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BOLTZMANN MACHINES

As modern computers become ever more powerful, engineers
continue to be challenged to use machines effectively for tasks
that are relatively simple for humans, but difficult for tradi-
tional problem-solving techniques. Artificial neural networks,
inspired by biological systems, provide computational meth-
ods that can be utilized in many engineering disciplines. Fol-
lowing a brief overview of the features that characterize neu-
ral networks in general, we consider the neural networks
known as Boltzmann machines.

Fixed-weight Boltzmann machines are used for con-
strained optimization problems, such as those arising in
scheduling, management science, and graph theory. They are
applied to intractible NP-complete problems to rapidly locate
near-optimal solutions. Three constrained optimization prob-
lems, the traveling salesman, asset allocation, and scheduling
problems, are considered below. Other problems of this type
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include maximum cut, independent set, graph coloring, clique
partitioning, and clique covering problems (1). A second type
of Boltzmann machine is used for input-output mapping prob-
lems such as the encoder, seven-segment display, and XOR
problems.

OVERVIEW OF NEURAL NETWORKS

Neural networks consist of many simple processing elements,
called neurons or units, which are connected by weighted
pathways. The neurons communicate with each other by
sending signals over these paths. Each neuron processes the
input signals that it receives to compute its activation, which
becomes the signal that the neuron sends to other units. The
weights on the pathways may be fixed when the network is
designed or when it is trained using examples. Fixed-weight
networks are used for constrained optimization problems, and
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adaptive weights are used for pattern classification and gen-
Figure 2. Fully interconnected neural network.eral mapping networks. After training, the neural network is

able to recognize an input pattern that is similar to, but not
exactly the same as, one of the training patterns. BOLTZMANN MACHINES

Neural Network Architectures Boltzmann machines are neural networks in which the units
can have only two states; the present discussion is limited toThe pattern of connections among the neurons is called the
the case of binary output, that is, a unit is either off (outputneural network architecture. A simple feed-forward neural net-
is 0) or on (output is 1). Furthermore, the net-input does notwork, in which the signals flow from left to right, is illustrated
determine the output value, but only the probability of eachin Fig. 1(a). Recurrent neural networks have feedback connec-
output value. The massive parallelism of neural networks intions, such as the connection from unit Y2 back to unit X3 in
general, and Boltzmann machines in particular, provides aFig. 1(b).
promising approach for computers of the future.

Neural Network Operation Architecture

In a typical neural network, the signal transmitted over a The architecture of a Boltzmann machine is very general. The
connection pathway is multiplied by the weight on the path. neurons may be fully interconnected, as illustrated in Fig. 2,
The neuron first sums the incoming signals and then pro- or only partially interconnected, as shown in Fig. 3. However,
cesses this sum (its net-input) to determine the signal it will the connection pathways are always bidirectional. In other
transmit. In many neural networks this output signal is a words, if neuron Xi is connected to neuron Xj, with weight
nonlinear function of the net input, with a range of 0 to 1 (or wij, then Xj is also connected to Xi and the connection has the
�1 to 1). For example, for the neural network in Fig. 1(a), the same weight (i.e., wji � wij).
output signal from unit Y1 could be expressed as

Using a Boltzmann Machine
Y1 = f (x1w11 + x2w21 + x3w31) In recurrent neural networks, the activations of the neurons

evolve in such a way that the equilibrium configuration (pat-
for a suitable nonlinear function f . See Refs. 2 and 3 for fur-
ther discussion of neural networks.
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Figure 3. Partially interconnected neural network for the 4–2–4 en-
coder problem.Figure 1. Simple neural networks with no hidden nodes.
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tern of activations) represents the problem solution. In a is relatively high, the probability of accepting a ‘‘bad change’’
or rejecting a ‘‘good change’’ is much closer to 0.5 than later,Boltzmann machine, a unit may flip its activation (from 0 to

1, or vice versa); whether this flip occurs depends on the unit’s after the network has cooled.
Neural networks have several potential advantages overnet-input and a parameter, known as temperature. The pro-

cess of selecting a unit at random and allowing it to change traditional techniques for certain types of optimization prob-
lems. They can find near-optimal solutions relatively quicklyits activation (or not, depending on the specified probability

function) continues, with the temperature reduced very grad- for large problems. They can also handle situations in which
some constraints are less important than others.ually, until the activations stabilize. The change is accepted

stochastically in order to reduce the chances of the network
becoming trapped in a local optimum. Training an Adaptive-Weight Boltzmann Machine. The Boltz-

The process of gradually reducing the temperature, by mann machine is also used for learning tasks. The network
which the stochastic behavior of a system is gradually made architecture may incorporate input, hidden, and output units.
less and less random, is known as simulated annealing. It is Input and output neurons are those for which the correct acti-
analogous to the physical annealing process used to produce vations are known; any other units are hidden.
a strong metal (with a regular crystalline structure). During During training, a neural network is given a sequence of
annealing, a molten metal is cooled gradually in order to training patterns, each of which specifies an example of the
avoid freezing imperfections in the crystalline structure of desired activations for the input and output neurons. Boltz-
the metal. mann learning requires several cycles during which the net-

work is allowed to reach equilibrium. Each cycle requires
starting the network at a fairly high temperature andBoltzmann Machine Weights
allowing the appropriate neurons to adjust their activations

Some Boltzmann machines belong to the set of neural net- as the network cools.
works for which the weights are fixed when the network is For each training pattern, the network is allowed to reach
designed. These networks are used for constraint satisfaction equilibrium with the activations of the input and output units
and constrained optimization problems. Fixed-weight Boltz- held fixed (clamped) to the values given for that pattern. Only
mann machines for constraint satisfaction and constrained the activations of the hidden units change during this phase.
optimization problems are designed so that the network con- After this has been done several times for all training pat-
verges to a minimum of an energy function or maximum of a terns, the probability of each pair of neurons being on is com-
consensus function. These two formulations are equivalent; puted as the fraction of the time both are on, averaged over
the following discussion will use the consensus function. all training runs for all training patterns.

Other Boltzmann machines undergo a training phase after The same process is repeated with none of the activations
which the network can perform the intended task using input clamped; this is called the free-running phase of training.
data that are similar (but not necessarily identical) to its Since large positive weights encourage both neurons to be on,
training input. A Boltzmann machine with learning can solve the weight on the connection between a pair of neurons is
pattern completion and more general input-output mapping increased if the probability of both units being on was higher
problems. Although training is characteristic of the majority in the clamped phase of training than in the free-running
of neural networks, fixed-weight Boltzmann machines are phase. On the other hand, if it was less likely for the units to
simpler and more widely used than adaptive-weight Boltz- be on simultaneously in the clamped than in the free-running
mann machines and will be discussed first. phase, the weight between that pair of units is reduced.

Designing a Fixed-Weight Boltzmann Machine. Fixed-weight
Boltzmann machines are designed by formulating a function SAMPLE APPLICATIONS OF BOLTZMANN MACHINES
(consensus) that describes the constraints, and objective to be
optimized if there is one, of the problem. Each unit in the Many constrained optimization problems have been solved us-

ing neural networks; if the problem can be formulated as anetwork represents a hypothesis; the activation of the unit
corresponds to the truth or falsity of the hypothesis. The 0-1 programming problem, then the states of the Boltzmann

machine are assigned to the variables, and the cost functionweights are fixed to represent both the constraints of the
problem and the quantity to be optimized. The activity level and constraints are implemented as the weights of the net-

work. The solution of the traveling salesman problem (TSP)of each unit is adjusted so that the network will converge to
the desired maximum consensus; the pattern of activations serves as a model for other constrained optimization prob-

lems.then corresponds to the solution of the problem.
The connection between two units controls whether the Boltzmann machines can be used to generate initial con-

figurations of assets for a generic game (e.g., chess). The de-units are encouraged to be on or off. A positive connection
between two units encourages both units to be on; a negative sired distribution of playing pieces is subject to restrictions

on the number of pieces (of several different types) that areconnection encourages one or the other of the units to be off.
Each unit also may have a bias (self-connection) that influ- present, as well as some preferences for the relative positions

of the pieces. The rules implemented in the network allow forences its activation regardless of the activations of the other
units connected to it. flexibility in assigning locations for available resources while

the probabilistic nature of the network introduces a degree ofThe weights for the network are determined so that the
probability of accepting a change that improves the network variability in the solutions generated (4).

The class scheduling/instructor assignment problem is anconfiguration is greater than the probability of rejecting it.
However, early in the solution process, when the temperature example of a problem containing both strong and weak con-
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straints. For example, the strong constraints could ensure
that a single instructor is not assigned two classes at once,
that each class is offered exactly once, and that each instruc-
tor is assigned a fair class load. The weak constraints might
specify instructors’ preferences for class subjects and class
time periods (5,6).

Boltzmann learning is illustrated using the encoder prob-
lem, which requires that binary patterns presented to the in-
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put units pass through a bottleneck (the hidden units) and
Figure 4. A simple Boltzmann machine.reproduce the original pattern at the output units. Using in-

put patterns in which only one unit is active, the network
learns a more concise representation of the information at the ber of unit update attempts (usually equal to the number of
hidden units (7). units in the network). An exponential cooling schedule in

which the temperature is reduced by a given factor after each
OPERATION OF A FIXED-WEIGHT BOLTZMANN MACHINE epoch is common in practice:

Recall that the neurons in a fixed-weight Boltzmann machine T(k + 1) = αT(k)

represent hypotheses; if the neuron is active, the hypothesis
Fewer epochs are required at each temperature for larger val-is interpreted to be true; otherwise the hypothesis is consid-
ues of � (such as � � 0.98) than for smaller � (e.g., � � 0.9).ered to be false. The weights in a Boltzmann machine for con-

straint satisfaction or constrained optimization represent the
Simple Fixed-Weight Boltzmann Machineconstraints of the problem and the quantity to be optimized.

The weight wij expresses the degree of desirability that units The weights for a Boltzmann machine are fixed so that the
Xi and Xj are both on. The bidirectional nature of the connec- network will tend to make state transitions towards a maxi-
tion requires that wij � wji. A unit may also have a self-con- mum of the consensus function defined previously. For exam-
nection, wii. ple, if we wish the simple Boltzmann machine illustrated in

A fixed-weight Boltzmann machine operates to maximize Fig. 4 to have exactly one unit on, the weights p and b must
the consensus function be chosen so that improving the configuration corresponds to

increasing the consensus. Each unit i is connected to every
other unit j with weight wij � �p (p � 0). These weights are
penalties for violating the conditions that at most one unit is

C =
X

i

�X
j≤ i

wi jxixj

�
‘‘on.’’ In addition, each unit has a self-connection of weight
wii � b (b � 0). The self-connection weight is an incentive (bo-by letting each unit attempt to change its state. The change
nus) to encourage a unit to become active if it can do so with-in consensus, if unit Xi changes its state, is given by
out causing more than one unit to be on.

The relationship between p and b can be deduced by con-
sidering the effect on consensus in the following two situa-�C = (1 − 2xi)

�
wii +

X
j �=i

wi jx j

�
tions. If unit Xi is off and none of the units connected to Xi is
on, allowing Xi to become active will increase the consensus

where xi is the current state of unit Xi. However, unit Xi does of the network by the amount b. This is a desirable change;
not necessarily change its state even if doing so would in- since b � 0, it corresponds to an increase in consensus and
crease the consensus. The probability of accepting the change the network will be more likely to accept this change than to
in state is given by reject it.

On the other hand, if one of the units connected to Xi is
already on, attempting to turn unit Xi on would result in aPr[Xi changes state] = 1

1 + exp(−�C/T )
(1)

change of consensus of the amount b � p. Thus, for b � p � 0
(i.e., p � b), the effect is to decrease the consensus and theThe parameter T (temperature) is gradually reduced as the
network will tend to reject this unfavorable change. Bonusnetwork searches for a maximal consensus. Lower values of
and penalty connections, with p � b � 0, are used in the trav-T make it more likely that the network will accept a change
eling salesman problem (TSP) network to represent the con-of state that increases consensus and less likely that it will
straints for a valid tour and in an analogous manner for otheraccept a change that reduces consensus.
applications of fixed-weight Boltzmann machines.In general, the initial temperature should be taken large

enough so that the probability of accepting the change of state
Traveling Salesman Problem

is approximately 0.5, regardless of whether the change is ben-
eficial or detrimental. The temperature is then reduced slowly The standard TSP serves as a model for many constrained

optimization problems. The requirements are that a salesmanso that the ratio of probabilities of two states of the network
will continue to obey the Boltzmann distribution, which gives visit each of a specified group of cities once and only once,

returning at the end of the trip to his initial city. It is desiredthe network its name.
It is convenient to break the iterative process by which the that the tour be accomplished in the shortest possible total

distance. Many variations on this basic problem can also benetwork converges to equilibrium into a number of smaller
cycles called epochs. Each epoch consists of a specified num- solved using essentially the same approach as described here.
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Architecture. A neural network solution to the TSP is usu- cluding the asset allocation and scheduling problems dis-
cussed in the next sections. The TSP is, however, a difficultally formulated with the units arranged in a two-dimensional

array. Each row of the array represents a city to be visited; problem for the Boltzmann machine, because in order to go
from one valid tour to another, several invalid tours must beeach column corresponds to a position or stage of the tour.

Thus, unit Ui, j is on if the ith city is visited at the jth step of accepted. The transition from valid solution to valid solution
is not as difficult in many other constrained optimizationthe tour. A valid tour is given by a network configuration in

which exactly one unit is on in each row and each column. An problems.
example of a valid tour, in which city B is visited first, city D
second, city C third, and city A last, is illustrated in Fig. 5. Asset Allocation

Consider the problem of distributing a fixed number of assetsWeights. Although the connections are not shown in Fig.
(such as chess pieces) of several different types on a two-di-5, the architecture consists of three types of connections. The
mensional region (i.e., the chessboard) in arrangements thatunits within each row (and within each column) are fully in-
satisfy certain rules regarding their relative positions withterconnected. The weights on each of these connections is �p;
respect to assets of other types. As an example, the placementin addition, each unit has a self-connection, with weight b. If
of pieces on a chessboard must follow certain strong condi-p � b � 0, the network will evolve toward a configuration in
tions (e.g., the two pieces cannot occupy the same square onwhich exactly one unit is on in each row and each column.
the chessboard at the same time) as well as weak conditionsTo complete the formulation of a Boltzmann neural net-
(e.g., black might consider it desirable to have several otherwork for the TSP, weighted connections representing dis-
chess pieces in the vicinity of black’s king). There are a vari-tances must be included. In addition to the weights described
ety of problems of this type, including distribution of biologi-above (which represent the constraints), a typical unit Ui, j is
cal species and deployment of military assets.connected to the units Uk, j�1 and Uk, j�1 (for all k � i) by weights

that represent the distances between city i and city k. Since
Architecture. To illustrate the basic approach, considerthe Boltzmann machine operates to find the maximum of the

first two types of chess pieces (assets) representing the blackconsensus function, the weights representing distances are
king and other black pieces. The problem to be solved by athe negative of the actual distances. Units in the last column
Boltzmann machine is to generate a number of arrangementsare connected to units in the first column by connections rep-
of these pieces on a chessboard, subject to specified restric-resenting the appropriate distances also. However, units in a
tions. To accomplish this, the neural network architectureparticular column are not connected to units in columns other
consists of two layers of units (layer X for the king and layerthan those immediately adjacent.
Y for the other pieces); each layer is an 8 � 8 array corre-The bonus weight b is related to the distance weights. Let
sponding to the squares of a chessboard. If a unit is on in thed denote the maximum distance between any two cities on
king layer, it signifies that a chess piece (king) is present atthe tour and consider the situation in which no unit is on in
the location; if a unit is on in the other layer, it indicates thatcolumn j or in row i. Since allowing Ui,j to turn on should be
some other chess piece is present at that location.encouraged, the weights should be set so that the consensus

will be increased if it turns on. The change in consensus will
Weights. There are several types of weights required forbe b � dk1,i � di,k2, where k1 indicates the city visited at stage

this example. First, each unit has an excitatory self-connec-j � 1 of the tour, and k2 denotes the city visited at stage j �
tion, b, to encourage the unit to be active. Second, the units1 (and city i is visited at stage j). This change is greater than
in each layer are fully interconnected among themselves, with(or equal to) b � 2d so �C will be positive if b � 2d.
inhibitory weights, which are determined so that the desiredThus we see that if p � b, the consensus is larger for a
number of units will be active in that layer. The units corre-feasible solution (one that satisfies the strong constraints)
sponding to the same square on the chessboard (the samethan for a nonfeasible solution, and if b � 2d the consensus
physical location) are connected by very strong inhibitorywill be higher for a short feasible solution than for a longer
weights, to discourage having a king and another piece on thetour.
same square at a given time. Furthermore, if it is desirable
to have several other pieces present in the general vicinity ofPerformance. The traveling salesman problem is a nice
the location of a king, excitatory connections between eachmodel for a variety of constrained optimization problems, in-
unit in layer X and the units corresponding to nearby posi-
tions on the chessboard in layer Y are included. The connec-
tion paths between units in Fig. 6 show the inhibition be-
tween units X23 and Y23 as well as the excitation between X23

and the units in the Y layer that correspond to neighboring
board positions.

By carefully designing the weights in the network, the net-
work will tend to converge to a configuration that represents
a desirable arrangement of the assets. However, the random
nature of the unit update process causes the network to pro-
duce a variety of solutions satisfying the specified relation-

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4
ships among the assets.

In order to limit the number of assets of type X to the de-Figure 5. A valid solution of the four-city traveling salesman
problem. sired number, nX, there are inhibitory connections with value
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These inequalities are sufficient to allow the network to
evolve towards an activation pattern in which there are nX

assets; corresponding inequalities hold in layer Y.
To encourage the network to converge to a solution in

which the assets have the desired relative arrangement, con-
sider a configuration of the network in which there are nX

assets of type X, but some of these assets are located in the
wrong place. If a unit that is in the wrong place is selected
for update, the probability that it changes states needs to be
maximized. This unit receives a total bonus signal of bX (it
does not receive any bonus from assets of type Y since it is
not in the region of encouragement for any unit that is on).
Furthermore, it receives a total penalty signal of (nX � 1) pX

from the other units that are on in layer X. It will be more
likely for the unit to turn off if

bX ≤ (nX − 1)pX (5)
Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

Combining Eq. (2) and Eq. (5), we find that
Figure 6. A portion of a Boltzmann machine for king (X) and other
(Y) chess pieces. bX = (nX − 1)pX

By assigning an arbitrary value for pX, the remaining weights
can be determined.

pX between each pair of units in layer X; similarly to limit the To prevent the existence of two or more assets of different
number of assets of type Y to the desired number, nY, there types in the same physical location a large penalty connec-
are inhibitory connections with value pY between each pair of tion ph is introduced between units in different layers but
units in layer Y. There are also excitatory connections with with the same subscripts. This penalty signal should override
weight bXY between the appropriate units in layer X and layer any bonus signals going into any unit.
Y, to encourage a desirable arrangement of the assets.

The relations between these weights that need to be satis- Performance. Simulations with four types of assets corre-
sponding to white king, white other, black king, and blackfied so that the network will evolve towards a configuration
other pieces illustrate that the number of assets of each typein which there are nX assets of type X are deduced in a man-
converges relatively quickly to the desired values. Fluctua-ner similar to that used for the TSP. Assume that at a partic-
tions in the locations of assets of one type relative to otherular time there are nX � 1 assets of type X. If an inactive unit
types continue until the temperature becomes very small.in layer X is selected, the total bonus signal received by this
However, many valid solutions are generated quite quickly.unit should exceed the total penalty signal. In the worst case,
These studies specified the number of assets of each type thatthere are no units in other layers encouraging this unit to
should be present throughout the entire region, and that theturn on, and the only bonus signal the unit will receive is bX,
other pieces should be near the king of the same color.its self-bonus. At the same time, it is receiving an inhibitory

Many extensions of these ideas are possible. For example,signal of (nX � 1) pX from the other units that are on in layer
there is no additional difficulty encountered if white andX. So, to increase the probability of the unit changing states
black do not have the same number of other pieces. The logic(a desirable change), we require
of describing more complicated board arrangements, with
more different playing pieces, is a straightforward extension(nX − 1)pX ≤ bX (2)
of this simple example. See Ref. 4 for a more detailed descrip-
tion of this example.

On the other hand, we want no more than nX assets of type X
present. If there are nX assets of type X present and an inac- A Time-Task-Worker Scheduling Problem
tive unit in layer X is selected for update, the probability that

The Boltzmann machine can also be used to solve the classicit will change state needs to be minimized. The unit receives
problem of assigning workers to cover a variety of tasks ina total penalty signal of nX pX. Under the most extreme condi-
different time periods. As a simple example, consider thetions, all units in layer Y that encourage the selected unit to
problem of scheduling instructors to teach classes that mayturn on will be on; say there are mY such units. This means
be offered at various times. This problem can be viewed as thethat the unit receives a total bonus signal of bX � mY bXY. Since
intersection of three separate problems: scheduling classes toit is not desirable for the unit to turn on, we require
be given at appropriate time periods, scheduling instructors
to teach at certain time periods, and assigning instructors tobX + mY bX Y ≤ nX pX (3)
teach particular classes. A similar approach could be used for
scheduling airline flights and pilots, or many other related

From Eq. (2) and Eq. (3) it follows that problems.
The strong constraints for generating a valid schedule in-

clude: ensure that each class is taught exactly once, no in-(nX − 1)pX ≤ bX ≤ bX + mY bX Y ≤ nX pX (4)
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structor is assigned to teach more than one class during any It is possible to have different values of r for different instruc-
tors, with either different values of b for each instructor, orgiven time period, and so on. It is also desirable that each

instructor be responsible for a ‘‘fair’’ share of the class load. In the value of b for the instructor with the greatest value of r
used for all instructors’ class offering–class period planes. Inaddition, we allow for weak constraints describing instructors’

preferences for certain classes and/or time periods. either case p must be greater than the maximum bias applied
to any one unit.The problem of producing a teaching schedule for a single

instructor is closely related to the TSP, with classes corre- It is often the case that a group of students will require
the same set of classes, which should be scheduled at differentsponding to the cities to be visited and the time periods corre-

sponding to the order in which the cities are visited. Simi- times. Within the plane for each time period, we include an
inhibitory connection with strength �c between units thatlarly, both the assignment of classes to instructors (during

each time period) and the scheduling of each class, in terms of represent classes that should not conflict, to encourage the
Boltzmann machine to converge to a schedule without anywho will teach it and at what time, are instances of the TSP.
such conflicts. The value of c can vary depending upon how
many such conflicts there are. In general, the sum of suchArchitecture. It is convenient to visualize the architecture
inhibitory connection strengths must be less than b for anyof a Boltzmann machine neural network for this problem as
given unit. Usually, however, a single class conflicts with nocomposed of several rectangular arrays of neurons, one for
more than one or two other classes. The value of c can rangeeach instructor, stacked on top of each other in a three-dimen-
from �b � m � 1 to 0 for a unit that only conflicts with onesional array. As a simple example problem, one might assume
other class.that there are 20 classes, to be taught by six instructors,

within five possible time periods. The architecture would then
be a 5 � 6 � 20 array of neurons; with a 5 � 6 array corre- Performance. The Boltzmann machine is better suited for
sponding to each class, a 6 � 20 array corresponding to each the class scheduling/instructor assignment problem than for
time period, and a 5 � 20 array for each instructor. An ac- the TSP, since it is easy to move from one valid schedule to
tive cell, Uijk � 1, means that at time i instructor j teaches another. The system must pass through only one state with a
class k. lower overall consensus to move from one valid schedule to

another. Once the transition from a state corresponding to a
Weights. As in the Boltzmann machines for the traveling valid schedule to one with an invalid schedule is made, only

salesman and asset allocation problems, each neuron has a transitions resulting in positive changes in consensus are re-
self-connection to encourage the unit to be active. To allow for quired to return to a state corresponding to a new valid
some variation in instructors’ preferences for certain classes schedule.
or time periods, or factors that make it preferable to have This application of Boltzmann machines to scheduling
certain classes taught at certain times, the bias for each neu- problems is based on the discussion in Ref. 6; a more exten-
ron is taken to be equal to a standard bias b plus some prefer- sive example, solved with a closely related neural network, is
ence, which may be between �m and m. Thus, the maximum presented in Ref. 5.
possible bias for a unit is b � m and the minimum is b � m.

Since each class is to be taught exactly once, only one unit Boltzmann Machine with Learning
should be on in the array for each class; this is accomplished

The Boltzmann machine can also be trained for use in input–by fully interconnecting the units within the plane for each
output transformations such as pattern completion problemsclass, with inhibitory connections of strength �p, with p �
when examples of the desired network action are available forb � m � 0. Similarly, the units in each line corresponding to
supervised learning. The most interesting situations foran instructor–class period combination are connected with
which a learning algorithm is needed are the cases in whichweights of strength �p to ensure that each instructor is as-
only partial information about the global states of the systemsigned to no more than one class during any period.
is available. Thus, the network is assumed to consist of visibleFinally, the units within each class offering–time period
units (input and output units) and hidden units. Part of theplane must be fully interconnected to ensure that each in-
training process includes letting the network converge withstructor is assigned an appropriate number of classes. An in-
the activations of the visible units clamped. After training,hibitory weight with strength of �f is needed to ensure that
the input units are clamped and the network is allowed toall instructors teach approximately the same number of
find the correct values for the output units. Hidden units areclasses, r (with 20 classes and six instructors, r � 4). The suit-
never clamped.able range of values for the weight f can be deduced by con-

A simple example problem is to train the network to repro-sideration of a single unit deciding whether to be active or
duce the input pattern on the output units after passing theinactive. Ignoring other connections for the time being, the
signals through a hidden layer that has fewer units than theunit should be turned on if the total number of active units
input and output layers (7). This is known as an m–p–m en-in the class offering–time slot plane is less than r and turned
coder problem, with p, the number of hidden units, less thanoff otherwise. To encourage a plane to have exactly r units
m, the number of input units or outputs units. The architec-active, we require that
ture shown in Fig. 3 can be used for a problem with 4 input
units, 2 hidden units, and 4 output units. The presence ofb − m − (r − 1) f > 0 and b + m − rf < 0
interconnections among the hidden units, and among the out-

Thus, the base value of the bonus, b, must satisfy put units is significant; however, there are no connections di-
rectly from the input units to the output units. A self-connec-

b > (2r − 1)m tion is also used for each unit, but not shown.
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The agreement between the desired probabilities for the pattern, and the corresponding output pattern is the same as
the input pattern.visible units and the probabilities of the visible units when

the network is at equilibrium can be increased by changing
the weights. Furthermore, the weight changes can be made
based on local information.

Algorithm. Boltzmann learning requires information about
the probability that any two units, i and j, are both on, in two
different equilibrium situations:

Input Output

(1 0 0 0) (1 0 0 0)

(0 1 0 0) (0 1 0 0)

(0 0 1 0) (0 0 1 0)

(0 0 0 1) (0 0 0 1)

PCij is the probability when the visible units are clamped
During the clamped phase of training, only the 2 hidden units

PFij is the probability when only the input units are adjust their activations, so each epoch consists of 2 unit up-
clamped dates. The annealing schedule was 2 epochs at T � 20; 2 ep-

ochs at T � 15; 2 epochs at T � 12; and 4 epochs at T � 10.
After the network cools, statistics are gathered for 10 epochsThe training process can be summarized in the following
at T � 10 to determine the fraction of the time that units ialgorithm:
and j are both on. This process is repeated for each of the four
training vectors, and the results for all training vectors areTo compute the values of PC
averaged to give PC for each pair of units that are connected.For each training pattern:

The process of determining PFij uses the same annealingClamp visible units
schedule and gathers statistics for the same number of epochsPerform several cycles of the following two steps (using a
at T � 10. However, since no units are clamped during this

different random seed for each trial)
second phase, each epoch consists of 10 unit update attempts.

Let the network converge Once the values of PCij and PFij have been found, the
For each pair of units ij, determine whether they are weights are updated and the entire weight update cycle is

both on repeated until the weights have stabilized or the differences
Average the results for this pattern to find values of PCij between PCij and PFij are sufficiently small. In 250 tests of

for each i and j the 4-2-4 encoder problem, the network always found one of
After the cycle is completed for each training pattern, aver- the global minima and remained at that solution. As many

age the results to find PC values as 1810 weight update cycles were required, but the median
number was 110 (7). After training, the network can be ap-

To compute the values of PF plied by clamping the input units and allowing the net to con-
For each training pattern: verge. The activations of the output units then give the re-

Clamp only the input units sponse of the network.
Perform several cycles of the following two steps The algorithm as originally presented uses a fixed weight-

Let the network converge step increment if PCij � PFij and the same sized decrement for
For each pair of units, determine whether they are the weights if PCij � PFij. Difficulties can occur when only a

both on few of the 2v possible states for the visible units are specified.
Average the results for this pattern to find values of PF Rather than trying to demand that other (nonspecified) states

After the cycle is completed for each training pattern, aver- never occur, it is recommended to use noisy inputs with low,
age the results to find PF values but nonzero probabilities. For the published simulations de-

scribed previously, noise was added on each presentation of a
training pattern: a component that is 1 in the true trainingCompare PC and PF (for each pair of units), and adjust the
vector was set to 0 with probability 0.15, and 0 componentsweight between them:
were set to 1 with probability 0.05.

�wij = µ(PCij − PFij)

ALTERNATIVE FORMULATIONS OF
where � � 0 is the learning rate. THE BASIC BOLTZMANN MACHINE

The update of the weight connecting two units may be pro-
portional to the difference between the probability that the Variations
units are both active when the network is running in the

As mentioned earlier, the constraint satisfaction problems toclamped mode versus the corresponding probability when the
which the Boltzmann machine is applied can be formulatednetwork is in the unclamped mode, as shown in the algorithm
as either maximization or minimization problems. Ackley,above. On the other hand, the network can also be trained
Hinton, and Sejnowski (7) define the energy of a configurationusing a fixed-size weight adjustment, as described in the orig-
asinal presentation of the network (7).

Application. As a simple example, consider the following
four training vectors; only one input unit is active in each

E =
X

i< j

wij xix j +
X

i

θixi
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where �i is a threshold and biases are not used. The difference that does not depend on k. A very slow decrease of the tem-
perature is necessary, but with this slow decrease, only onein energy if unit Xk changes from off to on is
epoch is required at each value of k.

�Ek = −θk +
X

i

wikxi

EXTENSIONS OF THE BOLTZMANN MACHINE

The Boltzmann machine is also used with either of two The Boltzmann machine is closely related to several more
slightly different acceptance conditions, namely, general types of evolutionary computing. The most important

of these more general approaches are summarized in the fol-
1. Set the output of unit to 1 with probability given by Eq. lowing sections.

(1) regardless of the current activity of the unit. Or
2. Accept the proposed change in activation if it improves Mean-Field Annealing

the solution, but accept a change that moves the solu-
One of the most popular modifications of the original Boltz-tion in the opposite direction, with probability given by
mann machine replaces the probabilistic action of a binaryEq. (1). See Refs. 2 and 8 for further discussion.
neuron with an analog neuron, the activation of which is de-
termined as the average (mean) value of the binary neuron atMarkov Chain Process
any particular temperature. The value of an arbitrary analog

The Boltzmann machine can be described in terms of a Mar- neuron takes the form (in the mean-field theory approxima-
kov chain process. Each stage consists of the following steps: tion, with an energy function E to be minimized)

1. Generate a potential new configuration of the network
2. Accept or reject the new configuration
3. Reduce temperature according to the annealing

schedule

�Ei = −θi +
X

j

wjivj

vi = tanh
�

�Ei

T

�

For the Boltzmann machine, the generating probability is In general, little change occurs to vi for temperatures above a
given by the Gaussian distribution critical value, Tc. Thus, the annealing process can proceed

more rapidly at higher temperatures and can be slowed when
the temperature reaches the point at which changes to the
activations of the neurons in the network occur. Alternatively,

G = T−0.5n exp
�−D2

T

�

the mean-field equations can be solved iteratively. This gives
where n is the number of units in the network, and D is the a direct connection between the Boltzmann machine and the
number of units the activations of which change in going from continuous Hopfield network with noise (see Ref. 3 for a dis-
current configuration to new configuration. Note that as T is cussion of the Hopfield network). For further discussion of
reduced the generation probability G also changes. mean-field annealing see Refs. 2, 10, and 11; it is used for

Thus, the probability of generating a candidate configura- applications to scheduling problems (5) and the knapsack
tion depends only on the temperature and the number of problem (12).
units that change their state. In the preceding discussion, all
configurations in which exactly one unit changes its state are Other Related Networks
equally likely to be chosen as the candidate state at any time.

High-order Boltzmann machines (HOBM) allow for terms ofConfigurations in which more than one unit changes its state
higher order in the consensus function than those for the(D � 1) are generated with probability 0.
standard Boltzmann machine (in which the consensus func-The probability of accepting the new configuration depends
tion has only first- and second-order terms). The theoreticalon the current temperature and the change in consensus �C
results, such as uniqueness of the learned solution, whichthat would result, according to Eq. (1). This form of analysis
have been established for these HOBM do not hold for theis useful for theoretical analysis of the process.
Boltzmann machine with hidden units. See Ref. 13 for discus-
sion and proofs.

Cooling Schedules
The Helmholtz machine is a fairly general unsupervised

learning architecture with feedback connections; BoltzmannThe success of a Boltzmann machine is closely related to how
slowly the temperature is decreased and how many update machines are one simple specific variety of Helmholtz ma-

chine. For a detailed discussion see Ref. 14; this article alsotrials are performed at each temperature. An exponential
cooling schedule, Tk � �kT0, is very common in practice (8). includes an extensive bibliography of relevant papers.

For Boltzmann machines in which the hidden and outputThis cools the system rather quickly at high temperatures
and then very slowly at low temperatures. As long as enough units have a special hierarchical organization, learning can

be accomplished using gradient descent (as for the populartrials are performed at each temperature to allow each unit
to attempt to change its state several times, good results are backpropagation training algorithm of feedforward neural

networks). Simulations with the N-bit parity problem and de-obtained.
Geman and Geman (9) present a theoretical proof that, if tection of hidden symmetries in square pixel arrays have

demonstrated the network’s ability to learn quickly and toTk � c/ln(1 � k), the system converges to an optimal state (as
k � �) where k is the number of epochs and c is a constant generalize successfully. See Ref. 15 for further discussion.
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11. C. Peterson and B. Soderberg, A new method for mapping optimi-SUMMARY AND CONCLUSIONS
zation problems onto neural networks, Int. J. Neural Syst. 1: 3–
22, 1989.One of the potential advantages of a neural network approach

12. M. Ohlsson, C. Peterson, and B. Soderberg, Neural networks forto problem solving is its inherent parallelism. Although units
optimization problems with inequality constraints: the knapsackupdating in parallel may make their decision to accept or re-
problem, Neural Computat., 5: 331–339, 1993.ject a change of state based on information that is not com-

13. F. X. Albizuri, A. D’Anjou, M. Grana, and J. A. Lozano, Conver-pletely up to date, several parallel schemes for the Boltzmann
gence properties of high-order Boltzmann machines, Neuralmachine have given promising results (1). These schemes can
Netw., 9: 1561–1567, 1996.be characterized as either synchronous or asynchronous, and

14. P. Dayan and G. E. Hinton, Varieties of Helmholtz machine, Neu-either limited or unlimited. In limited parallelization, small
ral Netw., 9: 1385–1403, 1996.groups of neurons that do not directly affect each other can

15. L. Saul and M. I. Jordan, Learning in Boltzmann trees, Neuralupdate at the same time without any possibility of errors in
Computat., 6: 1174–1184, 1994.the calculation of the change of consensus. This scheme, how-

ever, is not well suited to massive parallelism since the num-
LAURENE V. FAUSETTber of sets of independent units is small.
University of SouthIn synchronous unlimited parrallelization, all units com-

Carolina—Aikenpute their change in consensus and acceptance probabilities
independently, and any potential difficulty from erroneously
calculating their acceptance probability is simply ignored. In
asynchronous parallelization, each unit has its own cooling

BOLTZMANN TRANSPORT EQUATION. See SEMI-schedule and state transitions are performed simultaneously
CONDUCTOR BOLTZMANN TRANSPORT EQUATION.and independently. Since the probability of any unit changing

BOOKKEEPING. See ACCOUNTING.its state approaches 0 as the network cools, the likelihood of
two connected units changing their states based on out-of-
data information also decreases. Simulations using this type
of parallelization for a variety of combinatorial problems give
results that are comparable to other methods.

Problems from many fields can be formulated in a manner
for which a layered Boltzmann machine solution is of interest.
Applications to biological ecosystems and urban planning are
two promising areas. The results presented here suggest that
layered Boltzmann machines are an interesting neural net-
work approach to applications for which some variation in the
solutions is desirable.
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