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simplified model of a biological neuron in which the output of
neuron i, xi, is a nonlinear function of its inputs yi

xi = f (yi ) (1)

yi = � j wi j x j − θi (2)

�xj� is the set of outputs of other neurons connected as inputs
to neuron i through a set of ‘‘synapse’’ weights �wij�. A thresh-
old value �i is subtracted from this sum. Equations (1) and (2)
define what is meant by neural circuits, neurons, and syn-
apses in artificial neural networks. The neuron function xi �
f (yi) is typically a saturating function such as the sigmoid
x � (1 � e�y)�1. Similar functions such as y � tanh x may be
used as well. If the neuron outputs are voltages and the
weights are conductances wij � Gij, then yi is a sum of cur-
rents.

Neural networks differ primarily in the way the neurons
are interconnected. In the one-layer Hopfield network the
output of each neuron is fed back to the inputs of all other
neurons. In feedforward multilayer perceptron networks, the
outputs of neurons in one layer become the inputs to neurons
in the next layer but not to later layers. The existence of ‘‘hid-
den’’ layers between the input and output layers allow
multilayer perceptron networks to handle more complex clas-
sification problems. Historically, the interest in neural net-
works was satisfied for many years by the realization that
one-layer perceptron networks could not reproduce the behav-
ior of an exclusive-OR (XOR) Boolean function (3). The real-
ization that multilayer perceptron networks could reproduce
XOR behavior helped rekindle interest in neural circuits.

Different neural networks also differ in their applications.
For example, Hopfield nets can be used as an associative
(content-addressable) memory that can distinguish trained
patterns from noisy inputs. The net initially stores a set of
multibit input patterns by using a simple learning rule that
increases the weights of the connections between neurons
which are simultaneously active. Hopfield (4) showed that the
stored patterns are stable and that, when a noisy example
pattern is presented as an input, the network outputs will
converge to the correct example pattern; however, there are
limitations. The number of patterns that can be stored andNEURAL CHIPS
retrieved successfully is limited by the size of the network
and the closeness of example bit patterns in relation to theNEURAL NETWORK CONSTRAINTS
amount of bit-switching noise in an input pattern. This reportON NEURAL CHIP DESIGN
by Hopfield in 1982 revived interest in neural networks.

An advantage of neural networks is that useful behaviorComputer algorithms often perform poorly on tasks such as
can be trained or learned rather than programmed, as wouldsignal recognition, which humans perform readily. In particu-
be the case for deterministic algorithms executed on a digitallar, speech and image recognition generally require enormous
computer. In training (supervised learning), the desired out-processing power (1). Neural networks attempt to match the
puts of a neural network are fixed for a set of training datacapabilities of humans by interconnecting networks of circuit
(e.g., handwritten characters) applied to the network inputs.elements that mimic the capabilities of brain cells. These arti-
The network learns by adjusting synapse weights so that net-ficial neural networks can be trained to identify and predict
work outputs match the desired outputs.complex signals. Neural circuits are hardware implementa-

Interest in multilayer perceptron networks was rekindledtions of neural networks; neural chips implement neural cir-
by the discovery of effective procedures for adjusting hidden-cuits as integrated circuits (IC) using microelectronics tech-
layer weights. Backpropagation (of errors) popularized bynology. Some basic concepts in neural networks are required
Rumelhart, Hinton, and Williams (5) is the best-known proce-to appreciate the issues involved in designing neural circuits
dure. The backpropagation training algorithm uses an itera-and implementing them as neural chips.
tive, gradient-search technique to minimize the mean-squareMost artificial neural circuits are direct descendents of Ro-

senblatt’s perceptron circuits (2). Their behavior is a greatly error between the actual (xi) and desired (di) outputs of neu-
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ron i. The weights connecting neuron i to the neuron outputs to 5 bits (3.1%) and neuron outputs to 3 bits (12.5%), com-
pared with a full-precision weight resolution of 32 bits (2.3 �from the preceding layer are changed by an amount
10�8%) for both. However, the full 32-bit precision was re-
quired for training with the backpropagation algorithm. Note�wi j = wi j (t + 1) − wi j (t) = ηei f ′

i(yi)xj (3)
that 32-bit precision would be extraordinarily high for analog
instrumentation; 16-bit resolution, which is at the upper endwhere
of conventional digital-to-analog or analog-to-digital convert-
ers (DACs or ADCs), corresponds to a precision of 1.5 �ei = xi − di (4)
10�3%.

for a neuron on the output layer; � is called the learning rate The requirements of efficient sums of products, area-effi-
and is chosen by the user. A small � (� 0.001) changes cient synapse implementation, adjustment and storage of syn-
weights slowly. If � is too large (� 10), the weights may apse weights, production of negative and positive neuron in-
change so rapidly that the errors do not decrease (6); f �i (yi) is puts, and sufficient computational precision all constrain the
the derivative of the neuron function with respect to its input. effectiveness with which neural circuits can be implemented
The derivative of the sigmoid function has a simple form, as neural chips. For example, a linear, four-quadrant, analog
f �(y) � x(1 � x). multiplier requires more MOSFETs and increases the size of

Calculating the error for an output neuron is quite a synapse cell. Correspondingly, this reduces the number of
straightforward as both the desired output di and the actual synapses that can be implemented on a chip. Replacing ana-
calculated output xi are known. For neurons in the hidden log multiplication by digital multiplication can increase preci-
layers, the errors are calculated by backpropagation of errors sion but requires a large increase in area. This area can be
from the succeeding layer. Thus, for a hidden layer reduced significantly if parallel multiplication is replaced by

serial multiplication; however, it takes longer to execute oper-
ations.ei = � j e j f ′(yj )wi j (5)

Choosing the right balance of such trade-offs is the key for
successful implementation of neural networks. Some of thesewhere the sum is only taken over neurons in the succeeding

layer. The corresponding weight change for the synapse in- trade-offs for representative implementations of neural chips
are quantified in the following. The remarkable diversity ofputs to neuron i is given by Eq. (4).

Neural networks have mostly been implemented by soft- approaches to neural chip design is illustrated by the discus-
sion of several representative circuits. Circuit and chip areasware models. These have the advantage of high precision for

the required additions and multiplications. However, because as well as processing speeds are given to allow comparison of
alternative circuit implementations. Since circuit size de-the computations of a highly parallel, connectionist architec-

ture are being simulated by serial computations, software im- pends on technology, each technology is characterized by its
minimum feature size.plementations of neural network behavior are inherently

much slower than hardware implementations.
Analog neural circuits built with discrete components in

the 1960s (7) already demonstrated neural network capabili- DIGITAL IMPLEMENTATIONS OF NEURAL CHIPS
ties. However, they were limited to the capabilities of net-
works with only a few neurons by the size and cost of compo- Kolinummi et al. (10) review many digital implementations of

neural networks that have been reported in the literature.nents. At present, optoelectronic (8), digital, and analog
implementations of neural networks are being studied. This These digital implementations may be realized at several lev-

els. A neurocomputer may consist of many parallel processingarticle focuses on the obstacles to implementation of digital
and analog electronic neural circuits on IC chips with empha- units and other interface circuitry, an acceleration board,

which can be used with a host computer, or a standalone chip.sis on analog neural circuits.
Equation (2) indicates that neural circuits must perform Purely digital systems are flexible and support a wide range

of neural algorithms. However, because digital implementa-sums of products efficiently to be effective. Since the intercon-
nected synapses that form the products are by far the most tions are area-hungry, the size of networks that can be imple-

mented on a chip is limited. Digital implementations may suf-numerous component in neural networks, the area-efficient
implementation of synapses is essential. In analog circuits, fer from limited resolution because the chip area is

proportional to the wordlength. Different implementationsOhm’s law allows a single conductor to multiply a voltage to
produce a current, and currents are summed at a node by from the literature report precisions that vary between 8 and

16 bits. The maximum number of parallel processing units onKirchhoff ’s current law (9). The simplicity of this implemen-
tation is seductively attractive, but it is complicated by the one chip is generally on the order of several hundred or less,

with several chips on several boards connected together forneed to adjust and store synapse weights if the neural circuit
is to learn new behavior. Another complication is the need for one system to realize large networks. Digital implementations

of on-chip learning have been more successful because theysynapses to produce negative as well as positive neuron inputs.
The computational precision required in the learning and do not have mismatch and nonideality problems. However,

the area required for on-chip training is even larger comparedexecution phases of neural circuits is another key factor in
their design. Interestingly, greater precision seems to be re- to an analog network. Digital realizations of radial basis func-

tions and self-organizing maps have been more successful upquired for learning than execution. This was investigated in a
software simulation of a neural network with 60,000 synapse to now.

A good example of a digital implementation of a neuralweights trained to recognize handwritten digits (9). Network
performance was unchanged if weight resolution was reduced network is presented by Beichter et al. (11) who describe the
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architecture and design of a VLSI array processor chip relatively small compared with an area of about 160/4 � 40
mm2 for each MAC chain and associated circuitry.(MA16) at the heart of Siemens’ 16-bit SYNAPSE neurocom-

puter. Although digital designs may be more flexible than an- Burr (12), in reviewing the design of neurochips, notes that
the performance requirements of a neural network can be dis-alog designs, which have to be tailored to specific algorithms,

their design illustrates the compromises required in the digi- played on a plot with axes corresponding to storage (connec-
tions) and processing speed (connections per second). In thistal implementation of a neural network.

Multiply-accumulate operations such as �j wijxjp for plot, speech processing requires processing 105 to 106 connec-
tions (C) at speeds of 107 to 1010 connections per second (CPS)weights and inputs from Eq. (2), where p designates one of a

set of P patterns to be recognized, must be implemented effi- or 0.01 to 10 GCPS. The relative areas assigned to storage
and processing may be expressed in connections per processorciently for high neural chip performance. Note that this ex-

pression can be regarded as a matrix-matrix Multiply-ACcu- (CPP). Operating at 50 MHz, a single MA16 chip with 4 MAC
chains each containing four multipliers can process informa-mulate (MAC) since we have to consider several inputs �j� for
tion at a rate of 4 � 4 � 50 MHz � 800 multiply-accumulatesseveral patterns �p�. In addition to pattern recognition, learn-
per second � 800 MCPS. A SYNAPSE1 processor containinging and weight update require similar operations.
8 MA16 chips and operating at 40 MHz has a processing rateImplementation requires a compromise or trade-off be-
of 5.12 GCPS. With 128 million 16-bit words of memory (con-tween weight storage and the number of MAC chains on an
nections), SYNAPSE1 should be an effective speech processor.MA16 chip. More MAC chains on a chip increase processing
With 4 � 4 � 8 � 128 multiply-accumulate processors, CPPspeed but take up area, which could be used for weight stor-
� 106 for SYNAPSE1 and CPS/C � 5.12 G/128 M � 40. Thisage. If weights are stored on-chip, the processor area must be
is comparable to the values cited in Ref. 12 for biological netsbalanced with memory area; if they are stored off-chip, there
with CPP � 107 and CPS/C � 10.must be sufficient memory bandwidth. This need for a bal-

ance between processor speed and memory bandwidth (Am-
dahl’s rule) is a classic trade-off in computer design. Because
they decided to store weights off-chip in inexpensive DRAM NONIDEALITY CONSTRAINTS ON

ANALOG NEURAL CHIP DESIGNchips, the MA16 chip can be devoted to signal processing.
This introduced two constraints on memory bandwidth: the

Departures from ideal circuit operation make implementationnumber of I/O pins available for data transfer, and DRAM
cycle times. particularly difficult for analog circuits. The effect of nonideal

analog neural circuit behavior on backpropagation learningEach MA16 chip contains four systolic MAC chains. Each
chain accumulates the sum of four multiplications, providing has been examined by Frye and co-workers (13). Although

their circuit follows the simple approach of summing currentsan array of 16 16 � 16-bit multipliers. In addition, each chain
contains a scaling multiplier and accumulator along with controlled by conductive synapses, their synapse is a photo-

conductor whose conductance (weight) is controlled by illumi-other circuits that facilitate other essential neural algorithm
operations. For pattern recognition each MAC chain computes nation, making it an optoelectronic neural circuit. Component

variations are one nonideality affecting the behavior of neurala 4 � 4 matrix multiplication of 16-bit weights and inputs in
16 clock cycles. To achieve systolic computation rates a pipe- chips. In their case, the photoconductive elements had an

overall variation of �10% under uniform illumination; thislined, 16 � 16-bit array multiplier was implemented. Each of
its 16 � 16 � 256 1-bit multiplier cells contains a 24-MOS- was increased to about �30% by nonuniformities and mis-

alignments of the optical illuminators.FET full adder, a NAND/NOR partial product bit gate, an
inverter, and four latches. They designed and built a layered feedforward network

with three analog inputs, ten hidden neurons, and two outputData transfer to the MAC chain takes place in 16-word
blocks corresponding to a 4 � 4 submatrix. Using 4 � 16 � neurons. Each neuron was composed of four transconductance

amplifiers. Back-to-back diodes in the feedback path of the64 pins and a clock rate of 40 MHz, each MA16 chip achieves
a memory bandwidth of 2.56 Gbps. During the 16 clock cycles final stage gave a sigmoidally shaped response. The strength

of the synaptic connections was controlled by varying thefor 4 � 4 matrix multiplication in pattern recognition, the
MAC weight buffer sends its 16 words to the MAC chain in a length of a bar of light from 0 to 240 (� 28) pixels; this intro-

duced weight quantization.cyclical fashion. The top multiplier receives the first, fifth,
ninth and thirteenth word and keeps this input for four clock An advantage of neural networks is robustness; behavior

should be affected little by component variations (missingcycles to multiply it with four words from the input-data
buffer. Each buffer is a dual-port memory containing 2 � synapses, etc.). Their network was trained to emulate an un-

known system, in their case the ballistic trajectory of a projec-16 � 32 16-bit words. The dual port allows 16 new words to
be brought into the buffer during the 16 cycles while 16 words tile. This is common in control applications where the neural

network emulates the behavior of the ‘‘plant’’ to be controlled.are entering the MAC chain. A third 32 � 16-bit buffer in the
MAC chain stores and transfers the result of the 4 � 4 matrix An ideal software model of the neural circuit hardware, which

had learned from the same set of training examples, was runmultiplication.
Each 1-bit buffer cell was implemented as a three-transis- in parallel with the hardware to test the effect of component

variation on the outputs. Although the hardware needed moretor dynamic memory cell with nondestructive readout, which
occupied about a third of the area of an eight-transistor static training, it reached a comparable steady-state error that was

less than 4% for components with more than 30% variation.cell. In 1 �m CMOS technology, a total area of about 1 mm2

is occupied by memory cells for each MAC chain, neglecting In another experiment, the loss of 40% of the hidden layer
circuitry only slightly increased the error to 5.5%, illustratingthe area consumed by local control and power lines. This is
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the robust ability of neural circuits to adapt to severe compo- rangement it was possible to decrease weight decay by a fac-
tor of 50 from 30 to 0.6 mV/s at room temperature. Thisnent variations.

When the network was trained in signal prediction for a decrease occurs because voltage decays at the two storage
sites tend to cancel when the difference between gate voltagestwo-dimensional chaotic relation, it was discovered that while

a learning rate � greater than 0.1 resulted in unstable, diver- is Vw. This circuit was implemented as a 32 � 32 vector-ma-
trix multiplier chip using the MOSIS 3 �m p-well process. Togent outputs, smaller values of � gave stable outputs that

were no better than random guesses. This was due to the ef- reduce the number of input/output pads on the chip, the chip
contained analog serial-to-parallel and parallel-to-serial mul-fect of weight quantization on backpropagation learning. Since

backpropagation learning involves gradient descent down an tiplexers for input and output vectors, respectively. Their chip
could be cascaded with off-chip amplifiers to form multilevelerror surface in weight space, accurate differentiation re-

quires this surface to be a smooth, continuous function of neural circuits.
weights. If the weight change �w calculated from Eq. (3) is
less than one quantum, the weight remains unchanged. Over-
coming this required accurate off-line calculations of weight ANALOG IMPLEMENTATIONS OF NEURAL CHIPS
changes that were accumulated during learning until �w ex-
ceeded a quantum. Although more nonlinear synapses are smaller, the standard

backpropagation algorithm fails to converge for nonlinearSeveral nonidealities (noise, weight quantization, and dy-
namic range or limited maximum connection strength) were synapses because incorrect derivatives of synapse functions

become critical in the end phase of learning when somestudied by simulation. Simulations indicated that output er-
rors were lower for low noise levels but became comparable weights are driven toward saturation. To overcome this prob-

lem in the implementation of neural chips, Lont and Guggen-for rms input or output noise levels greater than about 5%.
Once training was established, simulations also indicated bühl (15) reformulated the backpropagation algorithm to

allow the use of simpler, three-transistor synapses with re-that quantization error was similar to noise in its effects. Re-
sidual errors only became comparable to weight increments duced linearity. These synapses perform two-quadrant multi-

plication and produce a differential current that is converted(quanta) greater than about 5% (
 4-bit quantization). Errors
increased rapidly above a plateau when maximum synaptic to a bipolar current at the neuron input. They embodied a

three-layer network with 18 neurons and 161 synapses on aweights were less than one, indicating that limited dynamic
range was the most important limit to hardware perfor- small 3.8 mm2 chip using 3 �m CMOS technology. The area

of their synapse cell was 3564 �m2, allowing a high density ofmance.
Although the optoelectronic approach in Ref. 13 produces 142 synapses/mm2. Their soma circuit (the heart of the neu-

ron) had an area of 9504 �m2.relatively linear multipliers, practical analog MOSFET multi-
pliers are more complex circuits in order to improve multi- Once again, synapse weights were stored in an off-chip dig-

ital memory and loaded onto storage capacitors by a digital-plier linearity, dynamic range, and weight accuracy. Kub and
co-workers (14) describe programmable analog multipliers in to-analog converter. With a 5 V supply voltage, the weight-

decay rate was 0.6 mV/ms. Clock feedthrough was the largestwhich weights are stored dynamically on the capacitances of
MOSFET gates. The weights are refreshed periodically source of error (35 mV for zero switching times), which was

comparable to the static offset voltages of the differentialthrough pass transistors from values Vw stored off-chip in a
digital memory and accessed through a digital-to-analog con- pairs.

The chip was tested with a simple pattern-recognition ap-verter. A differential-pair two-quadrant multiplier cell can be
built with three MOSFETs, to which two pass transistors plication. When initialized with a weight set having a normal-

ized mean square error (mse) of 0.001, the chip performedmust be added for weight refreshment. This circuit has the
advantage of not requiring a current-summing amplifier with correctly with mse � 0.012 after training (11% linear error).

However, the chip failed to learn, mse 
 0.185 (43% lineara low input impedance. Linear multiplication requires that
the current-source transistor, controlled by the input voltage error), when initialized with a random weight set. This was

because the 8-bit resolution of DACs and ADCs used in theirVx, operate in the saturation region. Thus, this current has a
problem with linearity at low values of input voltage. prototype was insufficient. A resolution of 15 or 16 bits is re-

quired for inputs/outputs and weights, respectively, duringAs shown in Fig. 1 a four-quadrant six-MOSFET modified
Gilbert multiplier cell can be realized by coupling two of these the learning process.

Hollis and Paulos (16) considered the use of MOS analogdifferential pairs with reversed polarities. For a supply volt-
age VDD � 10 V, and appropriate reference biases for Vx and multipliers in Hopfield-style neural networks. Their imple-

mentation uses digitally controlled current sources to storeVw, this circuit has a total harmonic distortion (THD) less
than 2% for Vx or Vw � 1 Vpp. By adding another MOSFET as weights together with two-quadrant analog multipliers. A set

of parallel binary-weighted current sources is attached to aa current source for the two differential pairs, this circuit be-
comes the Gilbert multiplier shown in Fig. 2. This increases differential, current-steering multiplier transistor pair. A 6-

bit programmable weight requires W/L ratios from 4 to 1/8.the dynamic range for linear operation somewhat with less
than about 1.5% THD with Vx or Vw � 1.5 V peak-to-peak. Negative weights can be achieved by reversing the polarity

of the differential input signal. However, this requires fourThus, the use of fewer MOSFETs in a synapse multiplier cell
reduces cell area and allows more neural circuits to be imple- switches in front of each multiplier pair. An important differ-

ence of their circuit from the conventional Hopfield model ismented on a chip. However, multipliers implemented with
fewer transistors are more nonlinear. that multiplier nonlinearities limit the current into each mul-

tiplier pair, before the product-term currents are summed.Capacitor storage of weights is limited by the need to re-
fresh their charge. By using a balanced, double-capacitor ar- Despite this difference, simulations indicated comparable be-
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Figure 1. Modified Gilbert programmable analog multiplier (14). This is a simplified (six-
MOSFET) multiplier which requires two differential pairs for linear and bipolar (four-quadrant)
multiplication. Additional capacitors and transistors are required for weight storage.

havior, converging to optimal solutions for simple problems. to determine the minimum resolution that would not sacrifice
solution quality. It was found that a 6-bit plus sign implemen-For more difficult problems convergence was limited by neu-

ron gain, as high gain is required to force a low-preference tation of weights gave sufficient resolution for a broad range
of applications. This probably reflects lower weight resolutionneuron to the desired final state. Once the neuron model was

verified, simulations were performed using quantized weights requirements for Hopfield networks.
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Figure 2. Gilbert programmable analog multiplier (14). This is the classic analog multiplier
circuit implemented in CMOS technology. The additional transistors extend the dynamic range
for linear multiplication.
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It was possible to fabricate a fully connected, seven-neu- by the ability of the neuron circuits to detect a change. This
corresponded to a charge difference of about 2.5 million elec-ron, 49-synapse Hopfield network using MOSIS 3 �m technol-

ogy on a 6 mm2 chip. Each synapse multiplier cell required trons on a floating gate. A 6-MOSFET differential, 4-quadrant
multiplier synapse was implemented with a 2009 �m2 cell60,000 �m2 to implement one 6-bit (plus sign) connection

weight. The actual analog multiplier occupied only 40% of the size in a 5 V, 1 �m CMOS EEPROM technology (20).
cell area. To compensate for variations in chip fabrication, the
MSB weight was implemented with multiple replicas of a unit
current source MOSFET. It was estimated that a fully con- IMPLEMENTING ON-CHIP LEARNING
nected 81-neuron Hopfield network could be fabricated on a
1 cm2 chip by using 1.25 �m design rules. All of the implementations discussed so far have involved off-

chip learning or training to avoid the complexity and areaMasa and co-workers (17) have described a high-speed an-
alog neural coprocessor, which classifies high-energy particle costs associated with implementing on-chip learning. In many

cases, chip nonidealities make it difficult to transfer off-chipdata taken at high speed (1016 bytes/s) from synchrotron de-
tectors. This coprocessor operates at 20 MHz using a 2.5 �m learning on chip. Dündar et al. (21) studied the extent to

which an on-chip synapse with quadratic nonlinearities de-CMOS technology and evaluates a 70 � 4 � 1 feedforward
network within one clock cycle. This corresponds to a signal grades neural network performance when the network is

trained off-chip with ideal, linear synapses implemented inprocessing rate of 284 multiply-accumulates in 50 ns or 5.7
Gc/s. Their circuit uses a CMOS inverter driving a low-imped- software. Simulations indicated substantial deterioration of

neural network performance, which could largely be recov-ance load as a unity-weight synapse that converts voltage to
current. Similar to the approach of Hollis and Paulos, vari- ered if the off-chip synapses matched the on-chip synapse

nonlinearity. Bayraktaroglu et al. (22) perform the trainingable weights were obtained by switching parallel inverters
with different gate widths in or out of the circuit. A 4-bit (plus on a SPICE-like circuit simulator and download the weights

thus obtained to the circuit itself. This approach seems to cir-sign) synapse required 6000 �m2, allowing the feedforward
network to fit on a 26 mm2 chip. Since their application is cumvent most of the nonlinearity and loading problems ob-

served. Edwards and Murray (23) classify what we havefixed, the high accuracy required for on-chip learning is
avoided; their chip could be mask-programmed during fabri- called limited resolution into two groups, namely, imprecision

and inaccuracy. Through an algorithm that they have devel-cation.
It is interesting to compare their analog implementation of oped, they perform training, the results of which are much

more fault-tolerant to quantization or errors in weights.multiplication-accumulation with a purely digital implemen-
tation using a similar 2.5 �m CMOS technology. Their ap- Training methods for neural chips can be studied under

three headings: off-chip training; chip-in-the-loop training;proach computes a 4 � 4-bit multiply-accumulate in 50 ns
with a multiplier area of 6000 �m2. To maximize speed for and on-chip training. At present, off-chip training has mostly

been abandoned. Most implementations in the literature em-digital signal processing, Hatamian and Cash (18) developed
a parallel, pipelined CMOS multiplier that can compute an ploy chip-in-the-loop training, where the training algorithm

runs on a host computer that collects the data from the chip.8 � 8-bit multiply-accumulate in 14 ns. However, their multi-
plier requires 12.5 mm2. Scaling back the 8 � 8-bit multiplier The approach in Ref. 22 can be considered chip-in-the-loop

training, where a simulation model of the chip is used insteadarea by a factor of four to match the 4 � 4-bit multiplier, the
ratio of areas is 520 while the ratio of multiply-accumulate of the chip itself.

Although on-chip training may be desirable in many situa-times is only 3.6. Analog multiplication requires much less
area for comparable speed. tions to exploit the speed of network parallelism without

reaching an input-output bottleneck (24), very few successfulThe floating-gate technology used in flash memories allows
weights to be stored on single MOSFETs without requiring implementations have been reported. The main problem with

on-chip training has been the difficulty of implementing therefresh. Intel used this technology to develop an Electically
Trainable Analog Neural Network (ETANN) chip (19). When training hardware, both because of the size of the training

hardware and because of precision mismatches in forwardintroduced, it was certainly the most complex chip developed
for neural networks with 64 neurons and two 80 � 64 synapse and reverse operations. Masa et al. (17) estimate that the ex-

tra circuitry required for on-chip learning is at least as largearrays. Two groups of 80-wide array inputs corresponded to
64-dimensional vector inputs plus 16 fixed-bias inputs. The as the neural circuitry without on-chip learning. They also

note that the computational precision required for most learn-ETANN chip implements the inner product of an input vector
with stored weight vectors, generating 64 scalars that are ing algorithms is difficult to achieve with analog approaches

and that cost increases more rapidly with increased precisionpassed through 64 sigmoid neuron functions to the outputs.
One synapse array was used for inputs, the other for feed- for analog designs in comparison with digital designs. Mon-

talvo et al. (24) describe a proof-of-concept chip that holdsback; either or both of the arrays could drive the neuron
responses. Fully parallel processing yielded performance promise for implementing on-chip training while meeting

stringent requirements on cost, power, flexibility and systemexceeding two billion multiply-accumulate operations (connec-
tions) per second (2 Gc/s). Typical resolution of the analog integration.

They note that backpropagation assumes sigmoidal neu-inputs and outputs was 
6 bits. To change weights an indi-
vidual synapse is addressed and pulses of different widths or rons and linear synapse multipliers. A training algorithm,

which does not require linear multipliers, is desirable to re-voltages are applied externally to two chip pins to shift the
threshold voltage of an individual floating-gate MOSFET. duce synapse sizes. Perturbation-based algorithms are well-

suited for analog VLSI implementation because they do notWeights are changed with 8-bit (0.4%) resolution, one synapse
at a time. The physical limit on resolution (20 mV) was set assume particular synapse and neuron characteristics. In se-
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rial weight perturbation, weights are updated according to
measured error gradients by

δw = −η �E/�w (6)

where � is the learning rate, �w is a weight perturbation and
�E � Epert � Enom is the difference between the observed error
with the weight perturbation Epert, and the observed error
with weight perturbation Enom. Serial weight perturbation is
slow, of order O(W) where W is the number of weights, be-
cause all weights are updated serially.

Montalvo, Gyurcsik, and Paulos (24) introduce a faster
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perturbation-based algorithm, CHain Rule Perturbation
(CHRP), in which the outer layer weights are updated directly Figure 3. Complete synapse circuit (24). This is a nonlinear, four-

quadrant multiplier circuit which uses floating-gate technology forusing Eq. (6) and hidden-layer weights are updated using the
storing weights.chain rule. CHRP is similar to the well-known Madeline Rule

III algorithm (25), except that neuron outputs rather than
neuron inputs are changed. If a network has J hidden nodes

attached to a 1 pF storage capacitor Chold; Yp and Yn are heldand I inputs, weight update requires only O(2J � I) opera-
to the supply voltage or ground. In the hold mode, Yp is attions. Implementing CHRP requires placing weight-update
ground and Yn is at the supply voltage, thus both transistorscircuits with every neuron. This is regarded as a reasonable
are off. During training or learning, the charge on Chold is up-trade-off between neuron compactness and weight-update
dated by pulsing Yp to the supply voltage and Yn to ground.speed.

Very small charge packets can be added to or removedIt is noted that precision requirements are quite different
from Chold depending on the learning-control signals Vinc andfor digital and analog implementations of neural networks.
Vdec. For a 10 nA charging current having a 10 ns pulsewidth,For digital weight storage, their simulations (26) and review
the change in the stored voltage is 100 �V. Since the floating-of the literature suggest that 5-bit registers, corresponding to
gate MOSFETs have a transconductance of about 30 �A/V5-bit weight resolution, are sufficient for feedforward compu-
and a nominal current of 10 �A, the change in supply currenttation, but 12-bit resolution is necessary for learning, al-
is 3 nA, corresponding to a resolution of 0.0003 � 2�12; Vpertthough this is somewhat problem-dependent. Low analog pre-
and Cpert are used to perturb weights. Since Cpert � 15 fF, verycision is generally the result of nonlinearity and offset. Since
small perturbations can be applied without affecting thenonlinearity can be handled by using an appropriate training
stored weight on Chold. Since this circuit does not producealgorithm as described in the foregoing, offsets are the most
weight updates of the wrong sign, the offset problem is mini-serious problem. Offsets tend to accumulate as weights are
mized. The result is a compact synapse circuit occupyingchanged. This is particularly dangerous late in the training
4900 �m2 in a 2 �m technology.process where offsets can change the sign of small weight up-

After training, the current is temporarily stored as a volt-dates.
age in a sample-and-hold circuit on the periphery of the chip.Precision requirements in the analog domain were studied
High-voltage pulses are then applied to F2 until its currentby examining the effect on a 1–20–6–1 feedforward network
matches that in the sample-and-hold circuit. High precision issolving a function mapping problem. The mapping was from
difficult to achieve when programming floating-gate devices.a random number in the range (�1, 1) to a sigmoidal function
Fortunately, since programming F2 is essentially a recall op-and was used previously to study digital precision require-
eration, 5 bit precision is sufficient. Floating-gate devices tendments (26). Offsets on the order of 0.000244, corresponding
to make poor current sources because the floating-gate volt-to 2�12 or a resolution of 1 bit in 12, were required to keep
age, and consequently the drain-source current, depend onrms output errors below 0.02. Of particular interest was the
the drain voltage. Balanced input voltages help by limitingobservation that with higher offsets (0.000976 � 2�10), rms
the voltage swing at the drains of the floating-gate devices.output errors reached low values (0.02) after less than ten

Note that because the synapse is nonlinear, the neuron cantraining cycles but then rose to high values (0.1). Stopping at
be linear without affecting the behavior of the network. Tothe right point in the training process requires a more sophis-
allow flexibility the synapses are connected by a reconfigura-ticated training procedure. Although adding a random offset
tion switching matrix that adds about 20% to the total syn-of 0.03 � 2�5 to correctly trained weights produced an rms
apse area. In their 8 neuron, 64 synapse proof-of-concept chip,error of 0.1, the output closely matched the desired sigmoi-
over half of the chip area is consumed by weight-learning cir-dal function.
cuits. However, this would be expected to shrink below 10%The synapse circuit, shown in Fig. 3, is a nonlinear four-
for a 100 neuron chip.quadrant multiplier with floating gate current sources as was

used in the ETANN chip. The weight is altered by varying
the current of F2 about the constant current of F1. Changing SUBTHRESHOLD ANALOG NEURAL CHIPS
the charge on the floating gate requires high-voltage pulses
and may take hundreds of microseconds. During training, a Mead (27) has argued eloquently that weak inversion sub-

threshold MOS circuits are a natural way to implement neu-DRAM cell is used to store the control-gate voltage, which
may require many thousands of small weight updates. The ral systems. He notes that two barriers have historically

blocked the path to creating a nervous system in silicon. First,DRAM circuit shown is a two-MOSFET CMOS inverter
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neural systems require far greater connectivity than standard fier can be converted to a wide-range amplifier that allows
input and output voltages to cover almost the entire rangeVLSI circuits. Second, there was not sufficient knowledge of

the organizing principles of neural systems. He notes also between the supply voltage and ground. The intent is to de-
sign neural systems using primitive circuits that make effi-that MOS device noise levels are higher and precisions are

lower than for the bipolar technologies usually employed to cient use of silicon real estate.
Mead considers means of performing elementary arithme-implement analog functions. However, these factors are even

worse for neural wetware, giving hope that MOS technology tic operations in analog fashion with voltages and currents.
Among the arithmetic functions he considers are identity, ad-could be used to implement neural systems. MOSFETs act as

controlled sources of positive and negative current. Because dition, and multiplication. The transconductance amplifier
acts as a two-quadrant multiplier; a four-quadrant multiplierthe control does not draw current, MOSFETs are a nearly

ideal circuit element. can be created by using each of the output currents from the
original differential pair as the inputs for a pair of differentialIn weak inversion or subthreshold operation the drain-

source current is given by Ids � I0 exp(�Vgs/VT) for saturation; pairs. Using a current mirror to combine these currents pro-
duces a 9-MOSFET Gilbert transconductance multiplierVgs is the gate–source voltage, VT � kT/q � 26 mV at room

temperature, and � measures the effectiveness of the gate po- where
tential in controlling the channel current. In subthreshold
saturation the MOSFET is a voltage-controlled current source Iout = Ib tanh[κ(V1 − V2)/2] tanh[κ(V3 − V4)/2] (7)
with exponential transfer characteristics, corresponding to a
transconductance �Ids/VT. In addition to the general advan- This circuit produces output currents on the order of 30 nA

for �V1 � V2�, �V3 � V4� � 200 mV. However, Mead shows howtages of MOSFETs, three characteristics make subthreshold
circuits attractive: this multiplier becomes highly nonlinear if V2 
 V4. A more

linear wide-range multiplier can be created but this requires
almost twice as many MOSFETs.1. Low currents mean very low power dissipations of 1 pW

to 1 �W per circuit. In the steep part of the tanh characteristics an input volt-
age change of 35 mV produces an output current change of 32. Since the current saturates for drain-source voltages
nA. Two MOSFET circuits can be created that generate angreater than a few kT/q, the MOSFET can operate as a
output current exponentially related to the input voltage orcurrent source over most of the voltage range from
an output voltage proportional to the logarithm of the inputground to the supply voltage.
current. Logarithmic compression allows circuits to handle3. The exponential transfer characteristic is an ideal com-
the wide dynamic range of sensory signals.putation primitive for many applications because it

Much neural network research has been focused on higher-allows current to be controlled over many orders of mag-
level cognitive tasks such as image recognition. Mead’s re-nitude.
search has been focused on the lower-level precognitive tasks
involved in handling sensory inputs, which have to be pro-Mead introduces the simple five-MOSFET transconduc-
cessed through many layers of representation before cognitiontance amplifier shown in Fig. 4 as a primitive circuit. This
occurs. He argues that it is relatively easy to make up anproduces a current that is a tanh function of an input voltage
image and recognize it with a vision system, while it is reallydifference. This sort of saturating function is useful for realiz-
difficult when that vision system is exposed to real sensorying nonlinear neuron behavior. For small voltage differences
data. Implementing the processing of sensory data has led toit produces a product of the input voltage difference and the
unconverted neural circuits such as modeling a retina as abias current. This is useful for realizing synapse functions. By
hexagonal array of resistors. Such an array computes aadding three MOSFETs the simple transconductance ampli-
smooth weighted average over a number of neighbors, with
neighbors farther away contributing less to the average. If the
resistors are photoconductors having resistance that corres-
ponds to the intensity of light, such an array has retinal prop-
erties. Mead uses two pass transistors in series to implement
a resistor in which the current is proportional to the hyper-
bolic tangent of the voltage across the resistor. The saturation
of these resistors allows the retina to sense discontiuities by
letting the network saturate and then discerning the bound-
aries at which saturation occurs.

Neural circuits need to process time-varying signals to
handle the sensory inputs required for sound and motion de-
tection. A follower–integrator circuit is formed from the trans-
conductance amplifier by placing a capacitance to ground at
the output and feeding the output back to the negative input.
This circuit allows signals to be stored for short time periods.

V1
M1

M3

MbVb

M4

M2

I2

I4
I3

I1
Iout

V2

Because the output of the follower–integrator circuit is aFigure 4. Mead’s five-transistor transconductance amplifier (27).
moving average of the input signal to which earlier signalsThis produces a current which is a tanh function of an input voltage
contribute exponentially less, it is particularly appropriate fordifference, which is useful for realizing nonlinear neuron behavior.
neural systems where we expect old memories to decay. Im-This circuit has a limited dynamic range, and more transistors are

required to achieve a wide-range amplifier. plementation of the integrator-follower circuit in CMOS tech-
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nology is complicated by the fact that the largest capacitance is determined by the width or frequency of the voltage pulses
available is the gate capacitance of a MOSFET. The gate of on the gate of the pass NFET that come from a neuron out-
the MOSFET used as a capacitor must be connected so that it put. This multiplier is naturally two quadrant because neural
remains in strong inversion, and its channel provides a good states are unipolar while weights are bipolar. The charge
conductor and keeps the capacitance large. packets from the synapses are integrated to provide the total

To observe changes in the input signal pattern requires post-synaptic activity voltage.
differentiation of the signal with respect to time. The sharp- Two neuron designs were incorporated on the EPSILON
ness of the signal any implementation of a differentiator can chips: a synchronous, pulsewidth modulation (PWM) neuron
differentiate is limited because circuit resistances limit the and an asynchronous, pulse-frequency modulation (PFM)
current that can be drawn from any source. neuron. The PWM neuron is a comparator that compares the

A good illustration of the approach taken by Mead and his activity voltage with a sigmoidal ramp voltage generated off-
students to neural chip design is the SeeHear chip. This chip chip. The output is a digital, fixed-amplitude voltage pulse of
maps visible signals from moving objects into binaural signals width from 0 �s to 20 �s, which depends on the magnitude of
which can be projected through earphones. This would enable the activity voltage. The PFM neuron is a voltage-controlled
a visually impaired person to locate moving objects aurally. oscillator having an output that is a digital pulse stream of
The chip is a compact CMOS design that encodes the inten- fixed amplitude but varying interpulse spacing.
sity and position of a light source in a two-dimensional reti- The EPSILON chips store weights as analog voltages on
noptic projection, processes the electrical signals representing capacitors. This dynamic weight storage requires external re-
intensity information to emphasize temporal changes, and fresh circuitry. Murray et al. (28) report experiments using
synthesizes a sound having the appropriate psychophysiologi- amorphous-silicon analog memory devices as an alternative
cally determined cues for a sound source at that position. The for fast, nonvolatile weight storage. The EPSILON chip per-
chip contains a retina of 32 rows of 36 pixels each connected forms only the forward-pass phase of neural computation; the
to analog delay lines. Both horizontal and vertical displace- learning phase is performed off-chip in an associated com-
ments can be determined by direct analogy to the processing puter. Loading weights require 2.3 ms in the EPSILON-II
of auditory signals. Interestingly, the approach to detecting chip.
horizontal displacements, which is based on a binaural-head- Murray et al. (28) regard on-chip learning as essential if
shadow model, is more effective than the approach to de- neural chips are to be used in autonomous neural systems
tecting vertical displacements, which is based on modeling that address real-time, real-cost applications. They report a
the pina and tragus of the outer ear. target-based training algorithm related to backpropagation,

Subthreshold operation of MOSFETs has one serious but which uses only local information to update weights and
drawback. Because such operation is low current, it is very has identical weight-update strategies for both output and
slow as well as very low power. The time to switch a MOSFET hidden-layer neurons. Implementing this algorithm requires
circuit �t depends on the voltage change �V associated with weight-by-error multiplication. Since both the weight and er-
the switch, and the capacitance C of the device and intercon-

ror are bipolar, a four-quadrant multiplier is required. Tonects. Since I � C dV/dt, �t � C �V/I. Thus, switching times
make a four-quadrant multiplier, a second transconductanceare inversely proportional to switching currents. For C � 0.5
multiplier with complementary input voltages is added inpF and �V � 5 V, typical for a 1 �m CMOS process, and I �
parallel to the transconductance multiplier used as a synapse.1 nA, typical for subthreshold operation, �t � 2.5 ms. This is

Purely digital pulse-stream implementations can be imple-roughly a million times longer than the switching time for a
mented as neural chips. Such implementations can use con-conventional static CMOS gate using the same CMOS
ventional digital logic circuits, but consume considerableprocess.
area. Masaki et al. (29) report a chip that contained six neu-
rons, 42 excitory synapses, and 42 inhibitory synapses imple-
mented in 1.3 �m CMOS gate-array technology. The resultPULSE STREAM NEURAL CHIPS
consumed 18 kgates of the 24 kgates possible on an approxi-
mately 1 cm2 chip in a 240 pin-grid package. Their neuronPulse stream techniques for neural chips are interesting be-
circuits were based on a biological neuron model in which thecause they can combine the compactness of analog computa-
synapse circuit transforms an input pulse density f into ation with the simplicity and robustness of digital signals and
pulse density proportional to the synapse weight wf . This isdevices. Murray et al. (28) describe the Edinburgh Pulse
accomplished by a 6 bit rate multiplier driven by a 6 bit stor-Stream Implementation of Learning-Oriented Network (EP-
age register. The synapses drive a dendrite circuit consistingSILON) neural chips that use pulse streams for communica-
of an OR gate that sums synapse output pulses. Two dendritetion. The EPSILON-II neural chip contains 32 input neurons
circuits, for excitation and inhibition, drive an up-down(hidden layer), 32 output neurons, and 32 � 32 � 1024 syn-
counter that serves as the neuron cell body. An associatedapses on a 48 mm2 die when implemented in 1.5 �m CMOS
computer was used to execute learning algorithms and updatetechnology. It operates at a rate of 102.4 MCPS; each synapse
synaptic weights.output can be determined in 10 �s.

Similar circuits were implemented using wafer-scale inte-The synapse design is based on an analog transconduc-
gration in 0.8 �m CMOS gate-array technology; 576 neuronstance multiplier in which three NFETs, connected as a pullup,
were implemented on a 125 mm wafer; 576 synapse connec-a pulldown, and a pass transistor, form the multiplier. In this
tions were calculated simultaneously in a 464 ns step time formultiplier, the magnitude of the output current pulse is deter-
a processing rate of 1.2 GCPS. A complete forward passmined by the capacitance-stored weight voltage on the gate of

the pulldown NFET. The width or frequency of current pulses through the neural network required 576 � 464 ns � 267 �s.
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Of the 40 million MOSFETs fabricated on a wafer, 19 million These have been much simpler to implement as integrated
circuits.were used to implement the 576 neuron network.

In neural networks learning can be either supervised or
unsupervised. In supervised learning, there is always a
teacher or at least a critic (who, unlike a teacher, does notIMPLEMENTING ALTERNATIVE
give the correct answer, but indicates whether or not the an-NEURAL NETWORK ARCHITECTURES
swer is correct), but in unsupervised learning the network is
alone. Unsupervised learning can be either Hebbian, whereMurray (30) provides an excellent summary of neural net-
more than one output unit is active at any time, or competi-work architectures and algorithms. He notes that while the
tive, where only one output unit is active at any time. In com-Hopfield network revitalized neural network research, feed-
petitive learning, the output units compete among each otherforward networks have been much more useful for applica-
to become the winner. The winner inhibits all the other unitstions in pattern recognition and classification. In addition to
to ensure that it is the only ouput unit that corresponds tothe multilayer perceptron, neural networks have been con-
that particular input combination. These output units arestructed around kernel nodes that implement Gaussian Ra-
known as Winner Take All (WTA) cells. Competitive networksdial Basis Functions (GRBF) in the hidden layer. One can
are often used in many classification problems where the cor-show that any function can be approximated by a train of
rect input-output units are not known. In the competitiveimpulses if sufficiently many impulses are present. Actually,
learning scheme described in the foregoing, the actual loca-these impulses can be generated by subtracting one sigmoid
tion of the output units with respect to each other is immate-from another, if one can offset the sigmoids. Another way to
rial. However, if the geometrical locations of these units aregenerate these impulses is to use Gaussian functions. The ad-
also utilized we have Self-Organizing Maps (SOM). In SOMs,dition of many Gaussians whose centers can be adjusted can
the location of the winning output conveys some information,be used to approximate functions. If the widths of these
and nearby output units correspond to nearby input patterns.Gaussians are adjustable as well as their centers, one can use
Then, we have a feature map.much fewer units where ‘‘fat’’ Gaussians can be used in some

An algorithm to obtain this effect was introduced by Koho-regions of the function and ‘‘thin’’ Gaussians in other regions.
nen (31). In this algorithm, we start with random weights.Furthermore, the amplitudes have to be multiplied by some
The output that wins for a particular input pattern is en-weights before being added to form the final function. This
hanced. However, that particular output is not the only oneleads to the concept of Radial Basis Functions (RBF) where
that is enhanced. In addition, neighboring outputs are alsoGaussians are preferred most of the time. The advantage of
positively encouraged. The neighborhood function is large atthis type of network is the smaller number of units required
first, but slowly becomes smaller and smaller. Finally, out-compared with multilayer perceptrons for the same applica-
puts that are close to each other in the n-dimensional inputtion. This has been an incentive to study hardware implemen-
space become close to each other in the m-dimensional outputtations of these networks.
space. Generally, m is chosen as two so that it is easy to visu-

In Gaussian Radial Basis Function (GRBF) networks, be- alize the grouping of the input space on a map. The output is
sides multiplication, which corresponds to synapses, one has a topology-preserving map, such that the n-dimensional topol-
to implement Gaussian functions that have variable widths ogy is mapped to a two-dimensional topology with distance
and centers. This has proven to be a very difficult task with information remaining intact. Kohonen Self-Organizing Fea-
CMOS technology because the Gaussian requires an exponen- ture Map (K-Map) networks are a two-dimensional array of
tial function while MOS devices have square-law behavior neurons that are trained so that neurons, which are physi-
when operating above threshold. Some researchers have at- cally closer in physical space, respond to data inputs that are
tempted to use the subthreshold region of MOSFET opera- closer in a multidimensional feature space. Thus, the K-map
tion, resulting in a very reduced output swing and sensitivity implements a competitive clustering algorithm without exter-
to noise. Others have used BiCMOS technology because the nal training. Note that the K-Map is a good method for select-
base-emitter junction of the bipolar transistor has exponen- ing kernel sites in an RBF classifier.
tial behavior. This has made the circuits so large and expen- Electronic implementations of the SOM have been rather
sive that GRBF implementations have lost their attrac- few due to the difficulty of the system. Besides synapses, one
tiveness. Other researchers have tried to approximate the requires distance-calculating circuitry, WTA cells and nonlo-
Gaussian function by piecewise-linear approximations. How- cal interconnections, at least for the first few iterations where
ever, none of the implementations have been too successful. the neighborhood is very large. Carlen and Abdel-Aty-Zohdy

Another incentive for using GRBF networks is their close (32) describe an SOM implementation in which purely digital
connection to fuzzy logic. If the Gaussians are replaced by the neural pocessing units (PU) perform parallel computations.
trapezoidal ‘‘membership functions’’ of fuzzy logic, one obtains The system was designed to process 2-D input vectors at a 10
a network where any input could belong to several member- MHz rate. Each input vector was 7 bits long; an 8 bit data
ship functions to a degree determined by the connection bus allowed a range of similarity distances from 1 to 27 �
weights. Hence, one could train a GRBF network and from 27 � 28. Each PU contains adder, subtractor, adder-sub-
the weights and the locations and widths of the Gaussians, tractor, and multiply units connected with four registers and
one could deduce the ‘‘fuzzy rules’’ governing a system. This an 8 � 8 SRAM in addition to weight- and neighborhood-com-
is another incentive to design GRBF chips. Many fuzzy chips pare units. This allowed each PU to calculate the distance
have been designed with trapezoidal or triangular member- between input vectors, update weights, and compare weights
ship functions instead of Gaussians, using OR or MAX opera- and neighborhoods. Some simplification of Kohonen’s algo-

rithm was required; calculating a Manhattan rather than ations to combine the outputs instead of weighted addition.
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Euclidian similarity distance avoided computing square and nonlinearity error is less than 2% over the �1.5 V input
range.square-root functions; 93 cycles are required for one iteration

of the system, with the bulk of the time consumed by SRAM The output summing neuron is an operational amplifier
that converts the summed current into an analog voltage thatfetch and store operations. This corresponds to 100 K

iterations/s, compared with 200 iterations/s for a Matlab sim- is sent to the WTA circuit. This output neuron supports a
large summing current range which exceeds 1 mA. To ensureulation. When implemented in 2 �m CMOS technology, a

4-bit wordlength PU containing 3000 MOSFETs could fit linear current-to-voltage conversion over this wide range of
operation, a 2 k� linear feedback resistor is used to convertwithin a 5 mm2 area.

An impressive implementation is described by Fang and current into voltage. Multiple MOSFETs biased in the triode
region were used to synthesize an accurate resistor. The areaco-workers (33) of a VLSI neural processor chip for image

data compression using a self-organizing map network. They of the output summing neuron is 0.026 mm2; the area of the
linear resistor is 28% of that. A WTA cell has an area ofnote that neural approaches are attractive because it is diffi-
0.0056 mm2.cult to implement high-speed vector quantization (VQ) for

Less than 500 ns simulated time was required for one net-image compression using more conventional digital signal
work interation that includes input buffering, synapse multi-processing (DSP) circuits. Their frequency-sensitve self-
plication, neuron summing, WTA, and index encoding. Powerorganization (FSO) approach systematically distributes code
lines for the digital and analog blocks were separated to avoidvectors to approximate the unknown probability function of
coupling digital switching noise to the highly sensitive analogthe training vectors. Code vectors quantize the vector space
circuits. The overall chip area for a 25-dimensional vectorand converge to cluster centroids; a synapse weight is stored
quantizer of 64 code vectors was 31 mm2. Its throughput rateas a code vector in their implementation. The learning rule
is 2 million vectors/s, corresponding to a processing rate ofmoves the winning code vector toward the training code vec-
2 � 1600 � 3.2 GCPS.tor by a fractional amount, which decreases as the winning

frequency increases.
Their system was implemented as a VQ codebook genera-

tor chip and a VQ chip attached to an external computer. The CONCLUSION
VQ codebook generator chip is implemented with conven-
tional DSP circuits, while the VQ chip implements a highly This article has examined integrated circuit implementations

of neural circuits. Although Eqs. (1) and (2) describing neuralparalleled neural network. The VQ chip is implemented as a
mixed-signal VLSI design in which analog circuitry performs circuits are quite simple, neural chip implementations are re-

markably diverse and surprisingly complex. Neural chipshighly parallel neural computation and digital circuitry pro-
cesses multiple-bit address information. have been implemented in the dominant integrated circuit

technology, CMOS, in both digital and analog forms. ThreeThe VQ chip is composed of two neuron layers, M input
neurons and N current-summing output neurons, followed by keys to neural chip implementation are that there are many

more synapses than neurons, that training requires mucha bank of winner-take-all (WTA) cells and a digital encoder.
The M � 25 neurons in the input layer respond to the ele- higher precision than execution, and the need for linear mul-

tiplication. For many neural networks the number of syn-ments of an M-dimensional input vector. Each input neuron
distributes its output to N � 64 distortion-computing output apses required is roughly the square of the number of neu-

rons, and Eq. (2) indicates that a linear multiplication isneurons in the competition layer through a matrix of 25 �

64 � 1600 programmable synapses. The synapse cells corre- required for every synapse. In digital implementations, lin-
earity is assured, but greater precision generally requires cor-spond to N M-dimensional code vectors. Each distortion-com-

puting neuron in the N-neuron output array calculates the respondingly greater area. High-precision, high-speed (paral-
lel) digital multipliers are large circuits. Analog multiplierssquare of the Euclidian distance between its code vector and

the input vector. The WTA block contains N competitive cir- are generally faster and smaller but have much less precision;
maintaining linearity requires more transistors. Training re-cuit cells that compare the N distortion values and declare a

single winner. This is followed by an N-to-n digital encoder. quirements and the need to store the weights of trained syn-
apses have required significant off-chip resources in many de-The updated code vector is written to the digital codebook

memory on the VQ codebook generator chip and from there to signs. The requirement of linear, bipolar multiplication limits
the effectiveness of single-transistor synapses that use athe analog synapse memory.

They note that detailed studies to improve the perfor- floating-gate storage technology. Algorithms are needed
which minimize the effects of component variation and lim-mance and reduce the area and power of circuits are essential

to implement complex neural systems in VLSI technology. ited precision and linearity on neural chip performance.
Highly variable, nonlinear chips will likely require individual-Their studies included both computer simulations and labora-

tory experimentation. For example, for N � 64, the input neu- ized training for each chip. This is unlike conventional digital
chips where one program can run on all chips.ron must be designed to handle a large 5 pF load capacitance.

Consequently, each input neuron was designed as a unity- The diversity of approaches to neural chip design suggests
we are in a period of ferment from which a dominant neuralgain buffer, implemented as a conventional operational am-

plifier in a unity-gain configuration. It requires 80 ns to settle chip technology is yet to emerge. Different applications may
favor different approaches, such as subthreshold analog chipsto within 0.1% accuracy for the �1.5 V input pulses. The pro-

grammable synapse is a modified, wide-range, four-quadrant and pulse-stream chips that mix analog and digital technol-
ogy. As one shrinks CMOS circuit dimensions to improveGilbert multiplier with 8 bit precision. One 15 MOSFET syn-

apse occupies 0.0092 mm2 in 2 �m CMOS technology. The speed and integration density, the dominance of interconnect
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