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NEUROCONTROLLERS
designs and the brains and behavior of various mammals
(e.g., see Refs. (5) and (4,6–7); however, new partnerships be-NEUROCONTROL: AN OVERVIEW FOR THE PRACTITIONER*
tween engineers and biologists will be crucial to a deeper un-
derstanding of these links.What Is Neurocontrol?: The General Approach

As a practical matter, most control tasks today do not re-
Neurocontrol is a new branch of engineering practice and re- quire full-fledged brains to perform them. There is a complex
search, which first came together as an organized field in ‘‘ladder’’ of designs available in neurocontrol, rising up from
1988 (1). simple designs of limited power through to very complex,

Actually, the philosophy behind neurocontrol dates back more brainlike designs. Roughly speaking, they range in
much earlier than 1988. Norbert Wiener (2) originally defined scope from designs which ‘‘clone’’ the observed behavior of an
‘‘cybernetics’’ as a kind of unified theory of control and com- expert, through to designs for tracking setpoints or desired
munication in the animal and the machine. Neurocontrol trajectories, through to full-scale designs to optimize goal sat-
tries to implement Wiener’s original vision, by building con- isfaction over time. Effective engineering groups usually start
trol systems or decision-making systems which can learn to out by implementing the simpler designs, in general-purpose
improve their performance over time, and can use a parallel software, and then systematically climb up the ladder, one
distributed kind of computing hardware similar to what the step at a time, to expand their capabilities and to reduce their
brain uses. costs in coping with ever more difficult applications. The key

For a long time, many engineers have been intrigued by to effectiveness, then, is to know where one is on the ladder
the idea of developing an ‘‘all-purpose black box controller,’’ at any time, and to know what the choices and benefits are
which could be plugged into any application. The box would for the next step up. This requires making some effort to map
have wires going out to the actuators and other controllers, out, decode, and unify a rather complex, fragmented litera-
wires coming in from sensors, and a special wire coming in ture, drawing from many different disciplines which use dif-
from the utility module—a system which monitors and mea- ferent terminology. This chapter will try to help the reader in
sures the overall success of the controller, based on criteria this task.
which must be supplied by the user. The engineer using the Furthermore, in practical terms, real-time learning or
box would have to worry about providing the right inputs and ‘‘learning on the fly’’ is not always the most effective way to
outputs, but the black box would figure out all the rest, based solve a control problem. We usually have three kinds of infor-
on learning. It would learn by itself how to maximize utility mation about the plant available to us when we try to solve a
over future time, even if that requires developing a complex control problem: (1) true prior information, such as a physical
strategy in order to reach a desirable state. Many people now model of the plant to be controlled; (2) a database of data-
define reinforcement learning as the problem of designing this streams for the sensors and actuators in the plant, data-
kind of black box (1,3), illustrated in Fig. 1. streams which could be based on physical recordings or on

Reinforcement learning systems (RLS) do exist today—but simulation; and (3) the actual current stream of data from the
they vary greatly in quality, and they all have notable limita- plant which we are now controlling in real time. Statistical
tions. Still, there is a pathway now defined for future research principles (8) suggest that the best controller will always be
which does seem to point the way, in concrete terms, to the the one which combines all three sources of information in an
development of future reinforcement learning systems which optimal manner.
really could replicate the high level of intelligence and flexi- Roughly speaking, traditional control uses only the first
bility that exists in the brains of mammals. [Actually, perfor- source of knowledge in designing the controller. (Of course,
mance is usually better with reinforcement learning designs even most traditional controllers will respond to sensor input
in which the utility function is a known differentiable func- after they have been designed and put into operation.) Offline
tion of the other inputs. Such modified designs may even be learning in neurocontrol uses the second source of knowledge.
more plausible as models of the brain. (4)] There has been Real-time learning in neurocontrol [and adaptive control
considerable research demonstrating links between such RLS (9,10)] uses the third. The challenge is to develop all three

capabilities, and then find ways to blend (or select) all three
across a range of applications. The simplest applications re-
ally do involve the control of a physical plant, like a furnace.* The views expressed herein are those of the author, not those of his

employers, although the work was written on government time. The more complex applications may really involve making de-
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cisions so as to optimize or influence a much more compli- sired trajectory, or optimizing a performance measure. At the
highest level, we must map these higher-level tasks into acated environment, like a factory or an entire economy.
real application, which often requires a variety of tasks to be
performed, in parallel or in sequence.Relations With Other Forms of Control

Unfortunately, many neurocontrol papers talk at length
In the 1980s, neural network people and control theorists of- about their choices on one of these levels, without doing jus-
ten expressed extreme emotional judgments about the tice to the other levels. Some papers, when evaluating neuro-
strengths and weaknesses of neurocontrol versus conven- control, confuse the costs and benefits of the learning design
tional control. For example, some neural network people ar- with the costs and benefits of particular subsystems; in fact,
gued that neural networks could solve problems that mere in some cases, they restrict the analysis to only one type of
mathematical approaches could not. Some control theorists ANN. One of the worst common mistakes is to confuse the
argued that the reverse was true, and that all users of neural pros and cons of backpropagation—a very general technique
networks must be black box black magicians. Rhetoric like for calculating derivatives (12) and adapting networks—with
this has lingered on in some quarters, but a more concrete the pros and cons of a particular class of ANN, which is prop-
and reliable understanding has begun to emerge in the main- erly called the Multilayer Perceptron (MLP) but often improp-
streams of both fields. erly called a ‘‘backpropagation network.’’

The convergence actually began in 1988, in the National
Science Foundation (NSF) workshop which first brought to- Benefits and Capabilities of Learning Control Designs
gether people from different parts of this field, and injected

Because the design process operates at these three levels, itthe term ‘‘neurocontrol’’ (1). In that workshop, it became clear
does not make sense to ask what the benefits of neurocontrolthat the major designs being used in neurocontrol can actu-
are as such. Instead, we can ask what the benefits are forally be considered as special cases of more general learning
using these learning control designs, in general, at the middledesigns within the field of control theory. (Unfortunately,
level of the design process. Then, when we need to fill in thesome people associate control theory only with the simplest
sockets, we can ask what the benefits are of using specificform of control, like thermostats; control theory in the broad-
types of ANNs instead of other possible subsystems. In manyest sense is really the theory of decision and control, including
applications, at some stages of development, it makes sensesimple systems like thermostats, but also including nonlinear
to use a mixture of subsystems, including some ANNs andoptimal control, stochastic control, and so on.)
some other types of subsystem.To understand the concrete implications of this situation,

The benefits of learning control in general are fairlyconsider the following analogy. The general learning control
straightforward. In traditional design approaches, controllersdesigns used in neurocontrol can be compared to circuit
are usually developed based on models before the plant isboards performing a higher-level function, containing some
even built. Then, once a prototype is built, and the controlempty sockets where something has to be plugged in. For ex-
does not actually work as intended, there is a long and labori-ample, most of these learning control designs contain sockets
ous period of testing, remodelling, and tweaking. In the air-where you must plug in some kind of general-purpose system
craft and manufacturing robotics areas, many experts esti-which can learn to approximate nonlinear functions. Most
mate that 80% of the costs of the entire system developmentpeople simply plug in some sort of artificial neural network
effort come from this tweaking stage. If one could replace(ANN) into these sockets. But you could just as well plug in
tweaking by a more automated process of learning, one couldan elastic fuzzy logic module (11), a Taylor series module, a
reduce these costs substantially, and accelerate the develop-soft gain scheduler, or a differentiable system of user-speci-
ment schedule. In some cases—as with novel high-perfor-fied equations or transfer functions (3,12) into any one of
mance aircraft—the reduction in tweaking could also mean athese sockets if you know how to plug in all the associated
reduction in the need to crash a few prototypes during theinformation required (see chapter 8 of Ref. 10 or chapter 10
development process; such crashes were once a normal andof Ref. 3.)
unavoidable part of the development process, but are becom-The learning control design itself—the circuit board—does
ing less and less acceptable today.not really contain any neural networks. Therefore, it may be

Learning control can be used in two major ways to reduceslightly misleading to call these higher-level designs neuro-
the need for tweaking after the development of traditionalcontrollers. It would seem more precise to call them learning
controllers:control designs or intelligent control designs. However, the

terms intelligent control and learning control have been used
in the past to refer to a wide variety of other designs, of vary- 1. Given a flexible enough control structure, initialized to
ing degrees of real intelligence. In this article, the term learn- something like a traditional controller, one can train
ing control will refer to the specific types of generalized learn- the controller to optimize performance over a wide
ing control design which are used in the neural network range of possible assumptions, in offline learning. For
community; however, this is not standard terminology. example, one can use a simulation model to generate

In practical applications, then, the design process here ac- multiple streams of training data, but with different pa-
tually works at three levels. On the lowest level, we must rameters or couplings assumed in each stream of data.
decide which subsystems to plug in—the specific ANNs or When first proposed in 1990 (13), this general approach
other modules to perform function approximation or predic- was called ‘‘learning offline to be adaptive online.’’ Since
tion or whatever. At the middle level, we must choose one or then, Ford Research has extended the approach in a
more higher-level learning designs, to perform general wide range of applications (e.g., 14,15), and called it

multistream learning. The success of this approach de-higher-level tasks like cloning a human expert, tracking a de-
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pends heavily on the flexibility of the control structure movement of a robot arm) or a reference model whose
function is to output a desired trajectory.and on how well it is initialized. Controllers developed

in this way are now the only affordable mechanism 3. Designs to perform multiperiod optimization, explicitly
which have demonstrated it can achieve ultralow emis- or implicitly. The explicit designs tend to be simpler to
sions on road-tested cars from a U.S. manufacturer. implement, and more exact, but computationally more

expensive and less capable of coping with random dis-2. True real-time learning permits adaptation to the ac-
turbances. The implicit designs are sometimes called re-tual real-world plant. For example, in aviation one
inforcement learning, and have strong connections tomight use real-time learning much as a human pilot
what we see in the brain (5). In some applications, it isdoes, by gradually extending the envelope of safe opera-
best to use a hybrid, where the explicit methods providetion from low speeds to higher speeds, while always
a short-period look-ahead and the implicit methods ac-monitoring how close the system is to the edge of that
count for payoffs or results beyond that period (17).envelope. In this case, the trick is to move out far

enough that one is learning something, but not so far
that one is in danger. Sometimes it is very difficult to find the best controller

simply by using an optimization method, starting from neural
networks initialized with random weights. It is often best toActually, there are many variants of these approaches, and
take a step-by-step learning approach. In this approach, onea very complex connection to formal control theory. For exam-
first trains a controller to solve a relatively simple task. Theple, in automotive control, one could pool actual data from a
final version of that controller, after training, is then used asnumber of real cars, for use in offline multistream learning.
the initial version of a controller trained to perform a moreLikewise, there is room for more systematic efforts in decid-
difficult task. In any kind of learning system, the initial struc-ing how to generate the multistream training data. In one
ture of the controller—the starting point—plays an impor-version, one could even train an ‘‘adversary neural network’’
tant role in deciding what can be learned.to control the random disturbances and parameter uncertain-

For example, Accurate Automation Corporation (AAC) (18)ties, and to try to destabilize the proposed controller (neural
visited Wright Patterson Air Force Base a few years ago, toor nonneural); this would be a way of implementing the no-
propose the use of optimizing neurocontrol to help solve sometion of ‘‘robust stability as a differential game’’, which is fun-
of the pervasive weight problems expected with the Nationaldamental in modern control theory (16). One way to evaluate
Aerospace Plane, NASP. (NASP was intended to be a proto-the actual stability of competing controllers and competing
type of an airplane which could reach earth orbit, as an air-engineers may be to offer them each the challenge of destabi-
plane, at airplanelike costs.) But they were told that it tooklizing each other’s controllers, subject to various limitations
millions of dollars even to develop a controller able to stabilizeon how much disturbance they are allowed to introduce. Al-
the craft—let alone optimize it—following their nonlinearternatively, the offline learning techniques developed in neu-
model of the vehicle.rocontrol can be used as an efficient numerical technique for

AAC then created a video game to run on Silicon Graphics,finding the solutions to a nonlinear stochastic optimization
to simulate the NASP model, but at a speed slow enough thatproblem—which is also an important element of robust con-
a human being would have some hope of stabilizing it. Manytrol (16). Finally, it should be possible in principle to link
humans played the game, but only a few were able to stabilizethese kinds of learning-based designs to actual Computer-
and land the craft consistently. AAC recorded the behavior ofAided Design (CAD) tools and simulations, in order to permit
those successful humans in the game, and simply developedsomething like ‘‘design for controllability’’ or ‘‘design for dy-
a neural network clone of their behavior patterns. This neuralnamical performance’’; this could someday be extremely use-
net could then stabilize the aircraft, in all their tests, and—ful in reducing the number of generations required for certain
unlike the humans—could run at electronic speed. The re-kinds of design processes (e.g., for fuel cell automobiles), but
sulting network could then be used, in principle, as the initiallittle work has been done so far along these lines.
value of the controller for a neural optimization scheme.The discussion so far has described the benefits of these

Based in part on this very rapid success, AAC—a smalllearning control designs in general. But there is a wide vari-
neural network company—became a prime contractor on theety of designs available, intended to perform different tasks,
NASP program, and then went on to play the lead role in thewith a variety of different applications and benefits. These
follow-ons to NASP, the LoFlyte program and the HyperX,designs will be described in more detail later on. For now, in
where neurocontrol is planned to play a central role.summary, there are three broad classes of designs forming a

Of course, step by step learning is not the only way to de-kind of ladder from simplest to most complex:
fine the starting point for a learning controller. For the first
task to be learned, one may start out by using neural net-

1. Cloning designs. These designs permit you to emulate works with random weights, or weights selected on an intu-
the actual behavior of an existing expert controller, itive basis. Or one may define the total control system to
such as a human being or an accurate but expensive equal a previously designed traditional controller plus a sim-
automatic controller. Unlike the usual expert systems, ple neural network. Or one may use a neural network clone
these designs imitate what the human does rather than of a pre-existing traditional controller. Or one may use a set
what he or she says. of fuzzy IF-THEN rules encoded into an elastic fuzzy logic

2. Tracking designs. These designs permit you to track a module (11). [Fuzzy IF-THEN rules (11) are rules like, ‘‘If the
desired setpoint (like desired temperature, in a thermo- engine is very hot and the pressure is rising, turn down the

fuel intake fairly quickly.’’] The choice really depends on whatstat) or a desired reference trajectory (e.g., desired
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kind of information is readily available, and on the require- readings at the present time, t, and on readings at times
t � 1, . . ., t � k, for some k.ments of the particular application. One can never guarantee

that a nonlinear learning system of significant size will find 4. Adaptive controllers. Adaptation changes the behavior
the globally optimal strategy of action; however, one can gen- of a controller, so as to account for changing conditions
erally expect it to improve upon the best of what is tried when in the plant being controlled. For example, a good hu-
initializing the system. man driver knows how to adapt when roads become

The difficulty of finding the global optimum, and the value slippery due to rain. Even if the driver cannot see how
of careful initialization, vary greatly from application to appli- slippery the road is in different places, he can sense how
cation. Unfortunately, the conventional wisdoms about these the behavior of his car is changing, and adapt accord-
issues often reflect past traditions and habits rather than the ingly. Later, when the rain dries out or he enters a dry
real needs of particular applications. patch, he has no trouble in returning to his old pattern

of driving. In engineering, there are many situations
which require adaptation, such as changes in the massLearning Versus Feedback Versus Adaptation
and location of a load to be carried (19), changes in the

The previous section discussed the benefits and capabilities of friction of a moving part, changes in the atmosphere,
learning control in general. The section after next will discuss wear and tear, and so on. In formal terms, adaptation
the benefits of neural networks versus other subsystems, tries to adjust the control rule so as to account for varia-
within the framework of learning control. But first, this sec- tions in the plant which cannot be observed directly,
tion will begin to round out the discussion of learning control and which typically (but not always) vary slowly with
in general, by discussing the relation between learning, feed- time.
back, and adaptation, which tends to be confusing even to

5. Learning controllers. Learning control tries to buildresearchers in the field.
systems which, like the brain, accumulate knowledgeIn control, in general, there is a ladder of five major catego-
over time about the dynamics of the plant to be con-ries of design, in order:
trolled—or, more generally, about the environment
which the controller lives in, and about strategies for

1. Static controllers. For example, the valve controller on coping with these dynamics. For example, an inexperi-
an ordinary gas stove is a static controller. After you enced driver may not know how to change his driving
turn the dial, the system simply injects gas at a fixed behavior during a rainstorm. This causes many crashes.
rate. Some people put timers on top of static controllers Over time, a driver may learn how to sense and respond
(as in some gas ovens), but the basic principle remains to such changing road conditions. He or she learns to
the same: the control action is specified completely in become adaptive. Notice that drivers can respond much
advance, without any use of sensor input other than a faster and much better to conditions which they have
clock. learned to adapt to than they do to conditions which

they are learning about for the first time.2. Feedforward controllers. In a chemical plant, the con-
troller for one valve may actually respond to the flow
of other gasses or liquids coming into the reactor. In a Adaptation refers to the driver’s ability to respond to cur-
feedforward controller, the control action at any time, rent conditions. Learning refers to the longer-term, cumula-
u(t), may depend on some sensor inputs—but not on tive process of building up a skill. In formal terms, learning
inputs which measure how well the controller is per- tries to adjust the control system so as to account for parame-
forming. Static and feedforward controllers, together, ters or structure in the plant which are initially unknown but
are often referred to as ‘‘open-loop control.’’ are not expected to change; this may include learning the dy-

3. Fixed feedback controllers. Feedback control, as a prac- namics or probability distributions for changes in mass, fric-
tical tool in engineering, dates back at least to James tion, etc.—thus, learning how to adapt to changes in these
Watt’s flywheel controller, which was crucial to the suc- specific parameters.
cessful operation of the steam engine and which in turn These distinctions are of great importance, but they can
was crucial to the Industrial Revolution. The modern, become very fuzzy at times. For example, the distinction be-
more mathematical view of feedback emerged much tween feedforward control and feedback control depends on
later, particularly in the seminal work of Norbert Wie- our making a distinction between ‘‘goal variable’’ sensors and
ner (2). To explain this concept, Wiener discussed sev- other sensors. This may not always be clear. Likewise, one
eral simple examples such as the everyday thermostat. may use a mathematical design derived from a learning for-

mulation, in order to build a controller intended for use inIn the thermostat, there is a feedback from a thermome-
ter to the controller which turns the furnace on and off. adaptation. In fact, that approach has been central to the

modern field of adaptive control (9,10). Note that the fourWhen the temperature is too high, the furnace is turned
off. In other words, there is a sensor which measures types of learning control discussed previously (cloning,

tracking, explicit optimization, implicit optimization) are allthe actual value of the variable (temperature) which we
are trying to control. The control action is specified as a subcategories of the learning control category here.

The term feedback control is normally used in a very broadfunction of that sensory reading. In fixed feedback con-
trol, the controller has no memory; its behavior is fully sense, including fixed feedback control, adaptive control, and

learning control.specified in advance as a function of all the sensory in-
puts (and perhaps of its own past actions) at specified The term classical control is used in very different ways,

by different researchers. Most often it refers to classical de-times. For example, the function may depend on sensor
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signs based on Laplace transforms for dealing with single- nary sort of nonlinear tracking problem, which could be ad-
dressed by use of adaptive control. First, he linearized theinput single-output (SISO) linear controllers such as Propor-

tional Integro-Differential (PID) controllers. Modern control plant in the usual fashion, and implemented the usual linear
adaptive control designs for which he and others had proventypically refers to a collection of more recent approaches, most

of which involve the sophisticated design of Multiple-Input many, many stability theorems (9). Despite the theorems, the
controller blew up regularly in simulation. Then, he used aMultiple-Output (MIMO) fixed feedback controllers; however,

traditional adaptive control (9,10) is usually included as well. neural network tracking design, which essentially just re-
placed a matrix with an ANN in an ordinary adaptive controlThe term robust control has also been used in two different

ways. In a broad sense, robust control refers to the develop- design. For that design, he could prove no theorems at that
time, but the design remained stable across a wide range ofment of control designs which are expected to remain stable,

even if the parameters or states of the plant may be different simulations.
Since then, Narendra and others have in fact generatedfrom what one expects initially. In a narrow sense, robust

control refers to specific techniques which have been devel- dozens of theorems for various forms of neural adaptive con-
trol or tracking control. But the lessons from this exampleoped to design fixed feedback controllers which remain stable

over a wide range of possible values for the parameters of the still remain valid. The first lesson is that many stability
proofs make strong, simplifying assumptions about the na-plant. Some engineers prefer systems which are robust in the

narrow sense, because it can be difficult to analyze the stabil- ture of the plant or of the environment. We can make stronger
proofs by assuming that the controller and the plant are bothity of systems with adaptive characteristics. However, there

are many cases where it is impossible to find a fixed controller made up of independent linear systems, but if the plant is not
actually linear, then the proofs become little more than emptypowerful enough to stabilize a plant over the entire normal

operating range (19). window-dressing. (There are other critical assumptions as
well in these theorems.) The second lesson is that we actuallyThe multistream approach described in the previous sec-

tion fits within the broad definition of robust control, but does can develop proofs for more general controllers in time, but it
may take time. Prior to the development of formal stabilitynot fit within the narrow definition. It does not fit within the

narrow definition because it requires the use of a control proofs, we must often start out by understanding the sources
of instability in a more practical sense, and developing thosestructure general enough to permit adaptive behavior. In

other words, the controller must have some kind of internal more stable designs which we later prove theorems about.
The third lesson is that the officials responsible for verifica-memory which implicitly keeps track of the road friction or

mass or other time-varying parameters of the plant. Much of tion and validation in different sectors may simply have no
absolute, valid mathematical guarantee available to them forthe best research into formal robust control also fails to meet

the narrow definition, because it includes the use of observers any kind of controller in the real world.
The practical development of verification and validationor state estimators which contain this kind of memory (16). In

other words, they are not fixed feedback controllers as defined techniques is a complex art, for which the needs vary greatly
from application to application. For example, many peoplepreviously. Narendra and Annaswamy have argued (9) that

traditional adaptive control may be thought of as a form of claim that the control of manned aircraft must be one of the
strictest areas of application, where firm mathematical proofsrobust control in the broader definition.
of stability are always essential, because of the safety issues
with many human lives and expensive vehicles at risk. How-Stability, Performance, Chaos and Verification
ever, with conventional aircraft, when there is some sort of

In choosing between competing control designs, the engineer large unexpected damage—such as a wing shot off, or a hy-
must usually trade off three different criteria: (1) the actual draulics failure—then the assumptions behind the proofs fly
degree of stability expected from the system; (2) the actual out the window. For severe faults, the current control designs
degree of performance; (3) the degree of formal confirmation have almost a 100% probability of failure, which is to say a
available, to confirm that the system will always have the fatal crash.
expected degree of stability and performance, across different Back in 1992, White and Sufge (3), working with Urnes
possible conditions. In tracking problems, the issue of perfor- of McDonnell Douglas, developed a model-free reinforcement
mance is often discussed in terms of steady state accuracy, learning scheme which, in simulation, could relearn the con-
transient response, and disturbance rejection (20). Stability is trol of an F-15 in two seconds in half of the cases of severe
often discussed in terms of margins for error and the allow- damage. The McDonnell Douglas simulation model of the F-
able range of variation for the (unknown) parameters of the 15 was a relatively realistic model, central to the development
plant to be controlled. of that vehicle. Thus, simulations suggested that the rate of

The distinction between actual stability and stability proofs crashes could be cut in half by using a real-time learning
is especially important in many practical applications. As we scheme in this application. One hundred percent success was
climb up the ladder of control designs, from static controllers absolutely not required, because it was impossible; simply to
up to nonlinear learning controllers, the behavior of the con- reduce the crashes from 100% to 50% would be a great accom-
troller becomes more and more complex. This makes it more plishment. This has large implications both for aviation
and more difficult to prove theorems about stability. However, safety and for the balance of power in aerial warfare.
if learning control is used appropriately, the more complex Based on the success of this early simulation work, the
designs make it possible to achieve greater stability in a more NASA Ames Research Center awarded a large contract to
robust way, over a wider range of possible conditions. McDonnell Douglas to translate this work into a working sys-

In a 1990 workshop (3), Narendra expressed this point in tem. An entire cottage industry of reconfigurable flight control
has sprung up, with a link to the emerging world of thrusta very graphic way. He described some simulations of an ordi-
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vectoring (control by changing where the engines point, operation. In fact, the use of such methods during the design
rather than moving flaps on the wings and such). There are process would make it possible to tune the physical design
many parallel efforts going on, each with its own ladder of parameters, together with the control parameters, so as to
designs intended to reduce the crash rate further and further. maximize some kind of combination of stability and perfor-
It is argued (21) that a multistream training approach using mance together.
implicit multiperiod optimization methods could be very use- Once we accept that real-world plants are in fact highly
ful in this application. nonlinear, the most rigorous, formal approach to achieving

Charles Jorgensen of NASA Ames has reported that the stability is fully nonlinear robust control. (There also exists a
first stage of neural-based reconfigurable flight control has far less general nonlinear theory, based on feedback lineariza-
been totally successful. More precisely, it has been used to tion.) The key results of this theory, mentioned previously,
land a full, manned MD-11 jumbo jet with all flight surfaces are that the development of a robust control system is equiva-
locked up, to simulate a total loss by hydraulics. (See http:// lent to the solution of a differential game or of a stochastic
ccf.asrc.nasa.gov/dx/basket/storiesetc/96_39.html.) The veri- optimization problem (16). Thus, for example, Professor Mi-
fication and validation required for this experiment, involving chael Athans of MIT, a major leader of the mathematically
collaboration between NASA Ames and NASA Dryden, proba- rigorous group in aerospace control, has argued that there is
bly contains many lessons of general interest. (See www.nasa. a critical need to develop general computer software to solve
gov for a discussion of the relation between these major com- the Hamilton-Jacobi-Bellman (HJB) equation for larger-scale,
ponents of NASA.) In general, the development of practical nonlinear systems in order to implement this approach. The
techniques for verification and validation is similar in spirit HJB equation is the foundation of multiperiod optimization
to the development of control software; it may be slow and (23), to be discussed in greater detail toward the end of this
laborious, but as time goes on, it permits a gradual rise in the article.
level of intelligence which can be used in our control systems. Unfortunately, for all but the smallest systems, it is basi-

Strictly speaking, the difference between seeking stability cally impossible to solve the HJB equation exactly (except in
and seeking high performance is not so great as one might a few very special cases, such as the linear case). Numerical
imagine. For example, in multiperiod optimization, one can methods or approximation methods are required. All solutions
simply construct a utility function (or cost function) which pe- of the HJB equation in such cases are in fact approximations,
nalizes the system whenever it enters certain forbidden regardless of whether they are called numerical solutions or
zones. By minimizing the expected value of such a cost func- approximate solutions. At present, the safest procedure is to
tion, one minimizes the probability of entering these zones.

use the most accurate available approximation methods,One maximizes stability. Usually, when the random distur-
which include some of the implicit learning control methodsbances are Gaussian (which permits very large disturbances
discussed here. In the long term, it will be crucial to developon rare occasions), the probability of entering the danger zone
more formal tools to analyze the numerical approximation er-can never be reduced to zero. In that case, stochastic optimi-
rors and their implications for stability.zation may indeed be the safest choice available, even though

As this article goes to press, Richard Sacks of AAC andit does not permit zero risk. For a truly realistic and complete
Daniel Prokhorov (24) of Ford Research Laboratories havedescription of the control problem, one cannot really expect
each reported stability results for the MBAC designs to berisk to equal zero, no matter what the control strategy.
discussed later. Johan Suykens of the Catholic University ofIn practice, users of optimization methods usually do not
Leuven (Belgium) has discussed the application of existingdefine a utility function based solely on stability (i.e., min-
stability theorems for nonlinear Model-Predictive Control toimizing risk). By adding terms to represent energy use, pollu-
the case of neurocontrol (25,26). See Ref. (27) for some addi-tion, jerkiness of motion, actuator constraints, and so on, one
tional examples of practical applications of neurocontrol.can develop a controller based on a reasonable tradeoff be-

tween various aspects of performance and stability, weighted
according to the needs of the specific application. Some users Benefits and Costs of Using Alternative Neural Networks
explore a variety of utility functions in order to get a feeling

Once we have decided to use a learning control design, whenfor what the choices and tradeoffs are.
should we use neural networks to provide the required sub-The optimization-based approach to stability may also
systems? What kinds of artificial neural networks (ANNs)open the door to a new approach called chaos control (22).
should we use? Should we implement learning in all of theLeaders in the chaos field have argued that traditional control
subsystems?too often focuses on trying to stabilize systems at a fixed

In many applications, the best strategy is to use a mix ofpoint, even when this is both expensive and unnecessary. By
ANNs and other structures, at different stages of develop-designing highly sensitive plants which can even become cha-
ment. When the first stage of controller development is basedotic, and by accepting low-energy controls which only try to
on some kind of physical plant model, for example, it oftenkeep the plant within an acceptable region, we may be able
makes sense to use that model directly, instead of taking theto save energy and increase performance. One might even ar-
time to train a neural network to approximate that model. Ongue that the SR-71 aircraft already provides an example of
the other hand, some learning control designs do not eventhis kind of tradeoff. The main difficulty with this idea of
require a model of the plant. Others require the developmentchaos control lies in actually designing plants and controllers
of dual subroutines (12,3) which require some effort to pro-which embody the idea. This difficulty could be overcome sim-
gram and debug (28). In the future, when software becomesply by using learning control systems based on multiperiod
available to generate these dual subroutines automatically,optimization (presumably implicit optimization) with utility

functions that keep the plant within an acceptable region of starting from user-supplied models expressed in some stan-
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dard format, it will become much easier to use physical mod- These results from Barron and Sontag confirm the exis-
tence of a very unpleasant tradeoff, which has long been ap-els directly.

Aside from neural networks and first-principles models, preciated in intuitive terms by practical neurocontrol engi-
neers. There is one class of ANN design—the MLP and itsthere are a host of methods used in the past in engineer-

ing to approximate nonlinear functions—gain-scheduling extensions—which can approximate functions in a parsimoni-
ous way, and therefore do a better job of generalizing or ex-schemes, Taylor series, fuzzy logic, interpolation tables, and

so on. Yet almost every useful general-purpose approximation trapolating from a limited amount of data. There is a differ-
ent class of ANN designs—local designs like the Radial Basisscheme has been repackaged by someone as a kind of neural

network, and trained by use of neural network methods! Cor- Function (RBF) and the CMAC (see CEREBELLAR MODEL ARITH-

METIC COMPUTERS)—which permit very rapid real-time learn-responding to Taylor series are higher order neural networks
or Ivanenko designs, among others. Elastic fuzzy logic (8) has ing and easier mathematical analysis. The present generation

of off-the-shelf ANNs do not provide the combination of goodbeen formulated as a kind of ANN, with interesting potential
properties. Many local neural networks serve, in effect, as glo- generalization ability and real-time learning that the neurons

of the brain provide! In the long term, advanced researchrified lookup tables, with varying degrees of interpolation or
soft switching. (For example, RBF and CMAC will be dis- should make it possible to achieve more brain-like capabili-

ties (35), and there are some practical tricks availablecussed in the next few paragraphs.) Various kinds of mixture
of experts networks (29,30) provide something like gain (15,30,36,3). For the time being, however, this tradeoff be-

tween learning speed and generalization ability tends to favorscheduling, except that the soft switching is trained to give
optimal results, and nonlinear relations can be estimated a greater use of offline learning than we would want in the

long term. In many practical applications, it is currently bestwithin each region. (Such designs can be especially useful
when you are worried about the system forgetting what it to start off with an approach based on offline learning, and

then add elements of real-time learning in a cautious, step-learns in rare but important types of conditions.) Because of
all these parallels, the decision to use neural networks is re- by-step manner. Ease of use has probably been the most dom-

inant factor in the widespread use of ANNs in learning con-ally just a decision to perform the learning function in a sys-
tematic way; all the same structures used in the past are still trol. After all, if an ANN from off the shelf can approximate

a nonlinear function to any desired degree of accuracy any-available, in effect, as ANNs.
In summary, the practical choice is between using special- way, then why bother with all the complexity of representing

the function in other ways?ized nonlinear structures, based on prior knowledge, such as
a physical plant model, versus the use of some kind of neural Availability of special purpose chips and PC boards has

also been a major factor. It was crucial, for example, to thenetwork to provide a general-purpose ability to learn any non-
linear function. For maximum accuracy, one would want to Ford (15) and AAC applications mentioned previously. In or-

dinary computing or supercomputing, one can normally fitcombine prior knowledge and learning-based knowledge (5);
however, this is not always worth the effort involved, and the only a small number of independent processors on a chip

(usually just one). This is because one must accommodate abest approach to combining the two sets of information will
depend on the particular application. It will depend especially large instruction set, digital logic, and so on. However, for

distributed ANN chips, it is good enough to perform the sameupon the accuracy and completeness of the prior information,
and on the availability of training data. Even after you decide arithmetic operation over and over again in each processor.

Neural chips now on the market already contain up to thou-to use a neural network, the choice of which neural network
to use can often make or break your application. sands of processors per chip. Computers based on such chips

have demonstrated hundreds of times more throughput perIn the past (31), four general advantages have been cited
for neural networks here: universal approximation ability, dollar for what they do than conventional computers.

There are many applications where traditional controllersease of use, availability of chips and PC boards, and links to
the brain. (See also the article on NEURAL-NETWORK ARCHITEC- have enough accuracy to do the job, but are too large or ex-

pensive to implement. For example, one cannot afford to putTURES.)
Almost every major variety of ANN used in engineering a large Cray into every airplane, car, or manufacturing cell.

In such cases, neural network clones of the traditional con-has some variety of universal approximation theorem
attached to it, proving that it can approximate a smooth func- troller can be very useful. Many neural chip manufacturers

also supply software subroutines to simulate their chips, sotion arbitrarily well, if given enough neurons. Andrew Barron
(32) has gone further, by proving that the most popular form that neurocontrol experts can develop realistic designs which

are easily migrated into hardware. Naturally, the availabilityof ANN—the multilayer perceptron (MLP)—can approximate
smooth functions of many arguments with less additional com- and throughput of chips is greater for some types of ANNs
plexity (i.e., fewer parameters) than are required for ‘‘linear than for others.
basis function approximators.’’ Linear basis function approxi- Finally, the link to the brain itself has also been a major
mators include most of the common alternatives, such as the motivation behind the development and use of neural net-
usual local networks and Taylor series. Sontag has pointed work designs. Because the brain itself is a neurocontroller (5),
out that there are a few classical approximators—such as ra- it provides both an existence proof for the ultimate potential
tional functions (ratios of polynomials)—which can do as well, power of neurocontrol and a source of clues for how to achieve
in theory; however, MLPs tend to be far more manageable that power.
than rational functions in ordinary engineering applications
involving multiple inputs. There is another class of ANN— Model-Based Designs Versus Model-Free Designs
the Simultaneous Recurrent Network with an MLP core

A number of engineers have reported that neurocontrol has(33,34)—which can also approximate certain types of non-
smooth function which the MLP cannot handle. worked better than classical control in their applications be-
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cause it does not depend on the quality of models available systems helps show how some of the neural model-based de-
signs can in fact be very robust with respect to the precisefor the physical plant to be controlled.
details of the model.For example, White and Sofge reported great success in

In practical system development work, it is often criticalapplying reinforcement learning to the continuous, low-cost
to develop the best possible initial controller based on priormanufacturing of high quality carbon composite parts (3).
information, before the physical plant has actually been built.Other approaches to this problem had already been studied
Even if real-time learning will be used, this initial controllerextensively by McDonnell Douglas, because of the large eco-
provides a starting point for further learning. By definition,nomic implications. A key reason why the earlier approaches
this initial controller must be based on some kind of model,did not work was that the manufacturing process was so com-
even if it is only a simulation model used to generate trainingplex that the first-principles models available were not very
data! At this stage of development, true-model independenceaccurate. Unfortunately, after this technology had already
is impossible; the best one can do is to reduce the degree ofproven itself out in actual production, its commercialization
dependence by using a multistream model instead of a con-was stalled by contracting issues unrelated to the technology
ventional fixed, deterministic model. However, as explainedas such.
previously, success in training a controller to perform well onThe Air Force recently held an in-depth workshop, inviting
such multistream data requires the use of a controller capablethe lead engineers involved in controlling high-powered opti-
of memory or of adaptive behavior. Neural networks embody-cal instruments and associated space structures (37). Those
ing ‘‘time-lagged recurrence’’ (3,12,34) provide that capability.speakers reported, on the whole, that the use of modern con-

It has been argued that the brain itself relies heavily ontrol theory had produced little if any improvement over classi-
large-scale reinforcement learning designs which require thecal control in these applications, and had also been extremely
use of neural models (40). Perhaps it may use hybrid designs,expensive. The problem, they claimed, was the need for very
which make the results relatively robust with respect to er-detailed, accurate plant models. On the other hand, neural
rors in those models; however, without exploiting somenetwork tracking approaches—particularly the work of David
knowledge about cause-and-effect relationships, and withoutHyland, one of the experienced people in these applications—
an ability to form expectations about the results of actions,led to significant improvements, at relatively low cost.
the brain could never handle the complexity of the decisionsThese benefits have been quite real, but one must be care-
that it must make in everyday life.ful to understand what they really tell us. In actuality, the

real choice is not between model-based designs and model-
NEUROCONTROL: DETAILED OVERVIEW OF THE DESIGNSfree designs. The practical choice is between five different al-

ternatives, all quite common in neurocontrol:
This section will provide additional technical detail for the
four broad classes of neurocontrol discussed previously—1. Truly model-free learning designs, which include clon-
cloning, tracking, explicit multiperiod optimization, and im-ing designs, direct inverse tracking designs, and
plicit multiperiod optimization. First, however, it will definesmaller-scale reinforcement learning designs;
some notation and describe some common ANN subsystems2. Implicitly model-based designs, such as the DRAL ar-
which can be used when building up a larger control system.chitecture discussed in the article on NEURAL NETWORKS

FOR FEEDBACK CONTROL in this encyclopedia; Notation
3. Designs which require us to train an ANN or some

This section will assume that the controller sees a vectorother learning-based system to predict or emulate the
X(t) of m observables (X1(t), . . ., Xm(t)) at each time t, andplant;
that it will then output a vector u(t) of control actions. In

4. Designs which use expert first-principles models of the effect, X(t) represents the input from the sensors, and u(t) the
usual sort; output to the actuators. Frequently there will be an addi-

5. Designs which depend on multistream models— tional vector r(t) which represents the estimated state of the
stochastic descriptions of the plant which include an ex- plant. There may be a reinforcement signal, U(t), or a utility
pression of uncertainty about plant parameters, cou- function, U(X) or U(r), which the control system tries to max-
pling, and possible defects, in addition to random imize over time. This notation is slightly different from the
disturbances. traditional notation of control theory, but it has a number of

practical advantages related to the use of neural networks
and the links to other related disciplines. In mnemonic terms,The White and Sofge example was based on alternative
the X relates to eXternal data, the r to Representation of Re-number one—the use of a reinforcement learning system
ality (usually through Recurrent neurons), and U representswhich pushed the envelope on how large a task can be han-
utility. Strictly speaking, the estimated state vector r(t) is of-dled in a truly model-free design. The Hyland system was
ten composed of the combination of X(t) and R(t), where R(t)based on alternative number three—the use of a neural
represents the output of some (time-lagged) recurrent neu-model, which in turn depended critically on advanced prior
rons in one of the subsystems of the controller. In some de-work developing ways to train neural models (38). [See (3, Ch.
signs it is assumed that the plant to be controlled is com-10) for related theoretical work.]
pletely observable, in which case X(t) and r(t) will be theThe DRAL system, and some of the work by Berenji (39),
same.has exploited the assumption that there is a single action

variable u(t), whose impact on the plant always has the same
Common Subsystemssign. It is mathematically equivalent to the use of a model-

based design in which the model is simply x(t) � ku(t), for Most ANN designs used in engineering can be built up in tin-
ker-toy fashion by linking together static neural networks. Asome positive constant k. The stability and success of these



358 NEUROCONTROLLERS

static neural network receives a vector of inputs X and gener- where E is some kind of error function. (See the articles on
ARTIFICIAL INTELLIGENCE, GENERALIZATION and FEEDFORWARDates a vector of outputs Y. It contains an array of weights or

parameters W. Learning usually involves the adjustment of NEURAL NETS.) Equation (1) simply states that the outputs of
the neural network will be used as a prediction of Y(t). Equa-the weights, W, although it often involves some changes in

the connections in the network as well. The operation of a tion (2) states that we calculate error as some function of the
actual value of Y(t) and of the predictions. To measure error,static neural network can always be represented as:
most people simply use square error—that is, the squared
length of the difference between the two vectors; however,YYY = fff (XXX ,W )

there are some applications (especially in pattern classifica-
where f is some function. To be precise, f is sometimes called tion) where other error measures can work better. Finally,
a vector-valued function of a vector, or simply a mapping. Eqs. (3) and (4) are two equivalent ways of expressing the

When we use designs that let us use any parametrized same idea, using different notation. In both cases, we use the
static mapping, then of course we are not limited to neural derivatives (i.e., gradient vector) of error as a feedback signal,
networks as such. When we actually use a static neural net- which will then be used in training the ANN.
work, we may choose to insert inputs from various different After we know the derivatives of error with respect to the
sources; therefore, the inputs and outputs will usually be la- outputs of the ANN, we can then go on to compute the deriva-
beled as something else besides X and Y. tives of error with respect to the weights,and then adjust the

The construction of larger systems by linking together weights accordingly. The backpropagation algorithm, in its
static neural networks is not just a useful mathematical fic- original form from 1974 (12), permits us to calculate all the
tion. It is also a useful approach to building up models and derivatives of error with respect to the weights at low cost,
flexible software to implement learning control. This ap- for virtually any nonlinear differentiable structure, not just
proach makes it easier to switch neural and nonneural com- ANNs! Equations 1 through 4 are used most often with
ponents in and out of a general learning design. Multilayer Perceptrons. (See Chapter 8 of Ref. 12 for the

Learning control designs are usually not built up directly most general form of MLP.) However, many other ANN learn-
from static neural networks. They are built up from larger ing procedures can be expressed in this form as well.
subsystems which in turn may be made up of static neural In supervised learning, the vector Y(t) is sometimes called
networks or other parametrized static mappings. The three the vector of desired outputs or desired responses or targets.
most common types of subsystems today are: (1) supervised Because this vector is known to us, we can use a variety of
learning systems (SLS); (2) systems trained on the basis of nearest-neighbor prediction methods or associative memory
gradient feedback; and (3) system identification subsystems. designs, instead of derivative-based learning. However, this

Supervised learning systems (SLS) try to learn the func- only applies to subsystems which perform supervised learn-
tional relationship between one observed vector X(t) and an- ing. Sometimes, as part of a control design, we need to adapt
other Y(t), based on seeing examples of X(t) and Y(t). a static neural network f (X(t), W) without access to a vector

For real-time learning, we usually assume that the SLS of targets Y(t). Typically, the larger design tells us how to
starts out with an initial set of weights W at each time t. calculate the vector F_Ŷ(t), based on information elsewhere.
Then, after it observes X(t), it makes a prediction for Y(t). Subsystems of this sort must be trained on the basis of deriv-
Then, after observing the actual value of Y(t), it goes back ative feedback, which in turn requires some use of backpropa-
and adjusts the weights W. In advanced research, this com- gation.
mon procedure is sometimes called weight-based real-time In other words, for true supervised learning tasks, we have
learning. There are alternative approaches to real-time learn- a choice between derivative-based learning methods and
ing, still at the research stage, called memory-based learning other sorts of methods. For certain other learning tasks, de-
or syncretism (35, Ch. 13). rivative-based learning is the only possible alternative.

For offline learning, we often assume that there is a data- Finally, in control applications, we often need to use sub-
base or training set of examples, which may be labeled as systems which learn to predict the plant to be modeled. Con-
X(t) and Y(t) for t � 1 to T. We often use the real-time learn- ceptually, we might describe these systems as:
ing approach, cycling through the observations one by one, in
multiple passes through the entire database. (These passes
are often called epochs.) Many SLS designs also provide an

Ŷ̂ŶY (t) = fff (W,XXX (t),XXX (t − 1),YYY (t − 1), . . .,XXX (t − k),YYY (t − k), . . .)

(5)
option for batch learning, where the weights are adjusted only
after some kind of analysis of entire training set. In fact, most where t represents physical time in the plant, assuming some
model estimation methods taken from the field of statistics kind of fixed sampling rate for the sensors and actuators in
may be thought of as batch learning designs. the plant. Systems of this general sort are called neuroidenti-

The most common forms of SLS are based on some sort of fication systems. There is a ladder of designs available for
error feedback, which may be written: neuroidentification, similar to the ladder of designs in control.

In the simplest neuroidentification designs, there is no ac-
YYY (t) = fff (XXX (t),W ) (1) tual use of inputs before some fixed time interval k. The pre-

diction problem is actually treated as a supervised learningE(t) = E(YYY )(t),YYY (t) (2)
problem, with an expanded list of inputs. Networks of this
sort are called Time Delay Neural Networks (TDNN). TheyF Ŷ̂ŶY = ∇YYY E(YYY )(t),YYY (t)) (3)
are similar to Finite Impulse Response (FIR) systems in sig-
nal processing, and to nonlinear autoregressive (NAR(k), or,
more precisely, NARX(k)) models in statistics (12,41). Unfor-

F Ŷi(t) = ∂

∂Ŷi

E(YYY (t),YYY (t)) (4)
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tunately, these models are often called NARMA models in the Finally, in some applications, such as stock market trad-
ing, a simple predictive model of the plant or environmentliterature of adaptive control. This usage has become so wide-
may not be good enough. In some applications, it is desirablespread in some areas that some people even consider it a con-
to climb one step further up the ladder, to train true general-vention rather than an error; however, the original concept of
ized stochastic models of the plant or environment. AmongARMA modeling is so important and fundamental in statis-
the relevant tools are the Stochastic Encoder/Decoder/Pre-tics (12,41) that the original usage should be preferred, even
dictor (SEDP) (3, Ch. 13) and, for smaller-scale problems, thein control theory. In statistics, ARMA refers to mixed Auto-
Self-Organizing Map (SOM) (43). Here, instead of trying toregressive Moving-Average processes—stochastic systems
output the most likely prediction for Y(t), we try to build awhich contain patterns in the disturbance terms which AR
kind of simulation model for Y(t). We try to train a networkmodels cannot represent in a parsimonious way; such pat-
which outputs possible values for Y(t), in a stochastic way,terns result whenever there is ‘‘observation error,’’ (i.e., error
such that probability of outputting any particular value forin sensing or measuring the state of the plant to be con-
Y(t) matches the true probability of that value coming fromtrolled).
the actual plant. (More precisely, it should match the condi-More powerful designs for neuroidentification result from
tional probability of that value, given the information fromadding one or both of two additional features: (1) time-lagged
times t � 1, etc.) These designs have led to a few successfulrecurrence; (2) dynamic robust training.
implementations related to control, but there is a need forTime-lagged recurrent networks (TLRNs) essentially con-
considerably more research in this area. For example, no onetain a kind of internal memory or short-term memory, as re-
has yet tried to prove universal stochastic process approxima-quired for adaptive behavior. They provide a generalization of
tion theorems here that are analogous to the theorem whichtrue ARMA modeling capability, which is also similar in spirit
Barron and Suntag have proven for the deterministic case.to Infinite Impulse Response (IIR) systems in signal pro-

cessing, and to Extended Kalman Filtering (EKF) in conven-
tional control. James Lo (42) has argued that TLRNs perform Cloning
better than EKF in these applications. [The reader should be

The very first neurocontroller ever implemented was a clon-warned, however, that there is another completely different
ing controller developed by Widrow and Smith (44).application of EKF methods in neurocontrol, involving the ac-

At that time, no one used the words neurocontrol or clon-celeration of learning rates. For example, the Ford group has
ing in this sense. Even in the 1980s, many researchers

used several generations of such acceleration methods
thought of ANNs simply as supervised learning systems,

(14,15).] TLRNs are harder to train than TDNNs; however, without allowing for other types of ANN design. In order to
with an effective use of the Adaptive Learning Rate algorithm develop a neurocontroller, they would follow two steps: (1)
(3, Ch. 3) and appropriate initial values, they can sometimes build up a database of training examples of sensor inputs
learn more quickly than TDNNs. X(t) and correct control actions u(t); (2) use supervised learn-

As an example, the key successes of Ford Research in neu- ing to learn the mapping from X(t) to u(t).
rocontrol depend very heavily on the use of TLRNs (14,15), At first glance, this kind of exercise seems purely circular.
trained by the use of backpropagation through time (BTT). If we already know what the correct control actions are, for a
Likewise, the recent success of Jose Principe in speech recog- wide variety of possible situations X(t), then why bother to
nition has relied heavily on the various forms of TLRN he has train a neural net? Why not simply use the pre-existing con-
used, also trained using BTT. BTT was first implemented in troller or algorithm which tells us what the correct control
1974, on a classical multivariate ARMA estimation problem actions are? The answer is that the pre-existing controller
(12); see (12, Ch. 8) for a more modern tutorial, emphasizing may actually be a special human being, or a very expensive
the use of TLRNs. BTT is not strictly speaking a real-time computer program, which may be too scarce, too expensive, or
learning method, because it requires calculations which oper- too slow to use in all the applications of interest. Therefore,
ate backwards through time; however, it can be used in prac- this approach can be quite useful at times as a way of cloning
tice in a real-time mode, in engineering applications which the behavior of that pre-existing controller.
make use of fast electronic hardware (14,15). Unfortunately, It is very unfortunate that many early papers using this
the most popular true real-time methods for adapting TLRNs approach did not adequately explain where their database of
have severe disadvantages. See (34) for a survey of these al- correct control actions came from.
ternatives, including the new Error Critic design which, in Even within the area of cloning, we again face a ladder of
my view, is the only alternative which is plausible as a model designs. In all cases, we begin by recording examples of X(t)
of what goes on in the brain. and u(t) from a human expert of pre-existing controller. In

Dynamic robust estimation can be applied both to TDNNs the simplest designs, we use supervised learning to learn the
and to TLRNs, in order to improve the quality of the resulting mapping from X(t) to u(t). In more sophisticated designs, we
predictions. The key idea is to minimize errors in multiperiod use neuroidentification methods to predict the desired u(t) as
prediction directly. This idea has been used in various forms a function of X(t) and of earlier information. Whenever the
for a long time (12), but there is a substantial need for more human expert or pre-existing controller need to have some
research to understand the deep theoretical principles in- kind of memory of earlier time periods, as when they need
volved, and to develop designs which better reflect that un- to exhibit adaptive behavior, the sophisticated designs should
derstanding (3, Ch. 10). The reader should be warned that be used.
parallel identification as used in adaptive control is only the For historical reasons, there is no really standard termi-
first step up this very high ladder (3), and often performs nology in this area. In the chemical industry, sophisticated

cloning techniques are sometimes called operator modeling (3,worse than simple conventional training.
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Ch. 10). In the robotics industry, Hirzinger’s group has used 5. Designs which convert the tracking problem into a task
in multiperiod optimizationcloning to copy specific skilled movements of human opera-

tors, and called this skill learning. [Hirzinger’s group is per-
haps the most advanced group in the world today applying As discussed previously, the models required in these designs
a broad spectrum of learning-based intelligent controllers to are sometimes replaced by simple implicit relations like y �
practical real-world applications, including space robots, flex- kx, where k is a positive scalar. The term ‘‘direct’’ is some-
ible high-throughput manufacturing robots, medical robots, times used to describe implicitly model-based designs of this
and others (45).] The neural aerospace company mentioned sort.
previously (AAC) has actually occasionally used the word True direct inverse control (DIC) was once the most popu-
cloning. lar form of neurocontrol. DIC was applied most often to robot

Some roboticists may ask what the connection is between control (1,46), or to biological models of hand and eye move-
cloning as described here, and the older pendant-based meth- ments (46,47). In DIC, we usually assume that there is a sim-
ods of training robots. Very simply, the older methods yield a ple relation between the control variables and the position of
static controller, as previously defined, while the cloning the robot arm, which can be expressed as X � g(u). For exam-
methods yield an ability to respond to sensor inputs X; in ple, if u consists of three variables, each controlling the angle
other words, they can be used to train feedforward, feedback, of one of the three joints in a robot arm, then g is the function
or even adaptive controllers. which determines where the hand will be located in spatial

In many applications, cloning approaches are a good place coordinates. If the function g happens to be invertible, then
to start, even if the ultimate goal is to develop an optimizing there will be a unique solution for u, for any vector X:
controller. For example, even before developing any automatic
controller, one may try to develop a telerobotic interface, to uuu′ = ggg−1(XXX ) (6)
permit a human being to directly control a robot designed for
the application. If the human cannot learn to control this ro- In DIC, one tries to learn the function g�1, simply by observ-
bot, one may reconsider the physical robot design. If the hu- ing pairs of u(t) and X(t) and using supervised learning. Then,
man can control it, one can then clone the human behavior, to control the arm, one simply sets:
and use the result as the starting point for a more sophisti-
cated learning controller. uuu(t) = ggg−1(XXX ∗(t)) (7)

When the mapping from X to u is learned in this simple staticTracking
way (39), the errors tend to be about 3%—too large for realis-

Tracking controllers are defined as controllers which try to tic robotic applications. However, when the neural network
make the plant stay at a desired setpoint, or follow (track) a is also given inputs from past times, very accurate tracking
desired trajectory over time. More precisely, the control ac- becomes possible (1,47). Miller has shown videos of a system
tions u(t) are chosen so as to make the actual observed state based on this approach which could learn to push an unstable
X(t) match a desired reference trajectory, X*(t) or Xr(t), sup- cart around a figure 8 track with very high accuracy, and then
plied by the user. (The setpoint case, also called homeostatic readapt (with real-time learning) within three loops around
control, is the case where the desired states X*(t) do not the track after a sudden change in the mass on the cart.
change over time—except when the user changes the set- Miller also developed a VLSI control board for use in a con-
point.) ventional robot, but the U.S. robotics company involved un-

Both in neurocontrol and in classical control, the majority derwent a reorganization before the product could become
of academic papers published today focus on tracking control. widely used (See the article on NEURAL NETWORK ARCHITEC-

As a result, the literature is extremely complex and some- TURES for a discussion of neural VLSI design.)
what difficult to summarize accurately. Many neural tracking DIC does require the assumption that the function g be
designs are essentially just conventional tracking designs, or invertible. If the vector u has more degrees of freedom than
adaptive control designs (9,10), with matrices replaced by the vector X, then this is clearly impossible. Some ANNs have
neural networks. Unfortunately, many researchers have been developed which effectively throw away the extra de-
made the mistake of assuming that tracking problems are the grees of freedom in u. But most control engineers have moved
only problems of interest to control theory. on to model-based designs, which are usually considered to be

Roughly speaking, there is once again a ladder of learning- more powerful and more general, and which permit a system-
based designs available: atic exploitation of the extra control power of any extra de-

grees of freedom. [See (6) for a discussion of direct versus indi-
rect adaptive control.]1. Direct inverse control

Model-based adaptive control is the dominant form of2. Model-based or indirect adaptive control, based on the
neurocontrol today in academic publications. The papers byshort-term minimization of a simple general-purpose
Narendra and coauthors, starting from (48), have played ameasure of tracking error (usually just square error)
leading role in this development. [See also his papers in

3. Model-based or indirect adaptive control in the short- (1,3,11).] A wide variety of designs have been considered, a
term minimization of a special purpose, application-spe- wide variety of theorems proven, and a wide variety of simu-
cific Liapunov function lations studied. There have certainly been some real-world

applications as well. But again, it is difficult to summarize4. Hybrid designs, which combine one or more of the previ-
ous three, together with the use of a pre-existing fixed the literature accurately in a brief overview. In this over-

view, I will assume a conventional sampled-time approach.feedback controller
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(Narendra usually uses a differential equation formulation, arms, this has been a very useful approach. Unfortunately, it
places great demands on human ingenuity to find the Liapu-which is more or less equivalent.) Neurocontrollers of this sort

had already been implemented by 1987, by Jordan and nov functions which meet all the requirements, in any com-
plex application. The need to use a simple preordained modelRumelhart and by Psaltis et al. (49), but the later more rigor-

ous analysis has been crucial to the use of these methods. of the plant will tend to force the use of a restrictive class of
physical plants, as in robotics. Hirzinger’s group (38) hasOn the whole, most of these designs effectively involve the

effort to minimize tracking error at time t � 1, the very next shown that substantial improvements in performance are
possible, if one explores a wider class of physical plants (liketime period:
light-weight flexible arms), which then require a more power-
ful control design.U (t + 1) = (XXX ∗(t + 1) − XXX (t + 1))2 (8)

In any event, neural learning designs need not be an alter-
(Narendra uses the letter e instead of U. The letter U empha- native to Liapunov-based adaptive control. Instead, the Critic
sizes the link to optimization methods, and reminds us that networks in some reinforcement learning designs (to be de-
this error is actually a kind of physical cost rather than some- scribed later) may be used as a constructive technique to actu-
thing like a prediction error.) These designs require the use ally find the Liapunov functions for difficult, complex applica-
of an Action network and a Model network, both of which can tions (51). In fact, many of the special-purpose Liapunov
be adapted in real time. The model network learns to predict functions used in practice actually came from an analytical
X(t � 1) as a function of X(t) and u(t) (and perhaps of earlier solution of a multiperiod optimization problem. (See for exam-
information); it is adapted by neuroidentification methods. ple the work of Sanner at the University of Maryland, using
The Action network inputs X(t) (and earlier information) and neural adaptive control for a variety of space robots, including
outputs u(t). The Action network is trained on the basis of robots built at the university to be controlled from the univer-
derivative feedback, which may be calculated as follows: sity after launch.) The neural optimization methods simply

offer a numerical solution for the same class of problems,
when the analytical solution becomes too complex.

The hybrid neural/classical designs mentioned above are
F ui(t) =

∑
j

∂Xj (t + 1)

∂ui(t)
· ∂U (t1)

∂Xj (t + 1)
(9)

largely beyond the scope of this article. Particularly interest-
ing examples are some of the methods described by FrankIn actuality, this calculation may be performed more economi-

cally by backpropagating through the Model network; in other Lewis elsewhere in this encyclopedia, the Feedback Error
Learning design of Kawato et al. (1), and the Seraji-like Neu-words, one may use the dual subroutine for the Model net-

work, in order to reduce the computational costs (12, Ch. 8; 3, ral Adaptive Controller as described by Richard Saeks of AAC
at many conferences. All of these designs use the traditionalCh. 10). In order to ensure stability, it is important to limit

the overall speed of learning in these networks. feedback controller to insure stability even before learning be-
gins, but also exploit real-time learning in order to improveNumerous general stability theorems have been proven for

this class of design, very similar to the theorems which exist performance or stability over time.
Finally, to convert a tracking problem into a multiperiodfor adaptive control in general. Nevertheless, all of these the-

orems (both neural and classical) do require some very strin- optimization problem, one need only minimize U (as defined
in Eq. (8) over future time periods. In principle, one tries togent conditions. In some applications, like certain forms of

vibration control, one may expect certain instabilities to be pick u(t) so as to minimize (or maximize):
damped out automatically, so that these stringent conditions
will be met. Great success has been reported in some applica-
tions (30). But in many application domains—like chemical

∞∑
τ=t+1

U (τ ) (10)

plants and aerospace vehicles—there are major barriers to
the use of any standard adaptive control techniques, neural In practice, one can then add additional terms to the utility
or classical, because of some bad historical experience with in- (or cost) function, so as to minimize some combination of
stabilities. tracking error, energy consumption, jerkiness, depreciation,

There are many plants where actions which appear stabi- and so on. This class of designs has very strong stability prop-
lizing in the short-term (at time t � 1) will have the opposite erties. For example, Model-Predictive Control (MPC), a
effect in the long-term. Consider, for example, the bioreactor method in this class, has received wide acceptance in the
benchmark problem in (1). Lyle Ungar has shown how all chemical industry, where conventional forms of adaptive con-
kinds of neural and classical adaptive control designs still trol are usually considered too unstable to be trusted.
tend to go unstable when used on that simulated plant. How-
ever, when engineers have used multiperiod optimization de-

Explicit Multiperiod Optimization
signs (which account for long-term effects), they have had
great success in controlling that plant (50). Until recently, explicit multiperiod optimization was the

method of choice for very difficult, realistic challenges in neu-In ordinary control engineering, there are actually two
standard ways to overcome these potential instabilities. One rocontrol. Because the method is very straightforward and ex-

act, it still deserves a place in virtually every serious toolboxis to treat the tracking problem as a multiperiod optimization
problem. The other is to replace the function U in Eqs. (8) for neurocontrol.

In the simplest version of the method, the user must sup-and (9) by an application-specific Liapunov function, which
meets some other stringent requirements, related to the dy- ply a deterministic Model of the plant to be controlled (a

Model which could be based on neuroidentification) and a util-namics of the plant, which must be known. For certain appli-
cation-specific areas of nonlinear control, such as stiff robot ity function U(X). The goal is to train an Action network,
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which inputs X(t) and outputs u(t), so as to maximize (or min- totally derivative-free methods, like evolutionary computing
(EC), which includes genetic algorithms. ES works by simu-imize) the sum of U over time.

In each iteration, we start out at time t � 1. We use the lating entire populations of possible control designs and se-
lecting out those with the best overall observed performance.Model network and the initial version of the Action network

to generate a stream of predictions for X(t) from time t � 1 EC can be very useful for small enough control problems, in
off-line learning, and it can also be used to provide initialup to some final time t � T. We then use BTT to calculate the

complete gradient of Utotal with respect to the weights in the values for a gradient-based system. (See the work of Tariq
Samad of Honeywell (56) and of Krishnakumar (57) for someAction network. (Utotal is just the sum of U(t) from t � 1 to

t � T.) We adjust the weights in response to that gradient, practical control work using ECs.) They can provide an alter-
native to step-by-step learning, in avoiding local minimumand then start a new iteration or quit.

This is more or less equivalent to the classical multiperiod problems. In the long-term, however, a brainlike approach
would have to involve a totally different sort of stochasticoptimization methods called the calculus of variations (20)

and differential dynamic programming (52). The main novelty search method for real-time learning in order to enable the
solution of larger problems (4,58).is that BTT allows a faster calculation of derivatives, and the

use of neural networks allows a general function approxima- Disadvantages of the explicit approach relative to the im-
plicit approach are: (1) the assumption that the Model is ex-tion capability. Complete pseudocode for the approach may be

found in (9, Ch. 8). act; (2) the inability to account for payoffs or costs beyond
time T, in the receding horizon approach; (3) the computa-This simple version was used in Widrow’s classic truck

backer-upper (1) and Jordan’s robot arm controller (53), both tional cost of simulating T time periods in every cycle of adap-
tation. It is possible to eliminate the second disadvantage bydiscussed in the 1988 NSF workshop on neurocontrol (1).

Sometimes (as in Widorw’s case) the time T is actually the using a hybrid design, in which a Critic network supplies the
derivatives which start up the gradient calculations for t �time when a control task is completed. Sometimes [as in most

of the work by Ford (14,15) and by McAvoy et al. (3, Ch. 10)] T (17).
there is a fixed look-ahead into an ongoing process; this is
sometimes called a receding horizon approach (as in some re- Implicit Multiperiod Optimization
cent work by Theresa Long on engine control (54) and other

This class of designs is the most complex, sophisticated andwork by Acar). In giving talks on this approach, the Ford
brainlike class of designs in neurocontrol. They learn to max-group has frequently stressed the need to calculate complete
imize the sum of future utility without ever developing angradients accurately—an issue which is often badly confused
explicit schedule or plan for what will happen in the future.in the existing literature.
In effect, they can solve problems in ‘‘planning’’ without anA slight variant of this approach is to adapt a schedule of
explicit plan.actions from time t � 1 to t � T, instead of an Action network.

More concretely, these designs try to maximize the sum ofThat approach was used in the official DOE/EIA model of the
future utility, in situations where there does not exist an ex-natural gas industry, which I developed circa 1986 (21). It
act, deterministic model of the plant or environment. Therewas also used in the cascade phase two design for robot arm
may exist a stochastic model, which can be used to simulatecontrol by Uno, Kawato et al. (1), and in the chemical plant
the environment, but not a deterministic model. In formalcontroller of McAvoy et al. (3, Ch. 10).
terms, these are learning designs which try to solve generalInstead of simply minimizing or maximizing Utotal in an un-
problems in nonlinear stochastic optimization over time. Ofconstrained manner, one sometimes needs to minimize it sub-
course, these designs can still be applied to the special caseject to constraints. In that case, we can combine the approach
where the plant happens to be deterministic.described previously with more classical methods designed to

In control theory, there is only one family of algorithmscombine gradient information and constraint information, to
which can find the exact solution to such problems, in a com-arrive at a schedule of actions. In fact, the work of McAvoy et
putationally efficient manner: dynamic programming. De-al. takes this approach, which may be seen as a useful special
signs which learn to approximate or converge to the dynamiccase of a more conventional method—nonlinear Model-Pre-
programming solution are sometimes called approximate dy-dictive Control.
namic programming (ADP) (3) or neurodynamic programmingIn the robotics area, Hirzinger has also applied a variant
(59). As an alternative, these designs are sometimes calledof these approaches very successfully in his outer loop optimi-
reinforcement learning designs. [The connections between re-zation (45). Hrycej of Daimler-Benz has also reported a num-
inforcement learning, approximate dynamic programming,ber of successful applications (55).
backwards feedback and neural networks were first dis-Note that all of this work assumes that a Model of the
cussed—albeit it in very crude form—in 1968 (60).] The mostplant is available, and proceeds as if the Model were perfectly
precise label for these designs, favored by experts in this fieldexact. One could account for random disturbances or errors,
in their most technical discussions, is the term adaptive critic.in principle, by using the methods of Differential Dynamic
The phrase adaptive critic was coined by Bernard Widrow,Programming (52). However, there is reason to question the
who implemented the first working neurocontroller in thisefficiency of these methods in accounting for such effects, rela-
class (61). This is the most precise label because there aretive to the implicit optimization methods described in the
other ways to approximate dynamic programming which donext section.
not involve learning, because the designs in this class do notThere are other ways to perform explicit multiperiod opti-
always require neural networks, and because the term rein-mization, without using BTT. Some of these methods involve
forcement learning has been used in the past to refer to a veryless accurate methods of computing gradients, or more expen-

sive ways of computing the same derivatives (34). Others are wide range of concepts beyond the scope of this encyclopedia.
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In dynamic programming, the user normally supplies a critic designs can in fact achieve something like real intelli-
gence. (63). The adaptive critic family also includes more com-utility function U(X, u), and a stochastic model of the environ-

ment, which may be written: plex, more brainlike designs (3,40,64,65,66), combining a
Critic network, an Action network, and a Model network.
These more complex designs have demonstrated the ability toXXX (t + 1) = fff (XXX (t),uuu(t),eee(t),Wf) (11)
handle a variety of difficult test problems in engineering,

where Wf represents the parameters or weights of the model more effectively than alternative designs, both neural and
and e(t) is a vector of random numbers representing random nonneural. The family also includes a special form of Error
disturbances. The problem is to find a strategy of action, Critic first proposed in order to explain certain features of the
u(X), so as to maximize: cerebellum (3, Ch. 13). This form of critic has apparently been

extremely successful in some practical but proprietary appli-
cations in the automotive sector. Finally, the adaptive critic
family also includes two brain and three brain designs which,

〈
T∑

r=0

U (XXX (t + i),uuu(t + i))/(1 + r)i

〉
(12)

in my view, should be rich enough and powerful to capture
the essence of the higher-level intelligence which exists in thewhere r is a user-supplied parameter corresponding exactly
brains of mammals (5,67).to the idea of an interest rate or discount factor in economics,

Space does not permit a complete description of these fourand where the angle brackets denote the expectation value of
subfamilies in this article. However, a few general observa-this sum. In many applications, T is chosen to be infinity or r
tions may be of use to the reader, to supplement the citationsis chosen to be zero or both. In some papers, the term 1/(1 �
mentioned above.r) is called �. U(X, u) often depends only on X; however, I

In the Barto-style family of methods, the most popularinclude u here for the sake of generality.
methods are the original BSA design (62) and Q-learning ofIn dynamic programming, one solves this problem by solv-
Watkins (68). In the BSA design, the Critic learns to approxi-ing the Bellman equation, which may be written as:
mate the function J(X). Thus the Critic inputs a vector of ob-
served sensor data X, and outputs a scalar estimate of J. The
Critic is trained by a temporal difference method, which is a
special case of Heuristic Dynamic Programming (HDP) (69)
first published in 1977).

In HDP, one trains the Critic by use of supervised learn-
ing. At each time t, the input vector is simply X(t). The target

J(XXX (t)) = max
uuu(t)

[
U (XXX (t),uuu(t)) + 〈J(XXX (t + 1))〉

(1 + r)

]

= max
uuu(t)

[
U (XXX (t),uuu(t)) + 〈J( fff (XXX (t),uuu(t),eee(t),Wf))〉

(1 + r)

]
(13)

vector is the scalar U(t) � (J(t � 1)/(1 � r)), the right-hand
side of the Bellman equation, using the Critic itself to esti-Solving the Bellman equation means finding the function

J(X) which satisfies this equation. After we have found that mate J(t � 1). There are two counterintuitive aspects to this
design: (1) the training for time t cannot be carried out untilfunction, we simply pick u(t) at all times so as to maximize

the right-hand side of this equation. After we know J(X), the after the data for t � 1 are known (or simulated); (2) the
weights in the Critic are adapted as if the target is constant,selection of u is a problem in short-term maximization. In

other words, dynamic programming converts a difficult prob- even though we know that a change in those weights would
change the estimate of J(t � 1)! Many researchers have re-lem in long-term maximization or planning into a more

straightforward problem in short-term maximization. sponded to the second aspect by reinventing a ‘‘new’’ method,
which adjusts the weights WJ so as to minimize:In theory, dynamic programming could be used to solve all

problems in planning and control, exactly. In practice, the
sheer computational cost of solving the Bellman equation be-
comes prohibitive even for many very small control problems.
The cost rises exponentially with the number of variables in

�
Ĵ(Ẍ̈ẌX (t),WJ ) − (U (t) + Ĵ(XXX (t + 1),WJ )

1 + r

�2

(14)

the plant or environment. Plants governed by a single state
variable are usually manageable, but plants based on ten are where WJ are the weights in the Critic network, and J-hat

refers to the Critic network. Unfortunately, this sensible-look-usually far too complex.
Adaptive critic designs approximate dynamic program- ing procedure leads to incorrect results almost always, at

least in the linear-quadratic case (69). HDP proper alwaysming, by learning an approximation to the function J(X) (or
to its gradient or to something very similar.). The neural net- converges to the correct results in that case.

The Barto-style family can sometimes be very robust andwork (or other approximator) which approximates the J func-
tion (or gradient . . .) is called a Critic. An adaptive critic very efficient, when the action vector u(t) actually consists of

a small number of discrete choices. When the action variablessystem is defined as a control system which contains a Critic
network, adapted over time through some kind of generalized are truly continuous, or when there are many action vari-

ables, the methods are still robust, but extremely slow to con-learning procedure.
The adaptive critic family of designs is extremely large and verge. Furthermore, the validity of these designs requires the

assumption that X(t) � r(t), that is, that the plant being con-extremely diverse. It includes some very simple designs, like
the Critic/Actor lookup-table system of Barto, Sutton and An- trolled is completely observable. In practice, we can overcome

that limitation by estimating the state vector r(t), and provid-derson (BSA) (62), which has become extremely popular in
computer science. As an example, an advanced version of this ing the entire state vector as input to the Critic; however, the

estimation of the state vector tends to require something likesystem has been used to play backgammon. It has achieved
master class performance in that game, proving that adaptive a neuroidentification component.
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As we climb up the ladder of designs, the next method be- the mammalian brain. The GDHP design (71) does actually
meet certain basic tests (40) which a credible, first-orderyond the Barto-style methods is ADAC—the Action-Depen-

dent Adaptive Critic, closely related to Q-learning, and devel- model of intelligence in the brainshould meet. However, if the
sockets in that design are filled in with conventional feedfor-oped independently in 1989 (3). (In fact, many authors have

reinvented ADAC and claimed a new method for modified Q- ward or Hebbian neural networks, the system is unable to
learn to solve certain basic problems in spatial navigationlearning.) This design was applied successfully by McDonnell-

Douglas in several real-world problems, including the manu- (33,34) which a truly brainlike system should be able to han-
dle. This difficulty could be solved fairly easily, in principle,facture of high-quality carbon-carbon composite parts and

simulated control of damaged F-15s (3). ADAC can handle by coupling together two entire ‘‘brains’’ (adaptive critic sys-
tems) in one design—a higher-order master system built outlarger problems than the Barto-style family, but it still has

limits on scale, and problems related to persistence of excita- of SRN networks (33,34) and a fast low-order slave system
based on feedforward networks (15). However, there is still ation. In a strict sense, there are actually three designs in the

ADAC group the McDonnell-Douglas work used the simplest need for a kind of middle brain as well, in order to explain
phenomena such as task learning, temporal chunking, spatialof the three, which is called Action-Dependent HDP

(ADHDP). chunking, the basal ganglia, and so on. The pathway to devel-
oping such neurocontrollers now seems fairly clear, but con-Next up the ladder are several designs which I have called

Model-Based Adaptive Critics (MBAC) or Brain-Like Intelli- siderable research remains to be done (5,67,4,58). Further-
more, many researchers would argue that there existsgent Control (40,64,65,66). These designs all require the use

of three core components; a Critic, an Action network, and a another gap, between the intelligence one observes in the or-
dinary mammalian brain and the higher-order intelligence orModel. In the simplest design, the Critic is again trained by

HDP. (Some authors now use the term HDP to refer to this consciousness in the human mind (72,12, Ch. 10); however,
one may still expect that an understanding of the formerentire design.) The Model is typically trained by some sort of

neuroidentification procedure. The Action network is trained should contribute to a greater possibility of understanding the
latter. Difficult testbed problems in engineering and computerbased on the derivatives of J(t � 1) with respect to the

weights in the Action network; these derivatives are calcu- science will play a crucial role in permitting the development
of mathematical concepts necessary to both sorts of under-lated by backpropagating through the Critic, the Model, and

the Action network, in that order. [See Refs. (3) and (9, Ch. standing.
8) for critical implementation details.] The Model plays a cru-
cial role here, in distributing the feedback from the Critic to
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