E can be achieved by minimizing E(w(k) � 	d(k)) with
respect to 	 � �.Momentum Technique

Line Search can be employed when training multilayer
In the momentum technique, an additional term � � wi(k) is perceptrons both in batch mode and in real-time mode.
added to each weight update term �wi(k) (15). In batch mode, Choose an initial weight vector w(0) and set k � 0. Perform
this procedure results in the following weight update equa- the following steps until a stopping criterion is met:
tion:

1. Determine a search direction d(k).
2. Minimize E(w(k) � 	d(k)) with respect to 	. Let 	o be

the variable where the minimum is adopted.
3. Update the weights by setting w(k � 1) � w(k) �

	od(k) and increment the counter k.

www(k + 1) = www(k) + �www(k)

where �www(k) = −η

P∑
p=1

∇E p|www(k) + α · www(k)

and 0 ≤ α < 1

(21)

Successive gradient vectors seem to provide the best choice
Clearly, �w(k) � �� � �Ep�w(k) � � � w(k) in real-time mode. for the sequence of search directions at first glance. However,

The term � � wi(k) is called the momentum term. This term practical examples show that successive steps in the opposite
has a cumulative effect if successive weight updates occur in direction of the gradient will usually take many iterations to
similar direction. On the other hand, the contributions from arrive at the minimum. The last sections of this article will
successive momentum terms will tend to cancel out if the deal with different training algorithms which are based on
weight vector oscillates from one ravine wall to another ra- line search (18).
vine wall. The intended effect of the momentum technique is
to lead the weight vector faster in the direction of the local Conjugate Gradient (CG) Method
minimum. The choice of the momentum parameter � is cru-

A better choice for the search directions d(k) is the so-calledcial to achieve this goal. A small parameter � will normally
conjugate gradient direction (19). A version of the general lineintroduce little improvement compared to the regular gradi-
search algorithm outlined above is called conjugate gradientent descent algorithm. A large choice of � may drive the
algorithm if d(1) � ��E�w(1) and d(k) is in the conjugateweight vector up the ravine wall (and possibly out of the ra-
gradient direction for all k � 1. The conjugate gradient direc-vine) at the location of a bend in the ravine, particularly if a
tions satisfylarge amount of momentum has previously been acquired.

ddd(k + 1)Hddd(k) = 0 (22)Enhanced Gradient Descent

As we have seen, simple gradient descent with momentum where H denotes the Hessian matrix. An explicit evaluation
of the Hessian matrix is unnecessary. The Hestenes–Stiefeldoes not guarantee convergence—not even to a local mini-

mum. Several methods exist to alleviate these convergence formula, the Polak–Ribiere formula, or the Fletcher–Reeves
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formula provide ways to compute the new conjugate gradient ever, instead of directly calculating the Hessian matrix and
computing its inverse, Quasi-Newton methods iteratively con-direction d(k � 1) using only d(k) and gradient information

(20). Backpropagation can be employed again for finding the struct an approximation of H�1, using only first-order infor-
mation in the process. The current method of choice for thisgradients.

If the error function is a quadratic polynomial, this algo- construction is the Broyden–Fletcher–Goldfarb–Shanno
method (21).rithm is guaranteed to find a minimum of a quadratic error

function in W steps. In the case of a general nonquadratic
error function the algorithm makes use of an approximation Comparison of CG and QN Methods
in terms of a quadratic error function in the neighborhood of

QN methods are computationally more stable than CG meth-a given point. These approximations are usually updated
ods. In contrast to CG methods, it is not necessary in theseafter a sequence of W iterations. Due to the difference be-
algorithms to perform the line searches with great accuracytween the actual error function and the quadratic approxima-
in order to obtain a reduction of error. This property leadstion, the algorithm needs to be run for many iterations until
to a faster convergence of QN methods compared to CGa stopping criterion is reached.
methods (55).

On the other hand, the construction of the matrix approxi-Newton’s Method
mating H�1 entails storage requirements of O(W2). Since CG

Newton’s method selects �(H�1 � �E)�w, where H denotes the methods only require O(W) storage, they are preferred for
Hessian matrix, as a search direction. The vector �(H�1 � large-scale problems involving a multitude of weights.
�E)�w, known as the Newton direction or the Newton step, Recently a number of researchers have devised several
points directly towards the minimum of the error surface if low-storage QN methods which combine the speed advantages
the error function is a quadratic polynomial. In the general of QN methods with the linear storage requirements of CG
case, a quadratic approximation of the error function is cho- methods (22,23,17).
sen and the Newton step, involving the evaluation of the Hes-
sian, is applied iteratively. This approach involves several

GENERALIZATIONproblems:

1. If the Hessian is not positive definite, the Newton step In the last section, we gave the impression that training only
is not guaranteed to move toward a local minimum. It serves the purpose of effectively minimizing the error func-
may move toward a local maximum or a saddle point tion, which measures the performance of the multilayer per-
instead. The model trust region approach resolves this ceptron on some set of training data. However, the most im-
problem by adding a suitably large multiple of the iden- portant role of training is to condition the network such that
tity matrix to the Hessian, yielding a positive definite it generalizes well and models all the data. As mentioned ear-
matrix as a result (18). A closer look reveals that hereby lier, the ability to generalize represents the most important
a compromise between Newton’s method and the stan- component of the network’s learning ability. Generalization
dard gradient descent method is formed. refers to the network’s performance in the application phase.

Since it is either impossible or computationally prohibitive to2. The stability of Newton’s method is affected if the step
include all problem data in the training process, the networksize, computed by a line search, takes the weight vector
should aim at predicting the structure of the problem data byoutside the validity of the quadratic approximation.
detecting some structure in the training data. There are sev-This problem can be counteracted by forming a new
eral techniques for measuring and improving the network’squadratic approximation in the neighborhood of the cur-
generalization performance. Many of these methods arerent point.
geared at optimizing the size of the network which is an in-3. The Hessian must be evaluated and inverted at each
fluential factor in the generalization capabilities of the net-iteration of the algorithm. The evaluation of the Hes-
work. Therefore, we consider it appropriate to make a fewsian costs O(PW2) steps and its inversion costs O(W3)
remarks on this topic beforehand.steps in terms of the number of patterns P and the

number of weights and biases W. In order to avoid the
Network Sizeexecution of these computationally expensive opera-

tions, one might simply choose to neglect all off-diago- Supervised training with training data is analogous to fitting
nal terms. This approximation of the Hessian reduces a curve through a number of data points reminiscent of poly-
the computational cost significantly since the diagonal nomial curve fitting. The function corresponding to this curve
terms can easily be computed by means of backpropaga- is of a form which is determined by the architecture of the
tion and the inversion of a diagonal matrix is trivial. network. A multilayer perceptron computes a function from
However, this approach has turned out to be unsuccess-

�n to �m which is given by a concatenation of multiplications,
ful for many practical neural network applications additions, and sigmoidal or hardlimiting functions.
where the Hessian is far from diagonal. Quasi-Newton The function has a number of free parameters which corre-
(QN) methods represent a practical approach to circum- spond to the weights of the network. An insufficient number
vent the direct calculation of the Hessian matrix. of free parameters leads to a poor fit through the given data

points yielding poor recall. By increasing the number of free
Quasi-Newton Methods

parameters the curve can better approximate the given data
points. For example, a polynomial of degree n or higher canQuasi-Newton methods are derived from Newton’s method

and adopt �(H�1 � �E)�w as a search direction as well. How- achieve a perfect fit to n � 1 data points. However, by choos-
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ing a function with many free parameters to represent the set of networks under consideration. For example, one might
consider only two-layer perceptrons with sigmoidal activationdata one risks overfitting the data, that is, the curve will re-

veal large oscillations from one data point to another. Figure functions in the training experiments since networks of this
form have the capability to approximate an arbitrary decision8 illustrates this principle with a polynomial of degree 10

used for interpolation of 6 data points. A polynomial with region (51).
Network pruning and network growing algorithms are moresmaller degree would model the data points reasonably well

without exhibiting oscillations. Good generalization results sophisticated approaches for optimizing the size of a neural
network. Pruning techniques start with a relatively large net-can be achieved if the curve which is the outcome of training

not only lies in the vicinity of the training data points but work which is iteratively reduced in size either by removing
connections or complete units. The algorithms alternate be-also in the vicinity of the problem data points. Since the prob-

lem data points are unknown, their location has to be pre- tween a training phase which consists of applying a standard
training algorithm to the network and a (connection or node)dicted based on the location of the training data points. In

most cases, a smoother function with a smaller amount of free removal phase. The removal phase involves the computation
of the saliency, a measure of the importance of the weights,parameters provides a better basis for predicting the location

of new, unknown data points. the nodes respectively. In each iteration some of the low-sali-
ency objects are deleted. Network pruning techniques includeThe preceding remarks indicate that a neural network

with a sufficiently large number of weights can be trained to optimal brain damage (24), optimal brain surgeon (25), as
well as the skeletonizing algorithm of Mozer and Smolenskyattain perfect recall of training data. The drawback is that a

multitude of weights will lead to bad generalization behavior. (26).
Network growing algorithms adopt a bottom-up approach:Such a network will tend to detect non-existent regularities

in the data. In many neural network applications, the train- starting from a small network, nodes are added to the net-
work until a sufficiently small training error is reached. Theing data is subject to some form of noise. Training a network

with too many weights will have the undesired effect of mod- most famous of these techniques is called cascade correlation
(27). The term cascade correlation is derived from the archi-eling the noise instead of the structure of the problem data.

The two basic alternatives to resolve this situation are: tecture of the network this algorithm constructs. The re-
sulting networks have sigmoidal hidden units and both feed-
forward and recurrent connections.• Reducing the size of the network

• Increasing the problem complexity
Regularization

Network Pruning and Network Growing In the previous section we remarked that neural networks
can be viewed as functions and neural network training canGenerally speaking, the optimal network topology is the
be viewed as function interpolation. Among two neural net-smallest network that trains well. Of course, the simplest ap-
works producing similar error for the same set of trainingproach to finding the optimal network topology is to experi-
data the neural network corresponding to the smoother func-ment with networks of different sizes. Although this approach
tion tends to generalize best. Regularization is a techniqueis computationally very expensive it is still used in practice.
which enhances the smoothness of the interpolating functionThe computational effort can be reduced by restricting the
by the addition of a regularization term to the error function
E:

Ẽ = E + ρC (23)

The function C is a penalty term whose influence on the
total cost function Ẽ is controlled by the parameter � � 0.
Note that adding �C to the original error function E increases
the complexity of the function to be minimized. Consequently,
the problem of minimizing Ẽ is more difficult than the prob-
lem of minimizing E. The total error Ẽ provides for a compro-
mise between the fit of the training data and the smoothness
of the function used for approximating the data. Small �’s fa-
vor fitting the training data while large �’s favor smoothing
out the interpolating function.

Choosing a regularizer of the form
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Figure 8. Polynomial approximation of data points. The polynomial
of degree 10 whose graph is plotted in the figure intersects the six
given data points but reveals large oscillations. The fact that the
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straight line approximates the data points reasonably well indicates
that the location of unknown data points can be better predicted by

will directly penalize the curvature of the interpolating func-a line. In the context of the analogy of polynomial curve fitting and
tion, since curvature is measured in terms of second-order de-perceptron training, a polynomial of small degree corresponds to a
rivatives (28,29).perceptron having a small number of weights whereas a polynomial

A more simple and more common regularization term,of large degree corresponds to a perceptron having a large number
of weights. called weight decay, is given by half of the sum of all the
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weights and biases: nal error function would encourage robust classification, but
is computationally very expensive. Note that small sensitivity
components can be obtained by producing either small
weights like in weight decay or small derivatives of the hid-C = 1

2

W∑
i=1

w2
i (25)

den layer activations. Figure 9 indicates that both goals can-
not be accomplished at the same time. (Also note that a com-Note that this choice of a penalty term forces the weights to
bination of medium-sized weights and derivatives will lead tobecome small. Small weights will cause the weighted sums of
a relatively large product.)the inputs at a certain node to be small as well. Thus, the

Jeong and Lee choose to force the hidden layer activationssigmoid is predominantly applied in a neighborhood of the
into their saturation range by imposing a penalty in the formorigin where its behavior is almost linear. Only larger
of the sums of all hidden layer activations. The learning pro-weights would lead the sigmoid to a region of larger curva-
cess reveals some features of Hebbian learning when using ature. Therefore, the function represented by the n-layer per-
standard gradient descent method with error backpropaga-ceptron resembles a polynomial of degree n. Since multilayer
tion. Initializing the weights with very small values providesperceptrons typically have a small number of layers, the re-
a successful learning process in simulation experiments.sulting function will be rather smooth.

Drucker and Le Cun take a direct path to converting theThe use of the term weight decay becomes clear when con-
original error function E into a robust error function. The newsidering simple gradient descent for weight modification in
error function Ẽ consists of the sum of E and a regularizerthe training algorithm. The weights are changed as follows:
given by a multiple of the following term at a particular loca-
tion x̃:www(k + 1) = www(k) + �www(k)

where �www(k) = −η∇Ẽ|www(k) = −η(∇E|w(k) + ρwww(k))
(26)

C = 1
2

(
∂E
∂x1

)2

+ 1
2

(
∂E
∂x2

)2

+ · · · + 1
2

(
∂E
∂xn

)2

(30)
In the absence of �E we can write

Drucker and Le Cun’s experiments yield an improved gener-
alization performance over standard gradient descent with

∂www(k)

∂k
= −ηρwww(k) (27)

backpropagation, but also an increased computational effort
due to the fact that calculating the appropriate derivativessince �w(k) is the discrete form of the derivative of w with
requires two backpropagation phases.respect to k. Eq. (27) has the unique solution

Validation and Testingwww(k) = www(0) · e−ηρwww(k) (28)

Validation methods have been designed in order to select a
yielding that all the weights decay exponentially to zero.

network model with an optimal generalization performance.
Some regularizers, which are similar to weight decay, are

The choice of the neural network model may for example be
capable of acting as weight pruners by pushing the subset of

between networks differing in the number of hidden units or
weights which is least important in the reduction of the origi-

between neural networks having different regularization pa-
nal error E towards zero while leaving other weights large.

rameters �. Validation methods require a set of training data
This property leads to an algorithm which prunes all the

and an independent set of data called validation data. The
weights at each iteration that fall below a certain threshold.
Examples include weight elimination and linear decay
(30,31).

Recently, some authors have proposed the choice of a pen-
alty function C which is tailored to achieve robust classifica-
tions and good generalization performance (32,33). In this
case, robustness refers to lack of sensitivity with respect to
small perturbations in the input space, for example, due to
noise. The robustness of the network mapping will also lead
to smoothness of the interpolating function—the property
which is responsible for generalization capabilities. The sensi-
tivity of the multilayer perceptron is given by the derivatives
of the output y with respect to the input x. If ỹ denotes the
output corresponding to a specific input x̃, we obtain the sen-
sitivity component �yi/�xk at location x̃ as follows:
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Figure 9. Bipolar logistic function and its derivative. The generaliza-
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(29) tion performance of a multilayer perceptron can be enhanced by re-

ducing (in absolute value) the sum of products of all weights and de-
where s̃l

j denotes the weighted sum computed at the jth node rivatives of node activations. The figure shows that small weights
of lth hidden layer. Adding the sums of squares of all sensitiv- and small derivatives cannot be achieved at the same time, since the

derivative assumes larger values in the region around the origin.ity components at all training patterns x1, . . ., xp to the origi-
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following steps are executed for all neural network models The validation method is executed n times. In iteration i, the
set difference S � Si acts as the training data set and the setunder consideration:
Si acts as the validation set. If �Si� 	 1 for all i 	 1, . . ., n,
we speak of the leave-one-out method.1. Train the neural net with the set of training data. The

set of weights which minimizes the error function is
Bootstrapping and Jackknifingfixed.

2. Check the generalization performance of the current Bootstrapping uses resamples of the original training set in
model by evaluating the error function using the valida- order to estimate the generalization performance (51). Resam-
tion data as inputs. ples are subsamples of size n which are taken with replace-

ment from the training set x1, . . ., xn. In its simplest form,
The neural network model having the smallest error with re- the bootstrap algorithm determines a set of weights for each
spect to the validation data is selected. bootstrap sample and then estimates the standard error of

Often the results of these approaches are confirmed by the outputs depending on the calculated sets of weights by
presenting yet another set of data called test data to the net- using a Monte Carlo method (59). The technique of jack-
work. Use of this technique is meant to safeguard against ov- knifing is based on equally sized subsamples without replace-
erfitting to the validation data. ment from the training set (56). These subsamples are used

Stopped training is a validation method in which the qual- to estimate the bias, the variance, and the distribution of a
ity of the current network is tested at each iteration by means statistic. In this computationally intensive fashion, a jack-
of validation data. The goal is to select the network which knife estimate of the generalization error can be obtained
performs best on the validation data. After the goal is met (57).
with some certainty, the training is halted. This strategy
which is illustrated in Fig. 10 avoids an overly tight fit to the Vapnik–Chervonenkis-Dimension
training data. Stopped training can be successfully applied to

In this section, we restrict our attention to multilayer per-networks whose number of weights far exceeds the number of
ceptrons with hard-limiting activation functions and binarytraining patterns (58).
inputs and outputs. Vapnik and Chervonenkis developed theIn practice, an independent set which can be designated to
concept of Vapnik–Chervonenkis-dimension (VC-dimension)be a validation set is often not available. The method of cross-
which provides an estimate of the generalization performancevalidation partitions a single data set into distinct subsets
of a neural network in the worst-case scenario (34). They ex-which serve as training data or validation data in different
press the network’s generalization performance, denoted byiterations of the general validation method already described.
g, in terms of the probability that an arbitrary pattern of theIf the original data set is denoted by S, we have
same distribution as the training patterns is classified cor-
rectly.

Vapnik and Chervonenkis provided an upper bound for the
probability that the network’s generalization performance dif-

S = S1 ∪ · · · ∪ Sn

and Si ∩ Sj = �∀i = j
(31)

fers by more than 
 from the fraction of patterns in the train-
ing set which are classified correctly. Note that for a perfect
fit of the training patterns, we obtain an upper bound for the
probability that g � 1 � 
, or equivalently a lower bound for
the probability that g � 1 � 
.

The upper bound mentioned can be expressed in terms of
the network’s VC-dimension, which is denoted by dimVC. The
quantity dimVC is the largest number of patterns P such that
the neural network can solve every binary classification prob-
lem of P patterns.

Let U be the total number of units in a multilayer per-
ceptron with threshold activation functions and let W be the
total number of weights and biases. Baum and Haussler (35)
showed that

dimVC ≤ 2W log2(eU ) (32)
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From this estimate they derived the following statement for
Figure 10. Early stopping of the training process. The original data 0 � 
 � ��. Let gT denote the fraction of training patterns which
are divided into training data and validation data, which are both is classified correctly. If the network has been trained with at
used to periodically evaluate the error function. The figure shows the least W/2 log2 (U/
) patterns such that gT � 1 � (
/2) then the
error E at iteration k with respect to the training data and the valida- network will correctly classify a fraction 1 � 
 of future pat-
tion data in a typical training session. While the error with respect

terns with high probability.to the training data generally decreases with each iteration, the error
They also proposed the estimate Pmin � W/
 for the mini-with respect to the validation data decreases at first, but increases

mal number of training patterns required to correctly classifylater. At this point training is stopped and the network which has
at least a fraction of 1 � 
 patterns by means of a two-layerthe minimal error with respect to the validation data (the one found

at iteration k0) is selected. perceptron with threshold units. Thus, the number of training
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patterns needed in the case 
 	 ��� amounts to 10W. In practice tations. An algorithm can easily be mapped onto a digital sys-
tem in a top-down approach. Multilayer feedforward neuralwe hope to encounter more favorable ratios than in this

worst-case estimate, particularly after applying the tech- network is the prevalent neural network design implementa-
tion. A number of CAD systems are available to support theniques for improving the generalization performance we dis-

cussed in this chapter. designer’s work.
In digital VLSI technology, the weights can be simply

stored in random-access memory (RAM). The accuracy of digi-
HARDWARE IMPLEMENTATIONS IN VLSI tal VLSI hardware is given by the number of bits of the op-

erands and accumulators. However, digital VLSI hardware is
The massively parallel structure of neural networks, in par- subject to serious constraints in chip area. A large number of
ticular multilayer perceptrons, cannot be exploited by means neurons, high numerical precision, and high speed elements
of software running on serial machines. Therefore, software are very area consuming. Thus a compromise has to be found
implementations on conventional computers lack the speed between accuracy, processing speed, and the number of neu-
requirements for many real-time applications such as high rons on the chip. Typically, digital VLSI chips have a higher
energy physics. General purpose parallel machines certainly precision, but lower speed and density than analog chips.
provide the necessary speed and parallelism, but have a high A digital neural network implementation can either con-
price tag. More cost-effective alternatives are analog and digi- sist of a single VLSI chip or multiple chips can be composed
tal VLSI implementations. We briefly review these methods to form a neural network architecture. Multiple chip architec-
with a special emphasis on multilayer perceptron implemen- tures include slice architectures and radial basis function net-
tations. We have to mention that the range of neural network works. SIMD and systolic arrays are built using multipro-
hardware is changing very rapidly over time. Thus, the infor- cessor chips. Arrays of SIMD chips are particularly suited for
mation provided in this chapter will soon be outdated. More the implementation of multilayer feedforward neural net-
up-to-date information on VLSI hardware including manufac- works since all processors on one particular chip execute the
turers can be found in (50). same instruction in parallel but on different data. Common

control and data buses can combine multiple chips. For exam-
Analog VLSI Implementations ple, the adaptive solutions CNAPS system forms a SIMD

array using Inova N6400 chips. Systolic arrays are based onIn the opinion of Carver Mead, who is virtually the inventor
the concept of pipe-lining: After performing a single calcula-of digital VLSI technology, simulating a neural network on
tion a processor passes the result on to the next processor.a digital computer strips away from the real-time nature of
Siemens MA-16 chips can be employed to build systolicbiological neural systems. Therefore, Carver Mead is using
arrays.analog VLSI technology to build visual and auditory systems

that work in real time (54).
Hybrid VLSI ImplementationsIn analog implementations, signals are modeled by physi-

cal variables such as a voltage, a current charge, a frequency, Hybrid implementations try to form a compromise between
or a time duration. This analog representation of neural net- digital and analog VLSI technologies by taking the best of
work (NN) parameters has various advantages and draw- both worlds. Usually some or all of the internal processing is
backs: performed in analog fashion while the communication with

On the one hand, analog NN hardware obtains high pro- the outside environment is digital to facilitate the incorpora-
cessing speeds and high densities of components by exploiting tion into digital systems. For example, the AT&T ANNA arti-
the physical properties of analog signals to perform neural ficial neural network ALU (arithmetic/logic unit) operates in-
network operations. On the other hand, this representation is ternally with capacitor charge to store the weights, but has
characterized by very poor absolute precision, since it is very digital inputs and outputs. The Neuroclassifier chip of the
susceptible to outside influences such as variations in temper- University of Twente is a two-layer, fully interconnected net-
ature, power supply, components, and so on. Thus, analog work with 70 analog inputs, six hidden-layer neurons and one
chip design is a very difficult task, which is further compli- to six analog outputs, whose five-bit digital weights are stored
cated by problems of weight storage and the need for a multi- on on-chip static random-access memory (SRAM). It has been
plier which behaves linearly over a wide range. Synthesis successfully applied to the classification of high energy phys-
tools such as computer-aided design (CAD) do not exist for ics particles and to real-time image processing.
analog hardware design.

Due to these problems, working analog neural network im- Training Modes for Neural Network Hardware
plementations are still limited. They mostly serve in elemen-

We distinguish between different training modes in hardwaretary applications, for example, as the front ends of percep-
depending on the location where all or parts of the trainingtion systems.
phase is realized. As we will point out this issue is closely
related to the precision of the weight representation which is

Digital Integrated Circuit Implementations
required to establish successful learning. A categorization of
training modes for multilayer perceptrons using error back-Digital VLSI is a proven and mature technology which has

been used for many years in conventional computers. In con- propagation can be given as follows:
Off-Chip Learning. The whole training process takes placetrast to analog NN chips, digital neurocomputers are sold by

a large number of manufacturers for a reasonable price. on a separate computer with high precision. The results are
quantized and loaded onto the chip. Only recall is performedMoreover, digital neural network implementations tend to be

able to solve a larger variety of tasks than analog implemen- on-chip. Practical experiments have revealed that low on-chip
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accuracy suffices to achieve successful learning. For example, We now provide a comparison of several VLSI chips used
for multilayer neural network implementations with respectthe ANNA chip which does not have any on-chip learning

capabilities has been successfully used for high-speed charac- to the total number of neurons and synapses, learning capa-
bility, and accuracy (43).ter recognition although it only uses a six-bit weight resolu-

tion and a three-bit resolution for inputs and outputs (36). The precision of node activations and weights is measured
in bits. In Table 1 [adapted from (43)], backpropagation is ab-Chip-On-The-Loop Learning. In this approach, the forward

propagation part of the training process is realized on-chip breviated as BP and processing element is abbreviated as PE.
while the error backpropagation and the weight updates are
performed off-chip on a high-precision computer. The re-

STOCHASTIC PERCEPTRONSsulting floating point representations of the weights are dis-
cretized using a staircase-shaped multiple-threshold function

Stochastic Perceptrons and Probabilistic Conceptsand then the forward propagation pass of the training phase
is repeated. The belief that biological neurons are probabilistic devices

On-Chip Learning. In the event that the complete training has motivated an extension of the perceptron concept. The
process is executed on-chip, we speak of on-chip learning. stochastic perceptron is a classifier like the conventional per-
Consequently, only limited accuracy is available for weight ceptron. The functionality of the stochastic perceptron is simi-
training. Several simulations indicate that weight training lar to the functionality of the perceptron as illustrated in Fig.
with standard backpropagation only leads to successful learn- 3, although the activation function f is not necessarily a
ing if the weights have a precision of at least 16 bits (37,38). threshold function but an arbitrary function into the interval
This requirement is due to the fact that the weight quantiza- [0, 1]. Furthermore, the stochastic perceptron does not pro-
tion step often exceeds the weight updates which prevents the duce a deterministic decision which associates a pattern x
weights from changing. A number of weight discretization al- with class 0 or with class 1. Instead, it assigns class member-
gorithms and hardware friendly training algorithms such as ship with probability given by the weighted sum of its inputs.
weight propagation are capable of alleviating this problem If y denotes an output value, the probability that the stochas-
(39,40,41,42). tic perceptron assigns an input pattern x to class 1 is given

by
Performance Evaluation of VLSI Implementations

Ideally, a neural network hardware implementation should
incorporate the basic principles in the design of powerful bio-

P(y = 1|xxx) = f

(
n∑

i=1

wixi

)
(33)

logical neural nets while being adapted to perform biologically
inspired as well as other applications. The most important of Note that a threshold parameter  does not need to occur in
these principles are: this formulation since it can be incorporated in the definition

of the function f . In the following discussion we restrict our-
• A large number of neurons: The human brain has about selves to monotonically increasing activation functions f .

1012 neurons. Thus, our discussion includes the sigmoidal activation func-
tions used in multilayer perceptrons. The input patterns only• A large number of interconnections: There are about 1000
adopt values in the Boolean domain I n 	 ��1, �1�n. The in-synapses per neuron in the brain.
put space has an unknown underlying distribution denoted• Learning capability: This requires changeable weights.
by D. The notation pD(x) is used for the probability of observ-

• High processing speed ing vector value x under the distribution D.
The class of stochastic perceptrons can be embedded into

The speed of implementations of multilayer perceptrons is the class of probabilistic concepts (p-concepts) (44). A p-con-
typically rated in connections per second (CPS) and connec- cept consists of a function c : I n � [0, 1] and probabilistic de-
tion updates per second (CUPS). The CPS value measures the vice which generates an output of y 	 1 with probability c(x)
rate of multiplications and accumulate operations in the re- for input x.
call phase. The CUPS value provides the rate of weight up-
dates in the training phase. This value usually refers to

PAC Learning Criterion
weight training of multilayer perceptrons using error back-
propagation, but it can be given for other algorithms and For each classification of an input space with underlying dis-

tribution D there exists a p-concept called target p-conceptother neural networks as well.

Table 1. [adapted from (52)]

Type Name Learning Precision Neurons Speed

Analog Intel ETANN — 6 b � 6 b 64 2 GCPS
Digital Philips L-Neuro 2.3 — 16 b � 32 b 12 PE 720 MCPS

MCE MT19003 — 13 b 8 32 MCPS
Hitachi WSI BP 9 b � 8 b 576 250 MCPS, 64 MCUPS

Hybrid AT&T ANNA — 3 b � 6 b 16 � 256 2.1 GCPS
Neuroclassifier — 6 b � 5 b 6 21 GCPS
Ricoh RN-200 BP na 16 3.0 GCPS
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which provides an exact model. A learning algorithm for sto- xi at a certain value. This idea gives rise the definition of the
blocked influence of xi:chastic perceptrons must be geared at finding a good approxi-

mation of the target p-concept in terms of a stochastic per-
ceptron. Note that the adaptive parameters of a stochastic
perceptron not only include the weights wi but also the activa-
tion function f . Thus, given a set of training patterns a learn-

Binf (xi|bbbi ) = P(y = 1|xxxBi
= bi, xi = 1)

− P(y = 1|xxxBi
= bi, xi = −1)

(36)

ing algorithm determines a set of wi and an activation func-
tion f yielding a stochastic perceptron approximating the

where Bi is a blocking set for variable xi and bi is an assign-target p-concept. Following general statistical nomenclature,
ment for xBi

. Note that Binf(xi�bi) not only depends on xi butthis stochastic perceptron is called the hypothesis and is de-
also on the choice of the blocking set Bi and the vector bi. Thenoted by h.
main importance of Binf(xi�bi) lies in the fact that, regardlessThe success of a learning algorithm can be expressed in
of the choice of Bi and bi, we have the following relationsterms of a version of the Probably Approximately Correct
whenever the target p-concept is a stochastic perceptron.(PAC) learning criterion (45). This formulation depends on a

error measure E which is defined as follows:

E(h, c) =
∑

xxx

pD(xxx)|h(xxx) − c(xxx)| (34)

where h denotes the hypothesis and c denotes the target p-

Binf (xi|bbbi)




≥ 0 i f wi = +1

= 0 i f wi = 0

≤ 0 i f wi = −1

(37)

concept. The error measure E is called variation distance.
Marchand and Hadjifaradji presented a learning algorithm This relationship gives rise to a simple rule for finding the

which PAC learns the class of stochastic perceptrons under a weights wi of the target stochastic perceptron provided a
certain class of distributions. The expression ‘‘PAC learns’’ blocked influence Binf(xi�bi) can be determined.
means the following: If the target p-concept is a stochastic The search for a blocking set may potentially be too expen-
perceptron and the underlying distribution is k-blocking, the sive, even under the assumption that the distribution D is
algorithm then the algorithm will find for any 0 � 
, � � 1 a

k-blocking. In most real-world applications, we can restrict
hypothesis h such that E(h, c) � 
 with confidence 1 � �.

ourselves to searching for a blocking of size k in a neighbor-
hood of xi.k-Blocking Distributions

Once Bi is found and set to an arbitrary value bi, an empir-
The PAC learning algorithm is based on the fact that a ical estimate of Binf(xi�bi), denoted by Binf

�
(xi�bi), can be calcu-

weight wi of the target stochastic perceptron can be detected lated based on the training set. Hoeffding’s inequality yields
by changing the variable xi while assigning a fixed value to a a number of training patterns which suffices to guarantee a
certain set of other variables. This set is called the blocking good estimate (47). If Binf(xi�bi) is very small, this number is
set and is denoted by B. Formally, we have: prohibitively large. A lemma shows that the variables xi

whose blocked influence Binf(xi�bi) is very small for all bi can
be ignored. The corresponding weights wi can be set to zero
without losing much accuracy in the approximation of the tar-

pD(xxxU |xxxB = bbb, xi = +1) = pD(xxxU |xxxB = bbb, xi = −1)

∀bbb, ∀xxxU (35)

get stochastic perceptron c. For all other xi, the weight wi is
Here U denotes the complement of B � �xi� in �x1, . . ., set to �1 if

xn�. The symbols xU and xB stand for the restriction of x on U
and B, respectively. The symbol b denotes an assignment for
B. We say that B is a minimal blocking set if there is no sub- max

bi

{Binf(xi|bi )}
set of B which is a blocking set.

If all the variables are statistically independent from each
is positive and the weight wi is set to �1 ifother the empty set forms a blocking set for every variable

xi. In this case, the influence of wi on the probability that y 	
1 can be estimated by fixing xi at value �1 or at value �1
(46). The algorithm of Marchand and Hadjifaradji satisfies

max
bi

{Binf(xi|bi )}
the PAC learning criterion for the more general case of k-
blocking distributions which are defined as follows.

is negative. If s denotes the weighted sum of the componentsA distribution D is called k-blocking if �Bi� � k � i 	 1, 2,
of a vector x we know with large confidence that the following. . ., n whenever Bi is a minimal blocking set for variable xi.
equation holds for the target c:A standard calculation shows that all Markov distributions

of kth order belong to the class of 2k-blocking distributions.
Thus, the k-blocking family comprises many distributions
found in practice, for example, the distribution of standard c(xxx) = P

(
y = 1|

n∑
i=1

wixi = s

)
(38)

row scans of thresholded images (48).

Learning Stochastic Perceptrons The number of training patterns needs to be large enough
for yet another application of Hoeffding’s inequality which en-As noted before, the weight wi of a hypothesis stochastic per-

ceptron can be derived by fixing a blocking set of a variable sures with large confidence that, disregarding insignificant
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