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age processing algorithms and architectures as well as basic
hardware concepts such as the fundamentals of optical spa-
tial light modulators (SLMs) are reviewed for development
and implementation of optical neural networks.

FUNDAMENTALS OF OPTICAL IMAGE PROCESSING

In this section, we briefly discuss the fundamentals of image
processing using optical systems. The Fourier transform of an
image can be generated in the space domain optically by us-
ing a lens (1–5). As a result, various types of image pro-
cessing algorithms can be implemented optically. A thin lens
introduces a phase shift (delay) to an incident wavefront by
an amount proportional to both the thickness of the lens at
each point and the index of refraction of the lens material.
The light distribution E(�, �) in the back focal plane of a con-
vex thin lens is the two-dimensional Fourier transform of the
light transmittance e(x, y), in the front focal plane [see Fig.
1(a)]. In this figure, (x, y) are the coordinates in the input
plane, which is the front focal plane of the lens, and (�, �) are
the coordinates in the Fourier plane, which is the back focal
plane of the lens. This Fourier transform relationship is the
fundamental relationship in the analysis of optical processors.
If we place a second lens L2 behind the Fourier plane as
shown in Fig. 1(b), the light distribution at the back focal
plane of L2 is the double Fourier transform of the input field.
Here, we have assumed that lenses L1 and L2 have the same
focal length. Different image processing operations can be
achieved by placing a spatial filter at the Fourier plane. For
example, by placing an opaque spot at the origin of the Fou-
rier plane, we can block the low spatial frequencies of the
input signal, thus, generating a high-pass filtered version of
the input field. Similarly, for more sophisticated types of im-
age processing, a complex spatial filter F(�, �), where F(�, �)
is the Fourier transform of a function f (x, y), can be inserted
at the Fourier plane, resulting in a light field of F(�, �) �
E(�, �) leaving the filter plane. Therefore, at the output plane

OPTICAL NEURAL NETS P3, we obtain the Fourier transform of F(�, �) � E(�, �),
which is equivalent to the convolution of the input signal

One of the important applications of analog optical computing e(x, y) with the filter function f (x, y) in the spatial domain. By
properly choosing the spatial filter, numerous signal and im-is in information processing systems. Processing of informa-

tion with optics offers many advantages and capabilities in- age processing operations can be performed. There are a num-
ber of ways to synthesize the optical spatial filter.cluding high-speed parallel processing, large volume data

handling, compactness, low power consumption, and rugged- The spatial filter can be generated by a computer and then
written onto an optical display device (such as SLM) in theness (1–11). Compact custom-made optical hardware can pro-

cess two-dimensional arrays of data of up to half a million Fourier plane. An alternative way to generate the spatial fil-
ter is by holographic techniques (8). Figure 2 shows the proce-pixels per array at 300 kHz frame rates. Most applications of

optical processing systems have been developed for military dure to synthesize an optical matched spatial filter by a holo-
graphic technique (1,2, and (8). The matched filter is designedhardware because of high cost and performance demands. Re-

cent advances in optical material devices and components for detecting a specific image or target in the presence of noise
(12). For white noise, the matched filter is just the target it-such as optical memory and optical display devices have made

optical information processing systems more attractive for self in the spatial domain. In the Fourier domain, it is equal
to the complex conjugate of the Fourier transform of the tar-commercial applications. In addition, many of the innovative

algorithms developed in the context of optical information get. The matched spatial filter of a reference signal s(x, y) is
produced at the filter plane P2. Referring to Fig. 2, the refer-processing are also implementable on a digital computer and

perform well compared to various algorithms developed by ence signal s(x, y) is inserted at the input plane P1. The light
distribution S(�, �) at the filter plane P2 is the Fourier trans-the digital signal processing community.

This article briefly reviews the fundamentals of optical in- form of the input reference signal s(x, y). A plane wave refer-
ence beam of uniform amplitude is incident on the plane P2formation processing for neural computing. We discuss optical

processing techniques, materials, and devices for neural com- at an angle � with respect to the optical axis. To produce the
matched filter at the Fourier plane for detecting the referenceputing, image processing, and pattern recognition. Optical im-
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Figure 1. (a) The Fourier transform
property of a lens. (b) An optical informa-
tion processing system. Plane (a, b) is the
Fourier plane where a filter function can
be inserted to execute different image pro-
cessing operations.
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signal s(x, y), a conventional holographic technique is used to tion includes the desired matched spatial filter for s(x, y),
which is proportional to the complex conjugate of the Fourierrecord the interference patterns of the reference signal Fou-

rier transform S(�, �) with the reference beam. This can be transform of the reference signal S*(�, �). Referring to Fig.
1(b), if the matched spatial filter described previously isdone by placing a detector such as high-resolution photo-

graphic film or a photosensitive recording material at plane placed at the Fourier plane, and an arbitrary signal g(x, y) is
inserted at the input plane, then the complex amplitude ofP2. The intensity distribution at the filter plane is obtained

when the film is developed to produce a filter transmittance the light leaving the filter plane is the product of the filter’s
transmittance function and the input signal’s Fourier trans-function. Under this condition, the filter transmittance func-
form. Plane P2 is located at the front focal plane of lens L2 as
shown in Fig. 1(b) which processes the light leaving the plane
P2 and produces its Fourier transform in plane P3. Therefore,
the light pattern in the output plane P3 is proportional to
cross-correlation between the input signal g(x, y) and the ref-
erence signal s(x, y). If the input signal is equivalent to the
reference signal s(x, y), then the autocorrelation of the refer-
ence signal is obtained at the output plane.

SPATIAL LIGHT MODULATORS

Spatial light modulators are very important building blocks
of optical information processing systems (1–7). SLMs are in-
put–output devices for real-time optical information pro-
cessing. The SLM can be considered as an addressable photo-
graphic film. They are used in optical computing systems,
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programmable optical interconnects, optical neural networks,
and optical pattern recognition systems. The input to an SLMFigure 2. An interferometric holographic technique for synthesizing

an optical spatial filter. is either a time-dependent electrical signal or a light distribu-
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tion such as an image. SLMs with electrical or optical input There are many considerations in designing and using an
SLM for optical processing. Frame rate determines how fastare called electrically addressed and optically addressed
an image written on the SLM can be updated. Spatial resolu-SLMs, respectively. The SLM modulates the amplitude and/
tion is a measure of how finely an image can be displayed onor phase or polarization of the read-out light beam as a func-
the SLM. Space bandwidth product is a measure of the num-tion of the input signal, which can be an optical image or an
ber of pixels available (the data throughput per frame). Dy-electrical signal. For optically addressed SLM, the writing
namic range is the number of gray levels that can be repre-light Ai(x, y) is incident on the input of the SLM. In general,
sented by a pixel. Contrast ratio, a measure of the ability ofAi(x, y) is a two-dimensional spatially varying amplitude dis-
an SLM to block the light, is the ratio of the maximum andtribution, imaged onto the input of SLM. The output light dis-
minimum output light levels. Flatness of the mirrors or win-tribution is a function of the input light amplitude Ai(x, y). In
dows of the SLM to a fraction of a wavelength of the lightthe following sections, we will explain how SLMs are used in
is important for optical processing where preservation of theoptical information processing.
precise phase information is critical. Nonlinear input–outputVarious SLMs differ in addressing methods and the modu-
characteristics of the SLM are often considered for the specificlating materials used. The input light may be converted to an
image processing applications. The exposure sensitivity andelectric field distribution by a photoconductor. The electric
read-out light efficiency define the light budget of the system.field is related to the input light intensity for an optically ad-
SLMs also have write-in and read-out wavelength range anddressed SLM. The electric field can also be directly applied
electrical driving signal power requirements.by using transparent conductive electrodes for an electrically

An example of an electrically addressed SLM is the liquidaddressed SLM. This electric field modifies the properties of
crystal display (LCD). Liquid crystal devices (2) are widelythe electrooptic or modulating material. For example, it may
used in small television sets, television projectors, and lap-topchange the optical refractive index of the modulating mate-
computers. These displays have been used in the optical sig-rial. The read-out light beam is modulated by the modulating
nal processing community for the last several years becauseelement and reflected back to create the read-out image.
of their low cost and commercial availability (9). The liquidSome modulating properties are: (1) the electrooptic effect, (2)
crystal displays used in liquid crystal TVs were not originallymolecular alignment by the electric field that exists in liquid
designed for coherent optical systems. Their optical quality iscrystals, (3) the photorefractive effect, (4) electrostatic defor-
not ideal for a coherent system mainly because of the phasemation, and (5) the acoustooptic effect. The electrooptic effect,
variation of materials and the surface of devices, which arewhich is the change in index of refraction of the medium as a
less critical in an incoherent optical system than a coherentfunction of the applied electric field, is used in a number of
one. However, recent experiments show that the liquid crystalSLMs such as Pockels read-out optical modulator. The SLM
TV is still a good device in the applications where cost is anis used to perform different functions in optical systems. It is
important factor and an electrically addressed device isused for incoherent to coherent light conversion for converting
needed.real-scenes illuminated under natural or other incoherent

The liquid crystal display in a liquid crystal TV consists
light into a coherent image. The real scene is imaged onto an of a 90� twisted liquid crystal layer sandwiched between two
SLM that is read-out by coherent light. The coherent image polarizers that have parallel polarization direction. The im-
can then be processed by optical signal processing techniques age may be converted to an electric field using a detector
[see Fig. 3(a,b)]. For real-time Fourier plane spatial filtering, array. The electric field is applied to the liquid crystal by us-
spatial filters can be displayed on SLMs in the Fourier plane. ing two transparent conductive electrodes on the two sides of
In this case, the input image Fourier transformed by a lens is the liquid crystal layer. The transparent electrodes are pixe-
multiplied by the filter on the Fourier plane SLM. An addi- lated and can be electrically addressed. When there is no elec-
tional Fourier transformation using a lens will produce the tric field applied, the orientation of the input light is rotated
convolution between the input image and the impulse re- by 90� from one side of the liquid crystal layer to the other
sponse of the filter [see Fig. 3(a,b)]. This can be used in optical side and results in no light passing through because the two
spatial filtering, pattern recognition, and neural networks. If polarizers are parallel. When an electric field is applied, the
the filter is generated electronically by a computer, an SLM twist and the tilt of the liquid crystal molecules are altered
with electrical to optical conversion is used to display the fil- depending on the voltage across the liquid crystal layer. As a
ter at the filter plane. result, a fraction of the light passing through the liquid crys-

The SLM can also be used for real-time holography. The tal layer will retain the same polarization as the input light
interference generated between the object beam and the refer- and, therefore, passes through the second polarizer. The frac-
ence beam can be positioned on the SLM, and the holographic tion of the light that passes through the display is propor-
pattern, therefore, can be displayed on the SLM. The SLM tional to the voltage applied to the liquid crystal layer. Liquid
can store data or images as well. This is useful for optical crystal displays used in projector-type liquid crystal TVs usu-
memory, optical data base/knowledge base processors, optical ally have about 1000 � 1000 pixels.
pattern recognition, and neural networks. A variety of other optical materials can be used for infor-

For nonlinear transformation, SLMs can be used to trans- mation processing. Photorefractive materials can store optical
form an image nonlinearly, such as binarizing an image. This images using variations in the index of refraction through the
property is also useful for logic operations and switching in electrooptic effect (1,2,6, and 10). A photorefractive material,
digital optical computing (2,3). In information processing, upon exposure to a light beam or an image, produces a spa-
nonlinear characteristics of the SLM can be used in nonlinear tially dependent electric field that changes the index of refrac-
filtering and nonlinear signal processing; see Ref. 10 and tion of the material through the electrooptic effect. The varia-

tions in the index of refraction result in the refraction orChap. 4 of Ref. 6 for the advantages of nonlinear techniques.
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Figure 3. Optical architecture for imple-
menting the nonlinear joint transform
correlator for image recognition. (a) An
electrically addressed SLM is used in the
Fourier domain. (b) An optically ad-
dressed SLM is used in the Fourier
domain.
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diffraction of light. The image stored in the photorefractive mixed with a reference beam, and their interference intensity
is recorded in a photorefractive device. The interference in-material can be read out by an optical beam. For a one-dimen-

sional signal with no applied field, the change in the index of tensity changes the refractive index �n(x, y), which is stored
in the form of a volume phase hologram. When the device isrefraction �n(x) as a function of the input intensity I(x) is

�n(x) � 
K �I(x)/I(x), where K is a constant dependent on illuminated by the reference wave, the object beam I(x, y) is
reconstructed. For spatial filtering, the Fourier transform ofthe electrooptic coefficient, refractive index of the material,

temperature, and electron mobility. Photorefractive materials I(x, y) is stored in the device as a filter function.
So far we have been discussing two-dimensional spatial op-are used in optical storage and memory, real-time optical in-

formation processing, neural networks, holography, distortion tical processors that use spatial light modulators to modulate
the information of the light beam. Another class of opticalcompensation, and phase conjugation.

Photorefractive devices can be used to generate spatial fil- processing spatial systems exist. They are basically one-di-
mensional and use ultrasound or acoustooptical principles toters or holograms in real time. An image I(x, y) is spatially
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perform signal processing of temporal data (11,13). Acous-
tooptic cells can be used for data processing as well as light
deflection and scanning by setting up the grating structure
inside the acoustooptic cell.

OPTICAL PATTERN RECOGNITION

In this section, we briefly discuss some algorithms and sys-
tems for optical pattern recognition. Much research has been
done to develop optical neural network systems based on opti-
cal correlators. We refer the reader to the references cited for
more details on optical pattern recognition systems (1,5–
7,11–14). The matched filter (15) has extensively been used
for optical correlators. It was originally used for extracting
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radar returns from a noisy background. It provides the opti-
mum theoretical response of a filter when the input signal
is corrupted by additive overlapping Gaussian noise. In the
derivation of the matched filter, optimum is defined to max-
imize the signal-to-noise ratio at the sample point, which is
defined as the ratio of the output signal peak to the root mean
square of the output noise. The definition of ‘‘optimum’’ and
the fact that the noise overlaps or blankets the target or the
signal is very important (see Ref. 16 and Chap. 1 of Ref. 6).
If different criteria are used, the matched filter is no longer
optimum. In many pattern recognition applications, however,
the input scene noise does not overlap the target (sometimes
called disjoint noise). It means that the target is in the fore-
ground and blocks the scene noise. For this class of problems,
the matched filter and the optimum filter derived under the
overlapping input target and scene noise assumption may not

(3)
(2)

(1)

(b)
perform well (see Chap. 1 of Ref. 6). Recently, algorithms
have been developed for target tracking, which contains a tar-
get in the presence of noise and includes nonoverlapping
scene noise as well as additive noise on the target. The loca-
tion of the target in the input scene is unknown, and it varies
randomly. One solution for this problem is to use multiple
hypothesis testing to design an optimum receiver for the dis-
joint input target and scene noise (see Chap. 1 of Ref. 6). It is
shown that for a noise-free target, the optimum receiver is
similar to a correlator normalized by the input scene energy
within the target window. In addition, given that the target
is noise-free and the scene noise probability density function
is bounded, then the actual scene noise statistics becomes ir-
relevant to the detection process.

Another solution is the optimum filter approach (Chap. 1
of Ref. 6) for detecting targets in spatially disjoint scene noise.

(1)

(c)
The filter is designed by maximizing a performance metric,
peak-to-output energy, which is defined as the ratio of the Figure 4. The performance of the optimum filter for detecting noisy

targets in background noise. (a) The input scene where three targetsquare of the expected value of the output signal at the target
tanks and two objects (a car and a vehicle) are embedded in whitelocation to the expected value of the average output signal
Gaussian-distributed background noise with mean of mb � 0.4 andenergy. The filter produces a sharp output signal at the target
standard deviation of �b � 0.3. Target Tank 1 is identical to the refer-location with a low output noise floor. We provide test results
ence tank used in the filter design. Target Tank 2 is rotated by 4�.of the optimum filter to show its performance. Three target
Target Tank 3 is scaled up by 10%. The noise added to the targets

tanks and two objects (a car and a vehicle) are embedded in has mean mr � 0 and standard deviation �r � 0.2. (b) Correlation
white Gaussian-distributed background noise with mean of output of the optimum filter. (c) Output of the matched filter, which
mb � 0.4 and standard deviation of �b � 0.3 [Fig. 4(a)]. Target fails to detect the target.
Tank 1 is identical to the reference tank used in the filter
design. Target Tank 2 is rotated by 4�. Target Tank 3 is scaled
up by 10%. The additive noise parameters are chosen with
mean mr � 0 and standard deviation �r � 0.2 in the filter
design. The optimum filter output is plotted in Fig. 4(b) and
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compared with the output of the conventional matched filter put SLM to obtain the intensity of the Fourier transform in-
terference. For the nonlinear joint transform correlator, thein Fig. 4(c).

Another architecture for correlation of objects is the joint SLM nonlinearly transforms the joint power spectrum ac-
cording to the nonlinear characteristics of the device.transform correlator (JTC) (1) as shown in Fig. 3. The refer-

ence function r(x, y) and an unknown input object s(x, y) are For a kth law nonlinearity, the Fourier transform of the
signal g(E) ispresented together in the input plane, and their combined or

joint Fourier transform is produced in the focal plane behind
the first lens. If the joint Fourier transform is recorded on a g(E) = [R(α, β) × S(α, β)]k exp{ j[�S(α, β) − �R(α, β)]} (1)
photosensitive detector such as photographic film and a sec-
ond Fourier transform is taken, a correlation of the two ob- and generates the correlation. In Eq. (1), k � 1 corresponds

to a linear correlator, and k � 0 corresponds to a binary non-jects can be realized. The main advantage of the joint trans-
form correlator is that both the input signal and the reference linearity. Varying the severity of the nonlinearity k will pro-

duce correlation signals with different characteristics. Forsignal are Fourier transformed simultaneously, and the inter-
ference between the transforms is achieved in one single step. highly nonlinear transformations (small k), the high spatial

frequencies are emphasized and the correlation becomes moreThe input images can be displayed on an SLM for a real-time
operation. The JTC is less sensitive to alignments than the sensitive in discrimination.

To allow for target distortion such as rotation and scalestandard correlator described earlier.
The implementation of the joint transform correlator using variations, a composite reference is synthesized by using a

training set of target images. For rotation invariant patterna spatial light modulator (17) is shown in Fig. 3 (see Chap. 4
of Ref. 6). Plane P1 is the input plane that contains the refer- recognition, the training set includes a number of rotated

images of the target. Much research has been conducted onence signal r(x � x0, y) and the input signal s(x 
 x0, y). The
amplitude of the light distribution at the back focal plane of how to perform distortion invariant pattern recognition

(1,4,6,13,14). Figure 5 shows the performance of a nonlinearthe transform lens FTL1 is the sum of the Fourier transforms
of the two input image functions. We denote S(�, �) composite filter implemented by the nonlinear joint transform

correlator. Figures 5(a,b) show two versions of target, a Mig-exp[j�S(�, �)] and R(�, �) exp[j�R(�, �)] as the Fourier trans-
forms of the input and reference signals s(x, y) and r(x, y), 29 rotated by 0� and 45�, respectively. Figure 5(c) is a compos-

ite filter that was synthesized from 19 training images of arespectively. The Fourier transforms interference intensity
distribution at plane P2 is obtained using an optical sensor Mig-29 rotated from 0� to 90� in increments of 5�. This com-

posite filter is used as a reference image in the nonlinear jointsuch as a detector array [see Fig. 3(a)], or an SLM [see Fig.
3(b)], and it includes the cross-power spectrum of the input transform correlator. The input scene shown in Fig. 5(d) con-

tains two rotated versions of a Mig-29 rotated by 60� and 75�signals. For the linear or classical joint transform correlator,
the inverse Fourier transform (or the Fourier transform with and buried in disjoint background noise as well as additive

noise. The reference composite filter and the input scene arecoordinates reversed) of the Fourier transform interference
intensities will produce the correlation signals at the output put alongside in the input plane of the nonlinear joint trans-

form correlator. The nonlinearities are applied in the Fourierplane. More recently, nonlinearities were introduced into the
joint transform correlator. The binary joint transform correla- domain. The mesh plots of the correlation outputs of the non-

linear joint transform correlator for k � 0.2, and k � 1 aretor is obtained by binarizing the joint power spectrum into
two values (see Chap. 4 of Ref. 6). It has been shown that, in shown in Fig. 5(e,f), respectively. The nonlinear joint trans-

form correlator detects the two versions of target successfully,terms of discrimination, a binary joint transform correlator
has superior performance compared with that of the conven- whereas the linear joint transform correlator (k � 1) fails to

detect the targets.tional linear joint transform correlator. The binary joint
transform correlator was generalized to form a family of cor- A large number of reference images can be stored on opti-

cal memory. The main advantage of optical memory is its par-relators called the kth law nonlinear joint transform correla-
tors, which includes the conventional joint transform correla- allel access capability, which may prove advantageous over

magnetic storage (1,2,18,19). By illuminating an optical mem-tor where k � 1 and the binary joint transform correlator
where k � 0. Here, k represents the severity of the nonlinear- ory disk with a broad optical beam, many stored bits can be

accessed in parallel. The illuminated bits on the disk are im-ity of the transformation of sgn(Em)�Em�k, where Em is the mod-
ified joint power spectrum (Em � E 
 S2 
 R2), E is the joint aged onto the optical processor for processing or detector

array and converted into electronic signals to be used by thepower spectrum, and sgn( � ) is the signum function. Theoreti-
cal and experimental studies have shown that the nonlinear computer. Given the commercially available optical compo-

nents and devices, one million channels can be accessed injoint transform correlator can produce very good correlation
performance. The nonlinear joint transform correlator can use parallel. The access time to a block of data is a few tens of mil-

liseconds.the nonlinearity of a nonlinear device such as an SLM at the
Fourier plane to alter the Fourier transform interference in- The optical disk is very useful to store data as two-dimen-

sional blocks for neural networks and image processing. Thetensity. It has been shown that when compared with the clas-
sical correlator, the compression type of nonlinear joint trans- parallel access optical memory has numerous applications in

image processing, database management, and neural net-form correlator (k � 1) provides higher peak intensity, larger
peak-to-sidelobe ratio, narrower correlation width, and better works. It provides the capability to access large volume of

data rapidly. Parallel access optical memory is attractive incorrelation sensitivity.
In Fig. 3(b), the joint transform correlator is implemented neural networks, pattern recognition, and associative memory

by recording a large number of reference patterns. The pat-using an optically addressed SLM, at the Fourier plane. The
Fourier transform interference pattern is displayed at the in- tern to be inspected/searched is displayed on a spatial light
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system is attractive because it provides processing for a large
volume of stored data in one disk revolution.

Additional improvements in the storage capacity of optical
memory can be accomplished by using thick medium optical
disks such as photorefractive materials described in the sec-
tion entitled ‘‘Spartial Light Modulators.’’ The data are stored
holographically by interfering the data (such as images) and
a plane wave reference beam as described in the section enti-
tled ‘‘fundamentals of image processing.’’ The image is re-
trieved by re-illuminating the hologram on the optical mem-
ory with a similar reference beam. It is possible to store
multiple images in the same hologram using angular multi-
plexing, that is changing the angle of the reference beam dur-
ing hologram recording. Retrieving or accessing the images is
achieved by using the proper angle of illumination. The three-
dimensional disk is mechanically rotated to scan the entire
volume disk. The photoreflective recording materials can pro-
vide up to 1012 pixels for a 5 cm radius disk. Using acoustoop-
tic deflectors, the access time to each stored data in hologram
is 10 �s, which makes the total access time 10 s. Rapid ad-

(a)

(c) (d)

(b)

vances have taken place in photorefractive holographic mate-
rials such as the commercially available photo polymers and
optoelectronic devices, and the need for large storage capacity
memory has stimulated much interest in research and devel-
opment of optical memory. Parallel access and fast data
transfer rates seem to be the key to successful applications of
optical memory.

OPTICAL NEURAL COMPUTING

Artificial neural networks, which are also referred to as neu-
romorphic systems, parallel distributed processing models,
and connectionist machines, are intended to provide hu-(e)
manlike performance by mimicking biological neural systems
(17,20). They are used in image processing, signal processing,
and pattern recognition. Neural networks are characterized
by massive interconnection of simple computational elements,
or nodes, called neurons. Neurons are nonlinear and typically
analog and can have a slow response, typically several hun-
dred hertz. A neuron produces an output by nonlinearly
transforming a sum of N inputs shown in Fig. 6(a), where
f ( � ) represents the nonlinear characteristics of the neuron
and wi is the weight of the interconnection. Three types of
neuron nonlinearity are shown in Fig. 6(b). Neural networks
provide many computational benefits. The information is
stored in the interconnections. Training or learning changes

(f) the interconnection weights wi.
Because their large degree of parallelism and massive in-Figure 5. Performance of the nonlinear joint transform correlator for

terconnection capability, neural networks provide fault toler-image recognition: (a) Original target, a Mig-29 rotated at 0�, (b) origi-
ance. Losing a few nodes will not affect the overall perfor-nal target, a Mig-29 rotated at 45�, (c) composite reference image, (d)

input scene (e) correlation output of the nonlinear joint transform mance significantly. Neural networks do not require complete
correlator, and (f) output of the matched filter correlator. knowledge of the statistical models of the signals to be pro-

cessed and instead use available training data. Neural sys-
tems are best for problems with no clear algorithmic solu-
tions.modulator to obtain the product between the input pattern

and the reference patterns. The product is imaged on a detec- Neural networks are characterized by the network topol-
ogy, neuron input–output characteristics, and learning rules.tor, normalized according to the intensity of the input pat-

tern, and is maximized when the input pattern matches the Learning plays an important role in the performance of the
neural networks. The ability to adapt the weights is essentialdata illuminated on the disk. This process is iterated by rotat-

ing the disk and illuminating various portions of the disk to in applications such as pattern recognition where the under-
lying statistics are not available, and the new inputs are con-search the entire data to obtain the maximum output. This
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sion boundary for the network that classi-
fies two classes A and B. The input vector
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tinuously changing. Conventional statistical techniques are can be adapted using the following learning rule: wi(t � 1) �
wi(t) � �[d(t) 
 y(t)]x(t). Here d(t) is the desired output re-not adaptive and tend to perform poorly when the input

changes. For classification, an algorithm is used to compute sponse that provides maximum separation between class A
and class B, that is, d(t) � �1 when x belongs to class A, andmatching values between the input and the stored data and

then to select the class that generates the minimum value. A d(t) � 
1 when x belongs to class B. 0 � � � 1 is a positive
gain, x(t) is the input, and wi(t) is the weight. If the inputsprobabilistic model is used to compute the likelihood or proba-

bility that the input belongs to a certain class. If Gaussian from the two classes are separable such that they are on oppo-
site sides of a hyperplane, then the perceptron classifierdistribution is used, tractable solutions can be obtained.

An important application of neural networks is to identify/ works successfully by placing the decision boundary between
the two classes.classify the class of an input pattern when the input is par-

tially obscured or distorted. This has applications in pattern When the classes cannot be represented by hyperplane de-
cision boundaries and are separated by complex decision sur-recognition and classification. Neural network classifiers may

outperform conventional statistical techniques when the un- faces, multilayer perceptron is needed. A multilayer per-
ceptron is a feed-forward network that consists of an inputderlying distribution of data is generated by nonlinear pro-

cesses and is strongly non-Gaussian. Neural network classi- layer, an output layer, and as many hidden layers as needed.
A two- layer perceptron is shown in Fig. 7. The nonlinearitiesfiers contain more than one stage. The output of the first

stage exhibits the degree of matching between the input and used within the nodes of the multilayer perceptron provide
the capability to generate the complex decision boundaries. Inthe weights stored in the network. The maximum of these

values is enhanced, and the outputs are forwarded to the sec-
ond stage. This provides a strong output corresponding to the
most likely class. If supervision is provided, this information
can be used to adapt the weights of the network using a learn-
ing rule that will improve the performance of the system by
reducing the probability of error.

The perceptron learning rule can be implemented in both
single-layer and multilayer networks. Figure 6(a) is a single-
layer perceptron with a single output that classifies an input
into two classes: A and B. The decision boundary for this net-
work is a hyperplane that divides the space representation of
the input. For example, if the input vector has only two ele-
ments, the decision boundary is a line [Fig. 6(c)]. The output
is the inner product of the inputs and the weights adjusted
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1 represents class B. The connection weights Figure 7. A two layer neural network.
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Figure 8. A single SLM nonlinear JTC-based two-
layer neural network for pattern recognition. The
liquid crystal TV is used to display the input image
and the composite images as well as the joint power
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spectrum by using time multiplexing.

this algorithm, the procedure focuses on the error between 2. The system can be integrated into a low-cost compact
prototype.the ideal output and the actual output, which represents the

overlap between the different classes. 3. The system is trained by updating the reference images
The back-propagation algorithm is used to train the (weights) in the input which can be stored in electronic

multilayer perceptron. It is an iterative algorithm designed to or optical memories and no filters or holograms need to
minimize the mean square error between the desired output be produced.
and the actual output of a multilayer network. Thus, for each

4. Because nonlinear JTCs use nonlinear transformationtraining input, a desired output is specified, and continuous
in the Fourier plane, the system is robust to illumina-differentiable nonlinearities are used in the network. The ac-
tion variations of the input image and has a good dis-tual outputs yi are calculated using the input, weights, and
crimination sensitivity.nonlinearities. The weights are adapted to minimize the

5. The system is shift-invariant.mean square difference between the desired output and the
actual output. Also the number of the nodes, the number of
the hidden layers, and the thresholds need to be set. The first layer can be implemented by using a nonlinear

JTC. The nonlinear thresholding is performed electronically
Fourier Nonlinear Filter-Based Neural Networks to obtain the output neuron. In the training of the first layer,

the reference images (weight images) are formed by usingFigure 8 presents a nonlinear JTC-based optoelectronics neu-
perceptron learning. The input image is correlated with theral network associated with a supervised learning algorithm
stored weight images displayed at the nonlinear JTC input.for pattern recognition (21). The system is a two-layer neural
If the degree of similarity exceeds a threshold and the inputnetwork as shown in Fig. 7. The first layer is implemented
image belongs to, say, class C1, a match is declared, and theusing a joint transform correlator (please see the section enti-
input image is discarded. If the degree of similarity is belowtled ‘‘Optical Pattern Recognition’’) and the second layer is
the threshold and the input image belongs to the correct classimplemented electronically because of the small number of
C1, the input image is added into the weights to create a newthe hidden layer neurons. The system is trained with a se-
weight image. For the input images that do not belong to C1,quence of input images, is able to classify an input in real
they are either subtracted from the weights or discarded.time, and is easy to implement optically. The system is
Thus, each weight image (or composite image) is formed bytrained by updating the reference images (weights) in the in-
the superimposition of a number of images that are selectedput that can be stored in electronic or optical memories. The
from the training set. The updated weights are used to test aprocessor uses commercially available optoelectronics devices
new input, and the process is repeated until M composite im-and can be built as a low-cost compact system. The output of
ages are formed. When a new input needs to be added to orthe first layer of a perceptron is the nonlinear correlation be-
subtracted from the weights, only the corresponding compos-tween the input pattern and the weights followed by thresh-
ite image needs to be retrained. The input is compared witholding. The correlation signals are detected by a CCD detector
weight images either sequentially or in parallel.interfaced with electronics to implement the second layer.

Parallel implementation reduces the training time and re-The nonlinear thresholding is performed electronically to ob-
quires that all the weights be displayed at the input simulta-tain the output neuron. Updating of the network weights can
neously. However, the composite images can be simultane-be carried out electronically, and the results are displayed on
ously displayed at the input plane if they are spatiallythe input device.
separated. The number of images that can be spatially sepa-Based on the characteristics of the nonlinear JTC, the pro-
rated at the input is determined by the available input space-posed system has the following features.
bandwidth product of the display device and the size of the
images. If an SLM such as a liquid crystal television (LCTV)1. It is easy to implement optically and is robust in terms

of system alignment. is used to display the weights, it can handle only a limited
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number of images in each composite image. The number of
superimposed images in each composite image is limited by
the grayscale LCTV. If the LCTV with 4 bits of grayscale is
used, we find that at most, eight images can be superimposed
for each composite image. The weights of the second layer can
be determined according to the a priori probabilities of the
input images.

We should point out that the proposed system discussed
earlier classifies the input data to the system as either an
image to be accepted or rejected. The network itself is trained
only by a class of images which are to be accepted. The train-
ing is done in a such a way that the input, which do not be-
long to the class of images to be accepted, will produce a de-
gree of similarity that will, in general, be lower than a
preset threshold.

In the tests presented here, we have assumed that the
probability of an input image belonging to each composite im-
age is the same. That is, the various distorted input images
are equally likely. Thus the weights of the second layer are
equal. This is intuitively satisfying in terms of the Bayes’
cost, and, as we will show, it produces good experimental re-
sults. The outputs of the first layer are nonlinearly trans-
formed and are summed up to produce the second-layer
output.

If the input distortions that are used to train the composite
images are not equally likely, the weights of the second layer
can be adjusted according to the a priori probabilities of the
composite images. We present some experiments for facial
recognition.

One application of neural network described earlier is in
face recognition. Face recognition is an important application
of pattern recognition and neural networks. It is, however,
a difficult task because the facial appearance is constantly
changing as a result of different head perspectives, different
illuminations, and different hair styles. Using neural net-
works is an attractive solution for this problem. For the sys-
tem described in this section, the facial images are captured
by the video camera and stored on the video tape or in the

(a)

(b)
computer. The images used as the testing set of the neural

Figure 9. (a) Examples of various head perspectives used in thenetworks are different from those of the training set. The in-
training process, (b) selected training samples (right) and compositeput images are compared with the composite images stored in
images (leftmost column) used as the weight functions. Each compos-the database. The comparison is conducted by running the
ite image is constructed by six images shown at right. These compos-program designed to simulate the nonlinear JTC. Each hid-
ite images are displayed at the input of the nonlinear JTC.den unit is simulated by the response of the neural networks

to the input image when only one composite image is used.
The overall output is the response of the system when all the
composite images are used when the outputs of the hidden image. The same procedure is used to train the system for

other facial images. For classification, the input is comparedunits are added and the sum is passed through a binary
thresholding stage. In the training procedure, a total of 128 with the composite images corresponding to various people.

The output response of the neural network is produced whenfacial images including different head perspectives and differ-
ent facial motions are captured. Figure 9(a) shows some ex- the output peak intensities (outputs of the first layer) that

result from the composite images of a specific person to anamples of various head perspectives used for training. Each
image size is 64 � 64 pixels, which is sufficient to represent input image are summed. The response of the neural network

that exceeds the threshold determines whether the person be-the required facial features for pattern recognition. These im-
ages are used as a training set. 48 training samples (images) longs to the class represented by the composite images.

When the system works in conjunction with a badge orare selected during the training procedure and stored into 3-
D composite images with each one having six images to recog- password identification system to confirm an identity, it be-

comes a two-class classification system. When a person wantsnize the face of one person. Figure 9(b) shows the selected
training samples and the constructed composite images (left- to pass a security check, he or she enters his or her name or

identification number while the camera captures his or hermost column) to be used as weights.
When the training for one person’s images is completed, facial image. Based on the name or identification number, the

corresponding composite images are compared with the inputthe system is capable of recognizing the distorted input facial
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image. If the response of the system exceeds a threshold, the
system confirms the identity; otherwise, the input is rejected,
and access is denied.

Figure 10 presents computer simulation results for face
identification. Figure 10(a) shows the input plane of the sys-
tem that displays the composite images for image class 1 and
an input image of class 1. Class 1 corresponds to the facial
images of person 1. The input image shows the person wear-
ing glasses to simulate a distortion not accounted for during
the training. The composite images are partially superim-
posed to make better use of the available input space-band-
width product. A kth law nonlinear JTC with a nonlinearity
k � 0.3 is employed. A 256 � 256 fast Fourier transform sub-
routine is used in the simulations. The photograph and three-
dimensional mesh plot of the first-layer output plane are pre-
sented in Fig. 10(b). The first-layer output contains a number
of correlation peaks between the composite images and the
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Figure 11. (a) Input plane of the system displaying input image of
the class 2 and composite images for class 1; (b) output plane of the
first layer showing the response to the input image of (a).

input image. When the input is person 2, as shown in Fig.
11(a), the first-layer output of the system has a low response,
as shown in Fig. 11(b).

Figure 12(a) illustrates examples of various distorted facial
images of class 1 from a testing set used in testing the neural
network. Figure 12(b) shows the system response or the out-
put of the second layer in response to the distorted facial im-
ages of class 1 and class 2 from the testing set [see Fig. 12(a)]
with different head perspectives and various distortions.
Class 2 corresponds to the facial images of person 2 in Fig.
11(a). Here the network is trained to recognize class 1, that
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is, the composite images for class 1 are used as the weights.Figure 10. Computer simulations for face recognition. (a) Input
The first region of the plots is the system responses to inputplane of the system displaying input images for class 1 and eight
facial images with different head perspectives. The second re-composite images for class 1. The composite images are spatially mul-
gion of the plots is the system response when the inputs aretiplexed when they are displayed next to one another. (b) Output

plane of the first layer showing the response to the input image of (a). wearing glasses and have different head perspectives. The
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Figure 12. (a) Examples of various distorted fa-
cial images of class 1 used as input images in
testing the neural network. (b) Neural network
response to facial images of class 1 and class 2
with different head perspectives and various dis-
tortions. Weights for class 1 are used in the
tests. (c) Plot of the error probability versus the
output threshold level.
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third region corresponds to the case in which the input light threshold level. If we choose a threshold level of 460, the over-
all error probability of the system is 	2%.is illuminating the face nonuniformly from the top and from

the sides. During the training, a uniform input light is illumi- The performance of the system can be improved if time
multiplexing of the input images of the same person is used.nating the front of the face. It can be seen that the system is

capable of handling the nonuniform illumination and various The output response of the system is determined by examin-
ing more than one input image to classify the correspondingdistortions. The classification of images is dependent on

thresholding of the second-layer output. Figure 12(c) presents person. In the experiments in which time multiplexing of the
input image is used, the output response of the system is thea plot of the error probability versus the second-layer output
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Figure 13. Use of time multiplexing of
the input image to reduce the probability
of error. Weights for class 1 are used in
the tests. (a) System response to the facial
image of class 1 and class 2 with different
head perspectives and various distortions.
(b) Plot of the error probability versus the
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output threshold level.

average of the system’s response to four contiguous distorted of the probability of error versus the second layer output
threshold level. If we choose a threshold level of 460, the over-input images of the same person. Figure 13(a) shows the sys-

tem response or output of the second layer in response to fa- all probability of error of the system when time multiplexing
is used is reduced to 0. Once the system is trained with acial images of class 1 and class 2 with different head perspec-

tives and various distortions when time multiplexing of the specific image class, it is capable of recognizing the images in
that class and rejecting images from other classes.input images is used. Figure 13(b) is the corresponding plot
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Figure 14 shows experimental results for five image
classes. In the test, composite images of image class 1 are
used as the weights. Figure 14(a) presents examples of input
images from five image classes. The leftmost image that is
expected to be recognized is from class 1. Figure 14(b) pre-
sents the system response to facial images of class 1 and other

(a)image classes. Figure 14(c) is the plot of the probability of
error versus the second-layer output threshold level when the
distorted input images are selected from the five classes. The
input distortions are different head perspectives. If we choose
a threshold level of 460, even without time multiplexing, the
system can classify image class 1 from other image classes
with a probability of error of 0.

It would be interesting to compare the performance of the
neural network pattern recognition system presented here
with a correlator. When only one channel (composite image)
is used, the response of the system is a correlation between
the input image and the composite image. The composite im-
age is produced by the averaging of the same 48 input images
in the training set of class 1 that were used to construct the
weight function for the neural network system.

Figure 15(a) is the composite image consisting of 48 refer-
ence images. Figure 15(b) presents the correlation between
facial images of class 1 and class 2 with different head per-
spectives and various distortions when the composite image
in Fig. 15(a) is used. Figure 15(c) presents a plot of the proba-
bility of error versus the output threshold level. The smallest
overall probability of error of the system that can be obtained
is 	15%, which is significantly larger than the probability of
error produced by the neural network system.

The system performance of the face recognition system is
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assessed by probability of false acceptance and probability of
detection. Generally, adjusting the output threshold can vary
these probabilities. For example, the threshold can be set
such that the probability of false acceptance is very small to
prevent impostors, but it will also make it harder to recognize
the authorized images. There is no general way to resolve
these issues, and the solutions are application dependent.
Thresholds can be set using training.

MULTILAYER OPTICAL NEURAL NETS
USING HOLOGRAPHIC MEMORY

A handwritten character recognition system was built by
Psaltis and Quio (21a). It was realized by a multilayer optical
neural network shown in Fig. 16. A rotating mirror was used
to change the reference beam in 26 different directions, two
LiNbO3 photorefractive crystals were used to represent the
input layer and the hidden layer, and a CCD camera was
used to represent the output layer. The learning method pro-
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posed by Kanerva was used to train the system (22). The
weights are initially assigned random values, and are up- Figure 14. (a) Examples of input images from five images classes.
dated with the new inputs. Each input character has 100 pix- The neural network is programmed to recognize the leftmost image,
els, the hidden layer contains 105 units, and the output layer which is from class 1. (b) System response to facial images of class 1

and other classes. (c) Plot of the error probability versus the outputhas 26 units that represent one of the 26 letters of the alpha-
threshold level.bet. In tests, 104 patterns were used to train the system and

a test set of 520 patterns was used. The error probability was
44%. It is claimed that the system has a processing rate of
1012 multiplications per second.

A two-layer network is shown in Fig. 17 (23). The input
device to the network is a liquid-crystal TV. The liquid crystal
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Figure 16. A two-layer optical network for character recognition.

TV is illuminated with collimated light. Lens L1 produces the
Fourier transform of the input image at plane P2. Not shown
in the figure is a filter which blocks the low frequency compo-
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nents of the input image that enhances the edge of the input
image and improves the ability of the system to discriminate
between inputs from different classes.

A single hologram is recorded in the crystal at a particular
angle of the reference beam. Lens L3 is a Fourier transform
lens that produces an image of the edge enhanced input im-
age on CCD for visual assessment. Lens L2 is also a Fourier
transform lens that produces at the output plane P4 the re-
sponse of the first layer where it is sensed by a linear detector
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Figure 15. Performance of a pattern recognition system in which a
correlator is used instead of a neural network system. Correlation
tests are performed with a composite image obtained by averaging 48
input training images of class 1: (a) Composite image, (b) correlator
response to facial images of class 1 and class 2 with different head
perspectives and various distortions when the composite image in (a)
is used, (c) plot of the correlator error probability versus the correla-
tor output threshold level.
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Figure 17. Optical setup of a two-layer photorefractive pattern rec-
ognition neural system.
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array. A beam splitter placed in front of the array diverts a
portion of the light to a CCD camera so that the output of the
first layer can be visually monitored. The system from the
input plane P1 to P4 is an array of image correlators. For one
filter, the system is a correlator. If we change the angle of the
reference beam and record a different hologram at each angle,
then the one-dimensional strip of the two-dimensional corre-
lation function will be produced at a different horizontal loca-
tion. The role of the second layer is to nonlinearly combine the
outputs of the correlators and make the final classification.

OPTICAL ASSOCIATIVE MEMORY Thresholding

Input LED array Weights matrix Output detector array

An associative memory processor stores signals or patterns in
Figure 18. A scheme of an optical vector-matrix multiplier with non-the memory (17,20,24,25). It is capable of producing an output
linear feedback.that is a reproduction of the stored input pattern in response

to an input that is a partially obscured or distorted version of
one of the stored patterns. For one-dimensional signals, the
patterns are stored in a matrix W. The output of the associa- matrix. The matrix is generated by summing all the outer-
tive memory is the input vector multiplied by the matrix W products of the exemplars, which are used to represent the
followed by nonlinear transformations. The associative pro- pattern to be retrieved or recognized, in the learning process
cessors include autoassociative memory and heteroassociative (an outer product of two vectors is calculated by the matrix
memory. In autoassociative memory, the output recollection multiplication of one column vector with transpose of the sec-
is the same as the stored pattern associated with the input. ond column vector). The diagonal elements of the matrix are
If x is one of the stored patterns, and x� is a distorted version set to zero to prevent the connection of each node to itself. In
of x, then the output is x. An important property of associative the recall process, when an unknown input vector is pre-
memory is fault tolerance, which means being able to produce sented to the network, the output is obtained by performing
the original pattern in response to an input that is a noisy or the matrix multiplication of the input vector and the memory
partially obscured version of a stored pattern. There are also matrix, which is a summation of the stored exemplars
applications to content-addressable memory. When the asso- weighted by the inner-product between the input and the cor-
ciative memory is used for pattern recognition, the output is responding stored exemplars. The iterations will be repeated
compared to the stored signals to determine if there is a until the output converges to a stable state, which is one of
match. The heteroassociative memory produces outputs that the stored exemplars that has the least different bits from
are arbitrarily associated to a given input x. the input.

The Hopfield associative memory used with binary inputs The Hopfield network has many major limitations. First,
such as black and white images or binary data does not per- the storage capacity is limited. If many patterns are stored,
form as well when continuous grayscale input values are the network may converge to a false memory pattern different
used. The network contains N nodes with hard limiting non- from all stored patterns, which will produce a no-match out-
linearities f ( � ) and binary outputs. The output is fed back to put when used as a classifier. This problem can be remedied
the input. The weights tij are fixed using the M associative if the patterns are generated randomly and the number of
signals xk: classes M is less than 0.15 times the number of the input

nodes N. The second limitation is that the network may not
converge to a correct solution if the stored patterns are too
similar to one another. In this case, the stored patterns are

tij =
{∑M−1

k=0 xk
i xk

j

0, for i = j, j ≤ M − 1
considered to be unstable. This problem can be remedied by

The output at the time t is �i and at time t � 1 is orthogonalizing the patterns before storing them in the net-
work (20).

An optical implementation of the Hopfield network (24) is
shown in Fig. 18 (17,24). In the architecture shown in Fig. 18,

µi(t + 1) = f

�
n−1∑
i=0

tijµi

�

a light-emitting diode array is used to represent the input
array, a photo-diode array is used to represent the outputThe input is an unknown pattern x� and �i(0) � x�. The pro-
array, and a programmable spatial light modulator is used tocess is repeated until the output remains unchanged. The out-
store the weights. A lens is used between the input and theput is forced to match one of the patterns xk stored in the
weight mask to perform the multiplication of the input andweight. The network converges to a correct solution if the out-
the memory matrix, and another lens is used between theput is the correct version of the distorted input. Graded non-
weight mask and the output array to carry out the summa-linearities improve the performance of the Hopfield network.
tion of the multiplication results in the row direction and toThe Hopfield network is a single-layer network. It can be
generate the output. When an unknown input is imposed onused as an autoassociative memory. In this network, neurons
the network, the product of the input and the memory matrixaccept the input and present the output, and each neuron is
is obtained at the output array, and the output is fed backconnected to all other neurons via the interconnection

weights. The weights form a matrix that is called the memory optically to the input through thresholding and gain.



OPTICAL NEURAL NETS 325

L2, a pinhole array is placed to sample the correlation signals
between the input image and the stored images recorded on
the hologram. The separation between the pinholes is deter-
mined by the focal length of L2 and the reference beam angles
used for recording the images on the hologram. In the second
correlator architecture, the output light of the pinhole array
illuminates another hologram that is similar to the first one.
The output at the back focal plane of lens L4 is a weighted
superposition of the images stored in the second hologram,
and the weights are proportional to the correlations of the
input and the images stored in the first hologram. By doing
this, the outer-product model with associative property is re-
alized for two-dimensional images. The same LCLV is used to
obtain the output and feed it back into the first correlator to
form the iteration loop. The iterations are repeated until the
output is stable. A facial image retrieval test with four people
images stored on the hologram and with partial and distorted
images as inputs was shown in Hsu et al. (27).
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Paek et al. proposed a holographic memory (28) shown in
Fig. 20. A photorefractive crystal lithium niobate (LiNbO3) isFigure 19. Schematic diagram of a double-correlator neural network
used to store multiple holograms. An argon laser with � �with optical loop.
514.5 nm is used to record the holograms. A low-threshold,
electronically pumped, vertical-cavity, surface-emitting mi-
crolaser diode arrays (VCSELs) is used to retrieve the imagesOPTICAL CORRELATOR ASSOCIATIVE MEMORY
stored in the holograms. The system has a 104 bits/s access
speed.Optical correlators are inherently two-dimensional systems.

They can perform some operations of two-dimensional im-
ages. Psaltis and Farhat proposed using optical correlator to

HOLOGRAM-BASED ASSOCIATIVE MEMORYimplement the Hopfield model for two-dimensional images
(26). An autoassociative content addressable memory (27) us-

Owechko et al. proposed an autoassociative memory (29)ing optical correlator is shown in Fig. 19. Originally, the Hop-
shown in Fig. 21. This network uses the outer-product neuralfield network is based on one-dimensional vectors and outer-
network model. The desired images are stored in Fourierproducts of the vectors were used. To implement the outer-
transform holograms with different reference beams in differ-product between two-dimensional images, spatial-frequency
ent angles. A thermoplastic film is used to record the holo-multiplexing is introduced by using two optical correlators.
gram. An input is Fourier transformed by the first lens, andThe first correlator is used to obtain the cross-correlations be-
the Fourier transform of the input is multiplied by the holo-tween the input image and the stored images. The two-dimen-
gram that records the conjugate of the Fourier transforms ofsional images are stored holographically by means of the Fou-
the stored images. The correlations between the input andrier transform hologram. The hologram is recorded on a
the stored images are obtained on the focal back plane of thethermoplastic plate. Each image is recorded with a different
second lens. A phase conjugate mirror is used to reflect thereference beam angle, which is called angular multiplexing.
correlation signal with a conjugated phase back to the holo-In the retrieval process, the input is imaged onto a liquid
gram. In this way, the hologram acts as a memory that, withcrystal light valve (LCLV). An argon laser is used to read out
the illumination of the correlation signals, generates athe input image from the LCLV. The lens L1 is used to per-
weighted superposition of the stored images. This newlyform the Fourier transform of the input image. On the back
formed image is then reflected back by another phase-conju-focal plane of lens L1, the Fourier transform of the input im-
gate mirror as a new input. Thus, the two phase-conjugateage is multiplied by the transmittance of the hologram that
mirrors provide a resonator cavity for feedback, and all therecords the complex conjugate of the Fourier transforms of
stored images oscillate inside the cavity. With the thresholdthe stored images. The product is then passed through an-

other Fourier transform lens L2. On the focal plane of lens and the nonlinear reflectivity of the phase-conjugate mirror,

Figure 20. A holographic memory

Input microlaser
diode array

Lens LensPhotorefractive crystal

Output
detector

system.
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and 7 � 107 interconnections can be achieved with this sys-
tem. The neuron update rate can be 107 neurons per second,
and the data rate can be 2 � 109 interconnects per second.

SUMMARY

This article presents a brief overview of optical information
processing systems and devices for developments of neural
networks. The field has made significant advances over the
last 20 years with the availability of optical input–output de-
vices or spatial light modulators for high-speed information
processing, such as commercially available compact liquid
crystal display panels with one million pixels. Further im-
provements are occurring rapidly in the spatial light modula-
tors technology and in new areas of applications, such as the
use of optical systems for law enforcement, security, and

Phase conjugate
mirror with
threshold

Beam
splitter
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Lens

Lens

Hologram

Output plane

Beam
splitter

Phase conjugate
mirror with
threshold

anticounterfeiting (32). However, progress is needed in devel-
Figure 21. Schematic diagram of a nonlinear holographic associa- oping reliable active optical devices and materials to realize
tive memory. low-cost optical systems.

For more information on the topics discussed in this paper,
we refer the reader to the publications of the IEEE Lasersthe system will converge to the strongest correlated stored
and Electro-Optics Society, the Optical Society of America,image while the other images will vanish.
and the International Society for Optical Engineering. EachA single-image experiment is performed by storing a por-
society publishes monthly journals on these topics. For exam-trait in the hologram and retrieving it from a partial version
ple, the Optical Society of America publishes a separateof the original image.
monthly research journal on information processing alone.Paek and Lehmen realized a holographic associative mem-
We also refer the reader to the proceedings of conferences ofory capable of identifying individual words and inserting
these societies on more specialized areas of optical informa-word breaks into a concatenated word string (30). The archi-
tion processing devices and system.tecture is quite similar to the two-correlator architecture de-

scribed earlier, except that electronics was used at the corre-
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