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ART NEURAL NETS

When developing a neural network to perform a particular
pattern-classification task, one typically proceeds by gather-
ing a set of exemplars, or training patterns, and then using
these exemplars to train the network. Once the network has
adequately learned the exemplars, the weights of the network
are fixed, and the system can be used to classify future ‘‘un-
seen’’ patterns. This operational scenario is acceptable when
the problem domain is ‘‘well-behaved’’—in the sense that it is
possible to select a set of training patterns that, once learned,
will allow the network to classify future unseen patterns ac-
curately. Unfortunately, in many realistic situations, the
problem domain is not well-behaved.

Consider a simple example. Suppose a company wishes to
train a neural network to recognize the silhouettes of the
parts that are required to produce the products in the com-
pany’s product line. The appropriate images can be collected
and used to train a neural network, a task that is typically
computationally time consuming depending on the size of the
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network required. After the network has learned this training Adaptive resonance theory was introduced by Grossberg in
1976 as a means of describing how recognition categories areset (according to some criteria), the training period is ended

and weights are fixed. Now assume that at some future time self-organized in neural networks (1). Since this time, a num-
ber of specific neural network architectures based on ARTanother product is introduced, and that the company wishes

to add the component parts of this new product to the knowl- have been proposed. Many of these architectures originated
from Carpenter, Grossberg, and their colleagues at Bostonedge presently stored in the network. This would typically re-

quire a retraining of the network using all of the previous University. The first ART neural network architecture,
named ART1, appeared in the literature in 1987 (2). Thistraining patterns, plus the new ones. Training on only the

new patterns could result in the network learning these new model is an unsupervised neural network capable of self-or-
ganizing (clustering) arbitrary collections of binary input pat-patterns quite well, but forgetting the previously learned pat-

terns. Although this retraining may not take as long as the terns. Later in 1987 the ART2 neural network architecture
was introduced. This architecture is capable of clustering ar-initial training, it is still likely to require a significant amount

of time. Moreover, if the neural network is presented with a bitrary collections of real-valued input patterns (3). The ART2
network was made obsolete in 1991, when the simpler Fuzzypreviously unseen pattern that is quite different from all of

the training patterns, in most neural network models there is ART architecture was proposed (4). Like ART2, Fuzzy ART is
able to cluster real-valued input patterns. In addition, for bi-no built-in mechanism for recognizing the novelty of the

input. nary-valued inputs, the operation of Fuzzy ART reduces to
that of ART1.We have been describing what Grossberg calls the stabil-

ity–plasticity dilemma (1). This dilemma can be restated as a The ART1, ART2, and Fuzzy ART architectures all per-
form unsupervised learning. In unsupervised learning (alsoseries of questions: How can a learning system remain adap-

tive (plastic) in response to a significant input, yet remain called self-organization), training patterns of unknown classi-
fication are used, and there is no external teaching procedure.stable in response to an irrelevant input? How does the sys-

tem know when to switch between the plastic and the stable An internal teaching function determines how network pa-
rameters are adapted based on the nature of the input pat-modes? How can the system retain previously learned infor-

mation, while continuing to learn new things? terns. In this case, the teaching procedure results in the inter-
nal categorization of training patterns according to someIn response to such questions, Grossberg developed the

adaptive resonance theory (ART) (1). An important element of measure of similarity among the patterns. That is, similar
training patterns are grouped together during the training ofART that is used to resolve the stability–plasticity dilemma

is the feedback that occurs from the output layer to the input the network. These groups (or clusters) are then considered
to be the pattern classes into which unknown input patternslayer of these architectures. This feedback mechanism allows

for the learning of new information without destroying old are later classified.
Supervised learning, on the other hand, requires a set ofinformation, the automatic switching between stable and

plastic modes, and stabilization of the encoding of the pattern training patterns of known classification and an external
teaching procedure. The teaching procedure is used to adaptclasses. These feedback connections in ART neural network

architectures will be clearly illustrated later when these ar- network weights according to the network’s response to the
training patterns. Normally, this adjustment is in proportionchitectures are described in more detail.

Adaptive resonance theory gets its name from the particu- to the amount of error present while attempting to classify
the current input pattern. The use of supervised learning canlar way in which learning and recall interplay in these net-

works. In physics, resonance occurs when a small-amplitude logically be separated into two phases—a training phase and
a performance phase. In the training phase, a training set isvibration of the proper frequency causes a large-amplitude vi-

bration in an electrical or mechanical system. In an ART net- formed from representative samples taken from the environ-
ment in which the neural network is expected to operate. Thiswork, information in the form of processing-element outputs

reverberates back and forth between layers. If the proper pat- training set should include sample patterns from all the pat-
tern classes being categorized. Next, the training patterns areterns develop, a stable oscillation ensues, which is the neural

network equivalent of resonance. During this resonant period, applied to the network inputs and the external teacher mod-
ifies the system through the use of a training algorithm. Oncelearning—or adaptation—can occur. Before the network has

achieved a resonant state, no learning takes place, because acceptable results have been obtained from the learning
phase, the network may be used in the performance phase. Inthe time required for changes in the weights is much longer

than the time that it takes for the network to achieve reso- the performance phase, an unknown pattern is drawn from
the environment in which the network operates and appliednance.

In ART networks, a resonant state can be attained in one to the network inputs. At this point, the neural network is
expected to perform the recognition task for which it has beenof two ways. If the network has previously learned to recog-

nize an input pattern, then the resonant state will be trained. If the neural network is able to correctly classify with
a high probability input patterns that do not belong to theachieved quickly when the input pattern is presented. During

resonance, the adaptation process will reinforce the memory training set, then it is said to generalize. Generalization is
one of the most significant concerns when using neural net-of the stored pattern. If the input pattern is not immediately

recognized, the network will rapidly search through its stored works to perform pattern classification.
A number of ART architectures have been introduced bypatterns looking for a match. If no match is found, the net-

work will enter a resonant state, whereupon a new pattern the Boston University group of researchers for performing su-
pervised learning. These include ARTMAP (5), in which thewill be stored for the first time. Thus the network responds

quickly to previously learned data, yet remains able to learn input patterns must be binary, and Fuzzy ARTMAP (6), ART-
EMAP (7), Gaussian ARTMAP (8), and ARTMAP-IC (9),when novel data are presented.
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where the input patterns can be real valued. The primary
purpose of the last three contributions to the supervised-ART
family is to improve the generalization performance of Fuzzy
ARTMAP.

In conjunction with the vigorous activity of researchers at
Boston University in developing ART architectures, other re-
searchers in the field independently developed, analyzed, and
applied ART architectures or ART-like architectures to a vari-
ety of problems. A short, and obviously not exhaustive, list
of such efforts includes the adaptive fuzzy leader clustering
(AFLC) (10), LAPART (11), the integrated adaptive fuzzy
clustering (IAFC) (12), the Fuzzy Min-Max (13,14), and the
Adaptive Hamming Net (15).

In the original ART1 paper (2), a significant portion of the
paper is devoted to the analysis of ART1 and its learning
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properties. Other noteworthy contributions to the analysis
and understanding of the learning properties in ART1 can be Figure 1. Block diagram of the ART1 or Fuzzy ART architecture.
found in Refs. 16–19. The analysis of Fuzzy ART was initially
undertaken in Ref. 4; additional results can be found in Refs.
20 and 21. Properties of learning in the ARTMAP architecture single node (called the reset node), which accepts inputs from
are discussed in Refs. 22 and 23, while properties of learning the Fa

1 field, the Fa
2 field (this input is not shown in Fig. 1),

in the Fuzzy ARTMAP architecture are considered in Ref. 21. and the input pattern applied across the Fa
1 field. The output

From the discussion above, it is evident that the most fun- of the reset node affects the nodes in the Fa
2 field.

damental ART architectures are Fuzzy ART and Fuzzy ART- Some preprocessing of the input patterns of the pattern
MAP (since the binary versions, ART and ARTMAP, respec- clustering task takes place before they are presented to Fuzzy
tively, can be considered special cases). Hence the next four ART. The first preprocessing stage takes as an input an Ma-
sections of this chapter are devoted to the description of these dimensional input pattern from the pattern clustering task
fundamental ART architectures. We start with Fuzzy ART, and transforms it into an output vector a � (a1, . . ., aMa

),
because it is the building block for the creation of the Fuzzy whose every component lies in the interval [0, 1] (i.e., 0 �
ARTMAP architecture. In particular, we discuss in detail the ai � 1 for 1 � i � Ma). The second preprocessing stage accepts
Fuzzy ART architecture, the operation of the Fuzzy ART ar- as an input the output a of the first preprocessing stage and
chitecture, and the operating phases (training and perfor- produces an output vector I, such that
mance) of the Fuzzy ART architecture. Next, we discuss the
Fuzzy ARTMAP architecture, the operation of the Fuzzy AR- III = (aaa,aaac ) = (

a1, . . ., aMa
, ac

1, . . ., ac
Ma

)
(1)

TMAP architecture, and the operating phases (training and
performance) of the Fuzzy ARTMAP architecture. Later, we where
present a geometrical interpretation of how Fuzzy ART and
Fuzzy ARTMAP operate. This gives a clearer (pictorial) expla- ac

i = 1 − ai 1 ≤ i ≤ Ma (2)
nation of how these two architectures function. Furthermore,
we illustrate with simple examples the training phases of the The above transformation is called complement coding. The

complement coding operation is performed in Fuzzy ART at aFuzzy ART and Fuzzy ARTMAP architectures. A number of
applications that make use of ART neural network architec- preprocessor field designated by Fa

0 (see Fig. 1). We will refer
to the vector I formed in this fashion as the input pattern.tures are considered. Finally, properties of learning in ART1,

Fuzzy ART, and ARTMAP are discussed. We denote a node in the Fa
1 field by the index

i (i � �1, 2, . . ., 2Ma�), and a node in the Fa
2 field by the index

j ( j � �1, 2, . . ., Na�). Every node i in the Fa
1 field is connected

FUZZY ART
via a bottom-up weight to every node j in the Fa

2 field; this
weight is denoted Wa

ij. Also, every node j in the Fa
2 field is con-

A brief overview of the Fuzzy ART architecture is provided in
nected via a top-down weight to every node i in the Fa

1 field;
the following sections. For a more detailed discussion of this

this weight is denoted wa
ji. The vector whose components are

architecture, the reader should consult Ref. 4.
equal to the top-down weights emanating from node j in the
Fa

2 field is designated wa
j and is referred to as a template. Note

Fuzzy ART Architecture
that wa

j � (wa
j1, wa

j2, . . ., wa
j,2Ma

) for j � 1, . . ., Na. The vector of
bottom-up weights converging to a node j in the Fa

2 field isThe Fuzzy ART neural network architecture is shown in Fig.
1. It consists of two subsystems, the attentional subsystem, designated Wa

j . Note that in Fuzzy ART the bottom-up and
top-down weights corresponding to a node j in Fa

2 are equal.and the orienting subsystem. The attentional subsystem con-
sists of two fields of nodes denoted Fa

1 and Fa
2. The Fa

1 field is Hence, in the forthcoming discussion, we will primarily refer
to the top-down weights of the Fuzzy ART architecture. Ini-called the input field because input patterns are applied to it.

The Fa
2 field is called the category or class representation field tially, the top-down weights of Fuzzy ART are chosen to be

equal to the ‘‘all-ones’’ vector. The initial top-down weightbecause it is the field where category representations are
formed. These categories represent the clusters to which the choices in Fuzzy ART are the values of these weights prior to

presentation of any input pattern.input patterns belong. The orienting subsystem consists of a
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Before proceeding, it is important to introduce the nota- tern I. The appropriateness of this node is checked by examin-
ing the ratiotions wa,o

j and wa,n
j . Quite often, templates in Fuzzy ART are

discussed with respect to an input pattern I presented at the
Fa

1 field. The notation wa,o
j denotes the template of node j in

the Fa
2 field of Fuzzy ART prior to the presentation of I. The

∣∣III ∧ wwwa,o
jm

∣∣
III

(4)

notation wa,n
j denotes the template of node j in Fa

2 after the
presentation of I. Similarly, any other quantities defined with If this ratio is smaller than the vigilance parameter �a, then
superscripts �a, o� or �a, n� will indicate values of these quan- node jm is deemed inappropriate to represent the input pat-
tities prior to or after a pattern presentation to Fuzzy ART, tern I, and as a result it is reset (deactivated). The parameter
respectively. �a is set to a prespecified value in the interval [0, 1]. The deac-

tivation process is carried out by the orienting subsystem and,
Operation of Fuzzy ART in particular, by the reset node. If a reset happens, another

node in Fa
2 (different from node jm) is chosen to represent theAs mentioned previously, we will use I to indicate an input

input pattern I; the deactivation of a node (nodes) lasts forpattern applied at Fa
1, and wa

j to indicate the template of node
the entire input pattern presentation. The above process con-j in Fa

2. In addition, we will use �I� and �wa
j � to denote the size

tinues until an appropriate node in Fa
2 is found, or until allof I and wa

j , respectively. The size of a vector in Fuzzy ART is
the nodes in Fa

2 have been considered. If a node in Fa
2 is founddefined to be the sum of its components. We define I �wa

j to
appropriate to represent the input pattern I, then learningbe the vector whose ith component is the minimum of the
ensues according to the following rules.ith I component and the ith wa

j component. The operation �
Assuming that node jm has been chosen to represent I, theis called the fuzzy-min operation, while a related operation

corresponding top-down weight vector wa,o
jm

becomes equal todesignated by � is called the fuzzy-max operation. These op-
wa,n

jm
, whereerations are shown in Fig. 2 for 2 two-dimensional vectors,

denoted by x and y. wwwa,n
jm

= (
III ∧ wwwa,o

jm

)
(5)

Let us assume that an input pattern I is presented at the
Fa

1 field of Fuzzy ART. The appearance of pattern I across the
It is worth mentioning that in Eq. (5) we might have wa,n

jm
�Fa

1 field produces bottom-up inputs that affect the nodes in
wa,o

jm
; in this case we say that no learning occurs for thethe Fa

2 field. These bottom-up inputs are given by the equation
weights of node jm. Also note that Eq. (5) is actually a special
case of the learning equations of Fuzzy ART that is referred
to as fast learning (4). In this chapter we only consider the
fast learning case. We say that node jm has coded input pat-

Ta
j (III) =

∣∣III ∧ wwwa,o
j

∣∣(
αa + ∣∣wwwa,o

j

∣∣) (3)

tern I if during I’s presentation at Fa
1, node jm in Fa

2 is chosen
where �a, which takes values in the interval (0, �), is called to represent I, and the jm top-down weights are modified as
the choice parameter. It is worth mentioning that if in the Eq. (5) prescribes. Note that the weights converging to or em-
above equation wa,o

j is equal to the ‘‘all-ones’’ vector, then this anating from an Fa
2 node other than jm (the chosen node) re-

node is referred to as an uncommitted node; otherwise, it is main unchanged during I’s presentation.
referred to as a committed node.

The bottom-up inputs activate a competition process Operating Phases of Fuzzy ART
among the Fa

2 nodes, which eventually leads to the activation
Fuzzy ART may operate in two different phases: the training

of a single node in Fa
2, namely, the node that receives the max-

phase and the performance phase. The training phase is as
imum bottom-up input from Fa

1. Let us assume that node jm follows: Given a collection of input patterns I 1, I 2, . . ., IP (i.e.,
in Fa

2 has been activated through this process. The activation
the training list), we want Fuzzy ART to cluster these input

of node jm in Fa
2 indicates that this node is considered as a

patterns into different categories. Obviously, we expect pat-
potential candidate by Fuzzy ART to represent the input pat-

terns that are similar to each other to be clustered in the
same category. In order to achieve this goal, one must present
the training list repeatedly to the Fuzzy ART architecture.
We present I 1, then I 2, and eventually IP; this corresponds to
one list presentation. We present the training list as many
times as is necessary for Fuzzy ART to cluster the input pat-
terns. The clustering task is considered accomplished (i.e.,
learning is complete) if the weights in the Fuzzy ART archi-
tecture do not change during a list presentation. The afore-
mentioned training scenario is called off-line training, and its
step-by-step implementation is as follows:

Off-Line Training Phase of Fuzzy ART
1. Choose the Fuzzy ART network parameters (i.e.,

�a, Ma, �a) and the initial weights (i.e., wa
j ).

1

0
1

y

x    y

x    y

x

2. Choose the pth input pattern from the training list.
3. Calculate the bottom-up inputs at the Fa

2 field of theFigure 2. Illustration of the fuzzy min (�) and the fuzzy max (�)
operations in the two-dimensional space. ARTa module due to the presentation of the pth input
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pattern. These bottom-up inputs are calculated ac- that, in ART1, the input patterns are not complement coded.
cording to Eq. (3). The bottom-up inputs that are actu- Hence, in ART1, the preprocessing field Fa

0 of Fig. 1 is not
ally required include those for all the committed nodes needed.
in Fa

2 and the uncommited node of the lowest index.
4. Choose the node in Fa

2 that is not disqualified and re-
FUZZY ARTMAPceives the maximum bottom-up input from Fa

1. Assume
that this node is the node with index jm. Check to see

A brief overview of the Fuzzy ARTMAP architecture is pro-whether this node satisfies the vigilance criterion in
vided in the following sections. For a more detailed discussionARTa [Eq. (4)].
of this architecture, the reader should consult Ref. 6.

a. If node jm satisfies the vigilance criterion, modify the
top-down weights emanating from node jm according

Fuzzy ARTMAP Architectureto learning equation (5). If this is the last pattern in
the training list go to Step 5. Otherwise, go to Step A block diagram of the Fuzzy ARTMAP architecture is pro-
2, to present the next in sequence input pattern. vided in Fig. 3. Note that two of the three modules in Fuzzy

b. If node jm does not satisfy the vigilance criterion, dis- ARTMAP are Fuzzy ART architectures. These modules are
qualify this node and go to the beginning of Step 4. designated ARTa and ARTb in Fig. 3. The ARTa module ac-

cepts as inputs the input patterns, while the ARTb module5. After all patterns have been presented once:
accepts as inputs the output patterns of the pattern classifi-a. If in the previous list presentation at least one com-
cation task. All the previous details are valid for the ARTaponent of top-down weight vectors has changed, go
module without change. These details are also valid for theto Step 2 and present the first in sequence input pat-
ARTb module, where the superscript a is replaced with thetern.
superscript b. One of the differences between the ARTa andb. If in the previous list presentation no weight changes
the ARTb modules in Fuzzy ARTMAP is that for pattern clas-occurred, the learning process is complete.
sification tasks (many-to-one maps) it is not necessary to
apply complement coding to the output patterns presented toIn the performance phase of Fuzzy ART the learning process

is disengaged and patterns from a test list are presented in the ARTb module.
order to evaluate the clustering performance of Fuzzy ART. As illustrated in Fig. 3, Fuzzy ARTMAP contains a module
Specifically, an input pattern from the test list is presented that is designated the inter-ART module. The purpose of this
to Fuzzy ART. Through the Fuzzy ART operating rules, dis- module is to make sure the appropriate mapping is estab-
cussed previously, a node jm is chosen in Fa

2 that is found ap- lished between the input patterns presented to ARTa, and the
propriate to represent the input pattern. Assuming that some output patterns presented to ARTb. There are connections
criteria exist for determining how well node jm represents the (weights) between every node in the Fa

2 field of ARTa, and all
cluster to which the input pattern presented to Fuzzy ART nodes in the Fab field of the inter-ART module. The weight
belongs, we can apply this process to all the input patterns vector with components emanating from node j in Fa

2 and con-
from the test list to determine how well Fuzzy ART clusters verging to the nodes of Fab is denoted wab

j � (wab
j1 ,. . .,

them. Of course, our results are heavily dependent on the cri- wab
jk , . . ., wab

jNb
), where Nb is the number of nodes in Fab (the

teria used to judge the clustering performance of Fuzzy ART. number of nodes in Fab is equal to the number of nodes in
In the following we propose a procedure to judge this perfor- Fb

2). There are also fixed bidirectional connections between a
mance. node k in Fab and its corresponding node k in Fb

2.
First, train Fuzzy ART with a list of training patterns until

the learning process is complete. The assumption made here Operation of Fuzzy ARTMAP
is that the list of training patterns is labeled; that is, the label

The operation of the Fuzzy ART modules in Fuzzy ARTMAP(category) of each input pattern in the list is known. After
is slightly different from the operation of Fuzzy ART de-training, assign a label to each committed node formed in the
scribed previously. For one thing, resets in the ARTa moduleFa

2 field of Fuzzy ART. A committed node formed in Fa
2 is la-

beled by the output pattern to which most of the input pat- of Fuzzy ARTMAP can have one of two causes: (1) the cat-
terns that are represented by this node are mapped. The clus- egory chosen in Fa

2 does not match the input pattern pre-
tering performance of Fuzzy ART is evaluated by presenting sented at Fa

1, or (2) the appropriate map has not been estab-
to it, one more time, the input patterns from the training list. lished between an input pattern presented at ARTa and its
For each input pattern from the training list, Fuzzy ART corresponding output pattern presented at ARTb. This latter
chooses a node in Fa

2. If the label of this node is the output type of reset, which Fuzzy ART does not have, is enforced by
pattern to which this pattern corresponds, then we say that the inter-ART module via its connections with the orienting
Fuzzy ART clustered this input pattern correctly. If, on the subsystem in ARTa (see Fig. 3). This reset is accomplished by
other hand, the label of this node is different from the output forcing the ARTa architecture to increase its vigilance param-
pattern to which this input pattern corresponds, then we say eter value above the level that is necessary to cause a reset
that Fuzzy ART made an erroneous clustering. The aforemen- of the activated node in the Fa

2 field. Hence, in the ARTa mod-
tioned procedure for evaluating clustering performance is ule of Fuzzy ARTMAP, we identify two vigilance parameter
suggested in Ref. 24. values, a baseline vigilance parameter value �a, which is the

vigilance parameter of ARTa prior to the presentation of an
ART1 input/output pair to Fuzzy ARTMAP, and a vigilance parame-

ter �a, which corresponds to the vigilance parameter that isThe ART1 architecture, operation, and operating phases are
identical to those of Fuzzy ART. The only difference being established in ARTa via appropriate resets enforced by the
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Figure 3. Block diagram of the ARTMAP or Fuzzy
ARTMAP architecture.
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inter-ART module. Also, the node activated in Fb
2 due to a pre- in the training phases of Fuzzy ARTMAP, input patterns are

sentation of an output pattern at Fb
1 can either be the node presented along with corresponding output patterns. As is the

receiving the maximum bottom-up input from Fb
1 or the node case with Fuzzy ART, Fuzzy ARTMAP may operate in two

designated by the Fab field in the inter-ART module. The lat- different phases: training and performance. Here we focus on
ter type of activation is enforced by the connections between classification tasks, where many inputs are mapped to a sin-
the Fab field and the Fb

2 field. gle, distinct output. It turns out that for classification tasks,
Equations (1)–(5) for the Fuzzy ART module are valid for the operations performed at the ARTb and inter-ART modules

the ARTa and ARTb modules in Fuzzy ARTMAP. In particu- can be ignored, and the algorithm can be described by simply
lar, the bottom-up inputs to the Fa

2 field and the Fb
2 field are referring to the top-down weights of the ARTa module.

given by The training phase of Fuzzy ARTMAP works is as follows.
Given the training list �I1, O1�, �I2, O2�, . . ., �IP, OP�, we want
Fuzzy ARTMAP to map every input pattern of the training
list to its corresponding output pattern. In order to achieve

Ta
j (III ) =

∣∣III ∧ wwwa,o
j

∣∣
αa + ∣∣wwwa,o

j

∣∣ (6)

the aforementioned goal, present the training list repeatedly
to the Fuzzy ARTMAP architecture. That is, present I1 toand
ARTa and O1 to ARTb, then I2 to ARTa and O2 to ARTb, and
eventually IP to ARTa and OP to ARTb; this corresponds to one
list presentation. Present the training list as many times asTb

k (OOO) =
∣∣OOO ∧ wwwb,o

k

∣∣
αb + ∣∣wwwb,o

k

∣∣ (7)

is necessary for Fuzzy ARTMAP to classify the input pat-
terns. The classification (mapping) task is considered accom-where in Eq. (7), O stands for the output pattern associated
plished (i.e., the learning is complete) when the weights dowith the input pattern I, while the rest of the ARTb quantities
not change during a list presentation. The aforementionedare defined as they were defined for the ARTa module. Simi-
training scenario is called off-line training, and its step-by-larly, the vigilance ratios for ARTa and ARTb are computed as
step implementation is as follows:follows:

Off-Line Training Phase of Fuzzy ARTMAP
1. Choose the Fuzzy ARTMAP network parameters (i.e.,

∣∣III ∧ wwwa,o
J

∣∣
III

(8)

Ma, �a, �a) and the initial weights (i.e., wa
j ).

and
2. Choose the pth input/output pair from the training list.

Set the vigilance parameter �a equal to the baseline vig-
ilance parameter �a.

∣∣OOO ∧ wwwb,o
K

∣∣
OOO

(9)

3. Calculate the bottom-up inputs at the Fa
2 field of the

ARTa module due to the presentation of the pth inputThe equations that describe the modifications of the weight
vectors wab

j can be explained as follows. A weight vector ema- pattern. These bottom-up inputs are calculated ac-
nating from a node in Fa

2 to all the nodes in Fab is initially the cording to Eq. (6). When calculating bottom-up inputs
‘‘all-ones’’ vector and, after training that involves this Fa

2 node, at Fa
2, consider all committed nodes in Fa

2 and the un-
all of its connections to Fab, except one, are reduced to the commited node with the lowest index.
value of zero. 4. Choose the node in Fa

2 that is not disqualified and re-
ceives the maximum bottom-up input from Fa

1. Assume
Operating Phases of Fuzzy ARTMAP that this node has index jm. Check to see whether this

node satisfies the vigilance criterion in ARTa [see Eq.The operating phases of Fuzzy ARTMAP are the same as the
operating phases of Fuzzy ART, the only difference being that (8)].
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a. If node jm satisfies the vigilance criterion, go to is that the input and output patterns in ARTMAP must be
binary vectors.Step 5.

b. If node jm does not satisfy the vigilance criterion, dis-
qualify this node, and go to the beginning of Step 4. TEMPLATES IN FUZZY ART AND FUZZY ARTMAP:

5. Now consider three cases: A GEOMETRICAL INTERPRETATION
a. If node jm is an uncommitted node, designate the

We previously referred to the top-down weights emanatingmapping of node jm to be the output pattern Op. Note
from a node in the Fa

2 field as a template. A template corre-that Op is the output pattern corresponding to the
sponding to a committed node is called a committed template,input pattern Ip presented in Fa

1. Also, the top-down
while a template corresponding to an uncommitted node isweights corresponding to node jm are modified ac-
called uncommitted template. As we have already mentioned,cording to Eq. (5). If this is the last input/output pair
an uncommitted template has all of its components equal toin the training list go to Step 6. Otherwise, go to Step
one.2, to present the next in sequence input/output pair.

In the original Fuzzy ART paper (4), it is demonstratedb. If node jm is a committed node, and due to prior
that a committed template wa

j , which has coded input pat-learning node jm is mapped to an output pattern
terns I1 � (a(1), ac(1)), I2 � (a(2), ac(2)), . . ., IP � (a(P), ac(P)),equal to Op, then the correct mapping is achieved,
can be written asand the top-down weights corresponding to node jm

are modified according to Eq. (5). If this is the last
input/output pair in the training list go to Step 6.
Otherwise, go to Step 2, to present the next in se-

wwwa
j = III1 ∧ III2 ∧ · · · ∧ IIIP = (∧P

i=1 aaa(i),∧P
i=1aaa

c(i)
)

= (∧P
i=1 aaa(i), {∨P

i=1aaa(i)}c) (11)

quence input/output pair.
c. If node jm is a committed node, and due to prior or

learning node jm is mapped to an output pattern dif-
ferent from Op, then the mapping is incorrect, and wwwa

j = (uuua
j , {vvva

j }c) (12)
we disqualify the activated node jm by increasing the
vigilance parameter in ARTa to a level that is suffi- where
cient to disqualify node jm. In particular, the vigi-
lance parameter in ARTa (�a) becomes uuua

j = ∧P
i=1aaa(i) (13)

and
∣∣III ∧ wwwa,o

jm

∣∣
III

+ ε (10)

vvva
j = ∨P

i=1aaa(i) (14)
where � is a very small positive quantity. Go to
Step 4. Based on the aforementioned expression for wa

j , we can now
state that the weight vector wa

j can be expressed in terms of6. After all patterns have been presented once, consider
the two Ma-dimensional vectors ua

j and va
j . Hence the weighttwo cases:

vector wa
j can be represented, geometrically, in terms of twoa. In the previous list presentation, at least one compo-

points in the Ma-dimensional space, ua
j and va

j . Another waynent of top-down weight vectors has changed. In this
of looking at it is that wa

j can be represented, geometrically,case, go to Step 2, and present the first in sequence
in terms of a hyperrectangle Ra

j with endpoints ua
j and va

j (seeinput/output pair.
Fig. 4 for an illustration of this when Ma � 2). For simplicity,b. In the previous list presentation, no weight changes
we refer to hyperrectangles as rectangles because most of ouroccurred. In this case, the learning process is com-
illustrations are in the two-dimensional space.plete.

In the performance phase of Fuzzy ARTMAP the learning pro-
cess is disengaged, and input/output patterns from a test list
are presented in order to evaluate its classification perfor-
mance. In particular, during the performance evaluation of
Fuzzy ARTMAP, only the input patterns of the test list are
presented to the ARTa module. Every input pattern from the
test list will choose a node in the Fa

2 field. If the output pattern
to which the activated node in Fa

2 is mapped matches the out-
put pattern to which the presented pattern should be
mapped, then Fuzzy ARTMAP classified the test input pat-
tern correctly; otherwise Fuzzy ARTMAP committed a classi-
fication error.

ARTMAP

1

0
1

va
j

u a
j

The ARTMAP architecture, operation, and operating phases Figure 4. Representation of the template wa
j � (ua

j , �va
j �c) in terms of

the rectangle Ra
j with endpoints ua

j and va
j (in the figure Ma � 2).are identical to those of Fuzzy ARTMAP. The only difference
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In this case there is actual weight change; the size of the rect-
angle that represents the template of node j is now increased.
Thus, during the training process of Fuzzy ART or Fuzzy
ARTMAP, the size of a rectangle Ra

j , which the weight vector
wa

j defines, can only increase from the size of zero to possibly
a maximum size, which will be determined next.

The maximum size of a rectangle is determined by the vigi-
lance parameter �a. More specifically, with complement coding
the size of an input pattern I is equal to Ma. Hence a node j
in the Fa

2 field with corresponding weight vector wa,o
j codes an

input pattern I if the following criterion is satisfied:

III ∧ wwwa,o
j ≥ Maρa (16)

1

0
a1

1

va,o
j

va,o
j1

v a,o
j2

Ra,o
j

u a,o
j

u a,o
j1

u a,o
j

a2 a

However,
Figure 5. Input pattern Î � (â, âc) represented by the point â, lies
inside rectangle Ra,o

j that represents template wa,o
j � (ua,o

j , �va,o
j �c).

Learning of Î leaves Ra,o
j intact.

Obviously, the aforementioned representation implies that
we can geometrically represent an input pattern I � (a, ac) by
a rectangle with endpoints a and a. In other words, I can be
represented by a rectangle of size 0, which is the single point
a in the Ma-dimensional space. Note that the size of a rectan-
gle Ra

j with endpoints ua
j and va

j is taken to be equal to the
norm of the vector va

j � ua
j . The norm of a vector in Fuzzy ART

or Fuzzy ARTMAP is defined to be equal to the sum of the
absolute values of its components.

III ∧ wwwa,o
j = (aaa,aaac) ∧ (

uuua,o
j , {vvva,o

j }c)
= (

aaa ∧ uuua,o
j ,aaac ∧ {vvva,o

j }c)
= (

aaa ∧ uuua,o
j ,aaac ∨ {vvva,o

j }c)
=

Ma∑
i=1

(
ai ∧ ua,o

ji

) +
Ma∑
i=1

(
ai ∨ va,o

ji

)c

=
Ma∑
i=1

(
ai ∧ ua,o

ji

) + Ma −
Ma∑
i=1

(
ai ∨ va,o

ji

)
= Ma − (

aaa ∨ vvva,o
j

) − (
aaa ∧ uuua,o

j

)
= Ma − Ra,n

j

(17)

In summary, we will treat wa
j � (ua

j , �va
j �c) as a rectangle Ra

j

with endpoints ua
j and va

j in the Ma-dimensional space, and
From the above equations we can see that the rectangle sizeI � (a, ac) as the point a in the Ma-dimensional space.
is allowed to increase provided that the new rectangle sizeThe reason why the rectangle representation of a template
satisfies the constraintwa

j is so useful is explained below. Consider the template wa,o
j ,

and its geometrical representative, the rectangle Ra,o
j with

endpoints ua,o
j and va,o

j . Assume that ua,o
j � �P

i�1a(i) and va,o
j � Ra,n

j ≤ Ma(1 − ρa) (18)

�P
i�1a(i). Let us now present pattern Î � (â, âc) to Fuzzy ART.

The above inequality implies that if we choose �a small (i.e.,Recall that the quantities defined above with a superscript
�a � 0), then some of the rectangles that the Fuzzy ART archi-�a, o� indicate values of these quantities prior to the presenta-
tecture defines might fill most of the entire input patterntion of Î to Fuzzy ART. Suppose that, during Î’s presentation
space. On the other hand, if �a is close to 1, all of the rectan-to Fuzzy ART, node j in the Fa

2 field is chosen and node j with
gles will be small.corresponding weight vector wa,o

j is appropriate to represent
the input pattern Î. We now distinguish two cases.

In case 1 we assume that Î lies inside the rectangle Ra,o
j

that geometrically represents the template wa,o
j (see Fig. 5).

According to the Fuzzy ART rules wa,o
j now becomes equal to

wa,n
j , where

wwwa,n
j = wwwa,o

j ∧ ÎII = (uuua,o
j ∧ âaa, {vvva,o

j ∨ âaa}c) = (uuua,o
j , {vvva,o

j }c) = wwwa,o
j

In this case there is no actual weight change or, equivalently,
the size of the rectangle that represents the template of node
j remains unchanged.

In case 2, we assume that Î lies outside the rectangle Ra,o
j

that geometrically represents template wa,o
j (see Fig. 6). Once

more, according to the Fuzzy ART rules, wa,o
j becomes equal

to wa,n
j , where

1

0
a1

1

v

v

v
R

Ru

u

u

a,o
j

a,o
j1

a,o
j2 a,o

j

a,n
j

a,o
j

a,o
j1

a,o
j2

a2 a

Figure 6. Input pattern Î � (â, âc) represented by the point â, lies
outside rectangle Ra,o

j that represents template wa,o
j � (ua,o

j , �va,o
j �c).

Learning of Î creates a new rectangle Ra,n
j (the rectangle including all

the points of rectangle Ra,o
j and the point â) of larger size than Ra,o

j .

wwwa,n
j = wwwa,o

j ∧ ÎII = (
uuua,o

j ∧ âaa, {vvva,o
j ∨ âaa}c)

= (
ua,o

j1 ∧ â1, . . ., ua,o
jMa

∧ âMa
,
(
va,o

j1 ∨ â1

)c
, . . .,

(
va,o

jMa
∨ âMa

)c)
�= (

uuua,o
j , {vvva,o

j }c) = wwwa,o
j (15)
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It is worth pointing out that during the training process of 2 will be activated next. Node 2 will pass the vigilance
criterion, since �I4 � w2�/�I4� � 0.8 � �a � 0.80. AfterFuzzy ART or Fuzzy ARTMAP compressed representations of

the input patterns, belonging to the training set, are formed learning is over, w2 � I3 � I4 � (0.3 0.3 0.5 0.5).
The committed top-down vectors in ARTa, after the pre-at the Fa

2 field. These compressed representations could be vis-
ualized as the rectangles corresponding to committed nodes sentation of pattern I4 in the first list, are pictorially

shown in Fig. 7(d) (see Ra
1 and Ra

2 in the figure).in Fa
2. The idea of the rectangle corresponding to a node is

that it includes within its boundaries all the input patterns Present Pattern I 5. The bottom-up inputs to nodes 1, 2, and
that have been coded by this node. In Fuzzy ARTMAP, the 3 in Fa

2 are equal to 0.9994, 0.9993, and 0.4987, respec-
compressed representations of the input patterns, formed in tively. Node 1 will be activated first and it will pass the
Fa

2, are mapped, during the training process, to appropriate vigilance criterion, since �I5 � w1�/�I5� � 0.85 � �a � 0.80.
output patterns (classes). After learning is over, w1 � I1 � I2 � I5 � (0.2

0.2 0.65 0.65). The committed top-down vectors in
ARTa, after the presentation of pattern I5 in the first

FUZZY ART EXAMPLE
list, are pictorially shown in Fig. 7(e) (see Ra

1, Ra
2, and

Ra
3 in the figure).The input patterns of the training list are given below. Fur-

Present Pattern I 6. The bottom-up inputs to nodes 1, 2, andthermore, the Fuzzy network parameters are chosen as fol-
3 in Fa

2 are equal to 0.9122, 0.9937, and 0.4987, respec-lows: Ma � 2, �a � 0.8, �a � 0.01. Finally, the initial weights
tively. Node 2 will be activated first and it will pass thewa

j are chosen equal to the ‘‘all-ones’’ vectors.
vigilance criterion, since �I6 � w2�/�I6� � 0.80 � �a � 0.80.
After learning is over, w2 � I3 � I4 � I6 � (0.3
0.3 0.5 0.5). The committed top-down vectors in
ARTa, after the presentation of pattern I6 in the first
list, are pictorially shown in Fig. 7(f) (see Ra

1, Ra
2, and

Ra
3 in the figure).

In the second list presentation I1, I2, I3, I4, I5, and I6 will be
coded by w1, w1, w2, w2, w1, and w2, respectively. Also, in the

III1 = (0.20 0.20 0.80 0.80)

III2 = (0.35 0.35 0.65 0.65)

III3 = (0.30 0.50 0.70 0.50)

III4 = (0.50 0.30 0.50 0.70)

III5 = (0.32 0.32 0.68 0.68)

III6 = (0.42 0.42 0.58 0.58)

(19)

second list presentation no weight changes will occur, and as
a result we can declare the learning complete at the end of

First List Presentation the first list presentation.
Present Pattern I1. Since no committed nodes exist in

Fuzzy ART, node 1 in Fa
2 will be activated and it will FUZZY ARTMAP EXAMPLE

code input I1. After learning is over, the top-down vector
from node 1 in Fa

2 is equal to w1 � I1. The committed top- The input patterns of the training list are given below. Fur-
down vectors in ARTa, after the presentation of pattern thermore, the Fuzzy ARTMAP network parameters are cho-
I1 in the first list, are pictorially shown in Fig. 7(a) (see sen as follows: Ma � 2, �a � 0.8, �a � 0.01. Finally, the initial
Ra

1 in the figure). weights wa
j are chosen equal to the ‘‘all-ones’’ vectors.

Present Pattern I 2. The bottom-up inputs to nodes 1 and 2
in Fa

2 are equal to 0.8457 and 0.4987, respectively. Node
1 will be activated first and it will pass the vigilance
criterion, since �I2 � w1�/�I2� � 0.85 � �a � 0.80. After
learning is over, w1 � I1 � I2 � (0.2 0.2 0.65 0.65).
The committed top-down vectors in ARTa, after the pre-
sentation of pattern I2 in the first list, are pictorially
shown in Fig. 7(b) (see Ra

1 in the figure).
Present Pattern I 3. The bottom-up inputs to nodes 1 and 2

III1 = (0.20 0.20 0.80 0.80)

III2 = (0.35 0.35 0.65 0.65)

III3 = (0.30 0.50 0.70 0.50)

III4 = (0.50 0.30 0.50 0.70)

III5 = (0.32 0.32 0.68 0.68)

III6 = (0.42 0.42 0.58 0.58)

(20)

in Fa
2 are equal to 0.9064 and 0.4987, respectively. Node

1 will be activated first and it will not pass the vigilance The corresponding output patterns are output pattern O1 for
criterion, since �I3 � w1�/�I3� � 0.775 � �a � 0.80. Hence input patterns I1 and I2, output pattern O2 for input patterns
node 1 will be reset, and node 2 will be activated next. I3 and I4, and output pattern O3 for input patterns I5 and I6.
Node 2 will pass the vigilance criterion, since �I3 � w2�/
�I3� � 1.0 � �a � 0.80. After learning is over, w2 � I3 � First List Presentation
(0.3 0.5 0.7 0.5). The committed top-down vectors Present Pattern I1. Since no committed nodes exist in the
in ARTa, after the presentation of pattern I3 in the first Fa

2 field of Fuzzy ARTMAP, node 1 in Fa
2 will be activated

list, are pictorially shown in Fig. 7(c) (see Ra
1 and Ra

2 in and it will code input I1. After learning is over, the top-
the figure). down vector from node 1 in Fa

2 is equal to w1 � I1, and
node 1 in Fa

2 is mapped to output pattern O1. The com-Present Pattern I4. The bottom-up inputs to nodes 1, 2, and
3 in Fa

2 are equal to 0.9064, 0.7960, and 0.4987, mitted top-down vectors in ARTa, after the presentation
of pattern I1 in the first list, are pictorially shown inrespectively. Node 1 will be activated first and it

will not pass vigilance criterion, since �I4 � w1�/�I4� � Fig. 8(a) (see Ra
1 in the figure). Rectangle Ra

1 is mapped
to output pattern O10.775 � �a � 0.80. Hence node 1 will be reset, and node
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Figure 7. Rectangular representation of top-down
templates in Fa

2 during the first list presentation of
the input patterns in the Fuzzy ART example.

I1 = R a
1

1 1

0.5 0.5

0.4 0.4
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0.5 0.5

0.4 0.4

0.3 0.3
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(c) (d)

(e) (f)
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R a
1

I3= R a
2

R a
1

R a
1

R a
2

R a
2

R a
1

R a
2

R a
1

Present Pattern I 2. The bottom-up inputs to nodes 1 and 2 w2�/�I3� � 1.0 � �a � 0.80. After learning is over, w2 �
I3 � (0.3 0.5 0.7 0.5), and node 2 is mapped to thein Fa

2 are equal to 0.8457 and 0.4987, respectively. Node
1 will be activated first and it will pass the vigilance output pattern O2. The committed top-down vectors in

ARTa, after the presentation of pattern I2 in the firstcriterion, since �I2 � w1�/�I2� � 0.85 � �a � 0.80. Also,
node 1 in Fa

2 is mapped to output pattern O1, which is list, are pictorially shown in Fig. 8(c) (see Ra
1 and Ra

2 in
the figure). Rectangles Ra

1 and Ra
2 are mapped to outputthe output pattern to which input pattern I2 needs to be

mapped. Hence learning will take place, and after learn- patterns O1 and O2, respectively.
ing is over, w1 � I1 � I2 � (0.2 0.2 0.65 0.65). The Present Pattern I4. The bottom-up inputs to nodes 1, 2, and
committed top-down vectors in ARTa, after the presen- 3 in Fa

2 are equal to 0.9064, 0.7960, and 0.4987, respec-
tation of pattern I2 in the first list, are pictorially shown tively. Node 1 will be activated first and it will not pass
in Fig. 8(b) (see Ra

1 in the figure). Rectangle Ra
1 is the vigilance criterion, since �I4 � w1�/�I4� � 0.775 �

mapped to output pattern O1. �a � 0.80. Hence node 1 will be reset, and node 2 will
be activated next. Node 2 will pass the vigilance crite-Present Pattern I 3. The bottom-up inputs to nodes 1 and 2

in Fa
2 are equal to 0.9064 and 0.4987, respectively. Node rion, since �I4 � w2�/�I4� � 0.8 � �a � 0.80. Also, node 2

is mapped to the output pattern O2 to which the input1 will be activated first and it will not pass the vigilance
criterion, since �I3 � w1�/�I3� � 0.775 � �a � 0.80. Hence pattern I4 needs to be mapped. Hence learning will oc-

cur, and after learning is over, w2 � I3 � I4 � (0.3 0.3node 1 will be reset, and node 2 will be activated next.
Node 2 will pass the vigilance criterion, since �I3 � 0.5 0.5). The committed top-down vectors in ARTa,



ART NEURAL NETS 651

after the presentation of pattern I4 in the first list, are 0.68 0.68), and node 3 is mapped to the output pat-
tern O3. The committed top-down vectors in ARTa, afterpictorially shown in Fig. 8(d) (see Ra

1 and Ra
2 in the fig-

ure). Rectangles Ra
1 and Ra

2 are mapped to output pat- the presentation of pattern I5 in the first list, are pictori-
ally shown in Fig. 8(e) (see Ra

1, Ra
2, and Ra

3 in the figure).terns O1 and O2, respectively.
Rectangles Ra

1 Ra
2, and Ra

3 are mapped to output patternsPresent Pattern I 5. The bottom-up inputs to nodes 1, 2, and
O1, O2, and O3, respectively.3 in Fa

2 are equal to 0.9994, 0.9993, and 0.4987, respec-
tively. Node 1 will be activated first and it will pass the Present Pattern I 6. The bottom-up inputs to nodes 1, 2, 3,

and 4 in Fa
2 are equal to 0.9122, 0.9993, 0.8955, andvigilance criterion, since �I5 � w1�/�I5� � 0.85 � �a � 0.80.

But node 1 is mapped to the output pattern O1, while 0.4987, respectively. Node 2 will be activated first and
it will pass the vigilance criterion, since �I6 � w2�/�I6� �the input pattern I5 needs to be mapped to output pat-

tern O3. Hence node 1 will be reset and the vigilance 0.80 � �a � 0.80. But node 2 is mapped to the output
pattern O2, while the input pattern I6 needs to becriterion in ARTa will be raised to a level slightly higher

than �I5 � w1�/�I5� � 0.85. Next, node 2 will be activated mapped to output pattern O3. Hence node 2 will be reset
and the vigilance criterion in ARTa will be raised to aand node 2 will not pass the vigilance criterion, since

�I5 � w2�/�I5� � 0.80 � �a � 0.85�. Hence node 2 will be level slightly higher than �I6 � w2�/�I6� � 0.80. Next,
node 1 will be activated and node 1 will not pass thereset and node 3 will be activated next. Node 3 will pass

the vigilance criterion, since �I5 � w3�/�I5� � 1.0 � �a � vigilance criterion, since �I6 � w1�/�I6��a � 0.80�. Hence
node 1 will be reset and node 3 will be activated next.0.85�. After learning is over, w3 � I5 � (0.32 0.32

Figure 8. Rectangular representation of top-down
templates in Fa

2 during the first list presentation of
the input/output pairs in the Fuzzy ARTMAP ex-

I1 = R a
1

1 1

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0 0
0.1 0.2 0.3 0.4 0.5 1 0.1 0.2 0.3

I1

I1

I1

I1

I1

I2

I3

I3

I4

I6

I4

I3

I2

I2

I2

I5
I2

I4

0.4 0.5 1

1 1

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0 0
0.1 0.2 0.3 0.4 0.5 1 0.1 0.2 0.3 0.4 0.5 1

1 1

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0 0
0.1 0.2 0.3 0.4 0.5 1 0.1 0.2 0.3

(a) (b)

(c) (d)

(e) (f)
0.4 0.5 1

R a
1

I3= R a
2

R a
1

R a
1

R a
2

R a
2

R a
1

R a
2

R a
3

R a
1

I5= R a
3

ample.



652 ART NEURAL NETS

Node 3 will pass the vigilance criterion, since �I6 � w3�/ fonts and each letter within these 20 fonts was randomly dis-
torted to produce a database of 20,000 characters. The fonts�I� � 0.9 � �a � 0.80�. Also, node 3 is mapped to the
represent five different stroke styles (simplex, duplex, triplex,output pattern O3, which is the same output pattern to
complex, and Gothic), and six different letter styles (block,which the input pattern I6 needs to be mapped. Thus
script, italic, English, Italian, and German). Sixteen numeri-learning will take place, and after learning is over,
cal feature attributes were then obtained from each characterw3 � I5 � I6 � (0.32 0.32 0.58 0.58). The committed
image, and each attribute value was scaled to a range of 0–top-down vectors in ARTa, after the presentation of pat-
15. The identification task was challenging because of thetern I6 in the first list, are pictorially shown in Fig. 8(f)
wide diversity among the different fonts and the primitive na-(see Ra

1, Ra
2, and Ra

3 in the figure). Rectangles Ra
1, Ra

2, and
ture of the attributes.Ra

3 are mapped to output patterns O1, O2, and O3, re-
Frey and Slate used this database to test the performancespectively.

of a family of classifiers based on Holland’s genetic algo-
rithms. The training set consisted of 16,000 exemplars, withIn the second list presentation, I1, I3, I4, I5, and I6 will be
the remaining 4000 exemplars used for testing. Genetic algo-coded by w1, w2, w2, w3, and w3, respectively. On the other
rithm classifiers having different input representations,hand, pattern I2 will be coded by a new node with template
weight update and rule creation schemes, and system param-w4 � I2, and node 4 will be mapped to the output pattern O1.
eters were systematically compared. Training was carried outIn the third presentation, patterns I1, I2, I3, I4, I5, and I6 will for five epochs, plus a sixth ‘‘verification’’ pass during which

be coded by w1, w4, w2, w2, w3, and w3, respectively. Further- no new rules were created, but a large number of unsatisfac-
more, all the input patterns are mapped to the correct output tory rules were discarded. In the Frey–Slate comparative
patterns, since nodes 1, 2, 3, and 4 are mapped to the output study, these systems had correct classification rates that
patterns O1, O2, O3, and O1, respectively. Also, in the third ranged from 24.5% to 80.2% on the 4000-item test set.
list presentation no weight changes will occur, and as a result Fuzzy ARTMAP had an error rate on the letter recognition
we can declare the learning complete at the end of the second task that was consistently less than one-third that of the best
list presentation. Frey–Slate genetic algorithm classifiers. Of the 28 Fuzzy

Note that in the Fuzzy ART and Fuzzy ARTMAP examples ARTMAP simulations reported in Ref. 6, the one with the best
with two-dimensional data, the rectangles formed during performance had a 94.7% correct prediction rate on the 4000-
learning can be of the trivial type �e.g., a point [Ra

1 in Fig. item test set, after five training epochs. Thus the error rate
7(a)], or a line [Ra

3 in Fig. 8(f)]�. (5.3%) was less than one-third that of the best simulation in
the Frey–Slate comparative study (19.2%).

Another paper (9) compared the performance of Fuzzy
APPLICATIONS ARTMAP and its variants [ART-EMAP (7) and ARTMAP-IC

(9)] with other algorithms, such as K-nearest neighbor (29),
The classification performance of Fuzzy ARTMAP has been the ADAP perceptron (30), multisurface pattern separation
examined against a plethora of pattern classification prob- (31), CLASSIT (32), instance-based (33), and C4 (34). The da-
lems. In the original ARTMAP paper (5) the performance of tabases chosen for this comparison were the diabetes data-
the network with the mushroom database (25) was investi- base, the breast cancer database, the heart disease database,
gated. The mushroom database consists of 8124 input/output and the gallbladder removal database (25). The basic conclu-
pairs of input/output features. The input features of the input sion out of this comparison is that Fuzzy ARTMAP, or its
vector represent each of the 22 observable features of a mush- variants, performed as well or better than a variety of meth-
room (e.g., cap-shape, gill-spacing, population, habitat). The ods applied to the aforementioned benchmark problems.
output features of the output vector correspond to the mush- In a recent publication Carpenter (35) produced a list of
room classification in ‘‘edible’’ and ‘‘poisonous.’’ Based on the applications, where the family of ART networks and their
results reported in Ref. 5, the Fuzzy ARTMAP system consis- variations have been used successfully. Below we reproduce
tently achieved over 99% classification accuracy on the testing this list with some additions of our own. A Boeing part re-
set with 1000 training input/output pairs; the testing set is trieval system (36), satellite remote sensing (37,38), robot
the collection of input/output pairs (out of the 8124 possible) sensory-motor control (39–41), robot navigation (42), machine
that were not included in the training set (1000 input/output vision (43), three-dimensional object recognition (44), face rec-
pairs randomly chosen from the collection of 8124 input/out- ognition (45), image enhancement (46), Macintosh operating
put pairs). Classification accuracy of 95% was usually system software (47), automatic target recognition (48–50),
achieved with off-line training of 100–200 input/output pairs. electrocardiogram wave recognition (51,52), prediction of pro-
The STAGGER algorithm (26), reached its maximum perfor- tein secondary structure (53), air quality monitoring (54),
mance level of 95% accuracy after exposure to 1000 input/ strength prediction for concrete mixes (55), signature verifi-
output training pairs. The HILLARY algorithm (27) demon- cation (56), adaptive vector quantization (57), tool failure

monitoring (58,59), chemical analysis from UV and IR spectrastrated a performance similar to the STAGGER algorithm.
(60), frequency selective surface design for electromagneticHence, for this database, Fuzzy ARTMAP was found to be an
system devices (61), Chinese character recognition (62), andorder of magnitude more efficient than the alternative
analysis of musical scores (63).systems.

Frey and Slate (28) developed a benchmark machine learn-
ing task that they describe as a ‘‘difficult categorization prob- THEORETICAL RESULTS
lem.’’ The objective was to identify each of a large number of
black-and-white rectangular pixel images as one of 26 capital In this section we investigate the learning properties of

ART1, Fuzzy ART, and ARTMAP architectures. Some of theletters A–Z. The character images were based on 20 different
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learning properties discussed in this paper involve character- phases of the ART architectures. In the sequel, we provide
this definition in more rigorous terms.istics of the clusters formed in these architectures, while

other learning properties concentrate on how fast it will take
these architectures to converge to a solution for the type of Definition 1. In the off-line training phase of an ART architec-
problems that are capable of being solved. This latter issue is ture the learning process is declared complete if every input
a very important issue in the neural network literature, and pattern from the list chooses a node in the Fa

2 field that satis-
there are very few instances where it has been answered sat- fies the direct-access, no-learning conditions. A node j in Fa

2

isfactorily. It is worth noting that all of the results described chosen by a pattern I satisfies the direct-access, no-learning
in this section have been developed and proved elsewhere conditions if (a) node j is the first node chosen in Fa

2 by pat-
(2,4,16–18,20). In this article, we present these results in a tern I, (b) node j is not reset, and (c) the top-down weights
unified manner, with the purpose of pointing out the similari- corresponding to node j (i.e., wa

j ’s) are not modified. Condi-
ties in the learning properties of the ART1, Fuzzy ART, and tions (a) and (b) are the direct-access conditions and condition
ARTMAP architectures. (c) is the no-learning condition.

For example, in the case of an input list (I1, O1), (I2, O2), . . .,Preliminaries
(IP, OP), assume that list presentation n is the first list presen-

For the properties of learning in ART architectures, it is im- tation at which each one of the input patterns chooses a node
portant to understand the distinctions among the top-down in Fa

2 that satisfies the direct-access, no-learning conditions.
weights emanating from nodes in the Fa

2 field. Consider an In particular, assume that I1 chooses node j1, I2 chooses node
input I presented to the ARTa module. Consider also an arbi- j2, . . ., and IP chooses node jP, and nodes j1, j2, . . ., jP satisfy
trary template of the ARTa module, designated as wa. A com- the direct-access, no-learning conditions; the notation jp (1 �
ponent of an input pattern I is indexed by i if it affects node p � P) implies the node in Fa

2 chosen by input pattern Ip, and,
i in the Fa

1 field. Similarly, a component of a template wa is as a result, we might have cases where jp � jp� for p � p�. At
indexed by i if it corresponds to the weight converging to node the end of the nth list presentation we can declare that learn-
i in the Fa

1 field. Based on this correspondence between the ing is complete. In the above example, no modification of the
components of input patterns and templates in ARTa, we can ART weights is performed during list presentation n. Hence
identify three types of learned templates with respect to an we can further claim that learning is complete by the end of
input pattern I: subset templates, mixed templates, and su- the n � 1 list presentation. Obviously, in list presentations �
perset templates. A template wa is a subset of pattern I if each n, input pattern I1 will always choose node j1, input pattern
one of the wa components is smaller than or equal to its corre- I2 will always choose node j2, and so on.
sponding component in I. A template wa is a mixed template
of pattern I if some of the wa components are smaller than or Properties of Learning
equal to their corresponding components in I, and the rest of

We will state a number of learning properties pertinent to thethe wa components are larger than their corresponding com-
ART1, Fuzzy ART, and ARTMAP architectures. We will focusponents in I. A template wa is a superset of pattern I if each
on learning properties that are common among the ART ar-one of the wa components is larger than or equal to its corre-
chitectures under consideration.sponding component in I.

Besides the templates defined above, we also define an un-
Distinct Templates Property. The templates formed in ART1committed template to be the vector of top-down weights asso-
with fast learning, Fuzzy ART, and ARTMAP with fast learn-ciated with a node in Fa

2, which has not yet been chosen to
ing are distinct.represent an input pattern. As before, every component of an

uncommitted template is equal to one. With reference to an
Direct Access by Perfectly Learned Template Property. Ininput pattern I, we also designate nodes in Fa

2 as subset,
ART1, ARTMAP with fast learning, and Fuzzy ART, if an in-mixed, superset, or uncommitted depending on whether their
put pattern I has been perfectly learned by a node in the cate-corresponding template is a subset, mixed, superset, or un-
gory representation field, this node will be directly accessedcommitted template with respect to the input pattern I.
by the input pattern I, whenever this input pattern is pre-One of the modeling assumptions required for the validity
sented to the network architecture.of some of the results presented in this section is fast learn-

ing. Fast learning implies that the input/output pairs pre-
We say that an input pattern I has been perfectly learned bysented to the ARTMAP architecture or the inputs presented
node j in Fa

2 iff wa
j � I.to the ART1 and Fuzzy ART architectures are held at the

network nodes long enough for the network weights to con-
verge to their steady-state values. The learning equation for Number of Templates Property. At the completion of the off-
the weights provided by Eq. (5) is a learning equation per- line training phase of ART1 and Fuzzy ART with fast learn-

ing, with enough nodes in the category representation layer,taining to the fast learning scenario. Whenever the fast learn-
and small values for the network parameter �a, the numbering assumption is not imposed, we imply that the weights are
of templates created is smaller than the number of patternsmodified in a slow learning mode; in the slow learning mode
in the input list.the input/output pairs (ARTMAP) or inputs (ART1, Fuzzy

ART) are not applied at the network nodes long enough for
the network weights to reach their steady-state values. Order of Search Property. Suppose that I is an arbitrary pat-

We have already defined before what we mean by the tern from the list of input patterns in ART1 and Fuzzy ART
and from the list of input/output pairs in ARTMAP. Then, ifstatement that ‘‘learning is complete’’ in the off-line training



654 ART NEURAL NETS

the network parameter value �a is small, the largest subset sentations is a tight bound and it turns out to be very impres-
sive if we consider a couple of examples. For instance, con-template of I will be searched first. If this subset template is

reset, all subset templates will be reset. If all learned subset sider the case of input/output pairs, where the input patterns
a have Ma � 10 (100) components; the input/output mappingtemplates are reset, then superset templates, mixed tem-

plates, and uncommitted templates are searched, not neces- problem that might be given to us in this example case can
have at most 210 � 1000 (2100 � 1030) input/output pairs. ART-sarily in that order.
MAP would need only at most 10 (100) presentations to learn

Number of List Presentations Property—1. The off-line train- this mapping problem. Can you imagine the time required by
ing phase of ART1, Fuzzy ART, and ARTMAP with fast learn- a back-prop network to learn a mapping problem involving a
ing, with enough nodes in the category representation field 1030 input/output pairs?
and small values of the network parameter �a, will be com- The Number of List Presentation Property—2 tells us that
plete in at most Ma list presentations. the upper bound on the number of list presentations required

by ART1 and Fuzzy ART to learn a list of input patterns,
Number of List Presentations Property–2. The off-line training repeatedly presented to them, can get tighter. In particular,
phase of ART1 and Fuzzy ART with fast learning, with the number of list presentations required is upper bounded
enough nodes in the category representation field and small by the number of distinct size templates in the input list. For
values for the network parameter �a, will be complete in m example, if Ma � 100 and the number of distinct size inputs
list presentations, where m represents the number of distinct presented to ART1 is 2, it will require 2 list presentations for
size input patterns in the list. ART1 to learn the list. This property is taken to extreme with

Fuzzy ART, because in Fuzzy ART the preprocessing of the
The Distinct Template Learning Property is one of the good inputs leaves us with input patterns of the same size (Ma).
properties of the ART architectures. Since templates in ART1, Hence Fuzzy ART needs only one list presentation to learn
Fuzzy ART, and ARTMAP represent compressed representa- the list of input patterns presented to it.
tions of the input patterns presented to these architectures,
it would have been a waste to create templates that are equal.
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