
MOBILE NETWORK OBJECTS 353

MOBILE NETWORK OBJECTS

Computer networks are collections of computing nodes inter-
connected by communication channels. They have experi-
enced explosive growth recently, primarily due to the steadily
decreasing cost of hardware, and have become an integral
part of daily life for most businesses, government institutions,
and individuals. One of the main objectives of interconnecting
individual computers into networks is to permit them to ex-
change information or to share resources. This can take on a
number of different forms, including electronic mail messages
exchanged among individuals, down- or uploading of files, ac-
cess to databases and other information sources, or the use of
a variety of services. It also permits the utilization of remote
computational resources, such as specialized processors or su-
percomputers necessary to accomplish a certain task, the uti-
lization of multiple interconnected computers to solve a prob-
lem through parallel processing, or simply the utilization of
unused processing or storage capacity available on remote
network nodes.

The recent explosion in the use of portable devices, such as
laptop computers or various communication devices used by
‘‘nomadic’’ users, has opened new opportunities but has also
created new technological challenges. The main problem is
that such devices are connected to the network intermittently
and typically for only brief periods of time, they use low-band-
width, high-latency, and low-reliability connections, and they
may be connected to different points of the network each time.

The exchange of data among processor nodes in a net-
work—whether connected permanently or temporarily—
occurs via communication channels, which are physical or
virtual connections established, either permanently or tempo-
rarily, between the nodes. To use a channel, the communicat-
ing parties need to obey a certain communication protocol,
which is a set of rules and conventions regarding the format
of the transmitted data and its processing at the sending and
receiving end. There is a wide range of different communica-
tion protocols to serve different needs and they are usually
structured hierarchically such that each layer can take ad-
vantage of the properties provided at the lower level.

Despite the great variety of communication protocols, they
all embody the same fundamental communication paradigm.
Namely, they assume the existence of two concurrent entities
(processes or users) and a set of send/receive primitives that
permit a piece of data (a bit, a packet, a message) to be sent
by one of the active entities and received by the other. The
specific protocol used only determines various aspects of the
transmission, such as the size and format of the transmitted
data, the speed of transmission, or its reliability. This leads to
a great variety of send/receive primitives, but the underlying
principle remains the same.

From the programming point of view, this form of commu-
nication is referred to as message passing and is the most
common paradigm used in parallel or distributed computing
today. Its main limitation is that it views communication as

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



354 MOBILE NETWORK OBJECTS

Figure 1. Levels of computation mi-
gration.

Control only Control + code

During execution

Partial
computation

Passive PassiveActive Active

Object
migration

RPC Remote execution

Before execution

Code import

Process
migration

Thread
migration

Agent
migration

Self-contained
computation

a low-level activity and thus is difficult to program, analyze, tion into native code. The necessary machine independence is
and debug. To alleviate these problems, higher-level program- achieved by establishing a common standard for the various
ming constructs have been developed. The best-known repre- aspects of code generation, such as byte ordering, data align-
sentative is the concept of a remote procedure call (RPC) (1). ment, calling conventions, and data layout. This accounts for
As the name suggests, this extends the basic idea of a proce- Java’s popularity as a language to develop highly portable In-
dure call to permit the invocation of a procedure residing on ternet-based applications. The main motivation for moving
a remote computer. At the implementation level, the RPC code between machines is to make it available for execution
must be translated into two pairs of send/receive primitives. on demand (by downloading it when needed), to perform load
The first transmits the necessary parameters to the remote leveling (i.e., to invoke particular subcomputations on remote
site while the second carries the results back to the caller nodes to take advantage of their computational capacity), or
once the procedure has terminated. Several issues must be to reduce communication latency by moving the execution to
handled, including the translation of data formats between the data or the service that it needs to access.
different machine architectures and the handling of failures Another dimension of complexity is added when we permit
during the RPC. Nevertheless, the RPC mechanisms hide the code to migrate after it has started executing. In this case we
details of the message-passing communication inside the well- are moving the state of the ongoing computation in addition
known and well-understood procedure-calling abstraction. to the code itself. This can be subdivided further along two
The popularity of the RPC mechanism is due to its affinity axes, as shown in Fig. 1. The first axis captures the distinc-
with the popular client-server paradigm, where a distributed tion in granularity—that is, whether the entire computation
application is structured as a continuously operating process, can be moved or whether it is possible to move only some
termed a server (or collection of servers), that may be con- portion of it while other parts remain at their original sites.
tacted by a client process to utilize the provided service. For The second orthogonal axis divides the space based on who
example, a name server would return the address of a partic- initiates and performs the migration. If this is done by an
ular host computer given its name. When a client-server ap- activity other than the moving one, we call the migration pas-
plication is implemented using RPCs, the client simply in- sive. If a computation can effect its own migration, we call
vokes the appropriate (remote) procedure with the name as it active.
the argument and waits for it to return the result. There are representatives in each of the four areas re-

RPCs require that the procedure to be invoked be prein- sulting from the preceding subdivision. An example of passive
stalled (compiled) on the remote host node before they can be migration of parts of an ongoing computation is the move-
utilized by a client. Hence, as indicated in Fig. 1, only control

ment of objects of an object-oriented language, as pioneeredis transferred between the client and the server during the
in the Emerald system (4). Emerald provides several primi-RPC. The natural extension to RPCs is remote execution, also
tives by which one object can cause another object to changereferred to as remote programming (2), which permits not only
its location, which then automatically moves all the threadscontrol but also the code that is to be executed remotely to be
currently executing as part of the moved object to the newcarried as part of the request. Alternatively, a client could
host. Active migration of parts of an ongoing computation cancontact a server and download a program to accomplish a cer-
be accomplished by permitting a thread to send and invoke atain task (i.e., copy the program from the server to the client’s
given procedure on a remote host. Unlike the simple remotehost). In both cases we are addressing the problem of code
execution discussed earlier, this transfer does not imply a re-mobility. Since both of these scenarios require that the code
turn of control to the caller site once the procedure termi-is carried before it starts executing, the code must be made
nates. Rather, the migrating procedure carries with it theportable between the different machines. This can be accom-
state of its invoking thread and thus retains its semanticsplished either by carrying the source code and recompiling it
regardless of its current location. One approach for accom-on the target host or by providing an interpreter for the given
plishing this was pioneered in the Obliq language (5). In thislanguage on the target host. In both cases, translating the
approach, backward network references to the originating siteoriginal source code into a more compact and easier to process
are maintained, and parts of the state are copied as neces-intermediate code generally yields a much better performance
sary. The ongoing copying is transparent to the user. Fromin both transmission and processing. One of the most popular
the user’s viewpoint, the entire thread has been transferredsystems today is Java (3), which uses a stream-oriented inter-
to the new location, where it continues executing until itmediate representation, referred to as byte code, that lends

itself well to interpretation as well as to on-the-fly compila- again decides to move.



MOBILE NETWORK OBJECTS 355

The last column of Fig. 1 represents systems where compu- node and there are no specific virtual connections. That is,
the virtual network is a strict subset of the physical networktations are relocated in their entirety. Under passive migra-
and the virtual connections are simply implied (identical to)tion, this is typically done at the process level, where the op-
the existing physical links. Additional flexibility is attainederating system captures the complete execution state of a
by permitting more than one virtual node to share a physicalprocess and relocates it, including its entire address space, to
network. For example, the node ocean.ics.uci.edu in Fig.another machine. When processes can actively decide if and
2 shows two virtual nodes mapped to it. Since the physicalwhere to move—that is, perform self-migration—we refer to
resources are multiplexed between the virtual nodes, there isthem as mobile network objects, or mobile agents. These are
no performance benefit but the resulting logical concurrencythe main subject of this article.
provides for more flexibility in the design of applications.Self-migration requires a basic infrastructure consisting of
Some systems, such as UCI MESSENGERS (6) and WAVEsome form of servers running on the physical nodes to be es-
(12) support a separate logical network, implemented on toptablished, which accept the mobile agents, provide them with
of the virtual network. Logical links are used by the mobilean execution environment and an interface to the host envi-
agents to navigate through the network. Having logical linksronment, enforce some level of protection of the agent and the
that represent virtual connections provides for greater flexi-host, and permit them to move on. The remainder of this arti-
bility in navigation.cle explores these issues in more detail. The utility of mobile

Each virtual node consists of several components to enableagents and some of their applications are discussed later.
the mobile agents operation. The most important is a ‘‘pro-
cessing engine’’ that gives the mobile agents their autonomy.
This can be subdivided further into a communication module,BASIC INFRASTRUCTURE
whose task is to receive and send mobile agents, and an execu-
tion engine, responsible for the agents execution while it re-To give mobile agents their autonomy in moving through the
sides on the current node. Depending on the language used tounderlying network and performing the necessary tasks at
write the code for mobile agents, this engine can be either athe nodes they visit, a basic infrastructure needs to be estab-
self-contained interpreter or a form of a manager, that createslished. Figure 2 shows the generic concept of such an infra-
a new process or thread for each new incoming agent andstructure. The lowest level consists of a physical network of
then supervises its execution.nodes. This is typically a WAN (wide area network), such as

Each virtual node also typically provides a local communi-the Internet, which is a large heterogeneous collection of dif-
cation facility, such as a shared data area, that can be usedferent computers ranging from PCs to supercomputers, inter-
by the mobile agents currently on that node to communicateconnected by a variety of different links and subnetworks. For with one another (that is, exchange data or synchronize

some applications (notably, general-purpose parallel/distrib- their operations).
uted computing), the physical network could also be a LAN In the remaining sections, we will elaborate on the various
(local area network), consisting of a relatively small number aspects of the supporting infrastructure, the various capabili-
of computers interconnected by an Ethernet or a token ring– ties of mobile agents as supported by different approaches,
based network. and their main benefits and applications.

The mobile agents infrastructure is established on a subset
of the physical nodes. This may be viewed as a virtual net- PROGRAMMING LANGUAGE
work, where each node is a software environment that en-
ables the agents to operate in the physical node. In the sim- There is a wide range of programming languages used to

write mobile agents programs (i.e., to describe an agent’s be-plest case, a single virtual node is mapped onto a physical

Figure 2. Infrastructure of mobile

L L L L

E E E E

C C C C

. . .

ocean.ics.uci.edu

C = Communication module
E = Execution engine
L = Local communication facility

wave.ics.uci.edu

Physical network

cress.ics.uci.edu

agents.



356 MOBILE NETWORK OBJECTS

havior). We can loosely classify them along two orthogonal GERS (6). The agent’s code is written in a subset of C, which
is translated into a more efficient yet machine-independentaxes: general purpose versus special purpose and conventional

versus object oriented. Within each class we can further dis- form (similar to bytecode). This is carried by the agent and is
interpreted by the execution engine of each host. In addition,tinguish interpreted versus compiled languages, and combina-

tions thereof. the agent can dynamically load and invoke arbitrary C func-
tions, resident on a given host and compiled into the host’sThe most popular general-purpose programming lan-

guages used for mobile agents are C and Java. C is an imper- native code. Hence it can alternative between interpreted and
compiled code at the programmer’s discretion.ative language (that is, based on sequential flow of assign-

ment, control, and function invocation statements) and is one Another consideration is whether an agent is executed as
a separate process or as a thread within the same addressof the most widely used programming languages today. Java

is object oriented, which implies a hierarchical structure of space of the execution engine. This decision represents a
tradeoff between security and performance. Starting a newobjects derived from common classes and interacting with one

another by invoking procedures defined as part of each object. thread is more efficient than starting a new process, but
allowing multiple agents to run in the same address spaceOne of the main strengths of Java code is that it is based

on a structured bytecode and is thus highly portable between represents a potential security risk.
heterogeneous computers. To use a general-purpose program-
ming language like C or Java for mobile agents, it must be

MOBILITY
extended to be able to handle the specific requirements of self-
migrating code. The most important extension is to support

The ability to spread or move computation among different
mobility (that is, some set of commands that an agent can use

nodes at runtime is perhaps the most important characteris-
to cause its migration to another computer). Another impor-

tic of mobile agents. We can distinguish three aspects of mo-
tant area of concern is to provide protection mechanisms to

bility: addressing, the mechanisms to affect the movement of
permit a safe operation of mobile agent applications. The

an activity, and high-level support mechanisms.
main advantage of using existing general-purpose languages
is that the programmers do not need to learn yet another lan-

Addressing
guage but only extend their knowledge to integrate aspects of
mobility. Hence it is easier to make a transition into the new For an activity to move, a destination must first be specified.

This destination, also referred to as a place, a location, or aparadigm of mobile agents.
New languages have also been developed specifically for logical node by different systems, is some form of an execution

environment capable of supporting the mobile agent’s func-the purpose of writing mobile agents code. One such language
is Telescript (7), pioneered by General Magic, Inc. This is a tionality. Depending on how the logical nodes are mapped

onto the physical network, different forms of addressing arehigh-level object-oriented language designed for mobile
agents for the rapidly expanding electronic marketplace on possible. In the simplest form, the networkwide unique names

or addresses of the physical nodes are used to specify a desti-the Internet. A number of other languages, both object ori-
ented and conventional, have also been developed. Another nation. This implies that only a single copy of a logical node

can be mapped onto any one physical node. To achieve loca-approach has been to adapt existing special-purpose lan-
guages. One example is Agent Tcl (8), which is built on top tion transparency, logical names are used, whose mapping to

the physical nodes may be changed as necessary (for example,of an extended version of Tcl, a scripting language originally
intended for the composition of high-level program scripts to to reflect changes in the physical network topology). This

frees the application from having to know anything about thecoordinate lower-level computations. Another example is the
system developed by researchers at the Johann Wolfgang physical network and thus also facilitates its portability. This

also permits more than one logical node to be mapped onto aGoethe University (9), which is built on top of a customized
Hypertext Transfer Protocol (HTTP) server. physical node, thus providing better structuring capabilities

and facilitating load balancing. As already discussed, anotherOne of the main distinguishing features of all of the pre-
ceding languages is whether they are compiled and executed degree of flexibility is achieved by permitting not only logical

nodes but also logical links. These are mapped onto paths ofas native code of the host computer or interpreted. This repre-
sents a tradeoff between performance, which is degraded due zero or more physical links, thus providing virtual connec-

tions that can be used for navigation by agents.to interpretation, and security, which is improved due to the
interpreter’s tight control over the agent’s behavior. There are Addressing can further be subdivided into explicit and im-

plicit. Explicit addressing implies that an agent specifies thethree general options. First, the agent can carry code that is
fully interpreted by the execution engine of the host. This is exact node destination where it wishes to travel or where a

new agent should be spawned. Some systems support itinear-the safest but also the slowest approach and is typically used
with scripting languages. Second, the agent’s code could be an ary-based addressing, where an agent carries a list of destina-

tions. Each time it issues a migration command, it moves tointermediate machine-independent program representation,
like the Java bytecode, which can be interpreted more effi- the next destination on its list. Implicit addressing means

that an agent specifies the set of destinations indirectly usingciently than source code or can be compiled on the fly into
directly executable native code. Finally, the agent could carry an expression that selects zero or more target nodes. The

agent is then replicated and a copy sent to all the nodes thatnative code precompiled for the target host. This is the fastest
but also least secure and least flexible approach, since the meet the selection criteria. The UCI MESSENGERS system

defines a elaborate navigational calculus where, given a logi-agent would have to carry different code versions for every
machine architecture it may visit. A compromise between the cal node, an expression involving various combinations of link

and node names (including ‘‘wild cards’’), a set of target nodespreceding approaches has been adopted by UCI MESSEN-



MOBILE NETWORK OBJECTS 357

relative to the current node is specified. The agent issuing High-Level Support
this statement is then replicated and a separate copy sent to

The third aspect of navigation concerns the high-level tools
each of the selected nodes. For example, an agent could decide

and mechanisms that make the migration of agents more
to replicate itself along all outgoing links with a specific name

powerful or more user friendly. These fall into two catego-
and/or orientation or connected to specific neighboring nodes.

ries—the first deals with finding agents or services on the
net, the latter with finding ways best to reach the correspond-

Mechanisms for Mobility ing remote sites. There is no conceptual framework for either
problem and hence we only mention a few approaches thatMobility can be achieved in one of two ways. The first is re-
have been used by various systems. The Agent Tcl project (8)mote execution, which permits a new activity to be spawned
addresses both areas. To locate services, it provides a hierar-on a remote node. The second is migration, which permits an
chy of specialized navigation agents, which are stationary andagent to move itself to another node. The boundary between
which maintain a database of service locations. Services arethese two approaches, however, is not crisp, since an agent
registered with these nagivation agents. A mobile agent look-could spawn a copy of itself on a remote node and then termi-
ing for a service may query a navigation agent, which sug-nate on the current node, thus effectively migrating itself.
gests a list of possible services based on a keyword search,The main question is the level of support provided by the sys-
and possible other navigation agents, which may be more spe-tem to extract the current state at the source node and restore
cialized in maintaining services on the requested topic. Later,it at the destination node. This may range from no support to
mobile agents may provide feedback about which servicesa fully transparent migration.
were useful, thus improving the navigation agent’s ability toIn the case of remote evaluation, the commands supported
provide information in the future.to achieve mobility typically take on a passive form, such as

The CUI MESSENGERS system (10) also provides exten-‘‘spawn’’ or ‘‘dispatch,’’ implying that it is not the currently
sive support for publicizing and discovering services on theexecuting agent itself that moves; rather, it is causing the
net. One of the main issues is to ensure protection of the ser-creation of another agent on a remote node. To achieve active
vice provider. Unlike Agent Tcl, which uses active navigationmobility using this approach, it is not sufficient simply to
agents, CUI MESSENGERS use specialized dictionaries inspawn to copy of the current agent, since the new agent would
each logical node, which can be consulted by potential clients.start executing from the beginning. Rather, the sending agent
Each service is publicized with its operational interface, which,must extract its current state, transmit this along with the
using a specialized interface-description language, specifies thecode, and cause the new instance to continue executing the
necessary conventions to interact with the service.code that follows the migration statement. If the agent code

The second category of high-level support generally in-is compiled, its state consists of the activation stack, the CPU
cludes network sensing and monitoring tools. The complexity(central processing unit) registers, any dynamically allocated
and sophistication of these tools range from very simple (forheap memory, and open I/O (input/output) connections (file
example, to determine whether a particular computer isand communication descriptors). If the code is interpreted,
‘‘alive’’ and connected to the current node) to continuous net-the agent’s state is typically maintained by the interpreter.
work monitoring services that provide estimates on latencyIn either case, the system must provide support to permit as
and bandwidth of various connections in the network.much of the agent’s state to be extracted in order to permit

its migration. Unfortunately, some parts of the state, notably
the I/O connections, may be machine dependent and thus AGENT INTERACTIONS
cannot be moved. Hence a completely transparent migration
may not always be possible. Agents have the need to interact with one another at runtime,

In the case of self-migration, the commands typically take either to exchange information (i.e., communicate) or to syn-
on an active form, such as ‘‘go’’ or ‘‘hop,’’ indicating that it is chronize their actions. There are several forms of interagent
the agent issuing these commands that is being moved. The communication schemes supported by different systems. The
problems of state capture are similar to those described pre- simplest is based on shared data. That is, a logical node will
viously. That is, the system must provide support for ex- contain some agreed-upon variables or data structures, which
tracting the agent’s current state and reinstating it at the may be accessed by agents currently executing on that node.
new destination. This, as well as the creation of the new in- The access can either be by location (i.e., reading from or writ-
stance and the destruction of the original one, is usually done ing to a specific location specified by name or address) or asso-
automatically by the system as part of the migration opera- ciative by content (i.e., specifying a part of the data item to
tion, which then may be viewed as a high-level construct that be accessed and letting the system find all data items that
transparently achieves self-migration of an agent. match the given value).

Given the difficulty of extracting and restoring an agent’s In the case of object-oriented systems, another form of in-
state at an arbitrary point in its execution, some systems will teragent communication is possible. Each such agent consists
limit migration to only the top level of execution (i.e., the of one or more objects, where objects encapsulate both data
equivalent of the main program). This is the case with the and the functions (called methods) that may operate on the
UCI MESSENGERS system, which also prohibits the use of data. Two agents operating on the same node may establish
pointers at that level. This eliminates the need to extract/ a connection that permits them to invoke each other’s meth-
restore the activation stack as well as any data on the heap ods, thus passing information to each other or otherwise ma-
storage, and hence only the agent’s local variables and its pro- nipulating each other’s internal state. This is analogous to
gram counter need to be sent along with the code during mi- performing remote procedure calls in conventional client-

server applications and thus can be extended to communica-gration, thus making this operation very efficient.



358 MOBILE NETWORK OBJECTS

tion with stationary agents or other services on the same or very external agents from whom the computer should be pro-
tected. Without proper safeguards, the computer may accepteven remote nodes.

Since communication via shared variables or method invo- unsafe code and permit it to run. In so doing, the computer
opens itself and its other users to abuse or misuse of its re-cation requires both agents to be in the same node, some sys-

tems permit agents to establish connections across different sources. For example, the entering agents may consume ex-
cessive amounts of memory or CPU time, access memory, disknodes and to communicate with each other by messages. This

includes connections that may be established between an files, or services for which it has no authorization; leak sensi-
tive information to the outside world; or destroy informationagent and its owner (user). The send/receive primitives sup-

ported by the system may be both synchronous or asynchro- or services.
Mobile agents also open up the possibility of attacks on thenous, depending on the system’s intended application domain.

To find a particular mobile agent on the net, a ‘‘paging’’ ser- agents themselves. For example, an agent might attempt to
steal sensitive information that another agent is carrying. Avice may also be provided, which returns the location of the

sought-after agent. In Agent Tcl, for example, this service re- host in the system might try to modify an agent by changing
its data (e.g., the maximum price it is prepared to pay for alies on each mobile agent registering its position with its

‘‘home’’ machine after each jump, which permits the user or service offered by the host) or its instructions (e.g., by altering
the agent so that it works on behalf of this host rather thansource agent to find its current location.

Synchronization may be required for agents operating on on behalf of its original owner). Thus threats to agents can
come either from other agents or from hosts on the network.different nodes or on the same node. Synchronizing activities

on different nodes is a general problem in distributed coordi- So there are three kinds of protection that need to be ad-
dressed: protecting the system from an agent, protecting annation for which various solutions exist, including distributed

semaphores, using a central server/manager, distributed vo- agent from an agent, and protecting an agent from a host.
ting, or token-based schemes. For this reason, few mecha-
nisms specific to mobile agents have been proposed. Similarly, Protecting the System from an Agent
synchronization of mobile agents on the same node is gener-

Nodes in a system can be protected from agents by using a
ally achieved by adapting classical methods. The solutions in-

combination of authentication, restriction of access to poten-
corporated in different systems vary greatly in their sophisti-

tially dangerous operations, and resource limits. An agent
cation. The simplest way to achieve synchronization is by

typically carries with it certain identifying information, such
busy waiting (also called spin lock), where an agent continu-

as its owner and its origin. Authentication mechanisms check
ously reads a given variable until it has been set to the de-

that this information is correct; this can be done using public-
sired value by another agent. The main disadvantage of this

key encryption protocols. An agent can then be permitted to
scheme is the wasted CPU time, which can be eliminated by

perform or forbidden from performing certain operations, de-
implementing a more sophisticated form of locks (or sema-

pending on its status. In Agent Tcl (8), an agent is assigned
phores), where the waiting agent is blocked (sleeping) while

a status of ‘‘trusted’’ or ‘‘untrusted.’’ An untrusted agent is
the desired condition is false.

run with an interpreter that limits its ability to perform po-
The CUI MESSENGERS system (10) provides a novel syn-

tentially dangerous operations, either by forbidding such op-
chronization mechanism based on the notion of synchroniza-

erations entirely or by carefully checking the parameters of
tion queues. Agents can create/destroy queues as needed and

each such operation before allowing it to proceed. In Tele-
can use specialized primitives to enter/exit a particular

script, an agent carries with it ‘‘permits,’’ each of which allows
queue. The basic principle is that only those agents that are

it to perform certain operations that are otherwise forbidden
at the head of a queue (or on no queue) are running. An agent

(11).
that is currently running may also block/unblock a given

Resource limits prevent a single agent from consuming ex-
queue, thus preventing all agents on that queue from pro-

cessive amounts of resources on a single host. Agents could
ceeding.

abuse the system in more subtle ways. For example, a mali-
Another synchronization mechanism is based on events.

cious agent could simply hop to a new host selected at ran-
These are arbitrary user-defined conditions that can be set

dom, make two copies of itself, and stop. Such an agent could
and tested at runtime. An agent may indicate that it is inter-

ultimately paralyze the entire network. Agent Tcl and Tele-
ested in certain types of events, in which case it will be noti-

script propose addressing this problem by introducing an ana-
fied whenever an event of the desired type occurs. The notifi-

log of a cash economy. Each agent carries with it a certain
cation is in the form of an ‘‘interrupt,’’ which executes a

amount of ‘‘currency,’’ which it must spend in order to use
specific function (an event handler) provided by the agent.

resources. Every time an agent creates a new agent, it must
give some of its currency to the child agent; otherwise, the
child agent will not be able to use any resources. This mecha-

PROTECTION AND SECURITY
nism limits the total amount of network resources that can
be consumed by an agent and its descendants.

The autonomous mobility of agents creates the potential for
security violations that would otherwise not be possible. With

Protecting an Agent from Other Agents
traditional approaches the outside world can only interact
with a computer through well-defined interfaces and by the Once the system has been protected from the agents running

on it, the problem of protecting an agent from other agents isfixed set of programs installed on the computer. These restric-
tions provide a barrier that allows the computer to protect quite similar to the classical security problem of protecting a

program from other programs on multiuser machines. Oneitself from external attack. Mobile agents eliminate this bar-
rier, since the code that the computer runs is provided by the approach is to have each agent run in a separate address



MOBILE NETWORK OBJECTS 359

space, so that an agent cannot be affected by another agent agent on its journey through the network, describing the com-
putation to be performed at stops along the way. One class ofunless it chooses to communicate with it.
applications that are particularly well suited to implementa-
tions using mobile agents are individual-based simulations,Protecting an Agent from a Node
in which agents representing individual entities coordinate

This is the most difficult of the three types of protection. It is
their activities to model complex collective behavior in a spa-

virtually impossible for an agent to prevent itself from being
tial domain. Examples of such applications include interactive

tampered with by a malicious or faulty host. Nevertheless, it
battle simulations, particle-level physics simulations, traffic

is usually possible to detect whether specific sensitive areas
modeling, and ecological studies. All of the above software en-

of an agent arriving at a node have been tampered with at
gineering advantages stem from the fact that the mobile

the previous node. This is being implemented in Agent Tcl
agents paradigm better fits certain types of distributed appli-

using digital signatures.
cations, which reduces the amount of programming nec-

Once an agent migrates to a new host, it cannot prevent
essary.

the host from examining its contents and possibly stealing
In terms of performance, the ability of mobile agents to

sensitive information that it contains. The damage from such
move through the network results in a considerable potential

a theft can be limited if an agent makes sure that the sensi-
reduction in communication cost. Suppose, for example, that

tive information is stored in a form that is not useful without
a program wishes to process a large amount of data at a re-

cooperation from a trusted network node (e.g., by keeping it
mote site. One approach would be for the remote site to send

encrypted.) It is possible for an agent to build an audit trail
all the data to the local site. This is likely to incur consider-

that includes a list of the nodes it has visited. This does not
ably more communication overhead than dispatching an

prevent theft, but it can be used after the fact to help identify
agent to the remote site that processes the data and then re-

nodes that might be stealing data. It is also possible for an
turns. If the connection is slow or unreliable, there is a fur-

agent to be sent out with a list of trusted nodes and with
ther advantage to the mobile agent approach. If the remote

the restriction that it only visits trusted nodes. However, this
site is sending a large stream of data to the local site and the

approach represents a significant restriction, since one of the
connection is lost, then the stream may have to be resent in

most attractive features of the mobile agent paradigms is the
its entirety or a restart protocol may have to be run. With

notion of autonomous agents that can freely roam the
mobile agents, a steady connection is not necessary. Once the

network.
agent has arrived at the remote site, there is no reason for
the remote site and the local site to have any mutual contact
until the agent is ready to return to the local site.UTILITY AND APPLICATIONS

A number of applications using mobile agents have been
proposed or actually developed. A few are briefly describedMobile agents have several advantages over distributed com-

puting using conventional message-passing approaches. next. For more details, see the reading list at the end of this
article.These advantages can be roughly divided into two groups:

software engineering advantages and performance advan-
tages. Information Retrieval

The ability to move computations at runtime between dif-
One obvious application of mobile agents is accessing and re-

ferent nodes makes applications functionally open ended and
trieving data at remote sites on a network. If the volume of

thus arbitrarily extensible. Notably, a server is not linked to
information is large, it is clearly more efficient to dispatch an

a fixed set of predefined functions. Rather, each incoming re-
agent to the remote site and have it filter the data than to

quest can carry with it the necessary code for its processing,
ship all the data over the network and then process it.

thus making the server’s capabilities virtually unlimited.
Servers can support search without providing any specific

The same principle applies to communication. Mobile
software capabilities other than permitting mobile agents to

agents provide a mechanism for dynamic protocols. Without
enter and execute at their site. These bring with them all the

mobile agents, a computer supports a finite set of protocols to
necessary code and ‘‘intelligence’’ to carry out the necessary

move data between, to, and from other computers. Each can
searches, which is supplied by the user originating the re-

only manipulate the data in a fixed number of ways, deter-
quest. The data at the remote site may contain references to

mined by its current software capabilities. If it lacks a partic-
other useful data at other remote sites, in which case the

ular application needed to access, view, or process some re-
agent may move or send copies of itself to these other sites

ceived data properly, the needed application must manually
and access the data there as well.

be installed to extend the machine’s capabilities. Mobile
agents permit new protocols to be installed automatically and

Electronic Commerce
only as needed for a particular interaction.

Another software engineering advantage of mobile agents As commerce on the Internet becomes a reality, the potential
uses for mobile agents are almost unlimited. Many of the ref-is ease of programming for certain kinds of applications. Con-

ventional distributed programming requires viewing the ap- erences at the end of this article address some of the possible
uses of mobile applications in the electronic marketplace. Mo-plication as a global collection of concurrent activities inter-

acting with each other via message passing. Each program bile agents can search the Internet to find the best price on a
particular item, make certain reservations or purchases onmust anticipate in advance all the possible messages it can

receive from other programs and be ready to respond to them. behalf of their owner (e.g., airplane tickets, hotel reserva-
tions), or repeatedly search to see if a currently unavailableProgramming with mobile agents is more like driving a car

through the network; the programmer’s task is to guide the item (e.g., a ticket to a sold-out concert) becomes available.



360 MOBILE NETWORK OBJECTS

2. J. W. Stamos and D. K. Gifford, Remote evaluation, ACMMore complex mobile agents could perform more difficult
TOPLAS, 12 (4): 537–565, 1990.tasks, such as negotiating deals or closing out business trans-

actions on behalf of their owners. One important related prob- 3. J. Gosling and H. McGilton, The Java Language Environment.
Sun Microsystems, Inc., Mountain View, CA 94043, 1995. http://lem is the implementation and use of electronic cash.
java.sun.com

Intelligent Agents and Personal Assistants 4. E. Jul et al., Fine-grained mobility in the Emerald system. ACM
Trans. Comput. Syst., 6 (1): 109–133, 1988.The term intelligent agent is used in two different contexts.

5. L. Cardelli, Obliq: A language with distributed scope, Comput.One use refers to artificial intelligence (AI) systems in which
Syst., 8 (1): 27–59, 1995.the intelligence stems from the behavior and interaction of

6. L. F. Bic, M. Fukuda, and M. Dillencourt, Distributed computingindividual entities or agents within the system. Generally
using autonomous objects, IEEE Comput., 29 (8): 55–61, 1996.these agents do not migrate, and hence do not fall within the

scope of this article. The term is also used to describe agents 7. The Telescript reference manual. Technical report, General Magic,
Inc., Mountain View, CA 94040, June 1996. http://www.genmag-that act as personal assistants to the user. Some of these are
ic.commobile and some are not. Examples of the latter include inter-

faces for e-mail and news filtering systems. An example of 8. R. S. Gray, Agent Tcl: A flexible and secure mobile-agent system.
In Proc. 4th Annu. Tcl/Tk Workshop (TCL 96), Monterey, CA,intelligent agents that are also mobile agents is software for
July 1996. http://www.cs.dartmouth.edu/�agent/papers/index.scheduling meetings (interacting with users and/or their cal-
htmlendars at distributed locations).

9. A. Lingnau, O. Drobnik, and P. Dömel, An HTTP-based infra-
Mobile Computing structure for mobile agents. In 4th Int. World Wide Web Conf.

Proc., pp. 461–471, Sebastopol, CA, December 1995, O’ReillyThis application was alluded to at the beginning of this arti-
and Associates.

cle. The user of a portable computer can submit a mobile
10. C. F. Tschudin, On the Structuring of Computer Communications.agent that contains a program to be run and sign off. When

Ph.D. thesis, University of Geneva, Centre Universitaire d’Infor-the agent is finished computing, it waits and jumps back to
matique, Geneva, Switzerland, 1993. http://cuiwww.unige.ch/the user’s computer after the user signs back on and requests
tios/msgr/home.html

it do so.
11. J. White, Mobile agents white paper. Technical report, General

Magic, Inc., Mountain View, CA 94040, 1996. http://www.gen-Network Management
magic.com

Mobile agents can be used to perform various administrative 12. P. S. Sapaty and P. M. Borst, An overview of the WAVE language
and maintenance functions in networks. For example, agents and system for distributed processing of open networks. Technical
can be dispatched to monitor links and nodes, diagnose faults, report, University of Surrey, UK, 1994
identify areas of congestion, etc. As another example, one of
the stated goals of the CUI Messengers Project is developing
a distributed operating system based on mobile agents. Reading List

J. Baumann, Mobile agents: A triptychon of problems. In 1st ECOOPGeneral-Purpose Computing
Workshop Mobile Object Systems, 1995. http://www.informatik.uni-

Mobile agents can be used as the basis for general-purpose stuttgart.de/ipvr/vs/projekte/mole/agents.html
distributed computing (6,12). If the communication overhead D. Johansen, R. van Renesse, and F. B. Schneider, An introduction
is reasonably low compared with the amount of computation to the TACOMA distributed system version 1.0. Technical Report
required, distributed solutions using mobile agents are com- 05-23, Department of Computer Science, University of Tromsø,
petitive in performance with distributed solutions using tradi- June 1995. http://www.cs.uit.no/DOS/Tacoma/index.html
tional message-passing approaches. Many algorithms are D. B. Lange and M. Oshima, Programming mobile agents in Java
more naturally implemented using the metaphor of naviga- with the Java Aglet API. http://www.trl.ibm.co.jp/aglets/
tion through a network than using message passing, so the T. Magedanz and T. Eckardt, Mobile software agents: A new para-
mobile agent approach often yields a smaller semantic gap digm for telecommunications management. In IEEE/IFIP Net-
between the abstract specification of the algorithm and the work Operations and Management Symposium (NOMS), Kyoto,
actual implementation. Japan, April 1996. http://www.fokus.gmd.de/oks/research/

Mobile agents also provide a useful way of coordinating the magna_g.html�#dokumente
behavior of functions and data in a distributed application H. Peine, An introduction to mobile agent programming and the Ara
such as a distributed simulation. The use of mobile agents as system. ZRI Technical Report 1/97, Dept. of Computer Science,
a coordination paradigm is particularly well suited to systems University of Kaiserslautern, January 1998. http://www.uni-kl.de/
that permit calls into native mode code. The coordination AG-Nehmer/Ara/ara.html
functions are performed by services provided by the inter- C. F. Tschudin, On the Structuring of Computer Communications.
preter, while the actual computation can be done in native Ph.D. thesis, University of Geneva, Centre Universitaire d’Infor-
mode, so the computational cost due to interpretive overhead matique, Geneva, Switzerland, 1993. http://cuiwww.unige.ch/tios/
is minimized. msgr/home.html

D. Wong et al., Mitsubishi Horizon Systems Lab, USA, Concordia:
BIBLIOGRAPHY An Infrastructure for Collaborating Mobile Agents, in Proc.

1st Int. Workshop Mobile Agents, Berlin, Germany, April 7–8,
1997. http://www.meitca.com/HSL/Projects/Concordia/1. A. D. Birrell and B. J. Nelson, Implementing remote procedure

calls, ACM Trans. Comput. Syst., 2: 39–59, 1984. MobileAgentConf_for_web.html



MOBILE ROBOTS 361

M. Condict et al., Towards a world-wide civilization of objects, in Proc.
7th ACM SIGOPS Eur. Workshop, Connemara, Ireland, September
1996. http://www.opengroup.org/RI/java/moa/WebOS.ps

General Magic, Inc., Odyssey, 1997. http://www.genmagic.com/
agents/odyssey.html

LUBOMIR F. BIC

MICHAEL B. DILLENCOURT

MUNEHIRO FUKUDA

University of California


