
DIVIDE-AND-CONQUER METHODS a specific case only one of them is the best. If we cannot tell
which is the best for each case, we need some general ap-

Divide-and-conquer is a general problem-solving strategy. It proach for creating a mixture of experts (ME). This mixture
should give an integrated opinion, and perform better thanis used for large and complex problems, where it is difficult

to apply a direct strategy. The idea is to break the problem any specific expert alone.
Divide-and-conquer methods gain more and more impor-down into smaller independent subproblems, solve the sub-

problems, and then merge the subsolutions into the solution tance as technological development steadily increases the
complexity of process plants, vehicles, and other engineeredto the large problem. The easiest case is that in which the

problem can be subdivided into subproblems of the same type. systems. Dealing with this complexity is a difficult problem,
as phrased in the principle of incompatibility expressed byAs a simplified example, suppose we need to find the global

minimum of a given function over a large finite region. Stan- Zadeh (1): ‘‘As the complexity of a system increases, our abil-
ity to make precise and yet significant statements about itsdard available algorithms for finding the minimum value

might be stuck in a local minimum, and never be able to es- behaviour diminishes until a threshold is reached beyond
which precision and significance (or relevance) become almostcape and look for a better solution. In order to find a better

estimate for the global minimum, one can divide the region mutually exclusive characteristics.’’ A consequence of this
principle is that one should look for methods that use lessinto small enough subregions. Then the algorithm is used

over each of these subregions separately (this can be done in precise system knowledge in order to gain enough significance
of the results (2). This is the trend in intelligent control whereparallel). At the end, a discrete minimum search is used over

the results obtained to produce an estimate of the global fuzzy logic, qualitative modeling, neural networks, expert sys-
tems, and probabilistic reasoning are being explored (3,4,5).minimum.

The steps in a basic divide-and-conquer strategy are: It should be noted that divide-and-conquer is a general
concept in science and engineering as well as in other areas.

1. Divide the problem into smaller solvable problems of ANN’s main contribution toward application of that concept
the same type is in being an MPP tool. Specific contributions of ANNs are

sparser, and will be discussed in the following sections. The2. Solve each of the smaller problems separately
general presentation mostly follows that of modeling and con-3. Merge the solutions obtained into a solution to the origi-
trol (2). It originally applied to dynamic modeling and controlnal problem
of complex systems; however it applies to other areas as well.
In fact, there is no conceptual difference between dynamicA more general view of the divide-and-conquer concept takes
and static modeling, and any functional mapping is indeed aany part of the problem-solving procedure and divides it. In
modeling of some relation. In that sense, ANNs are a generalfact, any computer program execution on a parallel machine
modeling tool.can be considered to use the same concept. In this case, the

process of dividing and conquering is usually done automati-
cally without the user’s intervention. A specific branch of par- MODELING AND CONTROL
allel processing is the massively parallel processing (MPP) ex-
pressed in the form of artificial neural networks (ANN). Here A modeling and control problem can be decomposed along sev-
the problem is not divided into smaller problems, but the solv- eral axes:
ing tool is divided into smaller processing units (or rather con-
structed from such units). The concept, however, is the 1. Decomposition into physical components
same—if you cannot solve it with one complicated tool, a 2. Decomposition based on phenomena
number of primitive units may do the job.

3. Decomposition in terms of mathematical series expan-Along the same line of treating the solving tool rather than
sionthe problem itself, there are cases for which there exists more

4. Decomposition into goalsthan one way to solve the problem. It may also be the case
5. Decomposition into subspacesthat no single clear best way exists. Our previous example of

function minimization is appropriate here, too. A global opti- 6. Decomposition into multiple experts
mization technique like genetic algorithms (GA) is good for
finding a crude global minimum. A differential technique like All these approaches to problem decomposition are practical,

but some may not be applicable for certain problems. For ex-Newton’s algorithm is better in accurately finding a local min-
imum. One can combine the two algorithms by finding a ample, a theoretical classification problem may not involve

physical components at all. There is also some overlappingrough estimate for the global minimum first, and then using
the differential technique for refining the solution. In this between the approaches listed, so that choosing between them

may be a question of preference. There are also ways to com-way, the solving process is divided between two ‘‘experts.’’ The
first expert shines globally but is rough, whereas the second bine these approaches. For example, the local models decom-

posed using subspaces may have to be represented in termsone excels locally but fails on a global scale.
A special case of integrating different kinds of expertise of equations based on series expansions or phenomena. In

cases of dynamic modeling and control, the subspaces trans-exists when two or more such experts (algorithms) can solve
the problem equally well on a broad problem domain, but for late into operating regimes.
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2 DIVIDE-AND-CONQUER METHODS

to the fact that linear relations are usually a sufficient ap-
proximation looking at a function locally, even though there
are complex nonlinearities when viewed globally. Figure 2 il-
lustrates how a function’s space is decomposed into a number
of possibly overlapping subspaces. These local subspaces have
to be combined to yield the global solution to the problem.

When dealing with practical aspects of the decomposition
process, there are several issues to be considered. First, there
is the local versus global dilemma in which one has to decide
how much this decomposition has to be refined. On the one
extreme there are a few local subspaces, for which the func-
tion might still be quite complex, and on the other extreme
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there are many local subspaces for which the function is sim-
Figure 1. A divide-and-conquer principle schematically realized by pler. Thus, one has to decide where the golden path is. Sec-
weighted coordination of multiple functions. The block on top coordi- ond, there is the curse of dimensionality which says that the
nates the integrated action of the N functions. Each function may number of partitions required for a uniform partitioning in-
vary in the algorithm applied and in its variables and parameters.

creases exponentially with the number of variables on which
the function depends. This is why a uniform partitioning is
not desired and usually not necessary either.

Subspace Decomposition Hard Partitions and Discrete Logic. Hard partitioning of a
function’s space means that there is no overlap between sub-As previously stated, one of the ways to use divide-and-con-
spaces, and for each subspace only one model applies. Figurequer strategies is to partition a complex problem into a num-
3 shows schematically how a space is divided. This schemeber of simpler subproblems that can be solved independently.
can be represented by decision trees (6,7,8), discrete logic, ex-The individual solutions yield the solution to the original com-
pert systems, and hybrid systems (9,10,11,12,13). In the caseplex problem. One approach to the decomposition of modeling
of an expert system, it is the integrated ‘‘firing’’ of all relevantand control problems that has recently attracted significant
rules that contributes to a conclusion. An example of an ex-attention is the subspace decomposition (or operating regime
pert system rule would be:decomposition for dynamic systems) (2).

The main idea in subspace decomposition is to partition
the function space of the system, such that one ends with an
integration of multiple local models. A central unit coordi-

IF engine’s temperature IS HIGH

AND engine’s pressure IS LOW

THEN SHUTDOWN
(1)

nates the local parts by selecting a single one, or combining
the actions or parameters of a number of local models. Figure Another example is a piecewise function approximation. A
1 shows a scheme of coordination between multiple functions. function representation in this case would be:

The subspaces of the mapping function can often be char-
acterized by different sets of phenomena, which may be sim-
pler to analyze. This simplification may be, for example, due

f (x)
∑

i

fi(x)µi(x) (2)

Subspace 2

Subspace 1

Subspace 3
Subspace 4

Figure 2. Decomposition of a function’s space into a number of over-

Subspace 2

Subspace 1

Subspace 3

Subspace 4

lapping subspaces. Each subspace represents a partial description of
Figure 3. Hard partitioning of a function’s space. Subspaces do not

the system, and the challenge is to find an appropriate set of such
overlap. In this case each point belongs to one and only one subspace.

regions and to integrate the different parts.
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Here f i is the local function for subspace i, and �i is the char-
acteristic function for subspace i:

µi(x) =
{

1 for x ∈ subspace i

0 otherwise
(3)

Soft Partitions and Fuzzy Logic. Hard partitions and discrete
logic are in many cases a crude approximation of the real
functional mapping. This is especially true with physical sys-
tems. In these cases, a more appropriate way is to move grad-
ually from one subspace to another. Now the function’s space
is divided into overlapping subspaces, and a smooth transi-
tion between them is defined. Appropriate ways to do it are
by using fuzzy sets and fuzzy logic (1,12), and interpolation
methods (13,14,15). Fuzzy sets are defined by pairs of (mem-
ber, membership) where each member has a defined member-
ship in the set. Figure 4 shows two fuzzy sets, which define
the terms ‘‘high’’ and ‘‘low’’ for some property X. One can see
the gradual membership increase of the ‘‘high’’ set members
and vice versa for the ‘‘low’’ set. Fuzzy logic enables us to
make logical inference based on fuzzy sets, and is actually
weighting the various sets, which apply to a given subspace.
Now Eq. (2) takes the form:

f (x) =
∑

i

fi(x)ρi(x) (4)

Here �i is a smooth weighting function, and for fuzzy logic
inference the following normalization is used (12):
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Subspace 3.2
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Figure 5. Hierarchical decomposition of a function’s space into sub-
spaces. Subspace 3 is further decomposed into subspaces 3.1 and 3.2,

ρi(x) = µi(x)∑
j µ j (x)

(5)

thus inducing a two-level hierarchy. Each level uses a different set
of variables.

Hierarchical Structures

A different way to divide-and-conquer complex systems is by
vided along less important variable axes. Figure 5 illustratesusing hierarchical structures. This technique deals with high
such a structure. This multilevel structure enables us to con-dimensional problems by multiresolution representations.
centrate first on the most important aspects of the problem,The problem is first divided into subspaces over the most im-
and then resolve the fine details on lower levels. In fact, theportant variables’ space. Then each subspace is further di-
paradigm of a multilayer perceptron (MLP) ANN consists of
a hierarchical structure. In a classical three-layer, the first
layer is the input layer, the second hidden one is a feature
extraction layer, and the third one is the decision-making
layer. When more than one hidden layer exists, each one
builds on finer feature extraction of the previous layer (16).

Multiple Experts

Any problem’s solution can be considered as a single expert’s
advice. Usually there are several ways to solve the problem,
and thus there are multiple experts. The question arises then,
how we can deal with this multisolution situation. In some
cases, one specific solution may be good enough so that we do0 0.5 1

Property X

mlow mhigh1

0.5

0

not really care about any other solutions. In other cases, thereFigure 4. Fuzzy membership functions describing ‘‘low’’ and ‘‘high’’
may be a clear winner among the possible solutions, andconcepts of property X. The membership function mlow defines a ‘‘low’’
again the decision is obvious as to which one to choose. Therevalue of property X, being high for low values of X, and vice versa for

the membership function mhigh. are, however, cases for which no one solution can be consid-
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ered the best overall possible solution. In such cases one can
combine the various solutions. As an example, in most real-
life classification problems, there is no one optimal classifier.
One has to combine multiple suboptimal and complementary
classifiers to yield a better performance than any single one
(17). What we actually do is divide the decision burden be-
tween the experts, and conquer the problem by integrating

Gating ANN

Expert ANN

Expert ANN

S

out1

out2

w1

w2
out

the experts’ opinions.
Figure 7. Adaptive mixture of expert ANNs using a gating ANN. All
expert ANNs are of the same type, receive the same input and haveExperts as Ensembles of ANNs. An example of using this
the same number of outputs. The gating ANN is also of the same typemultiple experts approach is the integration of ensembles of
and typically receives the same input as the expert ANNs.ANNs (18), shown schematically in Figure 6. In this scheme

an ensemble consists of a set of ANNs, all of which have the
same architecture and data representation. They differ in
their training sets, which are bootstrap replicas (19) of the

yielded better integrated results than the best individualsame original set. Each ensemble serves as an expert, whose
ANN or best expert did.opinion is defined as the average of its members. Suppose

there are M such experts, each one consisting of L ANNs.
Adaptive Mixtures of Local Experts. A different approach toThen the final output for input vector xi is:

combine several experts was suggested by Jacobs et al. (22).
They realized that training an ANN on a global space with
local complexities may cause slow learning and poor general-O(xxxi) =

M∑
m=1

αm(xxxi)

[
1
L

L∑
l=1

Olm(xxxi )

]
(6)

ization. This is a practical issue, since we already know that
an ANN can approximate any continuous mapping to a de-Here Olm is the output of the lth ANN from the mth expert,
sired precision, given enough degrees of freedom (23,24). Theand the �m coefficient depends on the input vector. The �m
system proposed consisted of several different expert net-accounts for the confidence in the mth expert’s opinion. This
works, plus a gating network whose function is to decidein turn can be estimated from the variance in results of all
which of the experts will be used for any given case. The ideaits L ANNs, and thus it depends on the specific input. The
was that after the gating network decides which expert(s) willlower the variance is, the more agreement there is and thus
take the responsibility, any error in the output will reflectthe higher our confidence is (20,21). One can define �m to be
only on those experts’ weights (and the gating network). Fig-inversely proportional to the variance, or choose �m � 1 for
ure 7 shows such a system of two experts and a gating net-the expert whose variance is minimal, and zero otherwise.
work. The gating ANN and the experts’ ANNs receive theShimshoni and Intrator (18) showed that this approach
same input vectors. This gating network makes a stochastic
decision about which single expert to use for each case. A sim-
ple error function for such a system would be:

E =
∑

i

wi‖ddd − outoutouti‖2 (7)

Where outi is the output vector of expert i, d is the desired
output, and wi is the relative contribution of expert i. This
contribution is given by:

wi = e si∑
j es j

(8)

Where si is the total weighted input received by output
unit i of the gating network. The output vector of the
mixture is given by the gating ANN weighting of the indi-
vidual experts:

outoutout =
∑

i

wi outoutouti (9)

With this system, one expert’s decision on a given case is not
directly influenced by the weights of the other experts. It is

…

…

Class label

Ensemble 1 Ensemble 2 Ensemble M

ANN 1 ANN 2 ANN L

Input vector

Integration

indirectly influenced through changes in the relative contri-Figure 6. Integrating ensembles of artificial neural networks
butions wi. The result of the competition between the experts(ANNs). Each ensemble consists of several ANNs that share the same
is that the architecture adaptively splits the input space intodata representation and architecture, but are trained on different in-
regions, and learns separate mappings within each region byput sets. The top block integrates the ensembles’ outputs into a

class label. a separate expert.
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Hierarchies of Adaptive Experts. In the same spirit of divide-
and-conquer, we can now generalize the method of the previ-
ous section into a hierarchical structure. Each expert pre-
viously responsible for a defined region in the input space can
now be divided into subexperts, each of which is responsible
for a subregion. In this way we can recursively define hierar-
chies of adaptive experts. Jordan and Jacobs (25) show the
way to build such a system, depicted schematically in Fig. 8.
Now there are clusters of experts, which combine together to
the final integrated solution. The output of cluster i is given
by:

outoutouti =
∑

j

wjioutoutoutij (10)

The output of the whole system is given by:

outoutout =
∑

i

wi outoutouti (11)

Output

S

Input

…R1(x) RN(x)

A1 AN

The equations for the gating ANNs’ weights are similar to Figure 9. A general scheme of a radial basis function (RBF) network.
Eq. (8). Here again, the gating ANNs serve as classifiers that The network consists of N unit response functions, each of which is
partition the input space. The nested structure of the system locally tuned and has diminishing activation values outside its region

of influence.induces nested partitioning of the input space.

Decomposition in Terms of Mathematical Series Expansion

Divide-and-conquer methods using mathematical series Then an RBF network is constructed from a linear combina-
expansion have been used for quite some time for interpola- tion of locally tuned functions as follows:
tion and function estimation. See, for example, Powel (26) and
Micchelli (27). The special form that ANNs had to offer was
the adaptive tuning of the free parameters involved. Several

f (xxx) =
∑

α

AαRα (xxx) (12)

ANNs paradigms use this type of expansion, and a few are
Here A� is the weight associated with the ith basis function,described here.
and the radial basis functions are given by:

Radial Basis Function Neural Networks. Moody and Darken
(28) used radial basis function (RBF) ANNs, and showed how Rα (xxx) ≡ R

�‖xxx − xxxα‖
σ α

�
(13)

to train them. Suppose we want to approximate a continuous
or piecewise continuous real-valued function f from Rn to Rm.

As can be seen R� is a radially symmetric function with a
single maximum at the origin, and it drops to zero as the
radius increases. The center of the function is at x�, and its
width is ��. Figure 9 shows schematically the structure of an
RBF network.

A common choice for the basis functions is of the Gaussian
form:

Rα (xxx) = exp
[
−‖xxx − xxxα‖2

(σ α )2

]
(14)

It should be noted that these basis functions are not orthonor-
mal, not uniformly distributed, and do not have uniform
width. The locality of the basis functions contributes to the
efficiency of calculating activations, since only functions that
are very near to a given input vector will have significant re-
sponse. Thus only these functions have to be evaluated and
trained.

The error measure used for supervised training can be
written in the form:

Gating ANN

Gating ANN
Expert ANN

Expert ANN

S

S

S

out11

out12

w11

w12

Gating ANN

Expert ANN

Expert ANN

out21

out22

w21

w22

w1

w2

out

out2

out1

Figure 8. Hierarchical adaptive mixture of expert ANNs. Two hier-
archical levels are shown. All expert ANNs and gating ANNs have
the same input vector.

E = 1
2

∑
i

�
d(xxxi) − f (xxxi)

�
(15)
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Where xi is the ith training vector, d(xi) is the desired output Substituting this expression into Eq. (17) and performing the
integrations, results in:and f (xi) is the ANN’s output. Moody and Darken (26) first

used a conjugate gradient optimization procedure to find all
tunable parameters of the network, namely: �x�, ��, A��. It
turned out, however, that the widths �� were not restricted to
small values and thus lost the locality of the basis functions.
Moreover, some basis functions were located far from the data
region, and the convergence was slow.

Ŷ (XXX ) =

N∑
i=1

Yi exp

�
− D2

i

2σ 2

�

n∑
i=1

exp

�
− D2

i

2σ 2

� (19)

A better approach used was a three-step hybrid learning
procedure. The first step was a standard k-means clustering Where:
algorithm (29,30) for choosing x� values. This technique finds
a local minimum of the total squared Euclidean distances E Di = ‖XXX − XXX i‖ (20)
between the training vectors xi and the nearest of the centers
x�: Density estimators of the form in Eq. (18) have the property

of being consistent estimators, which means that they con-
verge asymptotically to the underlying PDF f (x, y), at allE =

∑
i,k

Miα (xxxi − xxxα )2 (16)
points (x, y) at which the density function is continuous, pro-
vided that � � �(n) is a decreasing function of n such that:The Mi� matrix is the cluster membership function consisting

of 0s and 1s, which identifies the basis function to which a
σ (n)

n→∞−−−→ 0 (21)training vector belongs.
The second step was using ‘‘P nearest neighbor’’ heuristics

andto find a set of widths, such that the basis functions form a
smooth and contiguous interpolation over the space they

nσ P(n)
n→∞−−−→ ∞ (22)cover. A simple example of such heuristic would be a uniform

width �, which equals the average Euclidean distance be-
The density estimated by Ŷ(X) is actually a weighted averagetween each basis function’s center and its nearest neighbor.
of the Yi values. As the � parameter gets larger, this densityThe third step was to optimize the set of A� coefficients in
becomes smoother, and in the limit becomes a multivariateEq. (12) such that the error in Eq. (15) is minimized. Since
Gaussian with covariance �2I. This parameter has to be opti-the centers and widths of the basis functions are already
mized, and for regression estimation the optimization crite-fixed, the optimization process is much faster than before, and
rion can be defined by the mean squared error (MSE):can be obtained using the linear least squares (LS) method.

Moreover, basis functions are now located within the data
space, and the overall representation has smoother transition
between function centers.

MSE =
n∑

i=1

|Yi − Ŷ (XXX i)|2 (23)

General Regression Neural Networks. A general regression In case the dependent variable is a vector Y, each of its com-
neural network (GRNN) is a one-pass learning algorithm, ponents is calculated using Eq. (13).
which provides estimates of continuous variables and con- A preprocessing step is usually required which scales all
verges to the underlying regression surface (31). In this ap- input variables to the same range, such that the kernel used
proach, one does not have to assume a specific functional form for the estimation has the same width in all dimensions. The
for the regression, but rather estimate the underlying density width can be found by minimizing the mean squared error in
adaptively from the data points available. Eq. (23) using the holdout method. This method consists of

Suppose f (x, y) is the joint continuous probability density removing one sample at a time, constructing the network
function (PDF) of a vector random variable x and a scalar based on all the rest, estimate the Y for the removed sample
random variable y. If X is a particular value of x, then the and thus constructing the MSE.
conditional mean of y given X is given by: In case the number of samples is large, such that assigning

a neuron to each one is not practical, one can use clustering.
Each cluster is then represented by one neuron positioned at
the cluster’s center. This clustering can be done by various

Ŷ (XXX ) =
∫ ∞

−∞ y f (XXX , y) dy∫ ∞
−∞ f (XXX , y) dy

(17)

methods like learning vector quantization (34), K-means aver-
To estimate f (x, y) one can use the estimators proposed by aging (35), adaptive K-means (28), one-pass K-means or re-
Parzen (32) for the one-dimensional case and by Cacoullos stricted Coulomb energy (RCE) (35). If Ni denotes the number
(33) for the multidimensional case. If n sample points (Xi, Yi) of samples assigned to the ith cluster, then Eq. (19) can be
are available based on random variables x and y, and p is the written as:
dimension of x, then the probability estimator is given by:

f̂ (XXX ,Y ) = 1
(2π)(p+1)/2σ (p+1)

· 1
n

n∑
i=1

exp
[
−‖XXX − XXX i‖2 + |Y − Yi|2

2σ 2

] (18) Ŷ (XXX ) =

n∑
i=1

Ai exp

�
− D2

i

2σ 2

�

n∑
i=1

Bi exp

�
− D2

i

2σ 2

� (24)
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Where Ai is the sum of the Y values and Bi is the number of pected risk. The main difficulty here is the estimation of the
PDFs at given input vectors, weighting them and comparingsamples assigned to the ith cluster.

Figure 10 shows a scheme of GRNN for a scalar output, them. This is done here using the same Parzen’s estimators
we used for the GRNN. The expression for such an estimatorwhere Ŷf (X)K represents the denominator in Eq. (24), and

f (X)K is the numerator. The main advantages of this scheme would be:
are fast learning and convergence to the optimal regression
surface as the number of samples increases. The disadvan-
tage is the computation time needed to estimate a new out- fk(XXX ) = 1

(2π)(p+1)/2σ (p+1)
· 1

Nk

Nk∑
i=1

exp
[
−‖XXX − XXX ki‖2

2σ 2

]
(25)

put vector.

Where p is the dimension of X, Nk is the number of samplesProbabilistic Neural Networks. A probabilistic neural net-
belonging to class k, and Xki is the ith sample in class k. Thework (PNN) (36) is a classification network, similar in struc-
smoothing parameter depends on Nk such that analogous re-ture to the GRNN network. It demonstrates the same divide-
lations to Eqs. (21) and (22) have to be fulfilled. One possibleand-conquer idea of decomposition in terms of mathematical
way to define it is by:series expansion, but this time by estimating the likelihood of

an input vector to belong to a given class. This is done using
σ = σ (Nk) = a · N−b

k (26)the same distribution functions as GRNNs, taking into ac-
count any known a priori probabilities. The PNN is essen-

With b being a constant between 0 and 1.tially an ANNs implementation of a Bayesian classifier. The
All input vectors are required to be normalized such that:principle of a Bayesian classifier is that an input vector be-

longs to the category for which its PDF is highest. This PDF ‖XXX‖ = 1.0 (27)is estimated using Parzen (32) estimator combined with the a
priori probabilities.

Expanding the term in the exponent of Eq. (25) we get:Suppose we have an input vector space, where each vector
x belongs to a given class. The list of possible classes consists
of the K classes C1, C2, . . ., CK. The a priori probability for ‖XXX − XXX ki‖2 = ‖XXX‖2 + ‖XXX ki‖2 + 2XXX T · XXX ki = 2(1.0 + XXX T · XXX ki)

(28)vector X to be in class k is pk, and the PDF of the kth class is
f k(X). Then the Bayes decision rule chooses the class to which

Thus, if a neuron has its weights set to the components of ax belongs as the one having maximum value out of the follow-
sample vector Xki, then the standard summation procedureing list: p1 � f 1(X), p2 � f 2(X), . . ., pK � fK(X). This rule provides
yields the expression in Eq. (28). Setting the neuron’s transferan optimum classification in terms of minimizing the ex-
function to:

F(z) = exp
�z − 1

σ 2

�
(29)

Yields an output of the form shown in Eq. (25) per sample
with z � XT � Xki. What is left is to sum up all these neurons
outputs to yield the PDF estimator of Eq. (25). Figure 11 illus-
trates a paradigm implementing the PNN. It shows the pat-
tern neurons grouped into classes performing Eq. (29), and
then the summation units, one per class, performing Eq. (25).

The Problem of ‘‘Don’t Know’’ Patterns. The PNN paradigm
is a localized network. It divides the input space into local
influence regions whose level of importance relates directly to
the input data density. This gives PNN an important advan-
tage compared to the well known MLP networks. Classifica-
tion by MLP network is done by building n � 1 dimensional
boundaries in the n-dimensional data space. A new pattern
is classified based on its location relative to the boundaries.
Therefore the MLP might give a classification answer with
high confidence (e.g., output neuron value equals 1 for that
class), for a new type of data on which it has never been
trained. This happens when the classification boundaries de-
fine a class region that includes some subspace having no
training data at all. A new type of data may have its patterns

Input X

…

Y(x)

Yf(x)K f(x)K

Summation
units

Pattern
units

A1 A2 B1 AN
BN

^

^

B2

located in such a subspace, thus causing the network to mis-Figure 10. A general scheme of a general regression neural network
classify it as one of its learned types. This may not be impor-(GRNN). The summation units perform a dot product between a
tant for some applications, but for others like nuclear powerweight vector and a vector composed of the signals from the pattern

units. plants transient diagnostics, it is crucial (37,38).
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Figure 11. A general scheme of a probabilistic neural network
(PNN). The summation units sum up the contribution of all
unit functions for each class separately.

…

Input X

Class 1
patterns

Class N
patterns

Summation
units

Class 1 Class N

A demonstration of this drawback of MLPs is shown in Fig- error on the training set, and thus their response for far
points can literally be anything within their output range.ure 12. A simple 2-D classification problem was chosen here,

where the training set consists of just two patterns corre- The problem stems from the fact that MLPs have no way of
giving a reliable answer of ‘‘don’t know,’’ unless it has beensponding to two different classes encoded by 0 and 1. These

two patterns are located at (0.25, 0.25) and (0.75, 0.25) on the trained on ‘‘don’t know’’ patterns.
A possible remedy to this drawback is to include ‘‘don’t2-D square [0-1]2. A backpropagation MLP was trained on

this set, and then its response was recalled on an equidis- know’’ patterns in the training set. Figure 13 shows the re-
sults of the previous MLP, now trained on an enhancedtance grid of points as a test set. This network had two input

neurons, one hidden neuron and one output neuron, and it training set. This training set includes the original two
points encoded as 0 and 1, and a grid of other ‘‘don’t know’’used the logistic activation transfer function. The recall re-

sults are shown as a contour plot in the figure. One can points encoded as 0.5. Here far patterns are classified cor-
rectly because we included them in the training set. Whileclearly see that this MLP responded with ‘‘high confidence’’

(output equals 0 or 1) for the category of very far points on this solution may work for a 2-D problem, it is prohibitive
for a real multi-D problem because of the curse of dimen-which it has never been trained. This behavior is typical for

MLPs in general. They are only trained to reduce the output sionality. This means that most of the multi-D space is
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Figure 12. Backpropagation network’s output without ‘‘don’t know’’ Figure 13. Backpropagation network’s contours output with ‘‘don’t
know’’ patterns. The original two-point training set is shown as X ’s.patterns. The two-point training set is shown as X ’s.
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