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emphasizes the finding of gradients needed for backprop tun-
ing. Sadegh (11) employs approximate calculations of the gra-
dient to establish stability results, and Cristodoulou (12),
Ioannou (13), Sadegh (11), and Slotine (14) offer rigorous
proofs of performance in terms of tracking error stability and
bounded NN weights. All these works assume that the NN is
linear in the unknown parameters by employing single-layer
NNs or recursive NNs with special structures. While the use
of multilayer NNs in system identification was rigorously in-
vestigated, only recently researchers have focused on closed-
loop control of nonlinear systems using multilayer NNs either
in the continuous-time or discrete-time domains. In Refs.
15–17 it has been shown that NN controllers can effectively
control complex nonlinear systems without requiring assump-
tions like linearity in parameters, availability of a regression

CEREBELLAR MODEL ARITHMETIC COMPUTERS matrix, and persistency of excitation. There are NNs are all
multilayer nonlinear networks, and tuning laws guaranteeing

The nonlinearities in the dynamics of practical physical sys- tracking as well as stability of both the closed-loop system
and the NN have been established, both for continuous-timetems make their control a complex problem. Traditionally the

plant dynamics were first modeled and verified through off- and discrete-time cases.
The approximation property of fully connected NNs is ba-line experimentation. The control was then designed using

linear system design techniques or geometric techniques with sic to their application in control of complex dynamical sys-
tems. It has been shown that multilayer feed-forward NNslinear analogues. These techniques were successful in the

control of systems when the model accurately described the are theoretically capable of representing arbitrary mappings
if a sufficiently large number of nodes are included in the hid-process. The results for systems with unknown dynamics

were at first limited by-and-large to ad hoc techniques and den layers (15). Since all the weights are updated during each
learning cycle, the learning is essentially global in nature.simulations involving assumptions such as certainty equiva-

lence. These approaches are limited by the complexity of the This global nature of the weight updating does not utilize the
information on local NN structure and thus slows down themodel and cannot accommodate the variation of systems pa-

rameters. This has resulted in the development of controllers speed of learning. Furthermore, it is necessary to have a large
number of nodes in each layer to guarantee a good functionthat can learn the process dynamics, as well as adapt to para-

metric changes in the system. approximation. It has been shown that the speed of learning
is inversely proportional to the number of nodes in a layerAdaptive controllers attempt to learn the plant character-

istics while simultaneously achieving the control objectives. (15). The fully connected NNs suffer from an additional draw-
back in the sense that the function approximation is sensitiveThese controllers tune the adaptation parameters using the

input-output measurements of the plant (1–4). While the to the training data. Thus the effectiveness of a general
multilayer NN is limited in problems requiring on-lineclassical adaptive methods guarantee stability for a large

class of systems, the system must satisfy assumptions on lin- learning.
To address these issues, the cerebellar model articulationearity in the unknown system parameters. A regression ma-

trix must be computed for each system by often tedious pre- controller (CMAC) NN (18) was proposed for closed-loop con-
trol of complex dynamical systems (19–25). The CMAC is aliminary off-line analysis.

In recent years learning-based control has emerged as an nonfully connected perceptronlike associative memory net-
work that computes a nonlinear function over a domain ofalternative to adaptive control. Notable among this class of

controllers are the neural network (NN) and fuzzy logic-based interest. The CMAC NN is capable of learning nonlinear func-
tions extremely quickly due to the local nature of its weightcontrollers. In the neural network, learning was accomplished

in an off-line fashion by associating input-output pairs during updating (26).
The earliest contributions in the study of the behavior andtraining cycles. While neural networks are very successful in

a variety of applications like pattern recognition, classifica- properties of the CMACs were by H. Tolle and his group of
researchers. Their finding on the approximation propertiestion, and system identification to name a few, their applica-

tions in closed-loop is fundamentally different. In the litera- and learning in CMAC is well-presented in their classic book
NeuroControl (27). Brown and Harris (28,29) also studied theture neural networks have been utilized mostly in indirect

control configuration, that is, identification-based control use of the CMAC in adaptive modeling and control of systems.
The importance of the convergence and stability properties ofwhere back-propagation NN weight tuning is used to identify

the system off-line (5–7). These methods are essentially open- the CMAC in closed-loop control was established by Parks
and Militzer (30,31). Ellison (32) independently presentedloop control and do not guarantee stability in closed-loop ap-

plications. Unfortunately, when the neural network is em- similar results using CMACs for closed-loop control of robots.
Recently, Commuri (33–39) established a method for passiv-ployed in the feedback configuration, the gradients required

for tuning cannot be found if the plant has unknown dynam- ity-based design of the learning laws for the CMAC that en-
ables modular design for on-line learning and guaranteedics. Thus proofs of stability and guaranteed tracking perfor-

mance are absent in these works (6–10). closed-loop control. This article presents a comprehensive
study of the use of CMAC NNs in control applications. TheRigorous research in NN for closed-loop control is being

pursued by several research groups. Narendra et al. (5,6,9) structure and properties of the CMAC NN that make it highly
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suited for closed-loop control are studied. The weight-update functions of finite span are defined on each of the intervals. A
receptive field function is said to be active if it has a nonzerolaws for guaranteed stability, tracking performance, and ro-

bustness issues are discussed. activation value for a particular input. Standard CMAC im-
plementations have a finite number of maximally active re-
ceptive field functions for any given input vector. Figure 2BACKGROUND ON CMAC NEURAL NETWORKS
depicts some standard receptive functions, and Fig. 3 shows
a multidimensional receptive field function of order 2 with anStructure of CMAC Neural Networks
overlap of 4. The width of the receptive field function controls

The cerebellar model arithmetic computer (CMAC) is a per- the output generalization of the CMAC and the offset between
ceptronlike associative memory that performs nonlinear func- adjacent receptive field functions controls the input quantiza-
tion mapping over a region of the function space. This highly tion and the output resolution (18). Further the function gen-
structured nonfully connected neural network model was es- erated by the CMAC depends on the type of receptive fields
tablished by J. Albus (22,26) based on a model of the human used. Splines of order one generate staircase functions, while
memory and neuromuscular control system. Figure 1 shows a splines of order two generate linear output functions.
typical application of a CMAC neural network where the The CMAC is a nonfully connected perceptronlike network
CMAC is used to manufacture a continuous function g(x) � that computes a nonlinear function over a domain of interest.
[g1(x), g2(x), . . ., gm(x)]T, where x � Rn, and g : Rn � Rm. Since the receptive field functions have a finite span, an ele-

The nonlinear function g(x) produced by the CMAC is com- ment in the input space excites only a finite number of these
posed of two primary functions receptive field functions. Let x be the input vector presented

to the network and � be the corresponding vector in the asso-
ciation space A. Let �* be the set of active or nonzero ele-R : X ⇒ A

P : A ⇒ Y
(1)

ments of �. Since the output is a linear combination of these
nonzero values, it is then necessary only to adjust the weights

where X is the continuous n-dimensional input space, A is an w attached to �* in Eq. (2) to change the output. Thus the
NA-dimensional association space, and Y is the m-dimensional CMAC NN is capable of learning nonlinear functions ex-
output space. The function R(.) is fixed and maps each point tremely quickly due to this local nature of its weight updat-
x in the input space X onto a association vector a � R(x) in ing (26).
the association space A. The function P(a) computes an output
y � Y by projecting the association vector determined by

Generalization versus Dichotomy. Since the network needR(x) onto a vector of adjustable weights w such that
not have an unique set of association cells for every possible
input pattern, a given association cell can be activated by dif-
ferent input patterns. For example, let two inputs x1 and x2y = P(α) = wT α (2)
activate two overlapping sets of association vectors �*1 and
�*2 . Now adjustment in the weights corresponds to �*1 willR(x) in Eq. (1) is the multidimensional receptive field function
have the unintended consequence of influencing the outputwhich assigns an activation value to each point x in the input
due to �*2 , which can either be beneficial or detrimental to thespace X�x � (x1, . . ., xn) � X�. From Eq. (2), it can be seen
implementation. In general, the networks ability to generalizethat the output of the CMAC is a linear combination of the
between similar input patterns in determined by the overlapweights (18).
of �*1 ∧ �*2 . If �*1 ∧ �*2 is null, then the two input patterns willIn order to obtain the multidimensional receptive field

functions, the input space is first discretized, and activation be independent. The amount by which the outputs will be

R ( . ) W
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g1
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Figure 1. CMAC architecture for the approximation of a vector function.



CEREBELLAR MODEL ARITHMETIC COMPUTERS 155

n = 1

n = 2

n = 4

( a ) ( b )

x

x

xλ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

1

0

1

0

1

0

Figure 2. Standard CMAC receptive field functions of orders 1, 2, and 4.

similar to two input patterns x1 and x2 will be determined by unique mapping from X � A is theoretically possible if Rn �
99 �A*�, where Rn is the number of possible input patterns (22).extent of overlap of �*1 and �*2 (22). Similarly the network’s

ability to dichotomize or produce dissimilar outputs for the The number of association cells in any CMAC is deter-
mined by the level of discretization of the input space. If thetwo inputs patterns x1 and x2 depends on the nonintersecting

elements of �*1 ∧ �*2 . level of discretization is very fine, there will be too many asso-
ciation cells and it becomes physically impossible to imple-
ment the CMAC. This problem can be solved by hash codingEffects of Hash Coding. It can be seen from the above discus-

sion that CMAC can learn any function by proper choice of (22,40) where the size of physical memory is maintained at
manageable size by mapping many association cells to thethe weights. The mapping generated, however, is dependent

on the actual implementation of the CMAC. same physical memory locations. Hashing has the undesir-
able side effect of ‘‘collisions.’’ If the actual number of memoryLet Ap be the number of association cells physically imple-

mented by CMAC and A* be the number of maximally active locations available is two thousand, namely Ap � 2000 and
A* � 20, then the probability of two or more cells beingelements of A for any given pattern. In practice, Ap is chosen

to be at least 100 times A*. Then it can be shown that a mapped into the same cell in A is approximately 0.1 (22).
Therefore, as long as this probability is low, collisions are not
a serious problem and only results in reduced resolution of
the output.

Another effect of hashing is the interference in the form of
unwanted generalization between input vectors. It can be
shown that this effect is insignificant as long as the overlap
is not large compared to the total number of cells in A*. If,
for example, Ap � 20,000 and A* � 20, then the probability of
two or more collisions is 0.01, and the probability of two or
more cells spuriously overlapping is 0.0002. Thus, in the im-
plementation of CMAC, it is desirable to keep A* small to
minimize the amount of computations required. It is also de-
sirable to keep the ratio A*/Ap small to minimize the probabil-
ity of overlap between widely separated input patterns.

Constructive Method for Linear Multidimensional
Receptive Field Functions1r4 (x1)

2r7 (x2)
2r6 (x2)
2r5 (x2)
2r4 (x2)

 1r5 (x1)     1r6 (x1)      1r7 (x1)
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x
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The structure of the CMAC discussed in preceding sectionFigure 3. Multidimensional receptive field functions of order 2 and
overlap 4. gives insight into the nature of the function generated by the
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CMAC. However, in practical applications the reverse is often b. Compact support, Rj1, j2, . . ., jn
(x) � 0 for all x � (x1, j1�1,

x1, j1�1) � . . . � (xn, jn�1, xn, jn�1)necessary, that is, when, given a particular function to ap-
proximate, the task is to determine the CMAC structure that c. Normalization, �Nn

jn�1 � � � �N2
j2�1 �N1

j1�1 Rj1, j2, . . ., jn
(x) � 1 for

will generate this required map. This problem was recently all x.
addressed in Ref. 33. In this work methods to construct
CMACs that guarantee an approximation for a class of func- According to Lemma 1(b), for any prescribed value of x �
tions were established. In this subsection these results are Rn, only 2n values of Rj1, j2, . . ., jn

(x) are nonzero.
summarized.

Salient Properties of the Output of CMAC. Given any ele-
One-Dimensional Receptive Field Functions. Given x � [x1, ment x of the input space, the receptive field values

x2, . . ., xn] � Rn, let [ximin
, ximax

] � R � 1 � i � n be the domain Rj1, j2, . . ., jn
(x) are elements in the association space A. The out-

of interest. For this domain, select integers Ni and strictly put of the CMAC neural network is now computed by proj-
increasing partitions �i � �xi,1, xi,2, . . ., xi,Ni

�, �1 � i � n (e.g., ecting this association vector onto a vector of adjustable
ximin

� xi,1 � xi,2 � . . . � xi,Ni
� ximax

). For each component of weights w. Let w(j1, . . ., jn) be the weight associated with the in-
the input space, define the receptive field functions as dex j1, . . ., jn. Then the function manufactured by a single-

output CMAC can be expressed asµi,1(xi) = �(−∞, xi,1, xi,2)(xi)

µi, j (xi) = �(xi, j−1, xi, j , xi, j+1)(xi), 1 < j < Ni

µi,Ni
(xi) = �(xi,Ni −1, xi,Ni

, ∞)(xi)

(3)
g(x) =

Nn∑
jn=1

. . .

N1∑
j1=1

w( j1 ,..., jn )Rj1 ,..., jn (x) : Rn → R (6)

where the triangular functions �(.) are defined as
A general CMAC is easily constructed by using this frame-
work as follows.

Lemma 2 A multi-input multi-output CMAC with output
g(x) : Rn � Rm is a nonlinear mapping defined as

�(a, b, c)(y) =




y − a
b − a

, a ≤ y ≤ b(= 1 if a = −∞)

c − y
c − b

, b ≤ y ≤ c(= 1 if c = ∞)

0 otherwise

(4)

g(x) = [g1(x), g2(x), . . ., gm(x)]T (7)

The leftmost and rightmost receptive field functions are se- where
lected such that every value of xi corresponds to at least one
receptive field function. Given the partition �i � �xi,1, xi,2, . . .,
xi,Ni

�, the one-dimensional receptive field functions selected as
in Eqs. (3) and (4) are shown in Fig. 4.

gk(x) =
Nn∑

jn =1

. . .

N1∑
j1=1

wk,( j1 ,..., jn )Rj1 ,..., jn (x) : Rn → R (8)

Multidimensional Receptive Field Functions. Given any x � The function g(x) in Eq. (7) is Lipschitz continuous.
[x1, . . ., xn] � Rn, define multidimensional receptive field
functions as In fact, according to the normalization property of Lemma

1(c), Eq. (8) is a convex combination of the weights w.

Function Approximation Properties of CMAC Neural Net-
Rj1 , j2 ,..., jn (x) =

µ1, j1
(x1) · µ2, j2

(x2) . . . µn, jn (xn)∑Nn
jn =1 . . .

∑N2
j2=1

∑N1
j1=1

∏n
i=1 µi, ji

(xi)
(5)

works. In recent years neural networks have been used in the
control of systems with unknown dynamics. In the early ap-It is easy to see that the receptive fields so defined are nor-
plications NNs were used as direct adaptive controllers,malized n-dimensional second-order splines.
where the NN was used to identify the system off-line, and
the controllers were developed using the identified model. InLemma 1 The multidimensional receptive field functions se-
later applications on-line learning laws were developed, andlected in Eq. (5) satisfy three significant properties:
the NNs were used as indirect adaptive controllers (see NEU-

RAL NETWORKS FOR FEEDBACK CONTROL). In all of these ap-a. Positivity, Rj1, j2, . . ., jn
(x) � 0 for all x � (x1, j1�1, x1, j1�1) �

proaches the approximation property of fully connected NNs. . . � (xn, jn�1,, xn, jn�1)
is basic to their application in control of complex dynamical
systems. However, the effectiveness of a general multilayer
NN is limited in problems requiring on-line learning. Since in
a CMAC only a finite number of receptive fields are active
for any given input, an efficient controller for systems with
unknown dynamics can be implemented using CMAC NNs.

In the early approaches learning in CMAC was first accom-
plished off-line. The CMAC was presented with training sam-
ples, and the corresponding weights were updated until the

1

xi, 1 xi, 2 xi, 3 xi, 4 xi, 5 network could reconstruct the unknown function with reason-
able accuracy over the domain of interest. In these works theFigure 4. One-dimensional receptive field function: Ni � 5 span-

ning R1. CMAC weight update rules were similar to the least mean
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squares (LMS) algorithm. This way they ensured convergence hand side of Eqs. (7) and (8). In the implementation of CMAC
neural networks, it is customary to employ the following sub-of CMAC learning to some local minima. The convergence

properties of CMAC were also studied by Wong and Sideris mappings (18,22,26):
(40). In this work the CMAC learning is essentially solving a
linear system with methods similar to the Gauss-Seidel
method. This results in a highly accurate learning algorithm
that converges exponentially fast. Therein the following re-

R : X ⇒ M

Q : M ⇒ I

� : I × M ⇒ A
(14)

sult was also established.
where R(x) is the receptive field function described in Eq. (5),
Q is a quantization function, M is a matrix of receptive fieldTheorem 3 (40) Given a set of training samples composed
activation values, and I is an array of column vectors used toof input-output pairs from Rn � Rm, CMAC always learns the
identify the locations of the active receptive fields along eachtraining set with arbitrary accuracy if the input space is dis-
input dimension.cretized such that no two training samples excite the same

Let the receptive field functions along each dimension beset of association cells.
chosen to have an overlap of two. Then, in all, only 2n re-
ceptive fields will be active for a given input x. These activeRecently it has been shown that CMACs can be con-
receptive fields can be located by constructing a set of activestructed to approximate nonlinear function’s with arbitrary
indices of �. Given the partition on the input space, for anyaccuracy. Consider the partition �i, 1 � i � n, given earlier.
x � Rn there exists a unique n-tuple (j1, j2, . . ., jn) such thatThen the following theorem can be proved (33).
x � �j1, j2, . . ., jn

. Let k1, k2, . . ., kn be positive integers such that
(xj1

, xj2
, . . ., xjn

) � �k1,k2, . . .,kn
. Given this index set (k1, k2, . . .,

Theorem 4 The function estimate g(x) defined in Eq. (6) kn), after selecting left-hand odometer ordering, the indicator
uniformly approximates any C1-continuous function f (x): function is constructed as
Rn � Rm on � � Rn. Specifically, given any � � 0 and L, the
Lipschitz constant of f (.) on �, the maximum partition size � I = k1 + (k2 − 1)N1 + (k3 − 1)N1N2 + · · · (15)
can be chosen such that

By Lemma 1, the elements of a not addressed by I are equal
to zero. Thus Q is a map from N1 � N2 � . . . � Nn space‖ f (x) − g(x)‖ ≤ ε (9)

composed of the tensor products of the receptive field func-
where tions to a (N1N2 . . . Nn) � one-dimensional space I. The map

� is now defined by I and M. Specifically the 2n nonzero values
of R(x) are placed into the matrix �(x) at the locations speci-δ ≤ ε

mL
(10)

fied by I(x). This ordering of the indices uniquely determines
w and � in Eq. (13).

and
Corollary 1 Given any C1-function f (.), ideal weights w can
be found such thatδ = max(‖x − y|)

∀x, y ∈ [x1, j1−1, x1, j1
) × · · · × [xn, jn −1, xn, jn ), ∀ ji (11)

f (x) = wT �(x) + ε (16)

According to the theorem, an estimate to a given function where � is the function estimation error and ��� � �N, with �N
f (x) is given by g(.) � [g1, g2, . . ., gm]T with a given bound.

BACKGROUND ON NONLINEAR DYNAMICAL SYSTEMS
gk(x) =

Nn∑
jn =1

. . .

N1∑
j1=1

wk,( j1 ,..., jn )Rj1 ,..., jn (x) (12)

The earliest use of CMACs in control applications was in thefor some weights w. In fact, the weights can be shown to be
control of robot manipulators (22,26,40). In these applica-the samples of the function components to be approximated
tion’s, the CMAC was first trained to learn the inverse dy-at each of the knot points of the partition.
namics of the system to be controlled (41,42). The training
law used in these applications is similar to the Widrow-HoffImplementation Properties of CMAC Neural Networks
training procedure for linear adaptive elements (43,44),

The output in Eqs. (7) and (8) of the CMAC can be repre-
sented as a function from Rn to Rm and expressed in vector dw = β∗(Vo − f (so))

notation as
where

g(x) = wT �(x) (13)
dw is the weight vector adjustment.
� is the learning gain between 0 and 1.where w is a matrix containing the set of weights, and � is a

vector of the receptive field activation values. The definition Vo is the applied control command vector during the previ-
ous control cycle.of w and � is not unique, though wT� is equal to the right-
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Figure 5. Block diagram of learning controller (32)
for robot control. The output of the controller has
two components: a fixed part and a variable part
that depends on the response determined by the
CMAC memory.

s  = < θ. θ. θ >

CMAC
memory

Trajectory
planning

Fixed gain
feedforward

Fixed gain
control

Vp

so

so
Response
Vp = f (sd)

sd

Training
Vo = f (so)

Vo 

z–1 PWM

Current sense
Tachometer

+ +

_

so is the observed state of the system in the previous con- with the output equation given as
trol cycle.

f (so) is the predicted drive value.

When the system is initialized, the weights contains all zeros.

y(k) =




x1(k)

xn1+1(k)

·
xn1+n2+···+nm−1+1(k)


 (18)

Therefore the output of the CMAC is zero. As the CMAC
where y(k) denotes the sampled value of y(t) at t � kT, and Tlearns the inverse dynamics of the system, the CMAC net-
is the sampling period. It is assumed that the coefficients bi,work output will be similar to the actual control values re-
1 � I � m are known. d(k) � [d1(k), d2(k), . . ., dm(k)]T is anquired and the CMAC will take over from the fixed gain con-
unknown disturbance with known upper bound so that �d� �troller (see Fig. 5).
bd, x(k) � [x1(k), x2(k), . . ., xn(k)]T � Rn, and f � [f 1, f 2, . . .,To illustrate the application of CMAC NNs in the control
fm]T : Rn � Rm is a smooth vector function.

of nonlinear systems with unknown dynamics, three classes
of systems from literature are presented. The systems repre- Output Tracking Problem. Given the system in Eqs. (17) and
sented by the dynamical equations in the following subsec- (18), it is required to manufacture a bounded control input
tions are important from the standpoint of control, since most u(k) � [u1(k), u2(k), . . ., um(k)]T such that the output y(k) of
physical systems to be controlled can be expressed in the form the system tracks a specified desired output yd(k) � [yd1

(k),
of these equations. Here the dynamical representation is yd2

(k), . . ., ydm
(k)]T while ensuring that the states x(k) are

bounded. It is assumed that the desired output satisfiesgiven followed by the CMAC formulation of the controller.

Discrete-Time Representation of a Nonlinear
System in Brunowskii Canonical Form




∥∥∥∥∥∥∥∥
yd(k)

yd (k + 1)

·
yd (k + n)

∥∥∥∥∥∥∥∥


 ≤ γ , k = 0, 1, 2, . . ., N − 1 (19)

The description of a nonlinear system in Brunowskii canoni-
cal form is given as Feedback Linearizing Controller. The tracking problem

above can be solved using a feedback linearizing controller if
the complete dynamics in Eq. (20) are known. In this imple-
mentation the system is first expressed in terms of the fil-
tered error system and the filter gains selected to make the
error dynamics Hurwitz (Table 1). The control input is then

Table 1

Tracking error ei(k) � yi(k) � yd
i
(k)

Filtered ri(k)�ei(k)��i,n
i
�1ei(k�1)� . . .��i,1ei(k�ni �1)

tracking 1� i�n
error

Control input ui(k)� ��fi(x(k))�Kv
i
ri(k)� [�i,n

i
�1ei(k)��i,n

i
�2ei(k�1)

� . . .�� i,1ei(k�ni �2)]�yd
i
(k�1)�/bi

1� i�m
Filtered ri(k�1)�Kv

i
rk(k)�di(k)

tracking
error system

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

·
xn1

(k + 1) = f1(x(k)) + b1u1(k) + d1(k)

xn1+1(k + 1) = xn1+2(k)

xn1+2(k + 1) = xn1+3(k)

·
xn1+n2

(k + 1) = f2(x(k)) + b2u2(k) + d2(k)

·
xn1+n2+...+nm−1+1(k + 1) = xn1+n2+···+nm−1+2(k)

xn1+n2+...+nm−1+2(k + 1) = xn1+n2+···+nm−1+3(k)

·
xn(k + 1) = fm(x(k)) + bmum(k) + dm(k)

(17)
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Figure 6. Control of an unknown nonlinear system us-
ing CMAC neural network. The controller includes an
inner feedback linearizing loop and an outer tracking

CMAC
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       T KvΛ

Λ
loop.

computed to force the filtered tracking error to be bounded, the unknown nonlinear dynamics, while the outer tracking
which in turn guarantees that the error and all its derivatives loop ensures stability of the closed loop system. As the CMAC
are bounded (39,45). learns, more of the stabilization role is assumed by the

CMAC, which cancels out the nonlinear terms in the dy-
Adaptive CMAC Control. In the implementation of the con- namics.

troller in Table 1, it is assumed that the function f (.) is
known. However, in practice, f (.) is unknown, since the infor-

Remark 1 The first term in Eq. (21) is a gradient term thatmation on the dynamics of the system is only partially known.
ensures stability of the weight update algorithm. The secondThe approach of the preceding section can still be used if an
term is necessary to overcome the requirement of persistencyestimate f̂(x) of f̂(x) of f (.) is available. According to Corollary
of excitation condition (46) for the convergence of the weights1, any nonlinear function can be approximated to any re-
and ensures robustness in the closed-loop.quired degree of accuracy using a CMAC neural network. The

output of the CMAC is then given as
Remark 2 (39,45) �T(x(k))�(x(k)) � 1.

f (x(k)) = wT (k)�(x(k)) (20)

Remark 2 explains how the CMACs overcome one of thewhere w is a matrix of weights and �(x) is the vector of re-
ceptive field activation values based on n-dimensional second- serious difficulties in the implementation of fully connected
order splines. However, for such a network to ensure small NNs. In the fully connected NNs, the adaptation rate a must
tracking error in closed-loop control, the weights (e.g., sample satisfy the condition a must satisfy the condition ��
T(x(k))

values of f (.)) associated with the network must be known. (x(k))� � 1, where 
(.) is the vector of the activation function
Since f (.) is unknown in control applications, it is necessary of each node. Therefore, as the number of nodes increase, a
to learn the weights on-line. In Refs. 39 and 45, a learning must decrease thereby slowing the rate of adaptation (15). In
law was derived that ensured the stability of the overall fil- the case of CMAC, however, since �T(x(k))�(x(k)) � 1, the rate
tered tracking error system (Table 1). of adaptation can be chosen independent of the partitioning

of the input space. This, together with the localized learning
Theorem 5 For the system in Eqs. (17) and (18) let the in- in CMAC, ensures quick convergence of the weights of the
puts be selected as in (Table 1) (39,45). Further let the esti- CMAC and better tracking performance.
mate of the nonlinearity f̂(.) be manufactured by a CMAC NN
in Eq. (20). Let the CMAC weights be tuned on-line by

Numerical Example. As an example (45), the controller pro-
posed in the preceding sections is tested on the system givenŵk+1 = αŵk − βRkrT

k+1 (21)
by the following set of equations:

with �, � � 0 design parameters. Then for small enough
outer-loop gains Kvi

(as specified in the proof), the filtered
tracking error r(k) and the weight estimates ŵ(k) are Uni-
formly Ultimately Bounded (UUB). Further, the filtered

ẋ1 = x2 + u1

ẋ2 = x1 + 2e−(x2
1+x2

2 )x2 − 0.1x2 + u2

(22)

tracking error can be made arbitrarily small by proper selec-
tion of the feedback gains Kvi. The system outputs are

The proposed control scheme (Table 1) is shown in Fig. 6.
Note that the structure has a nonlinear CMAC inner loop
plus a linear outer tracking loop. The CMAC inner loop learns

y1 = x1

y2 = x2
(23)

Figure 7. Actual and desired output y1 with the
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Figure 8. Actual and desired output y2 with the
discrete-time CMAC controller.
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The control inputs u1 and u2 are to be selected so that y1 be the desired output vector or the trajectory to be tracked.
Here the superscript in parenthesis indicates the order of thetracks a square signal and y2 tracks a sinusoidal signal of

period 2 seconds. operator d/dt. It is assumed that the desired trajectory vec-
tor yd is continuous and bounded and that the sign of g(x)In the implementation of the CMAC controller for the sys-

tem in Eqs. (22) and (23), the system is first discretized for a is known.
The state-feedback linearizing controller is implementedsample period of 10 milliseconds. The CMAC is then required

to manufacture the nonlinearities in the system dynamics. In as shown in Table 2. The system is first expressed in terms
of the filtered error system and the filter gains selected toorder to achieve this, the receptive fields for the CMAC NN

are selected to cover the input space �[�2, 2] � [�2, 2]� with make the error dynamics Hurwitz (Table 2). The control input
is then computed to force the filtered tracking error small,knot points at intervals of 0.25 along each input dimension.

The initial conditions for both the states x1 and x2 are taken which in turn guarantees that the error and all its derivatives
are bounded (34).to be zero. Figures 7 and 8 show the desired and actual

outputs for the MIMO system in Eqs. (22) and (23) using
CMAC NN Controller. The controller in Table 2 cannot be im-the CMAC NN controller (Table 1). It is seen that although

plemented in practice as the functions f (.) and g(.) are unknown.578 weights are needed to define the output in Eq. (22), only 8
As seen earlier, the controller can be implemented using esti-(2 � 22) weights are updated at any given instant. In other
mates of f (.) and g(.). In order to approximate f (.) and g(.), twowords, the performance of the CMAC controller is good even
CMAC NN systems are employed. Using the approximationthough the CMAC controller knows none of the dynamics a
property of the CMAC, f (.) and g(.) can be written aspriori.

Class of State-Feedback Linearizable Nonlinear Systems f (x) = WT
f � f (x) + ε f (26)

A class of mnth order multi-input multi-output (MIMO) state- g(x) = WT
g �g(x) + εg (27)

feedback linearizable system in the controllability canonical
form is given as where Wf, Wg are vectors and �f, �g are the maximal function

reconstruction errors for f (.) and g(.), respectively. Let f̂(x)
and ĝ(x) be the estimates of f (.) and g(.) generated by the
CMACs. The controller can then be implemented as in Table
3 (34). The closed-loop implementation is as shown in Fig. 9.

Robot Arm Control

The dynamics of an n-link robot manipulator may be ex-

ẋ1 = x2

ẋ2 = x3

...

ẋn = f (x) + g(x)u + d

y = x1

(24)

pressed in the Lagrange form as (47)

with state xi � [x1 x2 . . . xn]T � �n for i � 1, . . ., m, output M(q)q̈ + Vm(q, q̇)q + G(q) + F(q̇) + τd = τ (28)
yi(t) � �m and control u. It is assumed that the unknown dis-
turbance d(t) � �m has a constant known upper bound so that
�d(t)� � bd, and that f ,g : �mn � �m are smooth unknown func-
tions with �g(x)� � g � 0 for all x, where g is a known lower
bound.

Tracking Problem. The output tracking problem for this
class of systems can be handled using the same design proce-
dure as in the preceding section. The chief difference is that
for this class of systems, the control coefficient g(x) is not con-
stant but a function of the states of the system. Let

xd(t) ≡ [ydẏd . . . y(n−1)

d ]T (25)

Table 2

Tracking error e � x � xd

ei�1 � y(i)(t) � y(i)
d (t), i � 1, 2, . . . , n � 1

Filtered error r � �Te, where � � [� 1] � [�1 �2 . . . �n�11]T

sn�1 � �n�1sn�2 � . . . � �1 is Hurwitz.
Filtered tracking error ṙ � f (x) � g(x)u � d � Yd

dynamics
where Yd � �y(n)

d � �n�1

i�1
�iei�1

Control input
U �

1
g(x)

[�f (x) � yd � �r]

Closed-loop dynamics ṙ � �r � d
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where the tracking error is defined as e(t) � q(t) � qd(t), M is
a constant diagonal matrix approximation of the inertia ma-
trix, and Kv, Kp are constant diagonal matrices of the deriva-
tive and proportional gains.

With this control, Eq. (29) can be rewritten as

q̈(t) = M−1(q){−Vm(q, q̇)q̇ − G(q) − F(q̇) − τd}
− M−1(q)M{Kvė + Kpe − q̈d} (31)

Simplifying and rearranging, we get

ë(t) + Kvė(t) + Kpe = M−1(q){−Vm(q, q̇)q̇ − G(q) − F(q̇) − τd}
+ (I − M−1(q)M){Kvė + Kpe − q̈d}

Defining

Table 3

uc � �
1

ĝ(x)
[�f̂ (x)� v]

v��Kvr� Yd , Kv � 0.

Auxiliary control input

ur ���
�uc�
g

sgn(r)Robustifying control input

Control input u� �uc �
ur � uc

2
e�(�uc�� s) if I� 1

ur �
ur � uc

2
e��(�uc�� s) if I� 0

I� �1 if ĝ� g and �uc�� s

0 otherwise
Indicator

Design parameters �� ln 2/s, �� 0, Mf , Mg � 0, and s� 0

Weight update for f̂ Ŵ
�

f �Mf	f(x)r� 
Mf�r�Ŵf

Weight update for ĝ Û
�

g � �Mg	g(x)r� 
Mg�r�Ŵg if I� 1

0 otherwise
f (q, q̇) = M−1(q){−Vm(q, q̇)q̇ − G(g) − F(q̇)}

+ (I − M−1(q)M){Kvė + Kpe − q̈d} (32)

ë(t) + Kvė(t) + Kpe = f (q, q̇) − M−1(q) τd (33)
with q(t) � Rn the joint variable vector, M(q) the inertia ma-
trix, Vm(q, q̇) the coriolis/centripetal vector, and F(q̇) the fric-

In conventional controller design, it is standard practice totion component. Bounded unknown disturbances are denoted
design M such that �I � M�1(q)M� is small. Also for nominalby �d, and � is the control torque. It is assumed that �d is an
trajectories, the effects of the centripetal, coriolis, and theunknown disturbance with a known upper bound bd so that
friction terms on Eq. (31) are small. Therefore f (q, q̇) is small��d� � bd. The control problem is then to design a control input
and can be neglected. This design guarantees adequate per-� such that the joint angles q(t) track a desired trajectory
formance in the designed region of operation, but the trackingqd(t).
response degenerates rapidly if the region of operation is en-
larged. Moreover, even for a given region of operation, theConventional Controller Design. Traditionally the controller
effect of f (q, q̇) cannot be neglected if the robot is required toproblem has been attempted by linearizing the robot system
operate at high speeds. This in essence becomes a serious bot-in some region of operation and then designing a linear pro-
tleneck to enlarging the envelope of the robot performanceportional-derivative (P-D) or proportional-integral-derivative
(47).(PID) controller for the system. That is, the system in Eq. (28)

is first expressed as
Robot Control Using State-Feedback Linearization Ap-

proach. The use of CMAC NN in designing feedback lineariz-q̈(t) = M−1(q){−Vm(q, q̇)q̇ − G(q) − F(q̇) − τd} + M−1(q)τ

(29) ing controllers can be extended to control the robotic system
in Eq. (29) (34). Consider a two-link robot arm (47) where the

In practice, it is known that M�1(.) exists, and hence the linear first link is 1 m long and weighs 1 kg and the second link is
equivalent of Eq. (28) can be found about any operating point. 1 m long and weighs 2.3 kg. The first joint is required to track
Thus, given any smooth desired trajectory qd(t), neglecting the a trajectory qd1

� 0.3 sin(t) and the second joint is required to
coriolis, gravity, and the friction terms, the control input can track a trajectory qd2

� 0.3 cos(t). The controller parameters
be designed as were selected as kv � diag�5,5�, � � diag�5,5�, and the diago-

nal elements of the design matrix F are taken to be 10 with

 � �2. The response of the system with the CMAC controllerτ = −M{Kvė + Kpe − q̈d} (30)

Figure 9. Structure of the feedback linearizing CMAC
controller. The controller has two adaptive loops: one
for generating the estimate of the unknown function
f (.) and the other for generating the estimate of the un-
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Figure 10. Robot control—Joint 1 response with CMAC controller. Figure 12. Robot control—Joint 1 response without CMAC con-
troller.

is shown in Figs. 10 and 11. From these figures it is evident Let the modified control be defined as
that after a short learning phase, the system is able to track
the desired trajectories effectively. Figures 12 and 13 show τ = −M{Kvė + Kpe − q̈d + f̂ (q, q̇)} (34)
the response of the system without the CMAC NN in the feed-

where f̂(q, q̇) is the output generated by a CMAC NN. Theback loop. From these results it is clear that the CMAC NN
error dynamics of the system in Eq. (29) under this new con-does improve on the linear design.
trol can be written in the form

Intelligent Control Formulation of the Robot Control Prob-
lem. While it is well known that the robot control problem
can be satisfactorily addressed using the filtered tracking er-

ë(t) + Kvė(t) + Kpe = f (q, q̇) − M−1(q)τd − M−1(q)M f̂ (q, q̇)

(35)
ror formulation of the control problem (16,17,47), this ap-

Definingproach would entail a complete redesign of the controller.
Here we propose an alternative strategy based on techniques
rooted in intelligent control literature. It will be shown that N = f (q, q̇) − M−1(q)M f̂ (q, q̇) − M−1(q)τd (36)

the thorny problem of the neglected dynamics can be easily
and the state e � [eT ĖT]T, the error equation in Eq. (36) canhandled by adding a feedforward component to the controller
be put in the state-space form asdesigned in Eq. (31). The feedforward component is adaptive

in nature and can be manufactured using neural networks,
adaptive controllers, or fuzzy logic networks (39,45). Here we
restrict the presentation to CMAC neural networks.

ė =
[

0 I
−Kp −Kv

]
e +

[
0
N

]
(37)
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Figure 13. Robot control—Joint 2 response without CMAC con-Figure 11. Robot control—Joint 2 response with CMAC controller.
troller.
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Now, if the CMAC NN is designed such that Assumption 1 Let the system in Eqs. (17) and (18) satisfy
the following conditions:

f̂ (q, q̇) = M−1M(q) f (q, q̇) (38)
a. f (0) � y(0) � 0.
b. The system is completely reachable; that is, for a giventhen

x(tf) there exists a constant N, and bounded controls
u(k), k � 0,1,2, . . ., N � 1 such that the state can bef (q, q̇) − M−1(q)M f̂ (q, q̇) ≡ 0 (39)
driven from x(0) � 0 to x(tf � NT).

c. 
(u, y, Tc) is an energy supply rate associated with thisThen in the absence of disturbances, perfect tracking can
system such thatbe achieved. However, since f (q, q̇) and M(q) are not known in

practice, the CMAC NN can be designed to learn the dynam-
ics online and ensure that �N� in Eq. (36) is small. In fact this σ (u, y, Tc ) = 〈y, Qy〉Tc

+ 2〈y, Su〉Tc
+ 〈u, Ru〉Tc

(41)

bound on �N� influences the overall closed-loop performance
where Q, R, S are constant matrices with Q and R � �and can be made as small as desired by proper choice of the
symmetric and �.,.	 is the inner product.learning laws for the CMAC NN.

Definition 1 A system is state-strict passive if it is (a) pas-Theorem 6 For the system in Eq. (28) let the inputs be se-
sive (48–53) and (b) there exists a real function �(.) satisfyinglected as in Eq. (36) (36). Let k1 be a positive constant such
�(x(k)) � 0 �x(k) � 0, �(0) � 0, andthat

�(x(k + 1)) − �(x(k)) ≤ y′(k)u(k) − εxT (k)x(k) (42)

where x is the state of the system. Equation (42) is referred
eT

[
0 I

−Kp −Kv

]
e ≤ −k1‖e‖2

to in literature as the power form.
Further let the estimate of the nonlinearity f̂(.) be manufac-
tured by a CMAC NN in Eq. (41). Let the weights of the Theorem 7 Consider the system of the form shown in Fig.
CMAC NN be tuned on-line by the following update laws: 14. Suppose that the subsystems H1 and H2 are state-strict

passive with the supply rates 
1(u, y, Tc) and 
2(u, y, Tc). Fur-
ther let H1 satisfy˙̂w = �̂(x)rT − k1‖r‖ŵ (40)

with k2 a positive design parameter. Then for large enough ‖y1(k)‖ ≤ α‖x(k)‖, α < 0 (43)
outer-loop gain k1, the tracking error e(t), and the weight esti-

Then the feedback system is UUB for all bounded inputsmates are UUB. Further the tracking error can be made ar-
e1(k).bitrarily small by proper selection of the feedback gains Kp

and Kv.
Theorem 7 is a powerful tool for analyzing the internal sta-

bility of interconnected systems. In fact this result is instru-
PASSIVITY-BASED DESIGN mental in developing a new approach to designing adaptive

controllers (54). The use of this result is demonstrated in the
Earlier CMAC controllers were presented that guarantee following lemmas.
closed-loop tracking performance for nonlinear systems with Define �(k) � f̃(x(k)) � d(k). Then the filtered error system
unknown dynamics. The stability of these controllers was (Table 1) can be expressed in vector notation as
proved using Lyapunov stability analysis. While this tech-
nique guarantees closed-loop stability of the overall system, r(k + 1) = −Kvr(k) + ξ (k) (44)
it does not give insight into the actual selection of CMAC
learning laws for a particular application. In recent work Lemma 8 The dynamics in Eq. (44) from �(k) to r(k) are a
(37,38), the CMAC design was studied from an input-output state-strict passive system.
point of view, and conditions that guarantee closed-loop sta-
bility were derived. These results give insight into the selec- Lemma 9 The weight update law in Eq. (21) guarantees the
tion of learning laws for a given class of systems and are pre- CMAC neural network to be state-strict passive from input
sented in the following subsection. r(k) to w̃T(k)R(k) (Fig. 15).

Background on Passivity

The relationship between the input-output properties of a sys-
tem and its stability have been extensively studied using the
theory of dissipative systems (48–53). These results were later
extended to derive conditions for nonlinear systems subjected
to bounded disturbances (37,38). It can be shown that the

+ +

+

–

y1

y2

u1

u2

e1

e2

H1

H2

CMAC neural network used for control purposes can be con-
structed to have an important dissipativity property that Figure 14. Interconnection of two subsystems in feedback configu-

ration.makes it robust to disturbances and unmodeled dynamics.
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the rate of learning must be understood for effective control-
ler design.
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