
FEEDFORWARD NEURAL NETS 339

FEEDFORWARD NEURAL NETS1

Feedforward artificial neural networks and their design al-
gorithms have provided the engineering and statistics com-

1 Reprinted by permission of Springer-Verlag New York, Inc. from
Feedforward Artificial Neural Networks, by Terrence L. Fine. Copy-
right 1998 by Springer-Verlag New York, Inc.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

340 FEEDFORWARD NEURAL NETS

too deeply enmeshed in the special, and frequently unknown,munities with an effective methodology for the construction
conditions which hold for particular biological organisms.of truly nonlinear systems accepting large numbers of inputs

and achieving marked success in applications to complex
The 1980s saw the reemergence of the study and applica-problems of signal processing, pattern classification, and

regression/forecasting. Neural networks are adapted to appli- tions of artificial neural networks initiated by the work of
cations through a computer-intensive methodology of learning Hopfield (2,7) and the Parallel Distributed Processing Group,
from examples that requires relatively little prior knowledge, reported in Ref. 8, and others (e.g., Amari and Widrow). Hop-
rather than through incorporation of expert beliefs or heuris- field introduced the so-called Hopfield net, also referred to as
tic programs that require the system designer to understand a feedback or recurrent network, and demonstrated, by relat-
the essentials of the application. Of course, some prior under- ing its behavior to the statistical mechanics study of spin-
standing of the nature of the application is necessary and is glasses, that these networks could be designed to function as
reflected in the choice of input variables and network archi- associative or content addressable memories. In the presenta-
tectures. However, as with other statistical nonparametric tion of these networks as real analog circuits, a departure was
methods, we do not need to assume a specific probability initiated from thinking of network node functions only as bi-
model (e.g., multivariate normal). Usually little more is as- nary-valued discontinuous step functions. A contribution of
sumed than that the data (training set) is comprised of inde- the PDP group was to show that if you replaced step function
pendent pairs of network inputs (feature vectors) and desired nodes by smooth, monotonically increasing but bounded func-
outputs (targets). Our goal is to delineate the capabilities of tions, then steepest descent algorithms, particularly as imple-
these systems and to outline the methodology by which they mented by backpropagation, provided the hitherto missing ef-
are deployed to confront applications. fective training or learning procedure for complex neural

In other directions that will not concern us beyond these networks. The success of this approach was dependent criti-
few words, the network models and their properties illumi- cally upon the availability in the 1980s of cheap, powerful
nate issues in cognitive psychology, neuroscience, and philos- workstations and personal computers. Large-scale nonlinearophy of knowledge. Network architectures are loosely mod-

optimization problems could now be carried out routinelyeled on, and motivated by, those of the human brain in which
even when they involved tens of megaflops of computation. In(a) the brain itself or a selected functional area (e.g., vision,
the 1990s the excesses of earlier claims for neural networkhearing, balance) is the neural network and (b) the elements/
methods were moderated, much was learned about the capa-nodes are individual neurons, accepting generally many in-
bilities and limitations of neural networks, and sober, encour-puts at dendrites, emitting outputs at axons, and connecting
aging experience was gained from a variety of applications. Itoutputs to inputs of many other neurons at unidirectional
is this still-evolving position that we undertake to describe.junctions called synapses. Neuroscience or neurobiology con-

cerns itself with the actual structure and function of living
nervous systems. The philosophy motivating the study of NEURAL NETWORK ELEMENTS AND NOTATION
neural-based intelligent systems is referred to as connection-
ism—that is, intelligent responses emerging from the com-

For purposes of initial orientation, we assert that artificialplexity of interconnections between many simple elements
neural networks are networks or systems formed out of many,and it is a philosophical species of emergentism (e.g., see Ref.
highly interconnected nonlinear memoryless computing ele-1). Knowledge is stored in the pattern of connection strengths,
ments or subsystems albeit biological neurons have refractoryand intelligent behavior emerges from the collective action of
periods and therefore have memory. The pattern of intercon-large numbers of simple/unintelligent elements:
nections can be represented mathematically as a weighted,
directed graph in which the vertices or nodes represent basicComputational properties of use to biological organisms or to

the construction of computers can emerge as collective proper- computing elements, the links or edges represent the connec-
ties of systems having a large number of simple equivalent tions between elements, the weights represent the strengths
components (or neurons). . . . The collective properties are of these connections, and the directions establish the flow of
only weakly sensitive to details of the modeling or the failure information and more specifically define inputs and outputs
of individual devices. . . . A study of emergent collective effects

of nodes and of the network; this is shown in Fig. 1, with theand spontaneous computation must necessarily focus on the
notation of the subsection entitled ‘‘Notation’’ and in the de-nonlinearity of the input-output relationship.
tail required to explain training in the section entitled ‘‘Train-J. Hopfield in Ref. 2
ing: Backpropagation.’’

The pattern of interconnections considered without speci-Nonpolynomial nonlinearity will be seen to be essential if
fication of the weights is referred to as the neural networkwe are to be able to create increasingly complex systems by
architecture. We will gain an understanding of the capabili-adding components/neurons.

An overview of the historical background to artificial neu- ties of a feedforward neural network, also called a multilayer
ral networks is available in Ref. 3, and easy access to the perceptron, a network in which the directed graph establish-
important original articles is provided in Ref. 4. From the ing the interconnections has no closed paths or loops. Such
mid-1950s to the early 1960s the dominant figure was Cor- networks will be seen to have significant computational pow-
nell’s Frank Rosenblatt, who approached modeling brain ers but no internal dynamics. In the interests of a coherent
function as a mathematical psychologist and reported much development, we will restrict our attention to those networks
of his work in Principles of Neurodynamics (5). His outlook is having several (denoted by d) real-valued inputs, generally
reflected in Ref. 6, p. 387: denoted by

The perceptron is designed to illustrate some of the fundamental
properties of intelligent systems in general, without becoming x = {x1, . . ., xd} ∈ Rd

FEEDFORWARD NEURAL NETS 341

within a layer should be rapid because it is generally only a
memoryless nonlinear operation on a scalar input that is the
scalar product of the vector or array of network inputs with
an array of connection weights.

Neural networks probably possess the following properties:
(a) graceful degradation of performance with component fail-
ure and (b) robustness with respect to variability of compo-
nent characteristics (e.g., see Refs. 23–25). In part as a conse-
quence of the training algorithms through which the network
‘‘learns’’ its task, a network with many nodes or elements in
a given layer has a response that is usually not highly depen-
dent upon any individual node. In such a case, failure of a
few nodes or of a few connections to nodes should only have a
proportionate effect on the network response—it is not an ‘‘all
or nothing’’ architecture. This property holds true of the
brain, as we know from the death of neurons over the human
lifetime and from the ability of humans to function after mild
strokes in which a small portion of the brain is destroyed.
Of course, it is possible to set up a network having a critical
computing path, and in such a case we do not expect grace-
ful degradation.

Layer 1

Layer 2

Layer 0

X m
1 X m

2 X m
3 X m

4

am
0:4am

0:3a m
0:1

b1:1

b2:1
W 2:1,1

W2:1,2

W 2:1,3

W 1:3,4W 1:1,1

y

F1:1

F1:1

F1:2 F1:3

b1:2 b1:3

am
0:2

a2:1
m

a1:1
m a1:2

m a1:3
m

C2:1
m

C1:2
mC1:1

m C1:3
m

Admittedly, neural network applications are still most
commonly executed in emulations in Fortran or C and occa-Figure 1. Notation for feedforward neural networks.
sionally in MATLAB, and these emulations cannot enjoy some
of the advantages just enumerated. However, parallel pro-
cessing languages are becoming available for use with multi-Results that are specialized for, say, Boolean-valued inputs
processor computing environments (e.g., supercomputers with(x � �0, 1�d) will not be treated. Such results are available
hundreds of processors) and modern operating systems sup-from discussions of circuit complexity [e.g., Roychowdhury et
port program processes containing multiple threads that canal. (9), Siu et al. (10)] and the classical synthesis of Boolean
be run separately on multiprocessor computers. While therefunctions [e.g., Muroga (11)].
are now special-purpose truly parallel hardware implementa-
tions of neural networks in VLSI (e.g., see Refs. 26–29) that

THE LITERATURE provide the highest computational speeds, they are as yet in-
sufficiently flexible to accommodate to the range of applica-

There has been a sizable literature on the subject of artificial tions. This situation, however, is changing rapidly.
neural networks. While many of the books have been either
at a rudimentary level or else edited collections that lack co- Current Systems Applications
herence and finish, the last few years have seen the appear-

The strong interest in neural networks in the engineeringance of several substantial books (12–17) and journals de-
community is fueled by the large number of successful andvoted to neural networks (18–21). Conference proceedings are
promising applications of neural networks to tasks of patternplentiful and the most carefully referred is Ref. 22.
classification, signal processing, forecasting, regression, and
control. Perceptual recognition tasks, at which biological neu-

ROLES FOR ARTIFICIAL NEURAL NETWORKS ral networks have been highly successful, typically involve
large numbers of input variables (about 106 for vision), none

Computation of which are individually critical for recognition. Further-
more, there is generally a nonlinear relationship between theThe brain, with a clock rate of only 100 Hz, is capable of per-
input variables and the goals of the recognition task ex-ceptual acts (e.g., recognition of faces and words) and control
pressed as target variables. Statistical theory has always en-activities (e.g., walking, control of body functions) that are
compassed, in principle, optimal nonlinear processing sys-only now on the horizon for computers with 1 GHz clock rates.
tems. For example, the optimality of the conditionalThe advantage of the brain is assumed to be its effective use
expectation E(Y�X) has long been known in the context of theof massive parallelism, although there are other features of
least mean square criterion minf E�Y � f (X)�2 when we at-the brain (e.g., the large numbers of different kinds of neu-
tempt to infer Y from a well-selected function f of the data/rons, chemical processes that modulate neuronal behavior)
observations X. However, there has been little practical im-that are probably also essential to its effective functioning.
plementation of such nonlinear processors and none when theThe artificial neural network architecture is inherently mas-
dimension d of the inputs X is large compared to unity. Actualsively parallel and should execute at high speed—if it can be
implementations have generally been linear in X, linear inimplemented in hardware. In a multilayer network there is
some simple fixed nonlinear functions of the components ofthe delay encountered in feeding a signal forward through the
X, or linear followed by a nonlinear scaling. This has beenindividual processing layers. However, this delay is only the
especially true when confronted with problems having a largeproduct of the number of layers, generally no more than

three, and the processing delay in a given layer. Processing number of input variables (e.g., econometric models, percep-

342 FEEDFORWARD NEURAL NETS

tion). In such cases the usual recourse is to use linear pro- variable such as a signal at a future time. Particular exam-
ples of forecasting in multivariable settings that have beencessing based upon knowledge of only means and covariances

or correlations. Nonlinear processor design usually assumes the subject of successful neural network-based approaches in-
clude forecasting demand for electricity [e.g., Yuan (37)], fore-knowledge of higher-order statistics such as joint probability

distributions, and this knowledge is rarely available. Nonpar- casting fluctuations in financial markets (e.g., currency ex-
changes), and modeling of physical processes [e.g., Weigendametric, robust, and adaptive estimation techniques have at-

tempted to cope with only partial statistical knowledge, but and Gershenfeld (38)].
Control of dynamical systems or plants requires rapid esti-with only limited success in real applications of any complex-

ity. Neural networks provide us with a working methodology mation of the state variables governing the dynamics and the
rapid implementation of a control law that may well be non-to design nonlinear systems accepting large numbers of in-

puts and able to proceed solely from instances of input– linear. Rapid implementation is particularly essential in con-
trol because control actions must be taken in ‘‘real time.’’ Con-output relationships (e.g., pairs �xi, yi� of feature vector x and

pattern category y) alone. Thus, appropriate applications for trol that is delayed can yield instabilities and degrade
performance. Because there can be many state variables, weneural networks are indicated by the presence of many possi-

ble input variables (e.g., large numbers of image pixels, time need to implement functions with many inputs. Frequently
there is little prior knowledge of the system structure and theor frequency samples of a speech waveform, historical vari-

ables such as past hourly stock prices over a long period of statistical characteristics of the exogeneous forces acting on
the system. Such a situation suggests a role for neural net-time), such that we do not know a priori how to restrict atten-

tion to a small subset as being the only variables relevant to work methodology.
Other applications of neural networks such as associativethe classification or forecasting task at hand. Furthermore,

we should anticipate a nonlinear relationship between the in- memories for recall of partially specified states, or combinato-
rial optimization based upon minimization of a quadraticput variables and the variable being calculated (e.g., one of

finitely many pattern categories such as the alphanumeric form in a state vector, can be made using feedback, recurrent,
or Hopfield networks. However, these networks and the is-character set or a future stock price). In some instances (e.g.,

optical character recognition) these neural network systems sues of their dynamical behavior and design are treated else-
where in this encyclopedia.provide state-of-the-art performance in areas that have been

long-studied. Neural networks make accessible in practice
what has hitherto been accessible only in well-studied princi-

MATHEMATICAL SETUP FOR FEEDFORWARDple. It is characteristic of human sensory processing systems
NEURAL NETWORKSthat they accept many inputs of little individual value and

convert them into highly reliable perceptions or classifications
Single-Hidden-Layer Functionsof their environment. Classification problems well-suited for

neural network applications may be expected to share this Typically the set �x� of inputs to a neural network is a subset
characteristic. Examples of pattern classification applica- of the d-dimensional reals (d-tuples of real numbers, a vector
tions include: of dimension d) and, more specifically, often the d-dimen-

sional cube [a, b]d with side the interval [a, b]. We will only
1. Classification of handwritten characters (isolated char- consider networks that have a single output y and that com-

acters or cursive script) pute a real-valued function; vector-valued functions taking
values in �m can be implemented by m separate networks,2. Image classification [e.g., classification of satellite pho-
one for each of the m components, albeit with a possibly lesstographs as to land uses (30), face detection (31)]
efficient use of network resources and potential loss of gener-3. Sound processing and recognition [e.g., speech recogni-
alization ability due to the increased number of parameters/tion of spoken digits, phonemes, and words in continu-
weights [e.g., see Caruana (39)]. The mathematical structureous speech (32,33)]
of a representation of a function through a single hidden layer4. Sonar signal discrimination
network having s nodes is presented in the following.

5. Classification of acoustic transients, seismic data inter-
pretation Definition 1. The class H � of functions exactly implement-

6. Target recognition able by a single hidden layer (1HL) feedforward net with a
single linear output node and hidden-layer node nonlinearity

Neural-network-based approaches have achieved state-of- � is the linear span of functions of x of the form �(w � x � �).
the-art performance in applications to the pattern classifica- Restated, H � is the set of functions � of x specified by
tion problem of the recognition or classification of typed and
handwritten alphanumeric characters that are optically
scanned from such surfaces as envelopes submitted to the US
Postal Service [Jackel et al. (34)], application forms with
boxes for individual alphanumeric characters [Shustorovich

Hσ = {η(·,w) : (∃s)(∃α1, . . ., αs)(∃τ0, . . ., τs)(∃w1, . . ., ws)

η(x, w) = τ0 +
s∑

i=1

αiσ (wi · x − τi)}

and Thrasher (35)], or input from a touch terminal consisting
where w is a vector listing all of the components required toof a pad and pen that is capable of recording the dynamical
specify �. A given function �(� , w) � H � is described by phandwriting process [Guyon et al. (36)]. In such applications
parameters. In the fully connected case,it is common to have several hundred input variables.

Regression or forecasting problems also confront us with a
p = (d + 2)s + 1variety of possible variables to use in determining a response

FEEDFORWARD NEURAL NETS 343

Figure 2. Examples of functions in H �

–8 –6 –4 –2 0 2 4 6 8

2

1.8
1.6
1.4
1.2

1
0.8

0.6
0.4
0.2

0
–8 –6 –4 –2 0 2 4 6 8

1

0.9
0.8
0.7
0.6

0.5
0.4

0.3
0.2
0.1

0

–8 –6 –4 –2 0 2 4 6 8

3

2

1

0

–1

–2

–3
–8 –6 –4 –2 0 2 4 6 8

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2
for d � 1, s � 1, 2, 3, 4.

and in practice p is at least several hundred. Examples of Multiple Hidden Layers—Multilayer Perceptrons
functions in H �, using the logistic node, for d � 1 are shown

Multiple hidden layers enable us to construct compositions of
below in Fig. 2. In this figure, nodes are added successively functions in which the outputs of earlier layers become the
to the previous sum of nodes so as to improve approximation inputs to later layers. An example of a representation by a
ability by allowing the construction of more complicated func- two-hidden-layer (2HL) network with a single linear output
tions. node is

We are interested in the ability of network functions in
H � to approximate to families of functions of interest. Neural
networks can approximate to such important analytical fami-
lies of functions as the following: y =

s2∑
i=1

w3:1,iσ2:i


 s1∑

j=1

w2:i, jσ1: j

(
d∑

k=1

w1: j,kxk

)


Continuous C (X). the family of all continuous functions on
As will be seen in the section entitled ‘‘The Representational

X
Power of a Single-Hidden Layer Network,’’ single-hidden-

Integrable Lp(X). the family of all Lebesgue integrable pth layer networks suffice to achieve arbitrarily close approxima-
powers of functions tions for many combinations of family of functions and mea-

sure of approximation. However, this is not true for the sup-
norm metric (see section entitled ‘‘Approximation: Metrics
and Closure’’) and functions that are discontinuous, perhaps

∫
X

| f (x)|p dx < ∞
being piecewise continuous. A function that is piecewise con-
stant and has hyperplane boundaries for its level sets (regionsrth Differentiable D r(X). the family of all functions having
of constant value) can be constructed exactly using a two hid-r continuous derivatives, with D 0 � C

den layer network, but not always using a single-hidden-layerPiecewise-constant P -constant. the family of all functions
net [see Gibson (40)]. The need to construct such functionson X that are piecewise constant
arises in certain inverse problems of control theory, and the

Piecewise-continuous P -continuous. the family of all func- resulting controller design may require approximation by a
tions on X that are piecewise continuous two-hidden-layer network [e.g., see Sontag (41)]. In image and

speech recognition problems, multiple-hidden-layer architec-
There now exist theorems, one of which we will present below, tures are motivated by attempts to build in spatially or tem-
on the ability of the members of H � to approximate to each of porally localized features that are expected to be helpful [e.g.,
the preceding families of functions. Before presenting these see LeCun and Bengio (42)]. For example, in image processing
results we address some of the elementary mathematical applications, it is common to have a first layer of nodes that
properties of the representations of functions in H � and then are connected only to small, local regions of the image. These

node responses are then aggregated in succeeding layers lead-the meaning we will give to approximation.

344 FEEDFORWARD NEURAL NETS

ing to a final layer of multiple outputs, with each output cor- of these hyperplanes. Equivalently, we can identify the set of
input values that share the same function value �(x0, w) as aresponding to a possible image pattern class.
particular input x0:

BASIC PROPERTIES OF THE REPRESENTATION {x : η(x, w) = η(x0, w)} ⊃ ∩s1
i=1

{x : wi · (x − x0) = 0}
BY NEURAL NETWORKS

If s1 	 d, then this intersection is a nonempty linear manifold.Four of the mathematical properties of the representations in
Insofar as the first hidden layer responses are constant overH � of single-hidden-layer feedforward neural networks, or in-
this manifold of inputs, all subsequent network responses, in-deed those with multiple-hidden-layers, are detailed below.
cluding the output, must also be constant over this manifoldThey are of value in understanding what happens when we
(and possibly constant over an even larger set).turn to training algorithms.

StabilityMultiplicity of Representations

It is typically the case for real-valued networks that the se-The specification of H � is such that different neural networks
lected nonlinear node function � is continuously differentiabledo not necessarily implement different functions from their
and even analytic in the most common cases of the logisticinputs in �d to, say, a scalar output. Some understanding of
and hyperbolic tangent functions. For such a choice of nodethis is important for its implications for the existence of mul-
function, the network response �(x, w) is also a differentiabletiple approximations of equal quality and its eventual impli-
function in both its parameters w and its arguments x. Herecations for the existence of multiple minima when one comes
we consider a 1HL network for whichto training to reduce approximation error. The following are

examples of conditions under which distinct networks imple-
ment the same function: ∇xη(x, w) =

s1∑
i=1

αiσ
′(wi · x − τi)wi

1. Permute the nodes in a given hidden layer; for example,
interchanging the weights and thresholds correspond- is the d-dimensional gradient vector. By the chain-rule of dif-
ing to the first and second nodes will not change the ferentiation, � is as many times differentiable with respect to
function. In, say, a single-hidden-layer network the net- either w or x as � is differentiable as a scalar function. Insofar
work output is �i �i�(wi � x � �i) and the value of the as � is once continuously differentiable, then we have that �
sum is invariant with respect to reordering of the sum- � D 1 and Taylor’s Theorem enables us to write
mands.

2. If the node function � is an odd function, � (�z) � η(x, w) = η(x0, w) + ∇T
x0

η(x − x0) + o(‖x − x0‖)
�� (z), such as the commonly employed tanh(z), then
negating the input weights and thresholds to a node

showing a remainder that is of zero order in the differenceand negating the output weights from that same node
between input vectors. Thus nearby input vectors give rise towill introduce sign changes that cancel and leave the
nearby network values—a property of stability of the networknetwork output invariant.
representation.

3. If an output weight �i is 0, then the network response
does not vary with changes in wi. Approximation of Step and Pulse Functions

4. If two nodes in a first hidden layer have the same
That feedforward networks enjoy the ability to arbitrarilythresholds and the same connection weights to the net-
closely approximate to commonly encountered, well-behavedwork inputs (e.g., w1 � w2, �1 � �2), then the node re-
functions can be motivated by their ability to approximate tosponses will be identical. Hence, the weighted summa-
step and pulse functions. The most commonly employed non-tion of their responses a1�(w1 � x � �1)
 a2�(w2 � x � �2)
linear node functions have the properties of being sigmoidalin a single-hidden-layer network will depend upon the
or s-shaped in that they are bounded and nondecreasing andtwo output weights only through the sum a1
 a2 of the
such thattwo weights.

Albertini et al. (43) and Fefferman (44) examine this issue −∞ < σ = lim
z→−∞σ (z) < σ̄ = lim

z→∞σ (z) < ∞
and provide sufficient conditions under which two networks
will implement different functions. For large a � 0 and �z0� such that the product a�z0� is large

enough that �(�az0) is within a small fraction of its limiting
Regions of Constancy values �, � ,
If, as is commonly the case in applications such as character
recognition, the number s1 of nodes in the first hidden layer (∀z > |z0|)

|σ − σ (−az)|
σ̄ − σ

< ε,
σ̄ − σ (az)|

σ̄ − σ
< ε

(and we may allow more than one hidden layer in this discus-
sion) is less than the dimension d of the inputs to the net-

thenwork, then the response of the first hidden layer is deter-
mined by s1 hyperplanes specified by the first-layer individual
node weight vectors wi and thresholds �i. The locus of constant
response from the first hidden layer is then the intersection

σ (az) − σ

σ̄ − σ

FEEDFORWARD NEURAL NETS 345

is approximately a step function U(z) in �z� � �z0�, the familiar Lp-norm when the measure � is the usual Leb-
esgue measure (�(A) � volume(A)). This notion of distance
provides us with a measure of the degree to which one func-
tion approximates another.

sup
|z|>|z0 |

∣∣∣∣U (z) − σ (az) − σ

σ̄ − σ

∣∣∣∣ < ε

The functions in a normed, linear vector space L that can
If the function f of interest is monotone, then it is easily ap- be arbitrarily closely approximated by ones in a given subset
proximated by a sum of step functions. Recall that a function A � L are the ones in A as well as the limit points of this
of bounded variation can be written as a difference of two set of functions. The set A together with its limit points is
monotone functions. Hence, the large class of functions of known as the closure A of A in L and is specified by the
bounded variation are then also easily approximated by sums following definition.
of step functions. As the functions of bounded variation on a
compact set (finite interval) include the trigonometric func- Definition 2 (Closure). Given a metric d on a linear vector
tions, we see that we can approximate to trigonometric func- space of functions L , the closure in L , A , of a family A � L

tions and then to those other functions representable as Fou- of functions is
rier sums of trigonometric functions.

Given that we can approximate to step functions we can A = {g ∈ L : (∀ε > 0)(∃ fε ∈ A) d(g, fε) < ε}
also approximate to pulse functions, with

Universal Approximation to Functionspτ (z) = U (z) − U (z − τ)

The power of even single-hidden-layer feedforward neural
being a pulse of unit height and width �. It is clear that we networks is revealed in the technical results cited below. A
can approximate to common (e.g., continuous) functions by a large number of contributions to this issue have been made,
sum of pulse functions through with the major ones first appearing in 1989 [e.g., Refs. 45 and

46]. In essence, almost any nonpolynomial node function used
in such a network can yield arbitrarily close approximations
to functions in familiar and useful classes, with the approxi-

f (z) ≈
∞∑

k=−∞
f (kτ)pτ (z − kτ)

mation becoming arbitrarily close as the width of the layer is
with accuracy improving with smaller �. In particular, if f is increased. That � not be a polynomial is clearly a necessary
Lipschitz, then condition since a single-hidden-layer network with polyno-

mial nodes of degree p can only generate a polynomial of de-
(∃K)(∀x,y)| f (x) − f (y)| < K|x − y| gree p no matter what the width s of the hidden layer. To

report these somewhat technical results we need to define
Hence, first the set M of node functions.

Definition 3 [Leshno et al. (47)]. Let M � ��� denote thesup
z

∣∣∣∣ f (z) −
∞∑

k=−∞
f (kτ)pτ (z − kτ)

∣∣∣∣ ≤ Kτ

set of node functions such that:

1. The closure of the set of points of discontinuity of any �THE REPRESENTATIONAL POWER OF A
� M has zero Lebesgue measure (length).SINGLE-HIDDEN-LAYER NETWORK

2. For every compact (closed, bounded) set K � �, the es-
sential supremum of � on K, with respect to LebesgueApproximation: Metrics and Closure
measure �, is bounded

In order to present precise results on the ability of feedfor-
ward networks to approximate to functions, and hence to ess supx∈K |σ (x)| = inf{λ : v{x : |σ (x)| ≥ λ} = 0} < ∞
training sets, we first introduce the corresponding concepts of
arbitrarily close approximation of one function (e.g., the net-
work response) to another function (e.g., the target). To mea- For example, property 1 is satisfied if the points of discon-
sure approximation error of f by g we consider the distance tinuity have only finitely many limit points, while property 2
between them defined by the size of their difference f � g, is satisfied if � is bounded almost everywhere. We can now
where this is well-defined when both are elements of a assert
normed, linear vector space (e.g., the space of square-integ-
rable functions or usual Euclidean space �d with the familiar Theorem 1 [Leshno et al. (44), Theorem 1]. Let � � M,
squared distance between vectors). For the space of continu- then the closure of the linear span of �(w � x � �) is C (�d) if
ous functions C on X we typically use the metric and only if � is not almost everywhere an algebraic poly-

nomial.d(f,g) = sup
x∈X

| f (x) − g(x)|
Noting that sigmoidal nodes satisfy the conditions of this

where distance or error here is worst-case error. Another com- theorem, we see that networks composed of them enjoy the
mon metric, for p
 1, is ability to universally approximate to continuous functions.

While the preceding theorem tells us much about the
power of feedforward neural networks to approximate func-
tions according to specific norms or metrics, there are issues

d(f,g) =
{∫

x∈X

| f (x) − g(x)|pµ(dx)

}1/p

346 FEEDFORWARD NEURAL NETS

that are not addressed. For example, we may wish to approxi- (53), and Fine (13). Studies of network generalization ability
mate not only to a function t(x) but also to several of its deriv- (see section entitled ‘‘Learning and Generalization Behavior’’)
atives. An approximation, say, using step functions can give also rely on VC dimension.
an arbitrarily close approximation in sup-norm to a differenti-
able function of a single variable, yet at no point approximate
to its derivative; the approximating function has derivatives TRAINING A NEURAL NETWORK:
that are zero almost everywhere. Results on the use of neural BACKGROUND AND ERROR SURFACE
networks to simultaneously approximate to a function and
several of its derivatives are provided in Refs. 48 and 49. Re- Error Surface
sults on approximation ability in terms of numbers of nodes

We address the problem (posed in the section entitled ‘‘Uni-have also been developed along lines familiar in nonlinear ap-
versal Approximation to Partial Functions’’) of selecting theproximation theory, and these include the work of Barron (50)
weights w and thresholds, generically referred to simply asand Jones (51). They show that in certain cases (in a Hilbert
‘‘weights,’’ to approximate closely to a function partially speci-space setting) approximation error decreases inversely with
fied by a training set. We are confronted with the followingthe number s of single hidden layer nodes, and this decrease
nonlinear optimization problem:can in some cases be surprisingly independent of the dimen-

sion d of the input.
minimize ET (w) by choice of w ∈ W ⊂ R

p

Universal Approximation to Partial Functions
The inherent difficulty of such problems is aggravated by theWe now turn to the problem of approximating closely to a
typically very high dimension of the weight space W ; net-partially specified function. The problem format is that we
works with hundreds or thousands of weights are commonlyare given a training set
encountered in image processing and optical character recog-
nition applications. In order to develop intuition, it is helpfulT = {(xi, t i), i = 1 : n}
to think of w as being two-dimensional and determining the
latitude and longitude coordinates for position on a given por-of input–output pairs that partially specify t � f (x), and we
tion W of the surface of the earth. The error function E T (w)wish to select a net �(� , w) so that the output yi � �(xi, w) is
is then thought of as the elevation of the terrain at that loca-close to the desired output ti for the input xi. This is the typi-
tion. We seek the point on W of lowest elevation. Clearly wecal situation in applications of neural networks—we do not
could proceed by first mapping the terrain, in effect by evalu-know f but have points on its graph. If instead you are fortu-
ating E T at a closely spaced grid of points, and then selectingnate enough to be given the function f relating t to x, then
the mapped point of lowest elevation. The major difficultyyou can generate arbitrarily large training sets by sampling
with this approach is that the number of required grid pointsthe function domain, either deterministically or randomly,
grows exponentially in the dimension of W (number of pa-and calculating the corresponding responses, thereby reduc-
rameter coordinates). What might be feasible on a two-dimen-ing this problem to the one we will treat in detail in the
sional surface will quickly become impossible when we have,next section.
as we usually will, a more than 100-dimensional surface.The notion of ‘‘closeness’’ on the training set T is typically

One expects that the objective function E T (w) for a neuralformalized through an error or objective function or metric of
network with many parameters defines a highly irregularthe form
surface with many local minima, large regions of little slope
(e.g., directions in which a parameter is already at a large
value that saturates its attached node for most inputs), and

ET = 1
2

n∑
i=1

‖y i − t i‖2

symmetries (see section entitled ‘‘Basic Properties of the Rep-
resentation by Neural Networks’’). The surface is technicallyHence, E T � E T (w), a function of w, since y depends upon
smooth (continuous first derivative) when we use the usualthe parameters w defining the selected network �. Of course,
differentiable node functions. However, thinking of it asthere are infinitely many other measures of closeness (e.g.,
smooth is not a good guide to our intuition about the behaviormetrics such as ‘‘sup norm’’ discussed in the section entitled
of search/optimization algorithms. Figure 3 presents two‘‘Approximation: Metrics and Closure’’). However, it is usually
views of a three-dimensional projection (two parameters se-more difficult to optimize for these other metrics through cal-
lected) of the error surface of a single node network havingculus methods, and virtually all training of neural networks
three inputs and trained on ten input–output pairs.takes place using the quadratic metric even in some cases

where eventual performance is reported for other metrics.
It is apparent from the results of the section entitled ‘‘Uni- Multiple Stationary Points

versal Approximation to Functions’’ that one can expect a
The arguments of the section entitled ‘‘Basic Properties of thesingle-hidden-layer network to be able to approximate arbi-
Representation by Neural Networks’’ establish the existencetrarily closely to any given training set T of size n provided
of multiple minima. Empirical experience with training algo-that it is wide enough (s1 � 1). An appropriate measure of the
rithms shows that different initializations almost alwayscomplexity of a network that relates to its ability to approxi-
yield different resulting networks. Hence, the issue of manymate closely to a training set is given by the notion of Vap-
minima is a real one. A construction by Auer et al. (54) showsnik–Chervonenkis (VC) dimension/capacity. Discussion of VC

dimension is available from Vapnik (52), Kearns and Vazirani that one can construct training sets of n pairs, with the inputs

FEEDFORWARD NEURAL NETS 347

2

1.5

1

0

0.5

2

1.5

1

0

0.5

80
60

40

20

80
60

40
20

0 070

80

60

60

50 40
40

30 20 20
10 0

0

Error surface n = 10 d = 3 s = 1 Error surface n = 10 d = 3 s = 1

Figure 3. Two views of an error surface for a single node.

drawn from �d, for a single-node network with a resulting added to the performance objective function E T (w) so as to
discourage excessive model complexity (e.g., the length of theexponentially growing number
vector of weights w describing the neural network connec-
tions). All of these methods require efficient, repeated calcula-

(n
d

)d

tion of gradients and backpropagation is the most commonly
relied upon organization of the gradient calculation. We shall

of local minima! Hence, not only do multiple minima exist, only present the steepest-descent algorithm; it has been the
but there may be huge numbers of them. most commonly employed and limitations of space preclude

The saving grace in applications is that we often attain presentation of other approaches.
satisfactory performance at many of the local minima and
have little incentive to persevere to find a global minimum.
Recent techniques involving the use of families of networks TRAINING: BACKPROPAGATION
trained on different initial conditions also enables us, either
through linear combinations of the trained networks (e.g., see Notation
Refs. 21 and 55) or through a process of pruning, to achieve

Formal exposition of feedforward neural networks (FFNN) re-good performance.
quires us to introduce notation, illustrated in Fig. 1, to de-

Outline of Approaches scribe a multiple layer FFNN, and such notation has not yet
become standard.There is no ‘‘best’’ algorithm for finding the weights and

thresholds for solving the credit assignment problem that is
1. Let i generically denote the ith layer, with the inputsnow often called the loading problem—the problem of ‘‘load-

occurring in the 0th layer and the last layer being theing’’ the training set T into the network parameters. Indeed,
Lth and containing the outputs.it appears that this problem is intrinsically difficult (i.e., NP-

complete versions). Hence, different algorithms have their 2. A layer is indexed as the first subscript and separated
staunch proponents who can always construct instances in from other subscripts by a colon (:).
which their candidate performs better than most others. In 3. It is common in approximation problems (e.g., estima-
practice today there are four types of optimization algorithms tion, forecasting, regression) for the last layer node to
that are used to select network parameters to minimize be linear but to be nonlinear in pattern classification
E T (w). Good overviews are available in Battiti (56), Bishop problems where a discrete-valued response is desired.
(12), Fine (13), Fletcher (57), and Luenberger (58). The first

4. The number of nodes in the ith layer is given by thethree methods, steepest descent, conjugate gradients (e.g.,
width si.Møller (59), and quasi-Newton (see preceding references), are

5. The jth node function in layer i is Fi:j; alternatively wegeneral optimization methods whose operation can be under-
also use �i:j.stood in the context of minimization of a quadratic error func-

tion. While the error surface is surely not quadratic, for differ- 6. The argument of Fi:j, when xm is the input to the net,
entiable node functions it will be so in a sufficiently small is denoted cm

i:j.
neighborhood of a local minimum, and such an analysis pro- 7. The value of Fi:j(cm

i:j) equals am
i:j when the net input xmvides information about the high-precision behavior of the equals �xm

j � am
0:j� and the vector of node responses in

training algorithm. The fourth method of Levenberg and Mar- layer i is ai.quardt [e.g., Hagan and Menhaj (60), Press et al. (61)] is spe-
8. The derivative of Fi:j with respect to its scalar argu-cifically adapted to minimization of an error function that

ment is denoted f i:j.arises from a quadratic criterion of the form we are assuming.
A variation on all of the above is that of regularization [e.g., 9. The thresholds or biases for nodes in the ith layer are

given by the si-dimensional vector bi � �bi:j�.Tikhonov (62), Weigend (63)] in which a penalty term is

348 FEEDFORWARD NEURAL NETS

10. The weight wi:j,k assigned to the link connecting the
kth node output in layer i � 1 to the jth node input in
layer i is an element of a matrix Wi.

Hence, in this notation the neural network equations are

am
0: j = (xm) j = xm

j , am
0: = xm (1)

cm
i: j =

si−1∑
k=1

wi: j,kam
i−1:k + bi: j, cm

i: = Wa m
i: + b i (2)

am
i: j = Fi: j (c

m
i: j), a m

i: = Fi(c
m
i:), am

L:1 = ym (3)

Layer i

Layer i – 1

ai:j
m

Fi:j
m

Ci:j
m

m

m

W i:j,k

ai – l:k ai – l:k

Fi– l:k

Ci– l:kbi– l:k

δ i:j

bi:j
m

For clarity we assume that the network has a single output;
the extension to vector-valued outputs is straightforward but Figure 4. Information flow in backpropagation.
obscures the exposition. The discrepancy em between the net-
work response ym to the input xm and the desired response tm

Combining the last two results yields the backwards recursionis given by

em = ym − tm = am
L:1 − tm, e = (em)

δm
i: j = fi: j (c

m
i: j)

si+1∑
k=1

δm
i+1:kwi+1:k, j (7a)

and the usual error criterion is
for i 	 L. This equation can be rewritten in matrix–vector
form using

Em = 1
2

(ym − tm)2 = e2
m, ET =

n∑
m=1

Em(w) = eT e (4)

Wi+1 = [wi+1:k, j], δ m
i = [δm

i: j], f m
i = [fi: j (c

m
i: j)]

δ m
i = (δ m

i+1)T Wi+1· ∗ f m
iBackpropagation

A systematic organization of the calculation of the gradient where .� is the Hadamard product (Matlab element-wise mul-
for a multilayer perceptron is provided by the celebrated tiplication of matrices). The ‘‘final’’ condition, from which we
backpropagation algorithm. We supplement our notation by initiate the backwards propagation, is provided by the direct
introducing w as an enumeration of all weights and evaluation of
thresholds/biases in a single vector and defining

δm
L:1 = fL:1(c

m
L:1)(am

L:1 − tm) (7b)

Thus the evaluation of the gradient, as illustrated in Fig. 4,δm
i: j = ∂Em(w)

∂cm
i: j

(5)

is accomplished by:

To relate this to our interest in the gradient of E m with re- 1. A forward pass of the training data through the net-
spect to a weight wi:j,k or bias bi:j, note that these parameters work to determine the node outputs am

i:j and inputs cm
i:j

affect E m only through their appearance in Eq. (2). Hence, we 2. A backward pass through the network to determine the
obtain an evaluation of all of the elements of the gradient �m

i:j through Eqs. (7a) and (7b)
vector in terms of �m

i:j through
3. Combining results to determine the gradient through

Eqs. (6a) and (6b)

DESCENT ALGORITHMS

Overview and Startup Issues

∂Em

∂wi: j,k
= ∂Em

∂cm
i: j

∂cm
i: j

∂wi: j,k
= δm

i: ja
m
i−1:k (6a)

∂Em

∂bi: j
= δm

i: j (6b)

The backpropagation algorithm (BPA), in common usage, re-It remains to evaluate �m
i:j. Note that since E m depends

fers to a descent algorithm that iteratively selects a sequenceupon cm
i:j only through am

i:j, of parameter vectors �wk, k � 1 : T�, for a moderate value of
running time T, with the goal of having �E T (wk) � E k� con-
verge to a small neighborhood of a good local minimum rather
than to the global minimum

δm
i: j = ∂Em

∂am
i: j

∂am
i: j

∂cm
i: j

= fi: j (c
m
i: j)

∂Em

∂am
i: j

If layer i is hidden, then E m depends upon am
i:j only through its E ∗

T = minw∈W ET (w)

effects on the layer i
 1 to which it is an input. Hence,
Issues that need to be addressed are:

1. Initialization of the algorithm
2. Choice of online (stochastic) versus batch processing

∂Em

∂am
i: j

=
si+1∑
k=1

∂Em

∂cm
i+1:k

∂cm
i+1:k

∂am
i: j

=
si+1∑
k=1

δm
i+1:kwi+1:k, j

FEEDFORWARD NEURAL NETS 349

3. Recursive algorithm to search for an error surface mini- gradient. In the variation on steepest descent using momen-
tum smoothing, the state depends upon the current parame-mum
ter value and gradient and the most recent past parameter4. Selection of parameters of the algorithm
value. Each of the algorithms in current use determine the5. Rules for terminating the algorithmic search
next search point by looking locally at the error surface.

6. Convergence behavior (e.g., local versus global minima, We can explore the basic properties of descent algorithms
rates of convergence) by considering the following first-order approximation [i.e.,

f (x) � f (x0) � f �(x0)(x � x0)] to successive values of the
The search algorithm is usually initialized with a choice objective/error function:

w0 of parameter vector that is selected at random to have
moderate or small values. The random choice is made to pre- Ek+1 − Ek ≈ g(wk)T (wk+1 − w k) (9)
vent inadvertent symmetries in the initial choice from being
locked into all of the iterations. Moderate weight values are If we wish our iterative algorithm to yield a steady descent,
selected to avoid saturating initially the node nonlinearities; then we must reduce the error at each stage. For increments
gradients are very small when S-shaped nodes are saturated wk
1 � wk that are not so large that our first-order Taylor’s
and convergence will be slow. It has been argued in (64) that series approximation of Eq. (9) is invalid, we see that we must
the performance of steepest descent for neural networks is have
very sensitive to the choice of w0. In practice, one often trains
several times, starting from different initial conditions. One
can then select the solution having the smaller minimum or
make use of a combination of all the solutions found (21).

g(wk)T (wk+1 − w k) = g(wk)T (αkd k)

= αkgT
k d k < 0 (descent condition)

(10)

The descent algorithm can be developed either in a batch
One way to satisfy Eq. (10) is to havemode or in an online/stochastic mode. In the batch mode we

attempt the (k
 1)st step of the iteration to reduce the total
error over the whole training set, E T (wk), to a lower value αk > 0, d k = −gk (11)

E T (wk
1). In the online mode we attempt the (k
 1)st step of
The particular choice of descent direction of Eq. (11) is thethe iteration to reduce a selected component E mk
1, the error
basis of steepest descent algorithms. Other choices of descentin the response to excitation xmk
1, of the total error. Over the
direction are made in conjugate gradient methods (59).course of the set of iterations, all components will be selected,

An ‘‘optimal’’ choice �*k for the learning rate �k for a givenusually many times. Each version has its proponents. To
choice of descent direction dk is the one that minimizes E k
1:achieve true steepest descent on E T (w) we must do the batch

update in which the search direction is evaluated in terms of
all training set elements. In practice, the most common vari- α∗

k = argminαET (wk + αdk)

ant of BPA is online and adjusts the parameters after the
This choice is truly optimal if we are at the final stage ofpresentation of each training set sample. The operation of the
iteration. It is easily verified that for the optimal learningonline search is more stochastic than that of the batch search
rate we must satisfy the orthogonality conditionsince directions depend upon the choice of training set term.

The online mode replaces the large step size taken by the
batch process (a sum over online mode type steps for each gT

k+1d k = 0 (12)

training sample) by a sequence of smaller step sizes in which
The gradient of the error at the end of the iteration step isyou continually update the weight vectors as you iterate. This
orthogonal to the search direction along which we havemode makes it less likely that you will degrade performance
changed the parameter vector. Hence, in the case of steepestby a significant erroneous step. There is a belief (e.g., see Ref.
descent [Eq. (11)], successive gradients are orthogonal to each64a, p. 157) that this enables the algorithm to find better local
other. When the error function is not specified analytically,minima through a more random exploration of the parameter
then its minimization along dk is accomplished through a nu-space W .
merical line search for �*k .

Further analysis of the descent condition can be carriedIterative Descent Algorithms
out if one makes the customary assumption that E T is qua-

We now enumerate all network parameters (link weights and dratic with a representation
biases) in a vector w � W � �p. The basic iterative recursion,
common to all of the training methods in widespread use to-
day, determines a new parameter vector wk
1 in terms of the ET (w) = ET (w0) + 1

2
(w − w0)T H(w − w 0) (12a)

present vector wk through a search direction dk and a scalar
learning rate or step size �k: in terms of the Hessian matrix H of second derivatives of the

error with respect to the components of w0; H must be positive
definite if E T is to have a unique minimum. The optimalitywk+1 = w k + αkd k (8)

condition for the learning rate �k derived from the orthogonal-
Typically, descent algorithms are Markovian in that one can ity condition [Eq. (12)] becomes
define a state and their future state depends only upon their
present state and not upon the succession of past states that
led up to the present. In the case of basic steepest descent,
this state is simply the current value of the parameter and

α∗
k =

−dT
k g

k

dT
k Hdk

(13)

350 FEEDFORWARD NEURAL NETS

stant value �. The simplicity of this approach is belied by the
need to select carefully the learning rate. If the fixed step size
is too large, then we leave ourselves open to overshooting the
line search minimum, we may engage in oscillatory or diver-
gent behavior, and we lose guarantees of monotone reduction
of the error function E T . For large enough � the algorithm
will diverge. If the step size is too small, then we may need a
very large number of iterations T before we achieve a suffi-
ciently small value of the error function. To proceed further
we assume the quadratic case given by Eq. (12a) and let ��j�
denote the eigenvalues of the Hessian. It can be shown [e.g.,
Fine (13, Chapter 5)] that convergence of wk
l to the local min-
imum w* requires, for arbitrary wk, that

60

50

40

30

20

10

0 10 20 30 40 50 60 max
j

|1 − αλ j| < 1 or 0 < α <
2

max jλ j
Figure 5. Optimal steepest descent on quadratic surface.

If � exceeds this upper bound, then wk
l must diverge in mag-
nitude. We illustrate these results with plots of the steepest

In the further case of steepest descent, Eq. (13) becomes descent trajectory calculated for 25 iterations on a quadratic
surface in two dimensions with eigenvalues of 1, 5. Hence, the
bound on convergence for � is 0.4. In the next two figures we
present four plots with � taking on the values 0.02, 0.1, 0.35,

α∗
k = gT

k g k

g T
k Hgk

(14)

and 0.45. In Fig. 6 we see that a very small learning rate does
One can think of �*k as the reciprocal of an expected value of not allow us to reach the minimum in the allotted training
the eigenvalues of the Hessian H with probabilities deter- time, whereas a moderately small value enables a smooth ap-
mined by the squares of the coefficients of the gradient vector proach to the minimum. In Fig. 7 we see that a large value of
gk expanded in terms of the eigenvectors of the Hessian. The learning rate enables us to converge to the minimum in an
performance of this choice of learning rate is illustrated in erratic fashion. However, a too large value of learning rate
Fig. 5. leads to the predicted divergence. It is clear that a useable

Discussion of steepest descent, along with insights into its fixed choice of learning rate requires experimentation with
limitations, is available from Luenberger (58, Chapter 7) and short trial runs of the training algorithm applied to the spe-
Battiti (56). Steepest descent, even in the context of a truly cific problem at hand. There are a variety of alternatives to
quadratic error surface and with line search, suffers from an the choice of a constant learning rate including the use of
excess of greed. The successive directions do not generally adaptive momentum ideas [e.g., Battiti (65)], practical imple-
support each other in that after two steps, say, the gradient mentations of the optimal learning rate give by Eq. 8.2.7 that
is usually no longer orthogonal to the direction taken in the rely upon finite difference estimates of derivatives and effi-
first step (e.g., see the contour plot of training trajectory in cient determination of Hgk and the use of learning-rate sched-
Fig. 5).

ules [e.g., Darken and Moody (66)]. While the use of constant
learning rates was the rule in the recent history of neural

Choice of Constant Learning Rate � network training, state-of-the-art usage would dictate the use
of variable learning rates calculated by one of the methodsIn the basic descent algorithm we follow the above process

with the major exception that the step size is held at a con- cited.

Figure 6. Descent behavior with small
learning rate. 10 20 30 40 50 60 10 20 30 40 50 60

60

50

40

30

20

10

60

50

40

30

20

10

Optimal steepest descent on
quadratic surface, alpha = 0.1

Optimal steepest descent on
quadratic surface, alpha = 0.02

FEEDFORWARD NEURAL NETS 351

Figure 7. Descent behavior with large
10 20 30

Optimal steepest descent on
quadratic surface, alpha = 0.45

40 50 60

10

20

30

40

50

60

10 20 30

Optimal steepest descent on
quadratic surface, alpha = 0.35

40 50 60

10

20

30

40

50

60

learning rate.

Search Termination ing set error E T is shown in Fig. 8. The objective is to guard
against overtraining, a condition in which the network over-

Finally, we need to determine when to terminate the search fits the training set and fails to generalize well. Target vari-
for a minimum of E . Five commonly relied upon stopping con- ables usually contain noise as well as signal—there is usually
ditions to establish termination are: only a stochastic relationship between feature vector x and

target t, with repetitions of the same feature vector often cor-
responding to different target values. Fitting too closely to the1. Preassigned upper bound (stopping time) T to the num-
training set means fitting to the noise as well, and therebyber of iterations
doing less well on new inputs having noise that is indepen-

2. Achievement of a preassigned satisfactory value E final dent of that in the training set.
of E

3. Successive changes in parameter values fall below a
preassigned threshold TRENDS AND OPEN PROBLEMS

4. The magnitude �g� of the current gradient is small,
Progress continues to be made on a number of issues in the�g� 	 �
design and utilization of neural networks, but several impor-

5. Increasing estimate (e.g., by ‘‘cross-validation’’ or an in- tant issues seem to us still in need of development before we
dependent test set) of generalization error can place confidence in their resolution. Of the three issues

noted below, the most reliable results are in the use of
Hessian-based training methods.

Several of these conditions are often employed simultane-
ously. Computational limits generally impose a running time
bound T. It may not be clear what a reasonable E final is unless
prior experimentation has provided some indication of what
is achievable and the problem is understood well enough that
acceptable performance can be identified.

Items 3 and 4 are attempts to judge when convergence is
near. In real applications of some complexity, steepest de-
scent algorithms cannot be expected to converge to a global
minimum. There can be plateaus in the error surface that
eventually lead to good minima.

In the neural network community, frequent reference is
made to cross-validation of estimates of generalization error,
although this usually turns out to mean the use of an inde-
pendent test set [e.g., see Kearns (63)]. A validation error E v

is computed, say, on the basis of a validation or test set D m

that is independent of the training set T . E v(w) is determined
by running the network with parameters w on D m and evalu-
ating the sum-squared error incurred in fitting D m. This cal-
culation is repeated as we progress through the sequence wk

of parameter values returned by our iterative training algo-
0 500 1000 1500 2000 2500 3000

Training iteration number

3500 4000 4500 5000

101

100

10–1

rithm. Training halts when E v(wk) reaches its first minimum.
Qualitative behavior of the validation error E v and the train- Figure 8. Training and validation errors.

352 FEEDFORWARD NEURAL NETS

Use of Hessians and Second-Order Methods found in Ripley (69), Section 2.7, a comprehensive discussion
in Devroye et al. (70). One line of development starts from the

The unabated growth in computing power made it possible
well-known fact that the observed training error E T (w)/n

to train neural networks with backpropagation and steepest
evaluated at w chosen near a local minimum is a biased esti-

descent methods in the mid-1980s. What was once prohibi-
mator of E(�(x, w) � t)2 and tends to be too small. An unbi-

tively expensive computation is now either possible or on the
ased estimator can be obtained if one has reserved an inde-

near horizon although we do not foresee having enough com-
pendent test or validation set V that is distributed as T but

putational power to brute force exhaustive searches for the
not itself used in training. For such a set E V will be unbiased

best network architecture and specification of parameters.
for true E(�(x, w) � t)2. When the training data are too few to

The most powerful nonlinear optimization procedures (e.g.,
reserve an independent validation set, then methods of cross-

Newton’s method) rely not only on the gradient G � �E T of
validation [Stone in (71,72), Kearns (73)] may be applicable.

the error function E T calculated by backpropagation, but also
The bootstrap [e.g., see Efron and Tibshirani (74)] is of doubt-

on a matrix H of second derivatives known as the Hessian
ful applicability given the presence of multiple minima ensur-

and given by
ing that different bootstrap samples are unlikely to converge
to the vicinity of the same minimum. Furthermore, both of
these methods are computationally very expensive to imple-H = [Hi j], Hi j = ∂2ET

∂wi∂wj ment. In another direction, strong efforts to understand the
interplay between generalization error, the amount of train-

If the network has p parameters (weights), then H is a p � p ing data, and the complexity of the model (neural network)
symmetric matrix and has p(p
 1)/2 entries to be calculated. being fitted include the work of Barron (50) the concept of
In typical networks, s can be in the hundreds or thousands, Vapnik-Chervonenkis dimension pioneered by Vladimir Vap-
yielding possibly millions of Hessian entries. One then faces nik (52), and the recent exploitation of the modification
the burden of (a) updating these many entries as the iterative known as the ‘fat-shattering dimension’ [e.g., Bartlett (75)].
algorithm proceeds and (b) storing them. A useful discussion
of backpropagation-based calculational methods is provided

Architecture Selection and Bayesian Methodsby Bishop (12, Section 4.10). Until recently the primary ap-
proach has been to approximate the Hessian by calculating One of the thorniest problems facing users of neural networks
only the diagonal entries. More complex approximations have is that of architecture selection—the selection of node func-
been used in such so-called second-order optimization meth- tions [see Mhaskar and Micchelli (76)], numbers of layers,
ods as the BFGS version of quasi-Newton and the Levenberg- and widths of the layers. While we have seen from the section
Marquardt algorithms [e.g., see Battiti (56), Buntine and entitled ‘‘The Representational Power of a Single-Hidden-
Weigend (67), and Press et al. (61)]. It seems a safe prediction Layer Network’’ that almost any nonpolynomial node function
that in the future, neural network training algorithms will in a sufficiently wide (s1 � 1) single-hidden-layer network will
rely substantially upon the Hessian in second-order nonlinear approximate arbitrarily closely to many functions (e.g., con-
optimization algorithms and that for moderate-sized net- tinuous or integrable) in an appropriate approximation metric
works this Hessian will be computed fully. (e.g., sup-norm or Lp-norm, respectively), such an approxima-

tion may neither be an efficient use of network hardware,
Learning and Generalization Behavior well-suited to sup-norm approximation of piecewise continu-

ous or piecewise constant functions, nor need it generalizeWe know from the section entitled ‘‘The Representational
well to new data of the same type as that in the training setPower of a Single-Hidden-Layer Network’’ that a sufficiently
T . At present, architecture selection is most commonly ad-complex network can approximate arbitrarily closely to a
dressed by hit-and-miss numerical experimentation. A varietygiven reasonable partially specified function or training set
of architectures are selected, they are trained on a portion ofT . What prevents us from attempting arbitrarily close ap-
the training set, and their performance is evaluated on theproximations by use of arbitrarily large/complex networks is
remaining unused portion of the training set. This process isthe desire for good performance on (x, t) � T . Typically, this
computationally expensive and may be inapplicable when n,issue is formalized by assuming that there is a (unknown to
the size of T , is not large (e.g., n � O(100)).us) probability measure P such that the elements (xi, ti) of T

The most systematic approach to architecture selection isare selected independently and identically distributed (i.i.d.)
that based upon the Bayesian methodology. An exposition ofas P and (x, t) is also selected by P and independent of T . It
this methodology is available from West and Harrison (77)is this sense in which (x, t) is like the other elements of T . In
and, in the context of neural networks, from Bishop (12,pattern classification applications the target variable t is dis-
Chapter 10) and MacKay (78); critical remarks can be foundcrete and ranges over the finite set of labels of pattern classes.
in Fine (13, Chapter 7). In brief, a prior probability distribu-In such a setting it is common to use error probability P(�(x,
tion is assumed over all architectures and parameter assign-w) � t) as a measure of network � performance. In forecast-
ments, and this prior distribution is converted to a posterioring, estimation, and control settings, the target variable is
distribution through a likelihood function incorporating T .typically real-valued and an appropriate error measure is
The posterior then allows a rational selection of network ar-that of mean-squared error E(�(x, w) � t)2.
chitecture, particularly when it is sharply peaked about a sin-Analysis of learning and generalization behavior is an un-
gle network specification.settled but evolving area. The issues are not particular to

Other methods of architecture selection are somewhat adneural networks but are rather endemic in statistics and have
hoc and include methods (e.g., ‘‘optimal brain surgery’’) tobeen long-considered in pattern classification applications

[e.g., McLachlan (68)]. An accessible introduction can be prune a network that is chosen initially to be larger than ex-

FEEDFORWARD NEURAL NETS 353

24. P. Kerlirzin and F. Vallet, Robustness in multilayer perceptrons,pected to be needed [e.g., Hassibi et al. (79)] and methods to
Neural Comp., 5: 473–482, 1993.grow a network until an appropriate level of complexity has

25. A. Minai and R. Williams, Perturbation response in feedforwardbeen reached [e.g., Fahlman (80) and Gallant (81)] and reli-
networks, Neural Networks, 7: 783–796, 1994.ance upon complexity measures as in regularization and the

use of minimum description length [e.g., Rissanen (82,83)]. 26. E. Sanchez-Sinencio and R. Newcomb, eds., Special issue on neu-
ral network hardware, IEEE Trans. Neural Networks, 3: 1992.

27. C. Mead, Analog VLSI and Neural Systems, Reading, MA: Addi-
BIBLIOGRAPHY son-Wesley, 1989.

28. T. Shibata et al., Neuron-MOS temporal winner search hardware
1. P. Churchland, Neurophilosophy: Toward a Unified Science of the

for fully-parallel data processing. In D. Touretzky, M. Mozer, and
Mind/Brain, Cambridge MA: MIT Press, 1986.

M. Hasselmo (eds.), Advances in Neural Information Processing
2. J. Hopfield, Neural networks and physical systems with emer- Systems 8, Cambridge, MA: MIT Press, 1996, pp. 685–691.

gent collective computational abilities, Proc. Nat. Acad. Sci., 79:
29. J. Platt and T. Allen, A neural network classifier for the I10002554–2558, 1982. Also in Ref. 4.

OCR chip. In D. Touretzky, M. Mozer, and M. Hasselmo (eds.),
3. J. Cowan, Neural networks: The early days, in D. Touretzky (ed.), Advances in Neural Information Processing Systems 8, Cambridge,

Advances in Neural Information Processing Systems 2, San Mateo MA: MIT Press, 1996, pp. 938–944.
CA: Morgan Kaufmann, 1990, pp. 828–842.

30. S. Decatur, Application of neural networks to terrain classifica-
4. J. Anderson and E. Rosenfeld (eds.), Neurocomputing: Founda- tion, Proc. IJCNN, I: I283–I288.

tions of Research, Cambridge MA: MIT Press, 1988.
31. H. Rowley, S. Baluja, and T. Kanade, Human face detection in

5. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the visual scenes. In D. Touretzky, M. Mozer, and M. Hasselmo
Theory of Brain Mechanisms, Washington, DC: Spartan Books, (eds.), Advances in Neural Information Processing Systems 8,
1961. Cambridge, MA: MIT Press, 1996, pp. 875–881.

6. F. Rosenblatt, Psychol. Rev., 65: 386–408, 1958.
32. S. Lawrence, A. Tsoi, and A. Back, The gamma MLP for speech

7. J. Hopfield, Neurons with graded response have collective compu- phoneme recognition. In D. Touretzky, M. Mozer, and M. Has-
tational properties like those of two-state neurons, Proc. Nat. selmo (eds.), Advances in Neural Information Processing Systems
Acad. Sci., 81: 3088–3092. Also in Ref. 4. 8, Cambridge, MA: MIT Press, 1996, pp. 785–791.

8. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning in- 33. G. Zavaliagkos et al., A hybrid neural net system for state-of-the-
ternal representations by error propagation, Parallel Distributed art continuous speech recognition. In S. Hanson, J. Cowan, C.
Processing, Cambridge, MA. In D. E. Rumelhart and J. L. McClel- Giles (eds.), Advances in Neural Information Processing Systems
land (eds.), MIT Press. Also in Ref. 4. 5, San Mateo, CA: Morgan Kaufmann, 1993, pp. 704–711.

9. V. Roychowdhury, A. Orlitsky, and K.-Y. Siu, Lower bounds on 34. L. Jackel et al., Neural-net applications in character recognition
threshold and related circuits via communication complexity, and document analysis, In B. Yuhas and N. Ansari (eds.), Neural
IEEE Trans. Inf. Theory, 40: 467–474, 1994. Networks in Telecommunications, Norwell, MA: Kluwer, 1994.

10. K.-Y. Siu, V. Roychowdhury, and T. Kailath, Discrete Neural 35. A. Shustorovich and C. Thrasher, KODAK IMAGELINK OCR Al-
Computation: A Theoretical Foundation, Englewood Cliffs, NJ: phanumeric handprint module. In D. Touretzky, M. Mozer, and
Prentice Hall, 1995. M. Hasselmo (eds.), Advances in Neural Information Processing

11. S. Muroga, Threshold Logic and Its Applications, New York: Wi- Systems 8, Cambridge, MA: MIT Press, 1996, pp. 778–784.
ley, 1971. 36. I. Guyon et al., Design of a neural network character recognizer

12. C. Bishop, Neural Networks for Pattern Recognition, Oxford: for a touch terminal, Pattern Recognition, 24: 105–119, 1991.
Clarendon Press, 1995.

37. J. L. Yuan and T. L. Fine, Neural network design for small train-
13. T. L. Fine, Feedforward Artificial Neural Networks, New York: ing sets of high dimension, IEEE Trans. on Neural Networks, to

Springer-Verlag, 1998. appear.
14. M. Hassoun, Fundamentals of Artificial Neural Networks, Cam- 38. A. Weigend and N. Gershenfeld (eds.), Time Series Prediction:

bridge, MA: MIT Press, 1995. Forecasting the Future and Understanding the Past, Reading, MA:
15. S. Haykin, Neural Networks, New York: Macmillan, 1994. Addison-Wesley, 1994.
16. J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of 39. R. Caruana, Learning many related tasks at the same time with

Neural Computation, Reading, MA: Addison-Wesley, 1991. backpropagation, in G. Tesauro, D. Touretzky, T. Leen, (eds.),
Advances in Neural Information Processing Systems 7, Cam-17. B. Ripley, Pattern Recognition and Neural Networks, Cambridge:

Cambridge University Press, 1996. bridge, MA: MIT Press, 1995, 657–664.
18. IEEE Transactions on Neural Networks, Piscataway, NJ: IEEE 40. G. Gibson, Exact classification with two-layer neural nets, J.

Press. Comput. Syst. Sci., 52: 349–356, 1996.
19. Neural Computation, Cambridge, MA: MIT Press. 41. E. Sontag, Feedback stabilization using two-hidden-layer nets,

IEEE Trans. Neural Networks, 3: 981–990, 1992.20. Neural Networks, publication of the International Neural Net-
work Society (INNS). 42. Y. LeCun and Y. Bengio, Convolutional networks for images,

speech, and time series, in M. Arbib (ed.), The Handbook of Brain21. Combining Artificial Neural Nets: Ensemble Approaches, special
Theory and Neural Networks, Cambridge, MA: MIT Press,issue of Connection Science, 8: December 1996.
1995, 255–258.22. Advances in Neural Information Processing Systems, an annual

43. A. Albertini, E. Sontag, and V. Maillot, Uniqueness of weights forseries of carefully reviewed conference proceeding volumes, with
neural networks. In R. Mammone (ed.), Artificial Neural Net-volumes 1–7 published by Morgan Kaufmann Publishers and
works for Speech and Vision, London: Chapman and Hall, pp.subsequent volumes published by MIT Press.
113–125.23. M. Stevenson, R. Winter, and B. Widrow, Sensitivity of feedfor-

ward neural networks to weight errors, IEEE Trans. Neural Net- 44. C. Fefferman, Reconstructing a neural net from its output, Rev.
Mat. Iberoamericana, 10: 507–555, 1994.works, 1: 71–80, 1990.

354 FEEDFORWARD NEURAL NETS

45. G. Cybenko, Approximations by superpositions of a sigmoidal book of Brain Theory and Neural Networks, Cambridge, MA:
MIT Press, 255–258, 1995.function, Mathematics of Control, Signals & Systems, 2 (4): 303–

314. Correction made in op. cit., 5: 455, 1989. 65. B. Pearlmutter, Fast exact multiplication by the Hessian, Neural
Computation, 6: 147–160, 1994.46. K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-

ward networks are universal approximators, Neural Networks, 2: 66. C. Darken and J. Moody, Towards faster stochastic gradient
359–366, 1989. search, in J. Moody, S. J. Hanson, R. P. Lippmann (eds.), Ad-

vances in Neural Information Processing Systems 4, Morgan47. M. Leshno et al., Multilayer feedforward networks with a non-
Kaufmann Pub., 1992, 1009–1016.polynomial activation function can approximate any function,

Neural Networks, 6: 861–867, 1993. 67. W. Buntine and A. Weigend, Computing second derivatives in
feedforward networks: A review, IEEE Trans. Neural Networks,48. K. Hornik, Approximation capabilities of multilayer feedforward
5: 480–488.networks, Neural Networks, 4: 251–257, 1991.

68. G. McLachlan, Discriminant Analysis and Statistical Pattern Rec-49. J. Yukich, M. Stinchcombe, and H. White, Sup-norm approxima-
ognition, New York: Wiley, 1992.tion bounds for networks through probabilistic methods, IEEE

Trans. Inf. Theory, 41: 1021–1027, 1995. 69. B. Ripley, Pattern Recognition and Neural Networks, Cambridge
Univ. Press, Cambridge, 1996.50. A. Barron, Universal approximation bounds for superpositions of

a sigmoidal function, IEEE Trans. on Information Theory, 39: 70. L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of
930–945, 1993. Pattern Recognition, New York: Springer-Verlag, 1996.

51. L. Jones, A simple lemma on greedy approximation in Hilbert 71. M. Stone, Cross-validatory choice and assessment of statistical
space and convergence rates for projection pursuit regression and predictions, J. R. Stat. Soc., B36: 111–147, 1974.
neural network training, The Annals of Statistics, 20: 608–613, 72. M. Stone, Asymptotics for and against cross-validation, Biome-
1992. trika, 64: 29–35, 1977.

52. V. N. Vapnik, The Nature of Statistical Learning Theory, New 73. M. Kearns, A bound on the error of cross validation using the
York: Springer-Verlag, 1995. approximation and estimation rates, with consequences for the

53. M. Kearns and U. Vazirani, An Introduction to Computational training-test split. In D. Touretzky, M. Mozer, M. Hasselmo
Learning Theory, Cambridge, MA: MIT Press, 1994. (eds.), Advances in Neural Information Processing Systems 8, Cam-

bridge, MA: MIT Press, 1996, pp. 183–189.54. P. Auer, M. Herbster, and M. Warmuth, Exponentially many lo-
cal minima for single neurons. In D. Touretzky, M. Mozer, and 74. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Lon-
M. Hasselmo, (eds.), Advances in Neural Information Processing don: Chapman and Hall, 1993.
Systems 8, Cambridge, MA: MIT Press, pp. 316–322. 75. P. Bartlett, The sample complexity of pattern classification with

55. S. Hashem, Optimal Linear Combinations of Neural Networks, neural networks: the size of the weights is more important than the
Ph.D. dissertation, Purdue University, W. Lafayette, IN, 1993. size of the network, in M. Mozer, M. Jordan (eds.), Advances in

Neural Information Processing Systems 9, Cambridge, MA: MIT56. R. Battiti, First- and second-order methods for learning: Between
Press, to appear.steepest descent and Newton’s methods, Neural Computat., 4:

141–166, 1992. 76. H. Mhaskar and C. Micchelli, How to choose an activation func-
tion. In J. Cowan, G. Tesauro, and J. Alspector (eds.), Advances in57. R. Fletcher, Practical Methods of Optimization, New York: Wi-
Neural Information Processing Systems 6, San Mateo, CA: Morganley, 1987.
Kaufmann, pp. 319–326.

58. D. Luenberger, Linear and Nonlinear Programming, 2nd ed.,
77. M. West and J. Harrison, Bayesian Statistical Decision Theory,Reading, MA: Addison-Wesley, 1984.

New York: Springer-Verlag, 1989.
59. M. Møller, A scaled conjugate gradient algorithm for fast super-

78. D. MacKay, Bayesian Methods for Adaptive Models, Ph.D. disser-vised learning, Neural Networks, 6: 525–533, 1993.
tation, California Institute of Technology.

60. M. Hagan and M. Menhaj, Training feedforward networks with
79. B. Hassibi et al., Optimal brain surgeon: Extensions and perfor-the Marquardt algorithm, IEEE Trans. Neural Networks, 5: 989–

mance comparisons. In J. Cowan, G. Tesauro, and J. Alspector993, 1994.
(eds.), Advances in Neural Information Processing Systems 6, San

61. W. Press et al., Numerical Recipes in C: The Art of Scientific Pro- Mateo, CA: Morgan Kaufmann, 1994, pp. 263–270.
gramming, 2nd ed., Cambridge, England: Cambridge University

80. S. Fahlman and C. Lebiere, The cascade-correlation learning ar-Press, 1992.
chitecture. In D. S. Touretzky (ed.), Advances in Neural Informa-

62. A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems, Win- tion Processing Systems 2, San Mateo, CA: Morgan Kaufmann,
ston & Sons through Wiley, Washington, D.C., 1977. 1990, pp. 524–532.

63. A. Weigend, D. Rumelhart, and B. Huberman, Generalization by 81. S. Gallant, Neural Network Learning and Expert Systems, Cam-
weight-elimination with application to forecasting, in R. Lipp- bridge, MA: MIT Press, 1993.
mann, J. Moody, D. Touretzky (eds.) Advances in Neural Infor-

82. J. Rissanen, Stochastic complexity and modeling, The Annals ofmation Processing Systems 3, Morgan Kaufmann Pub., 875–
Statistics, 14: 1080–1100, 1986.882, 1991.

83. J. Rissanen, Stochastic complexity, J. Royal Statistical Society,64. J. Kolen and J. Pollack, Back propagation is sensitive to initial
49: 223–239, 1987.conditions. In R. Lippmann, J. Moody, and D. Touretzky (eds.),

Advances in Neural Information Processing Systems 3, San Mateo,
TERRENCE L. FINECA: Morgan Kaufmann pp. 860–867.
Cornell University64a. Y. LeCun, P. Simard, and B. Pearlmutter, Automatic learning

rate maximization by on-line estimation of the Hessian’s eigenvec-
tors, in S. Hanson, J. Cowan, L. Giles (eds.), Advances in Neural
Information Processing Systems 5, Morgan Kaufmann Pub., 156–

FERRITE DEVICES. See FERRITE PHASE SHIFTERS; MICRO-163, 1993 and Y. LeCun and Y. Bengio, Convolutional networks
for images, speech, and time series, in M. Arbib (ed.), The Hand- WAVE SWITCHES.

