
NETWORK OPERATING SYSTEMS 181

NETWORK, NONLINEAR. See NONLINEAR NETWORK ELE-

MENTS.

NETWORK OPERATING SYSTEMS

Network operating systems extend the facilities and services
provided by computer operating systems to support a set of
computers, connected by a network. The environment man-
aged by a network operating system consists of an intercon-
nected group of machines that are loosely connected. By
loosely connected, we mean that such computers possess no
hardware connections at the CPU-memory bus level, but are
connected by external interfaces that run under the control of
software. Each computer in this group runs an autonomous
operating system, yet cooperates with the others to allow a
variety of facilities including file sharing, data sharing, pe-
ripheral sharing, remote execution, and cooperative computa-
tion. Network operating systems are autonomous operating
systems that support such cooperation. The group of ma-
chines composing the management domain of the network op-
erating system is called a distributed system. A close cousin
of the network operating system is the distributed operating
system. A distributed operating system is an extension of the
network operating system that supports even higher levels of
cooperation and integration of the machines on the network
(features include task migration, dynamic resource location,
and so on) (1,2).

An operating system is low-level software controlling the
inner workings of a machine. Typical functions performed
by an operating system include managing the CPU among
many concurrently executing tasks, managing memory alloca-
tion to the tasks, handling of input and output, and con-
trolling all the peripherals. Applications programs and often
the human user are unaware of the existence of the features
of operating systems as the features are embedded and
hidden below many layers of software. Thus, the term low-
level software is used. Operating systems were developed,
in many forms, since the early 1960s and have matured
in the 1970s. The emergence of networking in the 1970s
and its explosive growth since the early 1980s have had a
significant impact on the networking services provided by an
operating system. As more network management features
moved into the operating systems, network operating systems
evolved.

Like regular operating systems, network operating sys-
tems provide services to the programs that run on top of the
operating system. However, the type of services and the man-
ner in which the services are provided are quite different. The
services tend to be much more complex than those provided
by regular operating systems. In addition, the implementa-
tion of these services requires the use of multiple machines,
message passing, and server processes.

The set of typical services provided by a network operating
system includes (but are not limited to):

1. Remote logon and file transfer
2. Transparent, remote file service
3. Directory and naming service
4. Remote procedure call service
5. Object and brokerage service

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



182 NETWORK OPERATING SYSTEMS

6. Time and synchronization service peared. However, as the number of networked computers in-
creased dramatically, it was apparent that these services7. Remote memory service
were simply not enough for an effective work environment.
For example, let us assume a department (in 1985) has aboutThe network operating system is an extensible operating sys-
40 users assigned to 10 machines. This assignment immedi-tem. It provides mechanisms to easily add and remove ser-
ately led to a whole slew of problems, we outline some below:vices, reconfigure the resources, and has the ability of sup-

porting multiple services of the same kind (for example two
• A user can only use the machine on which he or she haskinds of file systems). Such features make network operating

an account. Soon users started wanting accounts onsystems indispensable in large networked environments.
many if not all machines.In the early 1980s network operating systems were mainly

research projects. Many network and distributed operating • A user wanting to send mail to another colleague not
systems were built. These include such names as Amoeba, only had to know the recipients name (acceptable) but
Argus, Berkeley Unix, Choices, Clouds, Cronus, Eden, Mach, which machines the recipient uses-in fact, the sender
Newcastle Connection, Sprite, and the V-System. Many of the needs to know the recipient’s favorite machine.
ideas developed by these research projects have now moved

• Two users working together, but having different ma-
into the commercial products. The commonly available net- chine assignments have to use ftp to move files back and
work operating systems include Linux (freeware), Novell forth in order to accomplish joint work. This not only re-
Netware, SunOS/Solaris, Unix, and Windows NT. quires that they know each other’s passwords but also

In addition to the software technology that goes into net- they have to manually track the versions of the files.
worked systems, theoretical foundations of distributed (or
networked) systems have been developed. Such theory in-

Suddenly the boon of networking caused segregation of thecludes topics such as distributed algorithms, control of con-
workplace and became more of a bother rather than an en-currency, state management, deadlock handling, and so on.
abling technology. At this point the systems designers real-
ized the need for far tighter integration of networking and

HISTORY operating systems and the idea of a network operating system
was born.

The emergence of and subsequent popularity of networking The first popular commercial network operating system
prompted the advent of network operating systems. The first was SunOS from Sun Microsystems. SunOS is a derivative
networks supported some basic network protocol and allowed from the popular Berkeley Unix (BSD). Two major innova-
computers to exchange data. Specific application programs tions present in SunOS are called Sun-NFS and Yellow
running on these machines controlled the exchange of data Pages. Sun-NSF is a network file system. Sun-NSF allows a
and used the network to share data for specific purposes. file that exists on one machine to be transparently visible
Soon it was apparent that a uniform and global networking from other machines. Yellow Pages, which was later renamed
support within the operating system would be necessary to to NIS (Network Information System), is a directory service.
effectively use the underlying network. This service allowed, among other things, user accounts cre-

A particularly successful thrust at integrating networking ated in one central administrative machine to be propagated
extensions into an operating system resulted in Berkeley to machines the user needs to use.
Unix (known as BSD). Unix was an operating system created The addition of better, global services to the base operating
at Bell Labs, and was licensed to the University of California system is the basic concept that propelled the emergence of
at Berkeley for enhancements and then licensed quite freely network operating systems. Current operating systems pro-
to most universities and research facilities. The major innova- vide a rather large number of such services built at the kernel
tion in Berkeley’s version was support for TCP-IP networking. layer or at higher layers to provide application programs with

In the early 1980s TCP-IP (or transmission control proto- a unified view of the network. In fact, the goal of network
col-Internet protocol) was an emerging networking protocol, operating systems is network transparency; that is, the net-
developed by a team of research institutions for a US Govern- work becomes invisible to users and application programs.
ment funded project called the ARPANET. Specialized ma-
chines were connected to ARPANET and these machines ran
TCP-IP. Berkeley made the groundbreaking decision to inte- SERVICES FOR NETWORK OPERATING SYSTEMS
grate the TCP-IP protocol into the Unix operating system,
suddenly allowing all processes on a general-purpose Unix System-wide services are the main facility a network op-

erating system provides. These services come in many flavorsmachine to communicate to other processes on any machine
connected to the network. Then came the now ubiquitous pro- and types. Services are functions provided by the operating

system and form a substrate used by those applications,grams that ran on top of the TCP-IP protocol. These programs
include telnet, ftp, and e-mail. which need to interact beyond the simplistic boundaries im-

posed by the process concept.The telnet program (as well as its cousins rlogin and rsh)
allow a user on one machine to transparently access another A service is provided by a server and accessed by clients.

A server is a process or task that continuously monitors in-machine. Similarly, ftp allows transmission of files between
machines with ease. E-mail opened a new mode of communi- coming service requests (similar to telephone operators).

When a service request comes in, the server process reacts tocation.
While these facilities are very basic and taken for granted the request, performs the task requested, and then returns

a response to the requestor. Often, one or more such servertoday, they were considered revolutionary when they first ap-



NETWORK OPERATING SYSTEMS 183

processes run on a computer and the computer is called a puters running Windows (all varieties) and MacOS but with
some limitations.server.

What is a service? In regular operating systems, the sys- Under Sun-NFS a machine on a network can export a file
system tree (i.e. a directory and all its contents and subdirec-tem call interface or API (application programming interface)

defines the set of services provided by the operating system. tories). A machine that exports one of more directories is
called a file server. After a directory has been exported, anyFor example, operating system services include process cre-

ation facilities, file manipulation facilities, and so on. These machine connected to the file server (could be connected over
the Internet) can import, or mount that file tree. Mounting isservices (or system calls) are predefined and static. However,

this is not the case in a network operating system. Network a process, by which the exported directory, all its contents,
and all its subdirectories appear to be a local directory on theoperating systems do provide a set of static, predefined ser-

vices, or system calls like the regular operating system, but machine that mounted it. Mounting is a common method used
in Unix system to build unified file systems from a set of diskin addition provides a much larger, richer set of dynamically

creatable and configurable services. Additional services are partitions. The mounting of one exported directory from one
machine to a local directory on another machine via Sun-NFSadded to the network operating system by the use of server

processes and associated libraries. is termed remote mounting.
Figure 1 shows two file servers, each exporting a directoryAny process making a request to a server process is called

a client. A client makes a request by sending a message to a containing many directories and files. These two exported di-
rectories are mounted on a set of workstations, each worksta-server containing details of the request and awaiting a re-

sponse. For each server, there is a well-defined protocol de- tion mounting both the exported directories from each of the
file servers. This configuration results in a uniform file spacefining the requests that can be made to that server and the

responses that are expected. In addition, any process can structure at each the workstation.
While many different configurations are possible by the in-make a request; that is anyone can become a client, even tem-

porarily. For example, a server process can obtain services novative use of remote mounting, the system configuration
shown in Fig. 1 is quite commonly used. This is called thefrom yet another server process, and while it is doing so, it

can be termed a temporary client. dataless workstation configuration. In such a setup, all files,
data and critical applications are kept on the file servers andServices provided by a network operating system include

file service, name service, object service, time service, and mounted on the workstations. The local disks of the worksta-
tions only contain the operating system, some heavily usedmemory service.
applications and swap space.

Sun-NFS works by using a protocol defined for remote filePeripheral Sharing Service
service. When an application program makes a request to

Peripherals connected to one computer are often shared by read (or write) a file, it makes a local system call to the op-
other computers, by the use of peripheral sharing services. erating system. The operating system then consults its
These services go by many names, such as remote device ac- mounting tables to determine if the file is a local file or a
cess, printer sharing, shared disks, and so on. A computer remote file. If the file is local, the conventional file access
having a peripheral device makes it available by exporting it. mechanisms handle the task. If the file is remote, the op-
Other computers can connect to the exported peripheral. erating system creates a request packet confirming to the
After a connection is made, to a user on the machine con- NFS protocol and sends the packet to the machine having
nected to a shared peripheral, that peripheral appears to be the file.
local (that is, connected to the users machine). The sharing The remote machine runs a server process, also called a
service is the most basic service provided by a network op- daemon, named nfsd. Nfsd receives the request and reads (or
erating system.

File Service

The most common service that a network operating system
provides is file service. File services allow a user of a set of
computers to access files and other persistent storage objects
from any computer connected to the network. The files are
stored in one or more machines called the file server(s). The
machines that use these files, often called workstations, have
transparent access to these files.

Not only is the file service a common service, but it is also
the most important service in the network operating system.
Consequently, it is the most heavily studied and optimized
service. There are many different, often noninteroperable pro-
tocols for providing file service (3).

The first full-fledged implementation of a file service sys-
tem was done by Sun Microsystems and is called the Sun Net-
work File System (Sun-NFS). Sun-NFS has become an indus-

Workstations

Exported
directory

File servers

Remote
mount

try standard network file system for computers running the
Unix operating system. Sun-NFS can also be used from com- Figure 1. The file mounting structure for Sun NFS.



184 NETWORK OPERATING SYSTEMS

writes) the file, as requested by the application and returns a tions and availability of all services and hence can inform the
client of the unique network address (somewhat like a tele-confirmation to the requesting machine. Then, the requesting

machine informs the application of the success of the opera- phone number) of the service.
The directory service is thus a database of service namestion. Of course, the application does not know whether the

execution of the file operation was local or remote. and service addresses. All servers register themselves with
the directory service upon startup. Clients find server ad-Similar to Sun-NFS, there are several other protocols for

file service. These include Appleshare for Macintosh comput- dresses upon startup. Clients can retain the results of a direc-
tory lookup for the duration of its life, or can store it in a fileers, the SMB protocol for Windows 95/NT, and the DFS proto-

col used in the Andrew file system. Of these, the Andrew file and thus retain it potentially forever. Retaining addresses of
services is termed address caching. Address caching causessystem is the most innovative.

Andrew, developed at CMU in the late 1980s, is a scalable gains in performance and reduces loads on the directory
server. Caching also has disadvantages. If the system is re-file system. Andrew is designed to handle hundreds of file

servers and many thousands of workstations without degrad- configured and the service address changes, then the cached
data is wrong and can indeed cause serious disruptions ifing the file service performance. Degraded performance in

other file systems is the result of bottlenecks at file servers some other service is assigned that address. Thus, when cach-
ing is used, clients and servers have to verify the accuracy ofand network access points. The key feature that makes An-

drew a scalable system is the use of innovative file caching cached information.
The directory service is just like any other service, i.e. it isstrategies. A file being used at a workstation is cached (i.e., a

copy is kept) in its entirety at the workstation or at an inter- provided by a service process. So there are two problems:
mediate server close to the workstation. Updates are applied
to the cached copy, and later transmitted to the file server. 1. How does the client find the address of the directory
The Andrew file system is also available commercially and is service?
called DFS (distributed file system).

2. What happens if the directory service process crashes?In Andrew/DFS when an application accesses a file, the
entire file is transmitted from the server to the workstation,

Making the address of the directory service a constant solvesor a special intermediate file storage system, closer to the
the first problem. Different systems have different techniquesworkstation. Then, the application uses the file, in a manner
for doing this, but a client always has enough informationsimilar to NFS. After the user running the application logs
about contacting the directory service.out of the workstation, the file is sent back to the server. Such

To ensure the directory service is robust and not depen-a system however has the potential of suffering from file in-
dent on one machine, the directory service is often replicatedconsistencies if the same user uses two workstations at two
or mirrored. That is, there are several independent directorylocations.
servers and all of them contain (hopefully) the same informa-In order to keep files consistent, when it is used concur-
tion. A client is aware of all these services and contacts anyrently, the file server uses a callback protocol. The server can
one. As long as one directory service is reachable, the clientrecall the file in use by a workstation if another workstation
gets the information it seeks. However, keeping the directoryuses it simultaneously. Under the callback scheme, the server
servers consistent, i.e. having the same information, is notstores the file and both workstations reach the file remotely.
a simple task. This is generally done by using one of manyPerformance suffers, but consistency is retained. Since con-
replication control protocols (see section entitled ‘‘Theoreticalcurrent access to a file is rare, the callback protocol is very
Foundations’’).infrequently used; and thus does not hamper the scalability

The directory service has been subsequently expanded notof the system.
just to handle service addresses, but higher level information
such as user information, object information, and web infor-Directory or Name Service
mation. A standard for worldwide directory services over

A network of computers managed by a network operating sys- large networks such as the Internet has been developed and
tem can get rather large. A particular problem in large net- is known as the X.500 directory service. However the deploy-
works is the maintenance of information about the availabil- ment of X.500 has been low and thus its importance has
ity of services and their physical location. For example, a eroded. A simpler directory service called LDAP (lightweight
particular client needs access to a database. There are many directory access protocol) is more popular, and most network
different database services running on the network. How operating systems provide support for this protocol.
would the client know whether the particular service it is in-
terested in, is available, and if so, on what server?

RPC Service
Directory services, sometimes called name services, address

such problems. Directory services are the mainstay of large A particular mechanism for implementing the services in a
network operating system is called remote procedure calls ornetwork operating systems. When a client application needs

to access a server process, it contacts the directory server and RPC. The RPC mechanism is discussed later in the section
entitled ‘‘Mechanisms for Network Operating Systems.’’ Therequests the address of the service. The directory server iden-

tifies the service by its name-all services have unique names. RPC mechanism needs the availability of an RPC server ac-
cessible by an RPC client. However, a particular system mayThen, the directory server informs the client of the address of

the service-the address contains the name of the server. The contain tens if not hundreds or even thousands of RPC
servers. In order to avoid conflicts and divergent communica-directory server is responsible for knowing the current loca-



NETWORK OPERATING SYSTEMS 185

tion protocols the network operating system provides support 1. How does a client access a service?
for building and managing and accessing RPC servers. 2. How does a client know of the available services and

Each RPC service is an application-defined service. How- the interfaces they offer?
ever, the operating system also provides an RPC service, 3. How does one actually build objects (or services)?
which is a meta-service, which allows the application-specific
RPC services to be used in a uniform manner. This service We discuss the questions in reverse order. The services or
provides several features: objects are built using a language that allows the specification

of objects, classes, and methods, and allows for inheritance
1. Management of unique identifiers (or addresses) for and overloading. While C�� seems to be a natural choice,

each RPC server. C�� does not provide the features of defining external ser-
vice interfaces and does not have the power of remote linking.2. Tools for building client and server stubs for packing
Therefore, languages have been defined based on C�� thatand unpacking (also known as marshalling and unmar-
provide such features.shalling) of arguments between clients and servers.

The client knows of the object interface, due to the prede-3. A per-machine RPC listening service.
fined type of the object providing the service. The program-
ming language provides and enforces the type information.

The RPC service defines a set of unique numbers that can be Hence at compile time, the client can be configured by the
used by all RPC servers on the network. Each specific RPC compiler to use the correct interface based on the class of ob-
server is assigned one of these numbers (addresses). The op- ject the client is using. However, such a scheme makes the
erating system manages the creation and assignment of these client use a static interface. That is, once a client has been
identifiers. The operating system also provides tools that complied the service cannot be updated with new features
allow the programmers of RPC services to build a consistent that change the interface. This need for dynamic interface
client–server interface. This is done by the use of language management leads to the need for brokerage services.
processing tools and stub generators, which embed routines After the client knows of the existence of the service, and
in the client and server code. These routines package the data the interface it offers, the client accesses the service using
sent from the client to the server (and vice versa) in some two key mechanisms—the client stub and the ORB (object
predefined format, which is also machine independent. request broker). The client stub transforms a method invoca-

When a client uses the number to contact the service, its tion into a transmittable service request. Embedded in the
looks up the directory and finds the name of the physical ma- service request is ample information about the type of service
chine that contains the service. Then it sends a RPC request requested and the arguments (and type of these arguments)
to the RPC listener on that machine. The RPC listener is an and the type of expected results. The client stub then sends a
operating-system-provided service that redirects RPC calls to message to the ORB handling requests of this type.
the actual RPC server process that should handle the call. The ORB is just one of the many services a brokerage sys-

RPC services are available in all network operating sys- tem provides. The ORB is responsible for handling client re-
tems. The three most common types of RPC systems are Sun quests and is an intermediate between the client and the ob-
RPC, DCE RPC, and Microsoft RPC. ject. Thus, the ORB is a server-side stub that receives

incoming service requests and converts them to correct for-
Object and Brokerage Service mats, and sends them to the appropriate objects.

The Brokerage Service is a significantly more complex en-The success and popularity of RPC services coupled with the
tity. It is responsible for handling:object-orientation frenzy of the mid-1980s led to the develop-

ment of object services and then to brokerage services. The
1. Names and types of objects and their locations andconcept of object services is as follows.

types.Services in networked environments can be thought of as
2. Controlling the concurrency of method invocations onbasic services and composite services. Each basic service is

objects, if they happen concurrently.implemented by an object. An object is an instance of a class,
3. Event notification and error handling.while a class is inherited from one or more base or composite

classes. The object is a persistent entity that stores data in a 4. Managing the creation and deletion of objects and up-
structured form, and may contain other objects. The object dates of objects as they happen, dynamically.
has an external interface, visible from clients and is defined 5. Handling the persistence and consistency of objects.
by the public methods the object supports. Some critical objects may need transaction manage-

Composite services are composed of multiple objects (basic ment.
and composite) which can be embedded or linked. Thus, we

6. Handling queries about object capabilities and inter-can build a highly structured service infrastructure that is
faces.flexible, modular, and has unlimited growth potential.

7. Handling reliability and replication.In order to achieve this concept, the network operating sys-
8. Providing trader services.tems started providing uniform methods of describing, imple-

menting, and supporting objects (similar to the support for
RPC). The trader service adds more features to the object services.

The main power in object services is unleashed when clientsWhile the concept sounds very attractive in theory, there
are some practical problems. These are: can pick and choose services dynamically. For example, a cli-



186 NETWORK OPERATING SYSTEMS

ent wants access to a database object containing movies. Totally Ordered Multicast. All the multicasts are ordered
Many such services may exist on the network offering differ- strictly; that is, all the receivers get all the messages in
ent or even similar features. The client can first contact the exactly the same order. Totally ordered multicasting is
trader, get information about services (including quality, expensive to implement and is not necessary (in most
price, range of offerings, and so on) and then decide to use cases). Causal multicasting is powerful enough for use
one of them. This is, of course, based on the successful, real- by applications that need ordered multicasting.
world business model. Trader services thus offer viable and Causally Ordered Multicast. If two multicast messages are
useful methods of interfacing clients and objects on a large causally related in some way then all recipients of these
network. multicasts will get them in the correct order.

The object and brokerage services depend heavily on stan-
dards, as all programs running on a network have to conform

Imperative in the notion of multicasting is the notion of dy-to the same standard, in order to interoperate. As of writing,
namic process groups. A multicast is sent to a process groupthe OSF-DCE (open software foundation, distributed comput-
and all current members of that group receive the message.ing environment) is the oldest multiplatform standard, but
The sender does not have to belong to the group.has limited features (does not support inheritance, dynamic

Group communication is especially useful in building fault-interfaces, and so on). The CORBA (common object request
tolerant services. For example, a set of separate servers pro-broker architecture) standard is gaining importance as a
viding the same service are assigned to a group and all ser-much better standard and is being deployed quite aggres-
vice requests are sent via causally ordered multicasting. Nowsively. Its competition, the DCOM (distributed common object
all the servers will do exactly the same thing, and if onemodel) standard is also gaining momentum, but its availabil-
server fails, it can be removed from the group. This approachity seems to be currently limited to the Windows family of
is used in the ISIS system (4).operating systems.

Time, Memory, and Locking Services
Group Communication Service Managing time on a distributed system is inherently concep-

tually difficult. Each machine runs its own clock and theseGroup communication is an extension of multicasting for com-
clocks drift independently. In fact there is no method to evenmunicating process groups. When the recipient of a message
initially synchronize the clocks. Time servers provide a notionis a set of processes the message is called a multicast message
of time to any program interested in time, based on one of(a single recipient message—unicast, all processes are recipi-
many clock algorithms (see section on theoretical founda-ents—broadcast). A process group is a set of processes whose
tions). Time services have two functions: provide consistentmembership may change over time. If a process sends a
time information to all processes on the system and to providemulticast message to a process group, all processes that are
a clock synchronization method that ensures all clocks on allmembers of the group will receive this message. Simple im-
systems appear to be logically synchronized.plementations of multicasting does not work for group com-

Memory services provide a logically shared memory seg-munications for a variety of reasons, such as:
ment to processes not running on the same machine. The
method used for this service is described later. A shared mem-1. A process may leave the group and then get messages
ory server provides the service, and processes can attach to asent to the group from a process who is not yet aware
shared memory segment which is automatically kept consis-of the membership change.
tent by the server.

2. Process P1 sends a multicast. In response to the There is often a need for locking a resource on the network,
multicast, process P2 sends another multicast. How- by a process. This is especially true in systems using shared
ever, P2’s message arrives at P3 before P1’s message. memory. While locking is quite common and simple in single
This is causally inconsistent. computers, it is not so easy on a network. Thus, networks use

3. Some processes, which are members of the group, may a locking service. A locking service is typically a single server
not receive a multicast due to message loss or cor- process that tracks all locked resources. When a process asks
ruption. for a lock on a resource, the server grants the lock if that lock

is currently not in use, or else it makes the requesting process
wait until the lock is released.The main provision in a group communication system is

the provision of multicasting primitives. Some of the impor-
tant ones are: Other Services

A plethora of other services exists in network operating sys-
Reliable Multicast. The multicast is send to all processes tems. These services can be loosely divided into two classes:

and then retransmitted to processes that did not get the (1) services provided by the core network operating system
message, until all processes get the multicast. Reliable and (2) services provided by applications.
multicasts may not deliver all messages if some net- Services provided by the operating system are generally
work problems arise. low-level services used by the operating system itself, or by

applications. These services of course vary from one operatingAtomic Multicast. Similar to the reliable multicast, but
guarantees that all processes will receive the message. system to another. The following is a brief overview of ser-

vices provided by most operating systems that use the TCP-If it is not possible for all processes to receive the mes-
sage, then no process will receive the message. IP protocol for network communications:



NETWORK OPERATING SYSTEMS 187

1. Logon Services. These include telnet, rlogin, ftp, rsh, While all the mechanisms are suitable for all kinds of in-
terprocess communication, RPC and DSM are favored overand other authentication services that allow users on

one machine to access facilities of other machines. message passing by programmers.
2. Mail Services. These include SMTP (simple mail trans-

fer protocol), POP (post office protocol), and IMAP (In- Message Passing
ternet message access protocol). These services provide

Message passing is the most basic mechanism provided by thethe underlying framework for transmitting and ac-
operating system. This mechanism allows a process on onecessing electronic mail. The mail application provides a
machine to send a packet of raw, uninterpreted stream ofnicer interface to the end user, but uses several of these
bytes to another process.low-level protocols to actually transmit and receive mail

In order to use the message passing system, a processmessages.
wanting to receive messages (or the receiving process) creates3. User Services. These include finger, rwho, whois, and
a port (or mailbox). A port is an abstraction for a buffer, intalk.
which incoming messages are stored. Each port has a unique

4. Publishing Services. These include HTTP (hyper-text system-wide address, which is assigned, when the port is cre-
transfer protocol), NNTP (network news transfer proto- ated. A port is created by the operating system upon a request
col), Gopher, and WAIS. These protocols provide the from the receiving process and is created at the machine
backbone of the Internet information services such as where the receiving process executes. Then, the receiving pro-
the WWW and the news network. cess may choose to register the port address with a directory

service.
Application-defined services, on the other hand, are used After a port is created, the receiving process can request

by specific applications that run on the network operating the operating system to retrieve a message from the port and
system. One of the major attributes of a network operating provide the received data to the process. This is done via a
system is that it can provide support for distributed applica- receive system call. If there are no messages in the port, the
tions. These application programs span machine boundaries process is blocked by the operating system until a message
and user boundaries. That is, these applications use resources arrives. When a message arrives, the process is woken up and
(both hardware and software) of multiple machines and input is allowed to access the message.
from multiple users to perform a complex task. Examples in- A message arrives at a port, after a process sends a mes-
clude parallel processing and CSCW (computer supported co- sage to that port. The sending process creates the data to be
operative work). sent and packages the data in a packet. Then it requests the

Such distributed applications use the RPC services or ob- operating system to deliver this message to the particular
ject services provided by the underlying system to build ser- port, using the address of the port. The port can be on the
vices specific to the type of computation being performed. Par- same machine as the sender, or a machine connected to the
allel processing systems use the message passing and RPC same network.
mechanisms to provide remote job spawning and distribution When a message is sent to a port that is not on the same
of computational workload among all available machines on machine as the sender (the most common case) this message
the network. CSCW applications provide services such as traverses a network. The actual transmission of the message
whiteboards and shared workspaces, which can be used by uses a networking protocol that provides routing, reliability,
multiple persons at different locations on the network. accuracy, and safe delivery. The most common networking

A particular, easy to understand application is a calen- protocol is TCP-IP. Other protocols include IPX/SPX,
dering program. In calendaring applications, a server main- AppleTalk, NetBEUI, and PPTP. Network protocols use tech-
tains information about appointments and free periods of a niques such as packetizing, checksums, acknowledgements,
set of people. All individuals set up their own schedules using gatewaying, routing, and flow control to ensure messages that
a front-end program, which downloads such data into a are sent are received correctly and in the order they were
server. If a person wants to set up a meeting, he or she can sent.
query the server for a list of free periods, for a specified set of Message passing is the basic building block of distributed
people. After the server provides some alternatives, the per- systems. Network operating system use message passing for
son schedules a particular time and informs all the partici- interkernel as well as interprocess communications. Interker-
pants. While the scheduling decision is pending, the server nel communications are necessary as the operating system on
marks the appointment time temporarily unavailable on the one machine needs to cooperate with operating systems on
calendars of all participating members. Thus, the calendering other machines to authenticate users, manage files, handle
application provides its own unique service—the calendar replication, and so on.
server. Programming using message passing is achieved by using

the send/receive system calls and the port creation and regis-
tering facilities. These facilities are part of the message pass-MECHANISMS FOR NETWORK OPERATING SYSTEMS
ing API provided by the operating system. However, program-
ming using message passing is considered to be a low-levelNetwork operating systems provide three basic mechanisms
technique that is error prone and best avoided. This is due tothat are used to the support the services provided by the op-
the unstructured nature of message passing.erating system and applications. These mechanisms are (1)

Message passing is unstructured, as there are no struc-message passing, (2) remote procedure calls (RPC), and (3)
tural restrictions on its usage. Any process can send a mes-distributed shared memory (DSM). These mechanisms sup-

port a feature called interprocess communication or IPC. sage to any port. A process may send messages to a process



188 NETWORK OPERATING SYSTEMS

that is not expecting any. A process may wait for messages ated by the procedure to the client program. However, much
of this task is automated and not under programmer control.from another process, and no message may originate from the

An RPC service is created by a programmer who (let ussecond process. Such situations can lead to bugs that are very
assume) writes the server program as well as the client pro-difficult to detect. Sometimes timeouts are used to get out of
gram. In order to do this, he or she first writes an interfacethe blocked receive calls when no messages arrive, but the
description using a special language called the interface de-message may actually arrive just after the timeout fires.
scription language (IDL). All RPC systems provide an IDLEven worse, the messages contain raw data. Suppose a
definition and an IDL compiler. The interface specification ofsender sends three integers to a receiver who is expecting one
a server documents all the procedures available in the serverfloating-point value. This will cause very strange and often
and the types of arguments they take and the results theyundetected behaviors in the programs. Such errors occur fre-
provide.quently due to the complex nature of message passing pro-

The IDL compiler compiles this specification into two files,grams and hence better mechanisms have been developed for
one containing C code that is to be used for writing the serverprograms that need to cooperate.
program and the other containing code used to write the cli-Even so, a majority of the software developed for providing
ent program.services and applications in networked environments uses

The part for the server contains the definitions (or proto-message passing. Some minimization of errors is done by
types) of the procedures supported by the server. It also con-strictly adhering to a programming style called the client–
tains some code called the server loop. To this template, theserver programming paradigm. In this paradigm, some pro-
programmer adds the global variables, private functions, andcesses are predesignated as servers. A server process consists
the implementation of the procedures supported by the inter-of an infinite loop. Inside the loop is a receive statement
face. When the resulting program is compiled, a server is gen-which waits for messages to arrive at a port called the service
erated. The server loop is inserted by the IDL compiler con-port. When a message arrives, the server performs some task
tains code to:requested by the message and then executes a send call to

send back results to the requestor and goes back to listening
1. Register the service with a name server.for new messages.
2. Listen for incoming requests (could be via the listeningThe other processes are clients. These processes send a

service provided by the operating system).message to a server and then wait for a response using a re-
ceive. In other words, all sends in a client process must be 3. Parse the incoming request and call the appropriate
followed by a receive and all receives at a server process must procedure using the supplied parameters. This step re-
be followed by a send. Following this scheme significantly re- quires the extraction of the parameters from the mes-
duced timing related bugs. sage sent by the client. The extraction process is called

The performance of client–server-based programs are, unmarshalling. During unmarshalling some type check-
however, poorer than what can be achieved by raw message ing can also be performed.
passing. To alleviate this, often a multithreaded server is 4. After the procedure returns, the server loop packages
used. In a multithreaded server several parallel threads can the return results into a message (marshalling) and
listen to the same port for incoming messages and perform sends a reply message to the client.
requests in parallel. This causes quicker service response
times. Two better interprocess communication techniques are Note that all of this functionality is automatically inserted
RPC and DSM. into the RPC server by the IDL compiler and the programmer

does not have to write any of these.
Then, the programmer writes the client. In the client pro-Remote Procedure Calls

gram, the programmer includes the header file for clients gen-
RPC is a method of performing interprocess communication erated by the IDL compiler. This file has the definitions and
with a familiar, procedure-call-like mechanism. In this pseudo-implementations (or proxies) of the procedures that
scheme, to access remote services, a client makes a procedure are actually in the server. The client program is written as if
call, just like a regular procedure call, but the procedure exe- the calls to the remote procedures are in fact local procedure
cutes within the context of a different process, possibly on calls. When the client program is run, the stubs inserted via
a different machine. The RPC mechanism is similar to the the header files play an important role in the execution of
client–server programming style used in message passing. the RPCs.
However, unlike message passing where the programmer is When the client process makes a call to a remote proce-
responsible for writing all the communication code, in RPC a dure, it actually calls a local procedure, which is a proxy for
compiler automates much of the intricate details of the com- the remote procedure. This proxy procedure (or stub) gets all
munication. the arguments passed to it and packages them in some prede-

In concept, RPC works as follows: A client process wishes fined format. This packaging is called marshalling. After the
to get service from a server. It makes a remote procedure call arguments are marshaled, they are sent to the RPC server
on a procedure defined in the server. In order to do this the that handles requests for this procedure. Of course, as de-
client sends a message to the RPC listening service on the scribed, the RPC server unmarshals arguments, runs the pro-
machine where the remote procedure is stored. In the mes- cedure, and marshals results. The results flow back to the
sage, the client sends all the parameters needed to perform client, and the proxy procedure gets them. It unmarshals the
the task. The RPC listener then activates the procedure in results and returns control to the calling statement, just like

a regular local procedure.the proper context, lets it run, and returns the results gener-



NETWORK OPERATING SYSTEMS 189

One problem remains. How does the client know what is DSM systems provide intricate optimizations that make the
system run faster but are hard to understand. In this section,the address of the server handling a particular procedure

call? This function is automated too. The IDL compiler, when we discuss a simple, un-optimized DSM system, which if im-
plemented would work, but would be rather inefficient.compiling an interface definition, obtains a unique number

from the operating system and inserts it into both the client DSM works with memory by organizing it as pages (simi-
lar to virtual memory systems). The mapped segment is a setstub and the server stub, as a constant. The server registers

this number with its address on the name service. The client of pages. The protection attributes of these pages are set to
inaccessible, read only, or read-write:uses this number to look up the server’s address from the

name service.
The net effect is that a programmer can write a set of 1. Inaccessible. This denotes that the current version of

server routines, which can be used from multiple client pro- the page is not available on this machine and the server
cesses running on a network of machines. The writing of needs to be contacted before the page can be read or
these routines takes minimal effort and calling them from re- written.
mote processes is not difficult either. There is no need to write

2. Read-only. This denotes that the most recent version ofcommunications routines and routines to manage arguments
the page is available on this machine; i.e., the processand handle type checking. Automation reduces chances of
on this machine holds the page in read mode. Other pro-bugs quite heavily. This has led to the acceptance of RPC as
cesses may also have the page in read-only mode, butthe preferred distributed programming tool.
no process has it in write mode. This page can be freely
read, but not updated without informing the DSM

Distributed Shared Memory server.

3. Read-write. This denotes that this machine has theWhile message passing and RPC are the mainstays of distrib-
sole, latest version of the page; i.e., the process on thisuted programming, and are available on all network op-
machine holds the page in write mode. No other processerating systems, DSM is not at all ubiquitous. On a distrib-
has a copy of this page. It can be freely read or updated.uted system, DSM provides a logical equivalent to (real)
However, if this page is needed anywhere else, the DSMshared memory, which is normally available only on multi-
server may yank the privileges by invalidating theprocessor systems.
page.Multiprocessor systems have the ability of providing the

same physical memory to multiple processors. This is a very
useful feature and has been utilized heavily for parallel pro- The DSM client or page fault handler is activated whenever
cessing and interprocess communication in multiprocessor there is a page fault. When activated, the DSM client first
machines. While RPC and message passing is also possible on determines whether the page fault was due to a read access
multiprocessor systems, using shared memory for communi- or a write access. The two cases are different and are de-
cation and data sharing is more natural and is preferred by scribed separately.
most programmers.

While shared memory is naturally available in multipro-
Read Access Fault. On a read access fault, the DSM clientcessors, due to the physical design of the computer, it is nei-

contacts the DSM server and asks for the page in read mode.ther available nor is thought to be possible on a distributed
If there are no clients that have already requested the pagesystem. However, the DSM concept has proven that a logical
in write mode, the server sends the page to the DSM client.version of shared memory, which works just like the physical
After getting the page, the DSM client copies it into the mem-version, albeit at reduced performance, is both possible and is
ory of the process, at the correct address, and sets the protec-quite useful.
tion of the page as read only. It then restarts the process thatDSM is a feature by which two or more processes on two
caused the page fault.or more machines can map a single shared memory segment

If there is one client already holding the page in writeto their address spaces. This shared segment behaves like
mode (there can be at most one client in write mode) then thereal shared memory; that is, any change made by any process
server first asks the client to relinquish the page. This isto any byte in the shared segment is instantaneously seen by
called invalidation. The client relinquishes the page by send-all the processes that map the segment. Of course, this seg-
ing it back to the server and marking the page as inaccessible.ment cannot be at all the machines at the same time, and
After the invalidation is done, the server sends the page toupdates cannot be immediately propagated, due to the limita-
the requesting client, as before.tions of speed of the network.

DSM is implemented by having a DSM server that stores
the shared segment; that is, it has the data contained by Write Access Fault. On a write access fault, the DSM client
shared segment. The segment is an integral number of pages. contacts the server and requests the page in write mode. If
When a process maps the segment to its address space, the the page is not currently used in read or write mode by any
operating system reserves the address range in memory and other process, the server provides a copy of the page to the
marks the virtual addresses of the mapped pages as inaccessi- client. The client then copies the page to memory, sets the
ble (via the page table). If this process accesses any page in protection to read-write, and restarts the process.
the shared segment, a page fault is caused. The DSM client If the page is currently held by some processes in read or
is the page fault handler of the process. write mode, the server invalidates all these copies of the page.

The workings of DSM are rather complex due to the enor- Then, it sends the page to the requesting client, which installs
it and sets the protection to read-write.mous number of cases the algorithm has to handle. Modern



190 NETWORK OPERATING SYSTEMS

The net effects of this algorithm is as follows: This rise in complexity resulted in the development of an
innovative kernel architecture targeted at network operating
systems, called the microkernel architecture. A true microker-1. Only pages that are used by a process on a machine
nel places only those features in the kernel that positivelymigrate to that machine.
have to be in the kernel. This includes low-level service such2. Pages that are read by several processes migrate to the
as CPU scheduling, memory management, device drivers, andmachines these processes are running on. Each ma-
network drivers. Then, it places a low-level message passingchine has a copy.
interface in the kernel. The user-level API is just essentially3. Pages that are being updated migrate to the machines
the message passing routines.they are being updated on; however, there is at most

All other services are built outside the kernel, using serverone update copy of the page at any point in time. If the
processes. It has been shown that almost every API servicepage is being simultaneously read and updated by two
and all networking services can be placed outside the kernel.or more machines, then the page shuttles back and
This architecture has some significant benefits, a few of whichforth between these machines.
are listed:

Page shuttling is a serious problem in DSM systems. There 1. Services can be programmed and tested separately.
are many algorithms used to prevent page shuttling. Effective Changes to the service do not need recompiling the mi-
page shuttling prevention is done by relaxed memory coher- crokernel.
ence requirements, such as release consistency. Also, with

2. All services are insulated from each other—bugs in onecareful design of applications page shuttling can be mini-
service do not affect another service. This is not only amized.
good feature, but makes debugging significantly easier.The first system to incorporate DSM was Ivy (5). Several

3. Adding, updating, and reconfiguring services are easy.DSM packages are available; these include TreadMarks,
4. Many different implementations of the same serviceQuarks, Avalanche, and Calypso.

can coexist.

KERNEL ARCHITECTURES Microkernel operating systems that proved successful include
Amoeba (6), Mach (7), and the V-System (8). A commercial

Operating systems always have been constructed (and often microkernel operating system called Chorus is marketed by
still are) using the monolithic kernel approach. The mono- Chorus Systems (France).
lithic kernel is a large piece of protected software that imple- The advantages of microkernels come at a price, namely
ments all the services the operating system has to offer via a performance. Performance of operating systems is an all-im-
system call interface (or API). This approach has some sig- portant feature that can make or break the usage of the sys-
nificant disadvantages. The kernel, unlike application pro- tem, especially commercial systems. Hence, commercial sys-
grams, is not a sequential program. A kernel is an interrupt tems typically shun the microkernel approach but choose a
driven program. That is, different parts of the kernel are trig- compromise called the hybrid kernel. A hybrid kernel is a mi-
gered and made to execute at different (and unpredictable) crokernel in spirit, but a monolithic kernel in reality. The
points in time, due to interrupts. In fact, the entire kernel is Chorus operating system pioneered the hybrid kernel. Win-
interrupt driven. The net effect of this structure is that: dows NT is also a hybrid system.

A hybrid system starts as a microkernel. Then, as services
1. The kernel is hard to program. The dependencies of the are developed and debugged they are migrated into the ker-

independently interrupt-triggerable parts are hard to nel. This retains some of the advantages of the microkernel,
keep track of. but the migration of services into the kernel significantly im-

2. The kernel is hard to debug. There is no way of system- proves the performance.
atically running and testing the kernel. When a kernel
is deployed, random parts start executing quite unpre-

THEORETICAL FOUNDATIONS
dictably.

3. The kernel is crucial. A bug in the kernel causes appli- The theoretical study of autonomous but networked comput-
cations to crash, often mysteriously. ing system was propelled by the need for algorithms for use

4. The kernel is very timing dependent. Timing errors are in networked environments. This active field of research has
very hard to catch problems that are not repeatable and produced some interesting and seminal results. Much of the
the kernel often contains many such glitches that are foundational work has resulted in the development of distrib-
not detectable. uted algorithms (9). These algorithms are designed to allow a

set of independent processes, running on independent com-
puters (or machines, or nodes) to cooperate and interact toThe emergence of network operating systems saw the sudden

drastic increase in the size of kernels. This is due to the addi- achieve a common goal. Many such algorithms are used for
application programming. Some of the algorithms are, how-tion of a whole slew of facilities in the kernel, such as message

passing, protocol handling, network device handling, network ever, relevant to management of distributed systems and are
used in network operating systems. In the following sections,file systems, naming systems, RPC handling, and time man-

agement. Soon it was apparent that this bloat led to kernel we present a few algorithms which form the theoretical foun-
dations of network and distributed operating systems. Theseimplementations that are unwieldy, buggy, and doomed to

fail. include time management, deadlock handling, mutual exclu-



NETWORK OPERATING SYSTEMS 191

sion, checkpointing, deadlocks detection, concurrency control, local clock time. The other fields are updated in accordance to
the following algorithm.consensus, and replication control.

When a message is sent from Si to Sj, the value of Ti is
sent along with the message. When Sj receives the message,Distributed Clocks
it updates its time vector Tj by updating each field in Tj to the

Each physical machine on a network has its own clock, which larger of the values contained in the corresponding fields of
is a hardware counter. This clock runs freely, and cannot be Ti and Tj.
physically synchronized with other clocks. This makes the no- Now it can be shown that any two timestamps can be com-
tion of time on a distributed system hard to define and obtain. pared using vector clock algebra. Suppose we want to com-
The first clock synchronization algorithm provided a method pare two timestamps Ta and Tb. Each has n fields, Ta(0) to
of logically synchronizing clocks such that no application run- Ta(n�1). The comparison operators are defined below.
ning on the system could ever detect any drift amongst the
physical clocks (even though the clocks do drift). Clocks on Equal: For all i, Ta(i) is equal to Tb(i).systems built using this technique are called Lamport clocks

Not equal: For some i Ta(i) is not equal to Tb(i).after the inventor of the algorithm (10).
Less than or equal: For all i, Ta(i) is less than or equal toThe Lamport clock algorithm works by stamping a time on

Tb(i).every message outgoing from any machine. When the op-
Not less than or equal: For some i, Ta(i) is not less than orerating system on system Si sends out a message, it stamps

equal Tb(i).it with the time Ti, where Ti is the time according to the phys-
ical clock on Si. Less than: Ta is less than or equal to Tb, and Ta is not

Suppose the message is received by the operating system equal Tb.
on system Sj. The operating system on Sj checks the time- Concurrent: Not Ta less than Tb and not Tb less than Ta.
stamp in the message with the time according to the local
clock on Sj, i.e. Tj: The vector clock thus provides all the functions of Lamport

clocks as far as timestamps and event ordering is concerned.
• If Ti � Tj then no action is needed. It is also just as simple to implement, but the time on one
• If Ti � Tj then the clock on Sj is incremented to Ti�1. machine can be adjusted without affecting the time on other

machines.
This action, at the least, ensures that no messages are re-

Distributed Mutual Exclusionceived before they are sent. However, it also has some inter-
esting side effects. These are: Distributed mutual exclusion (DME) is a classic problem in

distributed computing. There are n processes executing on n
• All clocks follow the fastest clock. sites. Each process is an infinite loop and has a critical section
• The clocks are not physically synchronized, but they are inside the loop. How do you ensure that at most one process

logically synchronized. That is, to all applications run- executes within its critical section at any given time?
ning on the systems, the clocks appear completely syn- The easy solution is to use a lock server. Each process asks
chronized. the lock server for permission to enter. The lock server per-

mits only one process at a time. When a process leaves the• If two actions or events on two different machines are
critical section, it informs the lock server and the lock servertransitively related; that is, there is a chain of events
can now allow another process to enter. This solution is calledfrom the occurrence of event i to the occurrence of event
the centralized solution to the DME problem.j; then the time of occurrence of i will always be lower

This solution is called centralized because all decisions arethan the time of occurrence of j. Even if i and j happened
made at one site. In a problem such as DME, we can defineon two different machines with two different clocks.
two sets for each site. A site i has a request set Qi and a
response set Ri. Qi is the set of sites that i will contact whenThe Lamport clock is a very simple algorithm which pro-
it wants to enter the critical section. Ri is the set of sites thatduces properly synchronized (logical) distributed clocks. How-
contact i if they want to enter the critical section (11).ever, it has the shortcoming that clocks cannot be set back,

In order for a mutual exclusion algorithm to be distributed,and hence real time clocks cannot use this method. In fact,
two rules must apply. These are:setting back a clock will cause it to race ahead to catch up

with the fastest clock. This problem is solved by the use of
Equal responsibility rule: For all i, j, �Qi� � �Qj�.vector clocks.
Equal effort rule: For all i, j, �Ri� � �Rj�.In the vector clock scheme, each system clock is indepen-

dent and is never updated by the clock algorithm. Every sys-
In the centralized case, Ri for all i is the lock server site;tem maintains its own time, and information about the time

and for all i, Qi is empty. Thus, the centralized solution failson other systems. That is, there is a local clock on each sys-
the two rules. Many different DME algorithms can meet suchtem, as well as registers containing some approximation of
rules. Lamport proposed the first solution. In the Lamportthe time on the sibling systems.
algorithm, there are three steps:The time is maintained as an n-tuple (or vector) where n

is the number of systems on the network. Each machine
maintains this n-tuple. On machine Si, the n-tuple (or the Step 1: When a process wants to enter the critical section,

it sends a request message, along with a timestamp, totime vector) is Tn. Tn, of course has n fields and Tn(i) is the



192 NETWORK OPERATING SYSTEMS

all other processes, including itself. Upon receiving such Thereafter, process P1 requests a lock on x and process P2 re-
quests a lock on y. Neither P1 nor P2 can progress any furthera message, each process queues the request in times-

tamp order in a local request queue and sends an ac- and has to wait forever. This situation is called a deadlock,
and it needs to be detected and then resolved by terminatingknowledgment. The requesting process waits for all ac-

knowledgments before proceeding. one of the processes. Deadlock detection on centralized sys-
tems is easier than deadlock detection on distributed systems.Step 2: A process can enter when it notices that its own

Consider the following situation, similar to the deadlockrequest is the first request in its own local request
described previously, but in the context of a distributed sys-queue.
tem. A process P1 requests and obtains a lock on resource x.Step 3: Whenever a process exits the critical section it in-
The resource x is located on a machine Mx and hence is con-forms all processes and they remove the exiting pro-
trolled by a lock server running on machine Mx. Now, processcesses request from their local request queues.
P2 requests and obtains a lock on resource y, which is located
on a machine My and controlled by a lock server on machine

This algorithm meets the equal responsibility and equal effort My. Then process P1 requests a lock on y and process P2 re-
rules. It uses 3n messages per entry into a critical section. quests a lock on x.
The number of messages can be reduced to sqrt(n) by using a This situation is a deadlock. However, the lock servers can-
type of algorithm first proposed by Maekawa (11). Currently not detect this deadlock by themselves. At the lock server on
there are a large number of algorithms each having some ad- machine Mx, a process (P1) holds a lock on x and another pro-
vantage over the other. cess (P2) has requested a lock on x. This is a perfectly normal,

Note that in most practical situations, the centralized algo- legal situation that is not a deadlock. Similarly, there is no
rithm works better and uses the lowest number of messages deadlock at machine My. However, a global or distributed
(just 2 messages per entrance). Thus, it is the most commonly deadlock exists, involving two lock servers.
used algorithm. In a system consisting of a large number of lock servers

and large numbers of processes and resources, detection of
Distributed Checkpoints deadlocks becomes a serious issue. Most early distributed

deadlock detection algorithms tried to consolidate the dataCheckpointing is a method used to restart or debug computa-
about resource allocation from multiple lock servers in ordertions. On a centralized operating system, checkpointing is
to find deadlocks. Such algorithms proved to be complicated,easy, the process to be checkpointed is stopped and its mem-
expensive in terms of computational complexity, and prone toory contents are written to a file, then the process can con-
detect deadlocks even if there are no deadlocks (a phenome-tinue execution. The checkpoint can later be used to restart
non called false deadlocks).the process (in case of failure) or to analyze its execution (in

A distributed deadlock detection algorithm by Chandy andcase of debugging).
Misra was a breakthrough that solved the deadlock problemIn a networked or distributed system this technique does
in a simple fashion. The solution is called the probe algorithmnot work. Consider two processes P1 and P2. P1 sends a mes-
(13). In this scheme, a process waiting for a resource sends asage to P2. We ask both P1 and P2 to stop and checkpoint
probe message to the lock server handling the resource. Thethemselves. P1 does so, and then continues, and sends a mes-
lock server forwards the probe to a process that is currentlysage to P2. P2 receives the message from P1 and then receives
holding the resource. When a process receives a probe, andthe checkpoint notification and then checkpoints itself. Now,
the process is not currently waiting for a resource, it ignoresif we compare the checkpoints of P1 and P2, we find P2 has
the probe. If the process is currently waiting for a resource,received a message that has not yet been sent by P1. This is
then it forwards the probe to the lock server that controls thecalled an inconsistent checkpoint.
resource. If the originator of the probe gets the probe returnedThe classic consistent checkpoint algorithm was proposed
to it, then there is a deadlock. A careful implementation ofby Chandy and Lamport and is called the snapshot algorithm
this protocol can be shown to be free from detection of false(12). In the snapshot algorithm, to initiate a checkpoint, a
deadlocks.marker message is sent to any one process. When a process

gets a marker message for the first time, it checkpoints itself
and then sends out marker messages to all the processes it Distributed Concurrency Control
communicates with. If a process receives a marker message

Concurrency control is a mechanism by which the integrity ofsubsequent to its first time, it ignores the message. It can be
data is preserved in spite of concurrent access by multipleshown that the markers eventually disappear, and when the
processes. Concurrently, control is necessary in both singlemarkers disappear, all processes have recorded a set of con-
computer systems and distributed systems. In distributedsistent checkpoints. Of course many other checkpointing algo-
system, the issues are somewhat more complicated as therithms have been propose since then, having characteristics
data may be stored at many different sites.and features greater that the basic algorithm outlined.

Concurrency control ensures serializability. Serializability
is a property that ensures that the concurrent execution of a

Distributed Deadlocks set of processes has results that are equivalent to some serial
execution of the same set of processes. Serializability is anResource management in operating systems can lead to dead-
important property for any system that handles persistent,locks. A resource is any entity, such as files, peripherals,
interrelated data. Provision of serializability is made possiblememory, and so on. Deadlocks occur for instance when pro-
by many techniques, the two most well known are two-phasecesses acquire locks on resources. For example, suppose a pro-

cess P1 locks resource x and then process P2 locks resource y. locking and timestamping.



NETWORK OPERATING SYSTEMS 193

In the two phase commit scheme, a process that reads or Machine 2 to Machine 1: OK, I have flipped it. But, please
acknowledge this message, or else I will think you did notwrites data has to obtain a lock on the data item it accesses
get my reply and you chose not to flip—in which case I willbefore it can access the data item, and may release the lock
flip mine back to 0.after the access is over. If multiple data items are accessed,

Machine 1 to Machine 2: Everything is fine. Got your message.then no lock can be released until all locks have been ac-
But, please acknowledge this message, as I need to knowquired. This ensures serializable updates to the data.
that you got this message, or you may flip the bit back.In the timestamp scheme, all data items bear two time-

Machine 2 to Machine 1: Got it. But now I need another ac-stamps, the read-timestamp and the write-timestamp. All
knowledgment, to ensure . . .processes or transactions also bear timestamps. The process

timestamp is the time at which the process was created. The
read-timestamp on a data item is the value, which is the

As is obvious, this bickering continues forever. It can belargest of all the process timestamps, of processes which have
shown that there is no finite length sequence of messages thatread the data item. The write-timestamp is equal to the pro-
achieves consensus, even if messages are not lost, as long ascess timestamp of the process that last wrote this data item.
there is a fear of a message getting lost.The timestamp protocol works as follows. Suppose a pro-

In reality, however, there is need for consensus, and im-cess bearing a timestamp pt wants to read a data time with
possibility is not a deterrence. Many systems just assumea read-timestamp rt and a write timestamp wt. If pt � wt
messages are not lost and thus implement consensus triviallythen the process is aborted or restarted. Otherwise it is al-
(Machine 1 tells Machine 2 to flip it and assumes it will belowed to read the item, and if pt � rt then the read timestamp
done). In more critical applications, the two-phase commitof the item is updated to be equal to rt. If the process tried to
protocol is used.write a new value to the data item, then pt must be higher

The two-phase commit protocol works as follows. A ma-than both rt and wt (else the process is aborted). After the
chine is selected as the leader (e.g., the one that started thewrite, both read and write timestamps of the data item are
process, that made updates) and the rest of the machines areset to pt. The timestamp protocol is termed an optimistic pro-
cohorts. That leader tells all the cohorts to ‘‘flip the bit’’. Alltocol, as it does not have any locking delays and all operations
of them flip it, and retain a copy of the old value and send anare processed immediately or aborted.
OK to the coordinator. This is called the pre-commit phase. AtThe two-phase locking and timestamp protocol can be
this point, all the cohorts have the old value and the new

adapted to distributed systems. To implement two-phase lock-
value. After all the OKs are received, the leader sends a com-

ing, one or more distributed lock servers have to be provided. mit message which causes all the cohorts to install the new
If multiple lock servers are provided, then distributed dead- (flipped) value. If some OKs are not received, the leader tells
lock detection has to be added. In addition, the two-phase all the cohorts to abort, that is install the old value back. It
commit protocol may have to be used for consensus (next can be shown that this protocol (with some extensions for fail-
section). ure handling) works for most cases of message loss and ma-

To make timestamping work in a distributed system, there chine failure.
needs to be a mechanism to provide system-wide unique
timestamps. This is of course possible by using vector clocks

Replication Controlas the timestamp. Even Lamport clocks can be used, but to
ensure uniqueness, the site identifier of the site that assigns In distributed systems, data are often replicated; that is, mul-
the timestamp is appended to the end of the timestamp. tiple copies of the same data are stored on multiple sites. This

is for reliability, performance, or both. Performance is en-
hanced if regularly accessed data are scattered over the net-Distributed Consensus
work, rather than in one place—it evens out the access load.

Consensus is a problem unique to distributed systems. The In addition, if one site having the data fails then the date is
reason is that distributed systems are composed of separate still available from the other sites. Replication works very
autonomous systems that need to cooperate. At the times they well for read-only data. But, to be useful, replication should
need to cooperate, there is often a need to agree on something. work with read-write data also. Replication control protocols
Suppose there is a file containing the value 0 (zero) on three ensure that data replication is consistent, in spite of failures
machines. A process wants to update the value to 1 on all for read-write data. There are many protocols, a few are out-
three machines. It tells servers on all the three machines to lined below.
perform the update. The servers now want to ensure all of
them updates, or none of them does it (to preserve consis- Read One, Write All. In this scheme, a reader can read
tency). So they need to agree (or arrive at a consensus) to from any copy, but a writer has to update all copies. If
either perform the operation (flip the 0 to 1) or abort the oper- not all copies are available, the writer cannot update.
ation (leave it as 0). Most commonly used.

In theory, it can be shown that consensus in distributed Primary Copy. A variant of the previous, read any copy,
system is impossible to achieve if there is any chance of loos- write to the primary copy. The machine holding the pri-
ing messages on the network. The proof is quite involved, but mary copy then propagates the update.
consider the following conversation: Read Majority Write Majority. If there are N copies, then

read N/2 � 1 copies and take the value from the most
Machine 1 to Machine 2: Flip the bit from 0 to 1, and tell me recent of the copies. Writing to any of the N/2 � 1 copies

is good enough.when you are done so that I will flip it too.



194 NETWORK OPERATING SYSTEMS

Voting. Each copy has a certain number of votes. The total Unix service. Mach is also heavily customizable, making it an
number of votes is v. Choose a read quorum r and a ideal platform for research with operating systems.
write quorum w such that r � w � q � 1. Now, to ac-
cess, find enough copies such that the total vote is equal Sprite
(or greater) than r for reading, and w for writing.

Sprite, developed at University of California, Berkeley (15), is
an operating system that provides a single system image to aDepending on the read traffic, the write traffic, and the fail-
cluster of workstations. Much of the focus of research withure probabilities, one of these protocols is chosen. Note that
Sprite has been directed at improving file system perfor-voting is a general protocol, where setting the votes of each
mance. As a result, Sprite provides a very high performanceitem to 1 and r to 1 and w to N makes it the read-one write-
file system through client and server caching. It has processall protocol. Similarly, it can mimic the majority protocol.
migration to take advantage of idle machines. It was used asThere are other protocols that are more general than voting
a testbed for research in log-structured file systems, striped(such as quorum consensus).
file systems, crash recovery, and RAID file systems.

SYSTEM FEATURES
Unix

The following paragraphs outline the salient features of a set Unix is a commercial product of Unix Systems Laboratories.
of network (or distributed) operating systems that either are Various other companies sell variants of Unix, using other
in operation or have significant contributions to the state of trade names, the most well-known being SunOS/Solaris.
the art. SunOS was the first system to provide a commercial, robust,

full-featured network file system (NFS). Linux is a free Unix
Amoeba compatible operating system. The kernel of Unix is monolithic

and most network-based services are added as separate userAmoeba, developed at Vrije University (6), is an operating
processes. Unix is an older operating system, adapted for net-system using a microkernel design, supporting very fast mes-
work use. Because of the prevalence of Unix in research insti-sage passing designed to utilize processor farms. A processor
tutions, all services developed for networking are developedfarm is a set of rack-mounted single-board computers con-
on Unix platforms first. Hence, everything is available fornected by regular networking (Ethernet). Amoeba makes the
Unix, though not from the commercial providers of Unix.collection machines look like one fast timesharing system. It
Unix is the mainstay of network operating systems in the aca-also provides support for threads, RPC, group communication,
demic and research communities.and all other facilities needed for networking. Amoeba sup-

ports a parallel programming language called Orca.
V-System

Clouds
The V-System, developed at Stanford University (8), is a mi-

Clouds, developed at Georgia Tech (14), is a system designed crokernel operating system with support for fast message
to support persistent objects that are large grained. Each ob- passing. Services are added to V by running user-level
ject is an address space that is backed up on disk and hence is servers. The innovative use of low-latency protocols for inter-
persistent. The system paradigm uses a thread-object model, machine messaging provides V with excellent performance on
where threads are distributed and can access objects via a a networked environment. Also innovative is the uniform sup-
modified RPC mechanism. The object invocation causes the port for input–output, a capability based naming scheme, and
thread to move between address spaces rather than use a the clean design of the kernel.
server for processing the RPC request. The entire system is
supported on top of a low-level distributed shared memory

Windows NTmechanism thus making all objects available at all comput-
ers. Services are built into objects and can be accessed using Windows NT is a commercial product of Microsoft Corpora-
the RPC mechanism. Message passing is not supported at the tion. This operating system has a hybrid kernel; that is, the
API level. Clouds has been used for research in reliability, inner core of the operating system follows the microkernel
transaction processing, replication, and distributed de- technology, but the services are not at the user-level. Services
bugging. are added to Windows NT as modules called DLLs (dynamic

link libraries). The operating system is extensible and allows
Mach for a variety of pluggable modules at the level of device driv-

ers, kernel extensions, as well as services at the user level.Mach, developed at Carnegie-Mellon University (7), is a Unix
Windows NT provides many of the services described in thiscompatible operating system that is built on a microkernel.
article in a commercial product and competes with the vari-The microkernel supports message passing, tasks, and
ous forms of Unix in the marketplace. Windows NT also hasthreads. Mach supports an innovative user-level external pag-
the ability of running applications written for DOS, Windowsing system that causes messages to be sent to a paging pro-
3.1, and Windows 95, all of which are completely differentcess whenever there is a page-fault generated by a user pro-
operating systems. For network use, Windows NT providescess. These external pagers allowed Mach to support a variety
file service, name service, replication service, RPC service,of emulation features. The Unix operating system is sup-

ported on top of Mach as a user-level process, providing the and messaging using several protocols.



NETWORK OPERATING SYSTEMS 195

RELATED TOPICS called workers run on many machines and access the tuple-
space to get work, to get input, and to store the results.

Distributed Operating Systems Some recent parallel processing system use distributed
shared memory to hold the data, mimicking the facilities

Distributed operating systems are network operating systems
available on the large parallel processors. Such systems are

with significantly more integration between the autonomous
easier to program as they insulate the programmer from the

operating system running on each machine. The distributed
idiosyncrasies of data placement and data transmission.

operating system is hence able to provide services that are
TreadMarks (19) is a product that provides a high-perfor-

beyond the capability of network operating systems. A few of
mance distributed shared memory system using a method

the additional facilities are summarized.
called release consistency. Calypso (20) is another system
that supports easy to program parallel processing, and also

Dynamic Distributed Data Placement. A data item of file provides load balancing and fault tolerance with no additional
is located close to where it is used. Its location changes cost. Calypso uses a manager–worker model that creates a
dynamically as its usage pattern changes. The logical logical parallel processor, and can dynamically change the
location (such as a file is in one particular directory) is number of workers depending on physical network character-
not an indicator of its physical locations. For example, istics. Other systems that are in use include Amber, Ava-
a directory may contain three files, but the files may lanche, GLU, P4, Piranha, and Quarks.
be located at three different machines, at some point in
time.

Process Scheduling. When a process is started, it is not
BIBLIOGRAPHYstarted on the same machine as its parent, but the pro-

cess scheduler decides where to start the process. The
1. A. S. Tannenbaum, Distributed Operating Systems. Englewoodchosen machine may be a machine with the lightest

Cliffs, NJ: Prentice-Hall, 1995.load, or a machine that is close to the data the process
2. P. K. Sinha, Distributed Operating Systems: Concepts and Design.will be accessing.

New York: IEEE Press, 1997.
Process Migration. Processes may move from machine to

3. E. Levy and A. Silberschatz, Distributed file systems: Conceptsmachine (automatically) depending on its data access
and examples, ACM Comput. Surv., 22 (4): 321–374, 1990.

patterns, or resource needs, or just for load balancing.
4. K. Birman, The process group approach to reliable distributed

Fault Tolerance. Failures of sites do not affect any of the computing, Commun. ACM, 36 (12): 37–53, 1993.
computations. Failed computations are automatically 5. K. Li and P. Hudak, Memory coherence in shared virtual memory
restarted, inaccessible data are made available though systems, ACM Trans. Comput. Syst., 7 (4): 321–359, 1989.
replicated copies. Users connected to the failed machine 6. A. S. Tanenbaum et al., Experience with the amoeba distributed
are transparently relocated. operating system, Commun. ACM, 33 (12): 46–63.

7. M. Accetta et al., Mach: A new kernel foundation for Unix devel-
opment, Proc. Summer Usenix Conf., 1990.

Distributed Parallel Processing Systems
8. D. R. Cheriton, The V Distributed System, Commun. ACM, 31

(3): 314–333, 1988.The bastion of parallel processing used to be large, expensive
machines called parallel processors. The advent of network 9. N. Lynch, Distributed Algorithms, San Francisco: Morgan Kauf-
operating systems has shifted the focus of parallel processing man Publishers, 1997.
platforms to cheaper hardware—a network of smaller ma- 10. L. Lamport, Time, clocks and ordering of events in a distributed
chines. Parallel processing involves splitting a large task into system, Commun. ACM, 21 (7): 558–565, 1978.
smaller units, each of which can be executed on a separate 11. M. Maekawa, A. E. Oldehoft, and R. R. Oldehoft, Operating Sys-
processor, concurrently. This method uses more hardware, tems: Advanced Concepts, Menlo Park, CA: Benjamin-Cum-
but causes the task to run faster and complete quicker. Paral- mings, 1987.
lel processing is very necessary in applications such as 12. K. M. Chandy and L. Lamport, Distributed snapshots, ACM
weather forecasting, space exploration, image processing, Trans. Comp. Sys., 3 (1): 63–75, 1985.
large database handling, and many scientific computations. 13. K. M. Chandy, J. Misra, and L. M. Haas, Distributed deadlock

Parallel processing on network operating system uses tool- detection, ACM Trans. Comp. Sys., 1 (2): 144–156, 1983.
kits, also known as middleware, which sit between the appli- 14. P. Dasgupta et al., The Clouds Distributed Operating System,
cation and the operating system and manage the control flow IEEE Computer, November 1991.
and the data flow. A particularly popular package is called 15. M. Nelson, B. Welch, and J. Ousterhout, Caching in the Sprite
PVM (parallel virtual machine) (16). PVM augments the mes- network file system, ACM Trans. Comp. Syst., 6 (1): 134–154,
sage passing system provided by the operating system with 1988.
simpler to use primitives that allow control of spawning pro- 16. A. Geist et al., PVM: Parallel Virtual Machine: A Users’ Guide
cesses on remote machines, transmission of data to the ma- and Tutorial for Networked Parallel Computing, Cambridge, MA:
chine, and collection of results of the computations. Another MIT Press, 1994.
package with similar characteristics is MPI (17). An interest- 17. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
ing system that uses a radically different approach to parallel Programming with the Message-Passing Interface, MIT Press,

1994.processing is Linda (18). Linda integrates the notion of work
and data into a unified concept called the tuple-space. The 18. D. Gelernter, Programming for advanced computing, Sci. Amer.,

257 (4): 65–71, 1987.tuple-space contains work tuples and data tuples. Processes



196 NETWORK PARAMETERS

19. C. Amza et al., TreadMarks: Shared memory computing on net-
works of workstations, IEEE Comp., 29 (2): 18–28, 1996.

20. A. Baratloo, P. Dasgupta, and Z. M. Kedem, Calypso: A novel
software architecture for high performance parallel processing on
workstation networks, 4th Int. Conf. High Performance Distrib-
uted Comput., 1995.

PARTHA DASGUPTA

Arizona State University


