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A neural network, as an artificial intelligence system, is capa-
ble of learning and computing. It consists of a group of pro- . . . Input

layer

Output
layer

cessing units that are organized in a variety of architectures.
The functional capacity of a neural network is largely deter- Figure 2. Perceptron architecture.
mined by its architecture.

Artificial neural networks are conceptually inspired by the
structure of biological systems, which consist of many inter- 2, the architecture of a perceptron neural network includes
connected neurons. While preserving the ability to perform several input units, one output unit, and no hidden units. In-
the complex functions of biological systems, such as learning, put units directly connect to the output unit through a set of
generalization, error correction, information reconstruction, weights, W � (w0, w1, w3, . . ., wn), which are usually deter-
and pattern analysis, neural networks use simplified ap- mined through learning. The output unit is characterized by
proaches to tackle those same problems, as reflected in their an activation function—either a step function or a linear
architecture. function.

A neural network can be characterized at two complemen- At the learning stage, the input units receive an input pat-
tary levels: (1) architecture, by which the arrangements of tern vector X � (x0, x1, x2, . . ., xn). A desired output d is
units and the links among units are described, and (2) algo- given to guide the learning. As a forward calculation, an inner
rithm, by which the weights of links, as a function of learning, product of X and W is computed and projected to the output
are modified so that the designated computation upon various unit. The output of a perceptron is defined as the results of
inputs can be implemented. the activity function of the output unit. The functional output

Among commonly used architectures of neural networks for a perceptron y is
are (1) the perceptron, (2) the multilayer feed-forward net-
work, (3) the recurrent network, and (4) the radial basis func-
tion network. y = f

�
nX

i=1

(w∗
i xi ) + θ

�
(1)

Within a neural network, the links among units are locally
stored as inherent rules, either explicitly or implicitly, when

where f is the activation function for the output unit and canthey are expressed analytically. Each unit alone has certain
be either a linear function or a step function. The input xi cansimple properties, but when interacting with each other, such
be either a continuous analog value or a binary value. Theas cooperating and competing, a neural network as an entity
weight wi is a continuous variable, and can take either a neg-is able to complete many complex computational tasks.
ative or positive value. The bias � is a constant.A general architecture for neural networks is shown in Fig.

A learning algorithm automatically adjusts the weights W1. The processing within a neural network may be viewed as
so that the output y, as a function of input X, will approacha functional mapping from input space to output space. In
as closely as possible the respective desired output d. Errorprinciple, a unit in a neural network can be represented using
E, derived as a difference between d and y, is minimized dur-a mathematical function, and the weights associated with the
ing the learning process.unit can be represented in forms of coefficients of that func-

The perceptron is functionally limited by its simple archi-tion. The functional aggregation among different units, which
tecture of a single layer and a simple activation function. Itcreates the mapping from input to output space, is deter-
can only be applied to classify those inputs that are linearlymined through both algorithm and architecture of a neural
separable. In principle, if the inputs are not linearly separa-network.
ble (see Fig. 2), the learning of a perceptron can never reach
a point where all input vectors are classified properly, but will

PERCEPTRON converge to a linear least-squares fit.
As an example, a 2-input exclusive OR (XOR) problem is

The perceptron represents a type of neural network that con- nonlinearly separable. It can be stated thus: a single output
sists of only the most basic processing units. As shown in Fig. is on (y � 1) only if one or the other of the two inputs is on

(x1 � 1 and x2 � 0; or x1 � 0 and x2 � 1), but not when neither
or both inputs are on (x1 � 0 and x2 � 0; or x1 � 1 and x2 �
1). The output of the XOR problem contains two categories: 1
and 0. No single straight line can separate these input pat-
terns into the correct 1 and 0 categorizations (Fig. 3), thus,
no single perceptron is able to implement the XOR problem.

The limitations of the perceptron can be overcome, to an
extent, by other neural networks that are supported by more
sophisticated architectures.

MULTILAYER NETWORK

Input layer

Hidden layer

Output layer

A multilayer neural network contains one or more hidden lay-
ers, in addition to input and output layers. The basic architec-Figure 1. General neural-network architecture.
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Figure 3. Nonlinearly separable.
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Figure 5. Sigmoidal function.
ture of a 3-layer neural network is illustrated in Fig. 4.
Within this type of neural network, every unit on one layer
connects to all units on the neighboring layer. The connection units are computed and backpropagated through the network.
weights, which are associated with each unit, are all adjust- The backpropagated errors are used as indications for chang-
able. The input layer first introduces external signals to the ing the connection weights for hidden layer(s). The weights
neural network and then projects these signals to the hidden are adjusted in a direction that minimizes the error. This pro-
layer(s). Each unit in a hidden layer has its own activation cess is the well-known backpropagation, discussed in detail in
function (usually of sigmodal type). The hidden layer trans- the algorithm section.
forms the received signals through the associated activation Multilayer networks can become complex systems through
functions and carries the resultant signals to the output lay- learning. The following describes how a network, which con-
ers. The feed-forward transformation and weighting opera- tains a single 2-unit hidden layer, learns to solve the XOR
tions play a central role in constructing a complex functional problem. Recall that a perceptron is unable to solve the non-
relationship between the inputs and the outputs of the neural linearly separable problem.
network. The output layer combines the results of functional The learning samples are (a) (0,0,0), (b) (0,1,1), (c) (1,0,1),
transformation on the hidden layer and generates a depen- and (d) (1,1,0), where the order in the parenthesis is (input 1,
dent outcome for the neural network. input 2, desired output). For hidden unit 1, we have

The feed-forward calculation for a multilayer network may
be described analytically. Starting from the first hidden layer
(k � 2), the transformation between input and output is as

h0(x1, x2) = 1
1 − e−(w00∗ x1+w10∗ x2+w20 )

(3)

follows: If a sigmoid type of activation function is used, then
where x1 and x2 are the inputs, w00, w10 and w20 are the
weights from the input layer to the first hidden unit, and w20

is the weight for bias input which has constant value 1.Ok
j = 1

1 − e−Pm (W k
ij ∗xk−1

i
+θ k−1 )

k − 2, 3, . . ., n (2)

For hidden unit 2, we have

where Ok
j is the output from unit j in layer k; xk�1

i is the output
from unit i in layer k � 1; wk

ij is the weight from unit i in h1(x1, x2) = 1
1 − e−(w01∗ x1+w11∗ x2+w21 )

(4)
layer k � 1 to unit j in layer k; and �k�1 is the bias.

Figure 5 illustrates a 1-dimension sigmoidal function, as where w01, w11, and w21 are the weights from the input layer
well as how the shape of the sigmoid function can be changed to the second hidden unit. The 2-dimensional surface plots
with the weights (coefficients in the equation). Therefore, by shown in Fig. 6 and Fig. 7 illustrate the individual contribu-
adjusting the weights of a network, the functional transfor- tions of each hidden node.
mation in a network may be changed.

During learning, a neural network takes sample inputs,
for which the corresponding outputs are known. Then, the re-
sponses of each output unit in the network are compared with
the known outputs. Error signals associated with the output
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Figure 6. Output surface from first hidden unit.Figure 4. Multilayer neural-network architecture.
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uous function. However, the necessary number of hidden
units in each hidden layer is not known in general. Thus, the
number of hidden units in each hidden layer is chosen experi-
mentally.

Generalization. One of the reasons for much of the excite-
ment about neural networks is their ability to extend learned
knowledge into solving similar but not pre-exposed problems,
the so-called generalization property. After learning a num-
ber of samples, a neural network can often establish a com-
plete relationship that interpolates and extrapolates from the
learned samples. If the network generates correct outputs
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with high probability to input patterns that were not included
Figure 7. Output surface from second hidden unit. in the learned set, it is said that generalization has taken

place. In learning of the above XOR problem, the network
gives output values not only at (0, 0), (0, 1), (1, 0), (1, 1), the
sample inputs, but also at any other inputs. For example, atFigures 6 and 7 show that after the learning, the first hid-
(0.5,0.5), the network generates the output value .7832. Moreden unit fits three sample points. (1, 1, 0), (1, 0, 1), and (0, 1,
often than not, there are an almost infinite number of possible1). The second hidden unit also fits three sample points. (0, 0,
patterns of generalization. It should be pointed out, however,0), (1, 0, 1), and (0, 1, 1). Note that for each hidden unit, one
that when the architecture of a neural network becomes tooof the samples is incorrectly classified; fortunately, the missed
complicated, (too many weights), poor generalization tends topoint is picked up by the other hidden unit. For the output
occur, analogous to curve-fitting where too many free parame-unit, the two surfaces built by the two hidden units are
ters may result in over fitting.weighted and summed. Therefore, the final output surface fits

all four sample points. From a network architecture point of
view, we can see that in order to solve the XOR problem, two RECURRENT NETWORK
hidden units are needed for the hidden layer—each hidden
unit constructs a surface to solve part of the nonlinearly sepa- The term recurrent network refers to a network that has di-
rable problem. The final outputs are determined by a combi- rect or indirect links from units to themselves or from units
nation of functions from the two hidden units, or a weighted to the units in previous layers. This type of neural network
sum of the two corresponding surfaces (Fig. 8). architecture makes recurrent networks capable of represent-

The above figure shows that the network interpolates be- ing temple information (Fig. 9), which allows time-variant dy-
tween the points during learning. Therefore, this architecture namic systems to be modeled. A recurrent network can re-
provides potential for generalization, which is one of the es- store and retrieve associated information in a flexible and
sential aspects of neural networks. time-dependent way.

In Figure 9, there are two kinds of recurrent links: individ-
The Necessary Number of Hidden Layers and Hidden Units. In ual feedback links, and links that connect to preceding hidden

search of a solution for the XOR problem, we may have no- layer(s) and the input layer. In a recurrent network, any
ticed that the neural network architecture, such as the num- number or combination of recurrent links may be used. Differ-
ber of units in a layer and the number of layers, plays a deci- ent recurrent links may represent various internal functional-
sive role. The question arises, how many units and how many ities of a neural network. Each type of recurrent link may be
layers are necessary for a neural network? Up to now, we better suited to solve one rather than the other problems. A
have an answer for the second but not the first question. It general expression for a recurrent network is
has been proven theoretically that, at most, two hidden layers
are necessary for a network to approximate a particular set yyy(t + 1) = fnet (xxx(t),yyy(t),xxx(t + 1)) (5)
of functions to a given accuracy. It has also been proven that
only one hidden layer is sufficient to approximate any contin- where y(t � 1) and y(t) represent the outputs at time t � 1

and t, respectively, and x(t � 1) and x(t) represent the inputs
at time t � 1 and t.
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Figure 8. Output surface from the output unit. Figure 9. Recurrent network.
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From the perspective of processing systems, multilayer den units, the corresponding units will only be activated when
the inputs are within a certain neighborhood of the center.networks can be characterized as static nonlinear functions,

while recurrent networks can be characterized as nonlinear This is why localization occurs.
Each hidden unit constructs a localized bumplike functiondynamic feedback functions. Recurrent networks can include

internal states, and are built with an architecture that is good that is nonzero only within a small region around the center.
The output units sum up the weighted bumplike activationfor applications for time-sensitive problems, such as,
functions in hidden layers and normalize the result to gener-
ate a smooth output. The centers of the Gaussian functions1. Time sequence recognition, for which the network needs

to produce a particular output when a specific input se- are chosen (usually randomly) before learning. During the
learning stage, the width and the height of the Gaussian func-quence is presented.
tions are adjusted by changing the weights. The general for-2. Time series prediction, for which the network needs to
ward calculation for the radial basis function network is asgenerate the rest of a sequence when it is presented
follows:with only part of the sequence.

3. Dynamic system modeling, for which the network needs
From input layer to hidden node jto function as a model for a time-dependent system.

Recurrent networks, like multilayer networks, can learn
through the presentation of samples, using the backpropoga-
tion algorithm.

hj(x) = exp(−wwwj ∗ (xxx − µµµ j )
2)

X

k

exp(−(−wwwk ∗ (xxx − µµµk)2)
(7)

From hidden layer to outputRADIAL BASIS FUNCTION NETWORK

Radial basis function networks have only one hidden layer
and use radial basis functions as activation functions for the

y =
X

j

wj ∗ hj (x) (8)

hidden layer. A radial basis function has one center and the
functional response decreases with distance from the center. where wj is the weight vector from the input layer to hidden
The radial basis function network is described as a specific node j; �j is the center vector for hidden node j; and wj is the
architecture because of its localization property. By localiza- weight from hidden node j to the output node. Here hidden
tion, it means that adjustment of an activation function for nodes use normalized Gaussian activation functions, and �j
one of the hidden units only has effect on the region near its hj(x) � 1. Using normalized Gaussian activation usually im-
center. This regional property makes learning easier and proves the network’s generalization.
faster for certain kinds of problems. J. Moody and Darken
first proposed a network architecture that employs the basic
concept of radial basis functions. NEURAL NETWORKS FOR CONTROL

Most radial basis function networks use Gaussian func-
tions as activation functions for hidden layers. Fig. 10 shows The primary objective of a controller is to generate appro-
a one dimensional Gaussian function. Eq. (6) is the analytical priate signals for a plant so that desired outputs can be pro-
expression for the Gaussian function. duced. Many types of neural networks have been considered

for control. The main advantage of using a neural network
controller is its adaptability to unforeseen situations. There
are two main learning schemes for a neural network control-

y = exp
�−(x − µ)2

σ 2

�
(6)

ler: (1) off-line learning for direct inverse control, and (2) on-
In the above equation, � is the center of the Gaussian func- line learning for the control of dynamic systems.
tion, and x is the input variable. If the input is away from the
center �, the output y will be close to zero. Therefore, when Off-Line Learning for Inverse Control
this kind function is used as an activation functions for hid-

In inverse control, a neural network functions as an inverse
model of the plant. When a desired output for the plant is
presented, the neural network, acting as a controller, pro-
duces a correct control signal. This control signal drives the
plant to generate the desired output. For training a neural
controller, sample data need to be collected when the plant
operates independently (Eq. 9).

y = g(u) (9)

Here, u represents a possible action that is projected to the
plant g(.), and y is the corresponding output produced by the
plant. As to the controller, its function can be seen as an in-
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0
–10 –5 0 5 10 verse problem. Thus, the input and the output of the plant

are used as target output and input for the controller, respec-Figure 10. Gaussian function.
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Figure 11. Inverse control training.
Figure 13. On-line learning for the control of dynamic systems. ID
NN represents identification neural network. Control NN represents
controller network.

tively, at the learning stage (Fig. 11). Specifically, a set of
sample data for training the controller should be (y, u), where

work presented by Narendra, Psaltis, and Lightbody (Fig. 13).y is the input and u is the target output. The neural network
In addition to the neural controller, an identification neuralarchitecture for a controller can be a multilayer feed-forward
network is introduced to model the plant. The identificationnetwork, recurrent network, or radial basis function network.
neural network is trained first separately. After training theAfter learning, the controller is connected to the plant and
neural controller, the identification network is replaced by theserves to control the plant (Fig. 12).
real plant.If g(.) and f (.) represent an unknown plant and the neural

When training the neural controller, the neural networkcontroller, respectively, then the inverse control process may
controller generates a control signal u(t). Instead of being sentbe described as
to the real plant, the control signal is fed to the identification
neural network. The learning of the neural network controller

u = f (x) (10) cannot be carried out directly, since there is no desired control
signal u(t), that is, the inverse of the plant’s desired output.y = g(u) (11)
This problem is solved with help of the identification neural
network. The identification network backpropagates the out-

where x is the desired output for the plant, u is the control put error to its input end. Here, the output error means a
signal generated by the neural controller, and y is the con- difference between the outputs of the identification network
trolled output from the plant. Since f (.) � g�1(.) after the con- and of the reference model. With the backpropagated error as
troller is trained, the desired output from the plant is ob- the correction signal, the learning of the neural controller can
tained by the neural controller. be carried out. After learning, the neural network controller

is connected to the real plant.
The whole learning process is illustrated in Fig. 13. Here,y = g(u) = g[ f (x)] ≈ g[g−1(x)] = x (12)

the neural network controller receives not only external in-
puts, but also the inputs from the feedback of the plant. The

This off-line learning for inverse control works well only for a learning procedures are employed such that the controller ap-
static plant (that is, the input-output relationship does not proximates a control function of the inputs. With the control
vary with time). For time-varying dynamic plants, and for the function, the controller is able to generate the desired control
plants without an inverse, the controller cannot be set up for the plant. The outputs of the controller can be expressed
through the learning described above, no matter what neural as a function of the external input x(t) and the feedback of
network architecture is used. Under such circumstances, one the plant y(t � 1)
solution is to train the controller with the plant separately,
and then adjust the controller to adapt to any temporal u(t) = f [x(t), y(t − 1)] (13)
changes of the plant. This process is called ‘‘backpropagation
through plant.’’ where x(t) � [x(t), x(t � 1), . . .]T, and y(t) � [y(t), y(t � 1),

. . .]T. At the learning stage, error backpropagation is ob-
tained by calculating the Jacobian of the identification net-

On-Line Learning for the Control of Dynamic Systems work, as described in Eq. (14). For a cost function E � (plant
output � desired output)2, its gradients for error propagationIn the control of dynamic systems, the learning of a neural
are derived with respect to weight w of the neural networknetwork controller includes backpropagation through an iden-
controller.tification neural network that acts as a model of the plant.

This neural network control architecture originated from
∂E
∂w

= ∂E
∂u

∂u
∂w

+
�

∂E
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∂yt−1

+ ∂E
∂yt−1

�
∂yt−1

∂w
(14)

Then, the weights are adjusted as
u y
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Figure 12. Inverse control.
�w = −η∗e∗ ∂E

∂w
∗XXX (15)
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network with error feedback:

u(t) = wbu(t − 1) + f (x(t), y(t), e(t)) (16)

where f (.) is a nonlinear mapping function of the neural net-
work when the recurrent link is not included, and e(t) �
[e(t), e(t � 1), . . .]T is the feedback error based on the differ-
ence between the output of the plant and of the reference
model. The main difference between this and other controllers

x(t)

u(t)

e(t + 1)

y(t + 1)

Reference model

z–1

Control
NN

ID
NN

z–1

+

–

is its inclusion of feedback error for control, which makes this
feedback controller error driven. As long as the error exists,Figure 14. On-line learning for the control of dynamic systems with

error feedback. the control signal is adjusted so that the controller can, in
principle, adapt to dynamic environments that were not en-
countered at the learning stage, such as varying physical
properties of the plant.

where � is learning rate, e is the difference between the refer- The introduction of the neural network into control func-
ence model and the plant, and X is the input vector. tions promises a useful approach to overcome some control

After the learning stage, the neural network controller problems. While providing a generic model for the broad class
supplies a control law. In principle, a neural network is able of systems considered in control theory, neural network con-
to approximate any arbitrary nonlinear functions. Thus, use trol is specifically suitable in dealing with unknown dynamic
of neural network provides an useful mean to solve an impor- systems. However, the architectures of the applied neural
tant problem—nonlinear control. Also, since all the parame- network need to be configured individually, depending on the
ters for the neural network controller, as well as for the neu- details of the control problem. Meanwhile, on-line learning
ral network identification model, are obtained based on still confronts us with potential instability. The solutions to
learning through samples, the corresponding control function many of the remaining problems may rely on deeper under-
may include some mathematically untraceable properties of standing of the relationships between neural network archi-
the plant. tectures and learning algorithms.

Due to the flexibility of neural network architectures, dif-
ferent connection schemes can be applied to the on-line neural
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