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WAVEGUIDES

In the electromagnetic spectrum, microwaves are the waves
with wavelengths comparable to ordinary laboratory dimen-
sions. Furthermore, smooth surfaces of good conductors form
very perfect reflectors for them. As a consequence, an electro-
magnetic wave in a reflecting pipe is reflected back and forth
from wall to wall, so that it can travel to large distances with
small attenuation. Hence we have ‘‘wave guides’’ as transmis-
sion lines, dealing with electromagnetic fields inside of hollow
regions, rather than outside wires for more conventional elec-
tric applications, or waves in free space as in optics, and the
propagating electromagnetic field is confined to the finite re-
gion of the guide by reflecting walls. The present article es-
sentially reviews the basic theory and the different geome-
tries used in the various applications of such hollow
waveguides.

FUNDAMENTALS

Historical Evolution

J. C. Maxwell established the fundamentals of electromag-
netic theory around 1880. In 1883, F. G. Fitzgerald suggested
sources for electromagnetic emission. In 1888, H. Hertz
proved that the concept of propagation was included in Max-
well’s theory. At the same time, O. Lodge demonstrated the
existence of maxima and minima on transmission lines. A
group of experimental scientists was formed—the Hertzi-
ans—while J. C. Bose was experimenting with millimeter
waves in India. In 1894, Lodge demonstrated radiation from
circular hollow pipes—waveguides—as well as the effect of
irises and resonant cavities, and illustrated the highpass

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



504 WAVEGUIDES

properties of the device. Bose developed a semiconductor de- that the hollow cylindrical conductor would be valued as a
new circuit element, a new type of toll cable.tector, rectangular waveguides and horns, at 60 GHz (1–5).

In 1893, Heaviside considered various possibilities for waves The years from 1936 to 1940 saw great activity in micro-
wave electronics, but hardly with important practical applica-along wire lines from a theoretical standpoint and concluded

that guided waves needed ‘‘two leads as a pair of parallel tions. The great impetus to its further development came with
the application to radar in World War II. Generally, the de-lines; or if but one is be used, there is the earth, or something

equivalent, to make another’’ (6). J. J. Thompson gave a theo- velopment of experimental radar into an operational system
is attributed to R. Watson-Watt, having convinced politiciansretical analysis of electric oscillations within a conducting cy-

lindrical cavity of finite length. He found that there were per- to install a range of radar protection on the British coast. At
the end of the summer of 1938, five stations were protectingmissible normal modes that were a function of the radius of

the cylinder (7). Shortly thereafter, J. Larmor similarly inves- London. In July 1940, fifty stations were operational. The ef-
ficiency of the system was determinant on the evolution of thetigated the theory of resonant structures such as coaxial me-

tallic cylinders and a single dielectric cylinder (8). war in Europe. During the war, the famous MIT Radiation
Laboratory was the place where British and U.S. scientistsIn 1897, Rayleigh showed that waves could indeed propa-

gate within a hollow metallic cylinder (9). He found that such and technicians worked together, developing microwave tech-
nology and electronics as well as the basic theory. The serieswaves existed only in a set of well-defined normal modes, with

waves of two types: one with a longitudinal component of elec- of twenty-eight books published after the war summarized
the tremendous amount of high quality work accomplished attric intensity only, while the other had a longitudinal compo-

nent of magnetic intensity only. Both types had transverse that time (2,10).
Since then, waveguides have been very common in micro-components of both electric and magnetic intensity. He found

that a fundamental limitation on the existence of such waves waves, especially in the centimeter and millimeter wave
ranges, mostly because of their losses, lower than in coaxialwas that the frequency must exceed a lower limit—cut-off fre-

quency—depending on mode number and the cross-sectional cables. Another reason is that the waveguide forms a closed
transmission line, which is an advantage in certain environ-dimensions of the cylinder. He published the complete solu-

tions in the case of rectangular and circular cross-section, ments, in particular in the presence of interferences or ad-
verse tropospheric conditions. The tendency to go to higheryielding all possible solutions.

Hertzian links, feeders, detectors, and even radioastron- frequencies has introduced particular configurations of loaded
waveguides, essentially the fin line structure (see FINLINES).omy with an attempt by Lodge were on the horizon. As a mat-

ter of fact, none of this happened, probably because of both For one or two decades now most commercial applications
have been based on planar transmission lines, especially inthe success of the long waves used by Marconi and the diffi-

culty in generating microwaves. Lodge got interested in para- the lower frequency range, such as the microstrip, the most
common planar line, although stripline came first. More re-normal phenomena, and Bose in plant growth and biological

effects of electromagnetic fields. Microwave electronics fell out cently, other configurations like slotlines and coplanar wave-
guides have become popular, because of their good propertiesof favor.

Almost 40 years later, G. C. Southworth, working with at higher frequencies, namely in the 30–60 GHz range. Pla-
nar technology developed with respect to waveguides for es-Schelkunoff, of Bell Telephone Laboratories (BTL), and W. L.

Barrow, working with Chu, Stratton, and others, of the Mas- sentially two reasons. One is economical: producing a planar
circuit is cheap, which compensates for the cost of researchsachusetts Institute of Technology (MIT), rediscovered the

concept, each working independently for almost five years and development. The other is that planar technology easily
combines with semiconductors, leading to microwaves mono-with no knowledge of the other. The question they investi-

gated was the practical possibility of using waveguides for the lithic integrated circuits (MMIC), while the combination
waveguide-semiconductor has always been rather laborious,transmission of microwave power. This work culminated in

almost simultaneous presentations in 1936, when they because of the significant differences in configuration as well
as in impedance level.claimed that they had discovered that electromagnetic waves

would propagate in hollow tubes and had experimentally
demonstrated the practicality of this phenomenon. They had Basic Theory
become aware of each other’s work about one month prior to

Electromagnetic Field in a Waveguide. Electromagnetic fieldsthe announcements, after publication of the programs for the
within any region of space are determined by solving Max-meetings at which the presentations were to be made (3).
well’s equations in a coordinate system appropriate to the re-From the beginning, the most obvious application of wave-
gion. Such regions may be termed as either uniform or non-guide had been as a communications medium. It had been
uniform. Uniform regions are characterized by the fact thatdetermined by both Schelkunoff and Mead independently in
cross sections transverse to a given symmetry, or propaga-1933 that an axially symmetric electric wave in circular wave-
tion, direction are everywhere identical with one another inguide would have an attenuation factor that decreased with
both size and shape. Examples of uniform regions are pro-increased frequency (3). This unique characteristic was be-
vided by regions cylindrical about the symmetry direction andlieved to offer a great potential for wideband multichannel
having planar cross sections with, for example, rectangular orsystems, and for many years to come the development of such
circular peripheries (2,4,5,10–12).a system was a major focus of activity within the waveguide

A waveguide is a metallic structure of arbitrary but con-group at BTL. The use of a waveguide as a long transmission
stant cross section that extends in the direction of propaga-line, however, did not prove to be practical and Southworth
tion of a wave and confines the wave energy within it. It ishimself concluded in 1939 that microwave radio with highly

directive antennas was preferable, coming to the conclusion bounded by a conductor of high conductivity, filled with a di-
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electric of low loss, with arbitrary cross section. It may have are indeed identical to those of statics where two conductors
at least are necessary, to impose a potential difference as amore than one bounding surface, as the coaxial line, which

consists of the annular space between two concentric circular boundary condition. Hence a TEM mode cannot propagate on
or in a hollow one-conductor waveguide, while it can propa-cylindrical conductors. In practice the two most common cases

are the rectangular and the circular guide. Hollow wave- gate on or in a two-conductor waveguide of any cross section
and any geometry, for instance a coaxial cable or waveguide.guides cross sections are limited by metallic boundaries. In

the basic theory, those metallic boundaries are supposed to be A TEM mode has no cutoff frequency: because of the two or
more conductors it can propagate down to zero frequency.made of perfect electric conductors. At microwaves, the actual

losses in actual conductors are very small and are usually In a waveguide, an infinite number of TE and of TM modes
can propagate. In the usual one-conductor waveguide, thoseevaluated by a perturbation theory.

Within the enclosed region the electromagnetic field may two classes of modes cannot propagate down to zero fre-
quency, since only one conductor is available. All the TE andbe represented as the superposition of an infinite number of

standard functions that form a mathematically complete set. the TM modes have a cut-off frequency below which they can-
not propagate: the waveguide has a high pass characteristic.The mathematical representation of the electromagnetic field

within a uniform region is in the form of a superposition of The cut-off frequencies depend on the dimensions of the wave-
guide and of the homogeneous medium filling the waveguide.an infinite number of modes or wave types. The electric and

magnetic field components of each mode are factorable into In a waveguide with two or more conductors, like the coaxial
cable or waveguide, the TEM, TE, and TM modes can propa-form functions depending only on the cross-sectional coordi-

nates transverse to the direction of propagation, and into am- gate. The number of propagating modes is determined by the
frequency: all the modes with a cut-off frequency lower thanplitude functions depending only on the coordinate in the

propagation direction. The transverse functional form of each the generator frequency propagate while the others do not. If
a waveguide is excited with a signal whose frequency is lowermode depends upon the cross-sectional shape of the region

and, save for the amplitude factor, is identical at every cross than the cut-off frequency, then instead of propagating, this
signal is attenuated exponentially with distance. This phe-section. As a result the amplitudes of a mode completely char-

acterize the mode at every cross section. The variation of each nomenon of attenuation in a nonabsorbing medium which
occurs in a waveguide below cut-off is similar to the phenome-amplitude along the propagation direction is given implicitly

as a solution of a one-dimensional wave or transmission-line non of total reflection in optics, in which light is reflected go-
ing from an optically denser to an optically rarer medium. Inequation. According to the mode in question the wave ampli-

tudes may be either propagating or attenuating along the the rarer medium there is an attenuated wave of the type
discussed here. With a slightly absorbing medium inside thetransmission line.
waveguide, the cut-off is no longer as sharp as it is in the
nonabsorbing case. The attenuation is small in the range ofTransverse Electromagnetic, Transverse Magnetic, and Trans-

verse Electric Modes. In physics, waves are usually classified frequency above cut-off, and rapidly becomes large when
going to lower frequencies.according to two criteria. One is the geometrical form of the

wavefront, which describes the surface of constant phase, The mode with the lowest cut-off frequency is called the
dominant mode. In general, most waveguides are operating atmost generally planar, cylindrical, or spherical, more rarely

elliptical or other. The second criterion is that the wave is a frequency such that only the dominant mode propagates.
In that case, the electromagnetic field is characterized by thesaid to be uniform or nonuniform, depending on whether the

field has a constant amplitude in each point of the wavefront amplitudes of this dominant mode. The amplitudes that mea-
sure the transverse electric and magnetic field intensities ofor not. As examples, the wave emitted from a point source is

a uniform spherical wave while the wave propagating in a this dominant mode are defined as voltage and current, re-
spectively, as on appropriate transmission line. The knowl-coaxial cable is a nonuniform plane wave. The term ‘‘pure

mode,’’ or simply ‘‘mode,’’ refers to a wave whose field struc- edge of the wave impedance and propagation constant, that
is, propagating, of the transmission line then permits one toture remains the same along the entire path of propagation.

Different modes will, in general, have different field struc- describe the propagation of the dominant mode in familiar
impedance terms.tures and different velocities of propagation. In uniform hol-

low waveguides, the waves, more often called the modes, are When cross-sectional discontinuities are present in the
waveguide, they require more boundary conditions to be satis-usually classified according to their properties with respect to

the propagation direction and whether they have longitudinal fied than those characterizing the dominant mode, which are
imposed by the longitudinal metallic walls (see WAVEGUIDEcomponents or not. A wave with longitudinal components for

neither the electric nor the magnetic field is called a trans- DISCONTINUITIES). Mode voltages and currents are introduced
as measures of the amplitudes of the transverse electric andverse electromagnetic (TEM) wave. It has only four field com-

ponents. A wave with no longitudinal magnetic field compo- magnetic field intensities of each of the higher order modes.
Each of these is represented by a transmission line, havingnent while having a longitudinal electric field component is

called a transverse magnetic (TM) wave, and a wave with no however a reactive wave impedance and a real propagation
constant, that is, attenuating. In this manner the completelongitudinal electric field component while having a longitudi-

nal magnetic field component is called a transverse electric description of the electromagnetic field in a waveguide may
be represented in terms of the behavior of the voltages and(TE) wave. TM and TE waves, or modes, each have five field

components. currents on a infinite number of transmission lines.
For a TEM mode to propagate on a guiding structure, at

least two conductors are needed. The equations to be satisfied Orthogonality Properties and Expansion of the Fields in Normal
Modes. Solutions of the wave equation always have certainby a TEM mode in the transverse plane of such a structure
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properties of orthogonality, which are particularly important are fully determined by four components only, two for the
when expanding a general solution as a sum of solutions for transverse electric field and two for the transverse magnetic
the various modes and when considering problems of energy. field. Along a guiding structure, TEM waves can propagate
Several general theorems have been proved independently of only if at least two conductors are available, as is the case in
the particular geometry of the cross section. The main orthog- a coaxial cable or waveguide. It can be shown indeed that
onality theorems are the following. those fields satisfy in the transverse plane the same equa-

tions as those of statics. To demonstrate the statement the1. The integral over the cross section of the scalar product
vectors and operators appearing in Maxwell’s equations areof either the transverse electric fields or the transverse
decomposed into their tranverse and longitudinal compo-magnetic fields of two different modes is zero.
nents, which leads to decomposed equations (14). These show2. The integral over the cross section of the product of ei-
that in the absence of the longitudinal components the purelyther the longitudinal electric field components or the
transverse electric and magnetic fields do satisfy the equa-longitudinal magnetic field components of two different
tions of statics in the transverse plane. Furthermore, sincemodes is zero.
neither electric nor magnetic variable field can exist in a per-3. The integral over the cross section of the longitudinal
fect electric conductor, boundary conditions to be satisfied atcomponent of the vector product of the transverse elec-
the walls are also identical to those of statics. Hence two con-tric field of one mode with the transverse magnetic field
ductors at least are necessary for a TEM wave to propagateof another mode is zero.
on a guiding structure: in a coaxial waveguide a TEM wave

These theorems hold when the two modes are both TE or both can propagate, while it cannot in a one-conductor hollow
TM, as well as when the two modes are of opposite types. waveguide.
Several other theorems can be derived, relating to the inte-
grals of squares of components of the electric and the mag- TE and TEM Modes. Only uniform waveguides are consid-netic fields, or of products of components with their conju-

ered, where the cross section is identical along the propaga-gates.
tion direction and limited by conducting walls surrounding aMaxwell’s equations within an one-conductor waveguide
homogeneous and isotropic medium, usually with smallwith perfectly reflecting walls have an infinite number of pos-
losses. The propagation is interior to the guide. The walls aresible solutions, representing various normal modes, some TE
first supposed to be lossless. They can be either perfect elec-and some TM. Furthermore, corresponding to each of these
tric or perfect magnetic, which can be used for the ease ofmodes with propagation along the �z direction, there is a pos-
calculation in some special cases. In practice, however, theresible wave propagated along �z. Each mode has a cut-off fre-
are numerous materials which are very good electric conduc-quency, such that a disturbance in that mode at a frequency
tors, although not perfect, which is not the case for magneticbelow cut-off is rapidly attenuated, whereas at a frequency
conductors. Small losses in the walls will be evaluated later,higher than cut-off it is propagated.
using a perturbation method. Internal volume charge andThe last problem to be considered is that of the most gen-
current density are assumed to be zero. Steady-state sinusoi-eral field which can exist in the waveguide. Maxwell’s equa-
dal solutions are calculated. Maxwell’s equations are solved intions, as well as the boundary conditions are linear. Hence, all
the frequency domain and fields are represented by phasorsthe solutions that have been found can be superposed, with
(complex vectors).appropriate coefficients, to form another solution for the equa-

Maxwell’s equations are written as:tions submitted to the boundary conditions. It can be proved
that the most general solution, subject to the boundary condi-
tions and to the additional condition that the guide contains
no volume charge or current except what arises from Ohm’s
law in the imperfect dielectric filling it, can be represented by
such a superposition. As usual when dealing with problems
of expansion in orthogonal functions, the magnitude of the

∇ × E = − jωµH or ∇ × E = − jkζH

∇ × H = ( jωε + σ )E or ∇ × H = jkηE

∇ · E = 0

∇ · H = 0

(1)

functions are normalized by determining their magnitudes so
that their squares integrate to some convenient value, and

by defining:by multiplying these normalized functions by an additional
coefficient to secure an arbitrary value for the function. The
complete field is obtained by superposing all possible fields,
with waves traveling along the �z direction as well as along
�z (2).

jk �=
√

jωµ(σ + jωε) (m−1)

η
�=1/ζ

�=
√

(σ + jωε)/ jωµ (S)
(2)

A quite general approach to waveguide theory is obtained
by elevating Maxwell’s equations into a dyadic form. This Transverse and Longitudinal Components for TE and TM Modes.
yields the concept of dyadic Green functions in electromag- Rewriting the first two equations of Eq. (1) in detail yields:
netic theory. Vector wave functions can then be established
for waveguides of specific cross sections (12,13).

THEORY

Electromagnetic Fields in a Waveguide

TEM Mode. TEM waves have longitudinal field components
neither for the electric nor for the magnetic field. Hence they

∂Ez

∂y
− ∂Ey

∂z
= − jkζ Hx

∂Hz

∂y
− ∂Hy

∂z
= jkη Ex

∂Ex

∂z
− ∂Ez

∂x
= − jkζ Hy

∂Hx

∂z
− ∂Hz

∂x
= jkη Ey

∂Ey

∂x
− ∂Ex

∂y
= − jkζ Hz

∂Hy

∂x
− ∂Hx

∂y
= jkη Ez

(3)
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Looking for a solution propagating in the �z direction, the dinal components. The appropriate re-arrangement of Eq. (3)
yields as an example:classical transmission line formalism yields a z dependence

e��z. Hence derivatives with respect to z are replaced by multi-
plications by ��. TE and TM modes are most easily investi-
gated by obtaining an equation for each of the longitudinal

Ex = k
p2

(
1
jη

∂Hz

∂y
− γ

k
∂Ez

∂x

)
(9)

components separately. Extracting for example Ez from the
and the relation between the transverse and longitudinallast equation after replacing Hx and Hy by their values from
components can be rewritten as (14):the first two equations yields:

Ez = 1
j2k2

[
γ

(
∂Ex

∂x
+ ∂Ey

∂y

)
+ ∂2Ez

∂x2 + ∂2Ez

∂y2

]
(4)

Et = (1/p2)(−γ∇tEz + jkζaz × ∇tHz )

Ht = (1/p2)(−γ∇tHz − jkηaz × ∇tEz)
(10)

Usually the third Maxwell’s equation yields: In summary, one has the general relations:

Ez = − 1
k2

(
γ 2Ez + ∂2Ez

∂x2 + ∂2Ez

∂y2

)
(5)

or

TE modes (H) TM modes (E)

(∇2
t + p2)Hz = 0 (∇2

t + p2)Ez = 0
Ht = −(γ /p2)∇tHz Et = −(γ /p2)∇tEz

Et = ( jkζ/p2)az × ∇tHz Ht = −( jkη/p2)az × ∇tEz

(11)

[∇2
t + (k2 + γ 2)]Ez = 0 (6) For both types of modes, boundary conditions are the van-

ishing of the tangential electric field at perfect electric walls
A similar equation can be obtained for any other component, and magnetic field at perfect magnetic walls, respectively.
and in particular for Hz. Defining then:

Equivalent Transmission Lines. The previously obtained
equations contain partial derivatives. An equivalence can bep2 �= γ 2 + k2 (7)
found between the expressions relating the transverse compo-
nents and transmission line equations. Separating indeed theyields:
transverse and longitudinal variables by defining:

(∇2
t + p2)(Ez or Hz ) = 0 (8)

scalar eigenvalue Helmholtz equation. The eigenvalues are

Et
�= V (z)et (rt )

Ht
�= I(z)ht (rt )

(12)

p2, defined by Eq. (7). To each eigenvalue there corresponds
at least one eigenfunction, solution of the equation. If there one observes that the vectors et and ht are transverse but do
is more than one eigenfunction, the solutions are said to be not vary in z, while V(z) and I(z) are amplitude coefficients as
degenerate. This is the case for instance in a square wave- a function of the coordinate z. It should be noted that at the
guide for the solutions which have as the only difference the right side of both equations each of the two terms of the prod-
orientation of the electromagnetic field with respect to the two ucts are only defined with respect to a complex arbitrary con-
sides of the waveguide. stant which may multiply one term and divide the other: only

Equations similar to Eq. (8) can be obtained also for Ex their products are defined. Looking after an equivalence with
and Hx, and for Ey and Hy, respectively. The fact however that transmission line equations, one has:
the longitudinal components of electric and magnetic fields
are not coupled—which is not the case when the medium fill-
ing the guide is inhomogeneous or anisotropic—makes solu-

V (z) =V+e−γ z + V−e+γ z

I(z) =Yo(V+e−γ z − V−e+γ z)
(13)

tions easy to calculate when the boundary conditions do not
introduce a coupling between the two longitudinal compo-

where Y0 is the characteristic admittance of the transmissionnents. It will be shown that this is the case for uniform wave-
line. The parameters Z0 and � are now to be calculated, inguides filled with homogeneous and isotropic medium.
view of determining the parameters of the line: Z series im-
pedance in �/m, and Y shunt admittance in S/m. Those are

Waveguide Modes different for TE and TM modes, respectively.
Investigating first the TM modes, the first Maxwell’s equa-The absence of coupling between the two longitudinal compo-

tion shows that the transverse curl of et is zero. Hence thenents in Eq. (8) yields separate solutions for modes with no
transverse field derives in the transverse plane from a com-Hz called TM modes (also sometimes called E-modes because
plex scalar electric potential:of nonzero Ez) and modes with no Ez called TE modes (also

sometimes called H-modes because of nonzero Hz). The gen-
eral solution can be any linear combination of any TE and et = −∇tφ (14)

TM modes (2). The separation of solutions for uniform, homo-
This potential is proportional to Ez. Considering only onegeneous, and isotropic waveguides in two classes, TE and TM
traveling wave, and introducing Eq. (12) into Eq. (10), yields:modes respectively, is particularly useful because, once solu-

tions have been obtained either for TE or for TM modes, all
the transverse components can be calculated from the longitu- Y0ht = ( jkη/γ )az × et (15)
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Defining:

Y0
�= ( jkη/γ )K (S) (16)

where K is an arbitrary complex constant, depending on the
complex constants unwritten in Eq. (12) to be determined,
yields:

ht = (1/K)az × et (17)

µL′ = /p2K

C = K

G = σK

L = µ /K

from which can be deduced:
Figure 2. Equivalent circuit of TE modes, illustrating series imped-
ance and parallel admittance.Ez = (p2/ jkη K)I(z)φ (18)

Hence, the potential is proportional to Ez and satisfies the
same equation: Proceeding similarly for the TE modes, it can be shown

that ht now depends upon a complex scalar magnetic potential,
(∇2

t + p2)φ = 0 (19) that the wave admittance also contains an arbitrary complex
constant to be determined, that the potential is proportional

When the wall is a perfect electric conductor, the longitudinal to Hz, and that it satisfies the same equation as before:
electric field vanishes at the wall, and so does the potential.
There is a particular case however: the potential may be a (∇2

t + p2)� = 0 (24)
nonzero constant when p2 is zero. This is the case for the TEM
mode, which may exist if the guide has more than one conduc- The boundary conditions to be satisfied on perfect electric
tor: the TEM mode is a special case of a TM mode. The pa- walls impose the normal derivative of the magnetic potential
rameters Z and Y of the equivalent transmission line for the to vanish. The parameters of the equivalent transmission line
transverse components can be calculated using: are:

Z = γ /Y0 and Y = γY0 (20)

which yields (Fig. 1):

Z = γ /Y0 = jkζ/K = jωµ/K

Y = γ 2K/ jkζ = p2 − k2

ikζ
K = p2K

jωµ
+ (σ + jωε)K

(25)

Z = γ 2/ jkη K (�/m) ; Y = jkη K (S/m) (21)
They are represented in Fig. 2. The equivalent circuit also

or: exhibits a high-pass characteristic, and the cut-off frequency
is given by the same expression as for TM modes.

The equivalent circuits at Fig. 1 and Fig. 2 are not dual.
This is because magnetic losses have not been introduced for
the medium. The circuits would be dual if those losses were

Z = p2 − k2

(σ + jωε)K
= p2

P(σ + jωε)K
+ jωµ

K
Y = (σ + jωε)K

(22)

introduced. It can be seen that the equivalent circuits for the
It is observed that, if there are no losses in the medium filling transverse components of TE and TM modes, respectively, are
the guide, the equivalent circuit has a high-pass characteris- dual in the absence of any loss in the medium.
tic with a cut-off frequency given by:

Eigenvalues, Power, and Impedance Level. Eqs. (19) and (24)
are eigenvalues equations. They only have solutions—µωc/K = p2/εKωc from which ωc = pc (23)

eigenfunctions—for an infinite number of discrete values of
where c is the phase velocity in the medium supposed to be in- the eigenvalues p2. To each eigenvalue correspond one, or
finite. more in the case of degeneracy, eigenfunctions which deter-

mine the spatial distributions of the transverse fields. Those
spatial distributions are called the modes of the waveguide.
Equation (7) describes the dispersion characteristic of each
mode: it expresses the variation of the propagation constant
as a function of frequency and of the parameters of the me-
dium. Certain properties of the eigenvalues can be demon-
strated using Green’s theorems (5). In particular they are
equal to the ratio of integrals over the cross section of the
square of the absolute values of the gradient of the potential
and of the potential, respectively, for TE as well as for TM
modes:

C′ = 
C =

µL = /K

K/p2

G′ =  σK

K

G =σ K/p2

Figure 1. Equivalent circuit of TM modes, illustrating series imped-
ance and parallel admittance.

p2 = p∗2 =
∫

A
|∇tθ |2 da

/∫
A

|θ |2da θ = φ or � (26)
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Hence the eigenvalues: Dispersion Diagram, Active and Reactive Power. Equation (7),
defining the eigenvalues, can be written as:

1. Are real and positive, even in the presence of losses in
γ 2 = p2 − (ω/c)2 (31)the medium;

2. Do not depend on the properties of the medium filling in the absence of losses in the medium filling the guide. It
the guide, as long as the medium is homogeneous and relates the propagation constant to the frequency. The propa-
isotropic; gation constant vanishes at the cut-off frequency, which de-

3. And depend entirely upon the geometry of the cross sec- termines the cut-off wavelength:
tion of the guide.

ωc = pc ; λc = c/ fc = 2π/p (32)

There is an interest in expressing the complex power travel-
Variations of �2 and � � � � j� are represented in Fig. 3. Ating along the guide identically to the classical expression of
frequencies below cut-off the propagation constant is real.lumped circuit theory VI*/2. Calculating the complex power
There is attenuation and the value of the attenuation con-S in the �z direction by using Poynting’s vector integrated
stant is:over the cross section A yields the classical expression:

α =
√

p2 − ω2µε (33)S = (1/2)VI∗ (27)

At zero frequency the value of the attenuation constant is pprovided one imposes:
and the curve � � � is an ellipse. At frequencies above cut-
off the propagation constant is imaginary. There is propaga-
tion, the value of the propagation constant is:K∗ �=

∫
A

|et |2da (28)

β =
√

ω2µε − p2 (34)
This shows that to obtain Eq. (27) the unknown complex con-
stant K must be real. It also shows that the value of K re- and the curve � � � is hyperbolic with the straight line � �
mains unknown, because there is no more equation which can � /c as an asymptote for any value of p. At high frequencies
be used to specify the value of this constant: for TE and TM indeed the wavelength decreases, the electric distance be-
modes the impedance of the equivalent transmission is not
uniquely specified, and its level is arbiratry. This is why,
when calculating the three expressions of power for TE and
TM modes:

V/I ; 2S/|I|2 ; |V |2/2S (29)

identical values are not found (15). The TEM mode is the only
field configuration for which the concept of characteristic im-
pedance is rigorously valid and the three expressions in Eq.
(29) yield the same value. Unfortunately, in most references
the existence of the unknown constant for TE and TM modes
is not stated explicitly. From now on, it will be put equal to
1. This has consequences:

1. Eq. (28) with K* � 1 can be used as a normalization
condition for the fields;

2. And Eq. (26) reduces to

p2
∫

A
|θ |2da = 1 (30)

which will be used to determine the integration con-
stants when integrating the Helmholtz equation.

TE and TM modes, as well as the TEM mode in a more-than-
one conductor waveguide, have been shown to be the solutions
of waves propagating in a waveguide. To actually exist how-
ever in the guide, an adequate excitation transducer must be

p2

γ

ω 2

pH
α

γ  β,

β

ω

ω /c

2

ω c
2

available. Its geometry has to be compatible with the geome-
try of the electromagnetic configuration of the launched Figure 3. Dispersion diagram of typical modes, illustrating cut-off

frequencies.modes, as will be demonstrated later.
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tween the walls increases, and the propagation approaches quality, humidity, pressure, possible temperature elevation,
and frequency. If the guide is filled with dry air, the electricfree space propagation. At frequencies of operation the wave-

guide modes are dispersive and the dispersion increases when field may not go beyond 3 MV/m, which corresponds to a
power range of 10 MW at 4 GHz and 100 kW at 40 GHz.the frequency decreases down to the cut-off frequency. The

mode having the lowest cut-off frequency, hence the smallest Discontinuities and irregularities in the waveguide may im-
pose a security factor of 4 or more. Furthermore, losses ineigenvalue p, is called the dominant mode. It is most common

to operate at a frequency located between the lowest cut-off copper walls are of the order of 0.03 dB/m at 4 GHz and 0.75
dB/m at 40 GHz (5).frequency and the cut-off frequency of the next higher-order

mode, so that only one mode propagates, the dominant one.
To optimize this frequency range, sometimes called the band- Wall Losses. The losses in a metallic waveguide wall can
width, appropriate waveguide dimensions are chosen, in par- be calculated considering the metal wall as a perturbation of
ticular for the rectangular waveguide. the perfectly conducting wall and using skin effect formula-

From Eq. (34) one determines the guide wavelength, the tion. The formulation is valid as long as the skin depth is
phase velocity, and the group velocity for each mode: small compared with a distance around the periphery in

which the magnetic field of the lossless guide changes consid-
erably. Hence the formulation is not valid near corners unless
that magnetic field is zero at the corner and may not be valid
for modes of very high order which, however, are usually not
of great interest in practice. A number of results are given in

λg
�= 2π

β
= 2π√

(ω/c)2 − p2
= 1√

(1/λo)
2 − (p/2π)2

vph = ω/β = cλg/λ0

vg = ∂ω/∂β = c2β/ω = cλo/λg

(35)

(4) for rectangular and circular metal-walled guides, as well
as for coaxial lines and other lines which are not of theIt is observed that, for each mode, the product of the phase
guide type.velocity and of the group velocity is equal to the constant c2.

For only one traveling wave, the complex power of Eq. (27)
Specific Geometriescan be written:

Rectangular Waveguide. The guide with a rectangular cross
S = P + jQ = (1/2)|V + |2Y ∗

0 e−2αz (36) section has an inside horizontal width a (coordinate x) and
vertical height b (coordinate y) with a 
 b. The identical ei-

with: genvalue Eq. (19) for TM modes and Eq. (24) for TE modes
are solved by separation of variables and the potentials are

P = (1/2)|V+|2e−2αzReY0 Q = −(1/2)|V+|2e−2αzImY0 (37) the Cartesian eigenfunctions sine and cosine. The general so-
lution for the potentials is:

where the admittance Y0 is complex and is equal to:

potential = C (cos ux or sin ux)(cos vy or sin vy)
for TM modes: Y0E � jk�/� � (� � j��)/(� � j�)
for TE modes: Y0H � �/jk� � (� � j�)/j��) where C is an integration constant to be determined and u

and v are constituents of the eigenvalue:
For no losses in the medium, these expressions reduce to the
following. p2 = u2 + v2 �= 0 (38)

1. For � 
 �c: Investigating first the TM modes, imposing the electric poten-
tial to vanish in x � 0, a and in y � 0, b yields the general

Real power is transmitted. There is no energy storage. solution:

2. For � � �c: φmn = CEmn sin(mπx/a) sin(nπy/b) (39)

Power is purely imaginary. No real power is transmitted and where the product mn has to be different from zero, because
there is energy storage. The energy is capacitive for TM (E) of the sine functions. To each mn combination there corre-
modes and inductive for TE (H) modes: TM modes below cut- sponds a mode called TMmn. The integration constant CEmn is
off store electric energy while TE modes below cut-off store determined by:
magnetic energy. Hence, capacitors and inductors are de-
signed at centimeter and millimeter wavelength by creating p2

mn = u2 + v2 = (mπ/a)2 + (nπ/b)2 (40)
a limited region of space along the waveguide which concen-
trates the appropriate modes below cut-off. A resonant circuit and
is similarly designed around a frequency where the stored
electric and magnetic energies of modes below cut-off compen-
sate. Those regions of stored energy are centered on obstacles p2

mn

∫
A

|φmn|2da = 1 (41)
of the appropriate geometry, creating supplementary bound-
ary conditions to be satisfied by higher-order modes, which

from which:are below cut-off.
Metallic waveguides can transport a significant power. Its

value depends upon the medium filling the guide, surface CEmn = 2/(pmn
√

ab) (42)
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The transverse components are calculated using Eq. (14): The fields of a traveling wave of the dominant mode have only
three components. They are:

etmn =−Cmn

(
ax

mπ

a
cos

mπ

a
x sin

nπ

b
y + ay

nπ

b
sin

mπ

a
x cos

nπ

b
y
)

htmn =Cmn

(
ax

nπ

b
sin

mπ

a
x cos

nπ

b
y − ay

mπ

a
cos

mπ

a
x sin

nπ

b
y
)

(43)

Et = −ayC10V+(π/a) sin(πx/a)e− jβ10 z

Ht = axC10V+(π/a)(β10/ωµ) sin(πx/a)e− jβ10 z

Hz = C10V+(π/a)2(1/ jωµ) cos(πx/a)e− jβ10z

(49)

As for TE modes, the boundary conditions impose the normal
derivatives of the magnetic potential to vanish at the walls, The transverse fields are in phase in time and in space while
which yields cosine solutions: Hz is out of phase with them, both in time and in space. Fig-

ure 4 represents the fields and surface current of the domi-�mn = CHmn cos(mπx/a) cos(nπy/b) (44)
nant mode along one-half guide wavelength. The electric field

where the sum m � n has to be different from zero. To each has only a vertical component. Hence the dominant mode is
mn combination corresponds a mode called TEmn. The integra- linearly polarized in the electric field. Calculating the cut-off
tion constant CHmn is determined by the same equations as frequencies of the first higher-order modes, it can be seen that
for TM modes, which yields: to improve the bandwidth the height b must be chosen

smaller than half the width a. Calculating the three power
CHmn − 2/(pmn

√
ab) (45) expressions Eq. (29) for the dominant mode, normalized with

respect to the factor (b/a)Z0, respectively yields the valueswhen m and n are different from zero and:
1.57, 1.23, and 2.00, which shows that the differences are sig-
nificant. Hence matching for instance a rectangular to a circu-CHmn =

√
2/(pmn

√
ab) (46)

lar waveguide may offer serious difficulties. It seems that the
square root of the product of 1.57 by 2.00 leads to the mostwhen m or n is zero. The transverse components are:
convenient result for the power, although the reason is not
certain (16). The mode impedances and the parameters of in-
terest for all the modes can be calculated according to the
general theory developed earlier. Mode configurations can be
found in a number of references, such as (4,10,17,18).

etmn =Cmn

(
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(
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(47)
Equation (40) shows that the eigenvalues, hence the cut-

The smallest eigenvalue is obtained when the integer n re- off frequencies, depend upon the dimensions of both sides of
lated to the smallest dimension b is zero. Hence the dominant the cross section of the guide. Furthermore, the height b must
mode is the TE10. For a lossless medium, its parameters are: be smaller than a/2 to optimize the frequency range in which

only the dominant mode propagates. For these reasons rect-
angular waveguides have specified dimensions (17) and corre-
sponding normalized frequency bands have been defined.
Most usual bands are the following.

L from 1.12 to 1.70 GHz
S from 2.6 to 3.95 GHz
C from 3.94 to 5.99 GHz
X from 8.2 to 12.4 GHz

�10 = C10 cos(πx/a)

C10 =
√

2a/b/π

p10 = π/a

ωc10 = πc/a

λc10 = 2a

β10 = [(ω/c)2 − (π/a)2]1/2 at ω > ωc

λg10 = [(1/λ0)2 − (1/2a)2]−1/2 = λ0[1 − (λo/2a)2]−1/2

(48)

Figure 4. Fields and wall currents of domi-
nant mode in rectangular waveguide, showingλ g/2

et

ht

K

b

a

current source and sink.
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modes and Eq. (24) for TE modes are written in polar formKu from 12.4 to 18.8 GHz
for the transverse coordinates and solved again by separationK from 18.0 to 26.5 GHz
of variables r�. The potentials are the polar eigenfunctions

Ka (or Q) from 126.5 to 26.5 GHz sine and cosine. The general solution for the potentials is:
O from 40 to 70 GHz
V from 50 to 75 GHz θ = [AmJm(pr) + Bmym(pr)](cos mφ + α sin mφ) (50)
W from 75 to 110 GHz

where m is an integer, possibly equal to zero, when the guide
is of circular symmetry which ensures a periodic solution inRidge Waveguide. A waveguide that has the cross section
the polar angle, and where Jm and Ym are the Bessel functionsas shown in Fig. 5 is called a ridge waveguide: It has a central
of first and second kind, respectively. The functions Ym areridge added either to the top or bottom or both of a rectangu-
sometimes called Weber or Neumann functions. They are sin-lar section. Its interesting electromagnetic property is that
gular at the origin r � 0. They have hence to be excluded fromthe cut-off frequency is lowered because of the capacitance
the solutions for a hollow guide. They have, however, to beeffect at the center and could in principle be made as low as
included in the solutions for a coaxial cable or guide, and thedesired by decreasing the gap width sufficiently. Of course,
general solution in that case will include a linear combinationthe impedance of the guide also decreases as the gap is made
of both functions J and Y. In the case of the one-conductorsmaller. Because of the increased effective length of the pe-
circular waveguide, the general solution reduces to:riphery, the attenuation is larger than in a usual rectangular

waveguide. One of the important applications is as a nonuni-
form transmission system for matching purposes, obtained by θ(r, φ) = CmJm(pr)(cos mφ + α sin mφ) (51)

varying the depth of ridge as one progresses along the guide
The choice of the cosine or sine function only depends on the(18).
polarization of the field, and all the modes are spatially de-The calculation of cut-off frequencies is rather easy if one
generate. An elliptical polarization will be obtained by lin-remembers that, at cut-off, there is no variation in the z direc-
early combining the two orthogonal polarizations. In the fol-tion, so that waves reflect from sidewall to sidewall in a trans-
lowing, only the cosine variation will be considered.verse direction at or below cut-off. Thus, at cut-off, the ridge

For TM modes the scalar potential must be zero at thewaveguide can be considered as a short-circuited parallel-
wall:plane waveguide with infinite width in the z direction. The

case of the dominant mode, like all the modes with no varia-
Jm(pea) = 0 (52)tion in the y direction, is particularly easy to calculate. Start-

ing indeed in the x direction from the vertical sidewall which
which determines the eigenvalues pemn from the argumentsis a short-circuit at the end of the transverse equivalent
emn � pemna for which the Jm functions vanish and yield:transmission line, one first has a parallel-plate waveguide per

unit length in the z direction, then a capacitance because of
φm = CemJm(pe r) cos mφ (53)the abrupt change in height (see WAVEGUIDE DISCONTINUITIES),

then again a parallel-plate waveguide with reduced height up
where the first index m is the order of the function Jm andto the middle of the cross section. There the impedance is ei-
the second n relates to the order of the zeros with increasingther infinity or zero, depending on whether the mode is odd
argument.or even as a function of the electric field. The second half of

For TE modes the normal derivative of the potential mustthe cross section is identical to the first half just described.
vanish at the wall:The transverse resonance frequency, hence the cut-off fre-

quency of the mode, can easily be calculated in terms of trans-
mission line parameters, as well as wavelength and imped- J′

m(pha) = 0 (54)

ance (19). For the double-ridge waveguide, the impedance is
which determines the eigenvalues phmn from the argumentstwice that of the simple-ridge waveguide. Fundamental Refs.
hmm � phmna for which the Jm functions are extremum, andare 20 and 21.
yields:

Circular Waveguide. The circular waveguide has a circular
cross section of radius a. The eigenvalue Eq. (19) for TM �m = ChmJm(phr) cos mφ (55)

where the first index m still is the order of the function Jm

and the second n relates to the order of the extrema with
increasing argument. There is a degeneracy which is typical
of the circular waveguide: the TE0n modes have the same ei-
genvalue as the TM1n modes since a property of the Bessel
functions is:

J′
0(pr) = −J1(pr) (56)

For TM and for TE modes, the field configurations can be cal-

b

0

E b0

α

α
culated from the general theory and the normalization condi-
tions. The following results are obtained.Figure 5. Cross section of a ridge waveguide.
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TE modes Hz component of a TE mode and the scalar potential yields:

Hz = (p2/ jkζ )kV (z)� (60)

which shows that when the medium is lossless Hz is inversely
proportional to the frequency. Hence losses decrease with in-
creasing frequency. A number of mode configurations can be
found in (4,10,17,18).

Coaxial Waveguide. Coaxial lines are among the most com-
monly used of all transmission lines, largely because of the
convenient construction and the nearly perfect shielding be-
tween fields inside and outside of the line. They are commonly
used up to 10 to 20 GHz. The range of impedances that may

�mn =ChmnJm(phmnr) cos mφ

J′
m(hmn) = 0

Chmn = 1

hmn
√

π
√

1 − (m/hmn)2Jm(hmn)

multiplied by
√

2 if m �= 0; by 1 if m = 0

ht =Chmn[−ar phmnJ′
m(phmnr) cos mφ

+ aφ (m/r)Jm(phmnr) sin mφ]

et =Chmn[ar(m/r)Jm(phmnr) sin mφ

+ aφ phmnJ′
m(phmnr) cos mφ]

be obtained most conveniently in the TEM mode is about 30
TM modes to 100 �. Above 15 GHz and up to about 30 GHz the most

common coaxial lines are rigid. In addition to the TEM mode,
higher-order TE and TM mode solutions can also exist. They
are usually cut off and are important essentially as reactive
effects near junctions of the line, although they occasionally
may enter as additional propagating modes in the transmis-
sion system. Higher-order TE and TM modes are calculated
as indicated for the circular waveguide and the general solu-
tion is Eq. (50), where Bessel functions of both the first and
second kind are to be used. The transcendental equations are
more complicated than for the one-conductor circular guide.
The solutions determine the values of the cut-off frequency,
for any mode type and any particular sizes. Solution of the

φmn =CemnJm(pemnr) cos mφ

Jmn(emn) = 0

Cemn = 1
emn

√
π J′

m(emn)

multiplied by
√

2 if m �= 0; by 1 if m = 0

et =Cemn[−ar pemnJ′
m(pemnr) cos mφ

+ aφ (m/r)Jm(pemnr) sin mφ]

ht =Cemn[−ar(m/r)Jm(pemnr) sin mφ

− aφPemnJ−
m(pemnr) cos mφ]

transcendental equations is obtained by graphical methods or
by consulting published tables. More information is found in

Comparing the successive order of zeros and extrema of Bes- (10,18).
sel functions shows that the dominant mode is the TE11 There are a number of normalized connectors for coaxial
mode. Its eigenvalue corresponds to the first maximum of the cables and waveguides. They are characterized by a maxi-
function J1 and has the following characteristics: mum admissible standing wave ratio, due to very severe toler-

ances. In rigid coaxial guide with no dielectric the inside con-
ductor is maintained in position by using special techniques
(22).

The usual frequency limitation for using coaxial cable at
microwaves is its specific attenuation, which is the sum of

ph11
∼= 1.84/a

�11 = Ch11J1(ph11r) cos φ

ωh11 = ph11c ∼= 1.84c/a

λc ∼= (2π/1.84)a

(57)

copper and dielectric losses. Analytical expressions are found
for instance in (23). The specific attenuation of a good coaxial

It is apparent that the wavelength at the cut-off frequency of cable is of the order of 1 dB/m. When calculating the attenua-
the dominant mode is of the order of the guide circumference, tion, the voltage breakdown, and the maximum power as a
while being larger than 2a. Hence, the cut-off frequency of a function of the ratio of the outside to the inside radii of an
circular waveguide of radius a is lower than that of a rectan- air-filled coaxial line, it appears that there is a minimum for
gular waveguide of width a. The transverse fields of the domi- the attenuation and a maximum for the voltage breakdown
nant mode are: and for the maximum power in the approximate range of 30

to 80 � for the characteristic impedance, which explains why
most coaxial lines and cables have an impedance of 50 or
75 �.

ht = −arCJ′
1(pr) cos φ + aφ (C/r)J1(pr) sin φ

et = ar(C/r)J1(pr) sin φ + aφCJ′
1(pr) cos φ

(58)

Elliptical Waveguide. An elliptical waveguide is a uniformThe TE0n modes exhibit the interesting property of having
region in which the transverse cross section is of ellipticallosses which decrease when the frequency increases. As an
form (24). The rectangular coordinates xy of the cross sectionexample, the TE01 mode has the following characteristics:
are related to the coordinates of the confocal ellipse and confo-
cal hyperbola. The boundary ellipse is defined by the coordi-
nate as a function of which the major and minor axes as well
as the eccentricity and the focal distance can be expressed.

�01 = CJ0(pho1r) with pho1
∼= 3.83/a

ht = arCpho1J1(pr) ; et = −aφCpho1J1(pr)
(59)

Mode functions for TE and TM modes are derived from Ma-
thieu functions, eigenfunctions of Helmholtz equation in ellip-Hence the transverse fields vanish at the wall and induce no

wall losses. The only wall losses are due to the field longitudi- tical coordinates (25). When the eccentricity decreases, the el-
liptical boundary reduces to a circular one and the Mathieunal component. Calculating the proportionality between the
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functions degenerate into circular functions. Correspondingly, wherein these modes are propagating or nonpropagating. For
regions such that the wavelength is smaller than a given cut-the confocal coordinates become the polar coordinates.

The field components can be calculated for each mode ac- off wavelength the mode fields decay spatially like 1/r and
hence may be termed propagating; conversely for wavelengthcording to the general theory. The cut-off frequencies are ex-

pressed in terms of the roots of the functions, determined by larger than the cut-off wavelength the mode fields decay
faster than 1/r and may, therefore, be termed nonpropa-the boundary conditions, and the semifocal distance. An alter-

native expression in terms of the eccentricity of the boundary gating.
ellipse is obtained by use of the elliptic integral formula for
the length of the boundary ellipse. Computation of power flow Conical Waveguide. Conical waveguides are of a two-con-
and attenuation in elliptical guides involves numerical inte- ductor type. The transmission direction is along the radius r
gration of the Mathieu functions over the guide cross section. and the cross sections transverse thereto are spherical sur-
Some mode patterns are shown in (10). faces bounded by the two cones. The conical waveguide is seen

to bear the same relation to a spherical waveguide that a co-
Radial Waveguide axial waveguide bears to a circular guide. Examples of conical
Cylindrical Cross Section. The transverse cross section of a guides are provided by tapered sections in coaxial guide, coni-

radial waveguide with cylindrical cross section is a complete cal antennas (15), and others. Because of the two conductors,
cylindrical surface of a given height. The classical circular- the conical waveguide propagates a TEM mode. The r depen-
cylindrical coordinate system is appropriate to a region of this dence of this dominant mode voltage and current is deter-
type. Radial waveguides are encountered in many of the reso- mined by the spherical transmission-line equations, which re-
nant cavities used in microwave oscillator tubes, filters, and duce in this case to uniform transmission-line equations. The
so on. Free space can be regarded as a radial waveguide of attenuation constant of this mode is given in (10), as well as
infinite height. The transverse electromagnetic field in radial some expressions related to TE and TM modes.
waveguides cannot be represented, in general, as a superpo-
sition of transverse vector modes: there exists only a scalar
representation that, for no Hz field, is expressible in terms of ADVANCED TOPICS
TM-modes and, for no Ez field, in terms of TE-type modes (10).

In a radial waveguide the concept of guide wavelength Periodic Waveguides
loses its customary significance because of the nonperiodic na-

Periodic waveguides are periodically loaded waveguides.ture of the field variation in the transmission direction. Con-
Hence, strictly speaking, they should not be considered in thissequently the usual relation between guide wavelength and
article. The importance they have had, the fact that they arecut-off wavelength is no longer valid. The cut-off wavelength
‘‘empty’’ except for a periodic loading by infinitely thin obsta-however is still useful as an indication of the propagating or
cles, in most cases capacitive, and the beauty of their electro-nonpropagating character of a mode. The radial waveguide is
magnetic properties certainly deserves some attention (26).a two-conductor system and supports a TEM mode. TE and

Periodic waveguides have been used in the microwave-tubeTM modes are calculated according to the general theory (10).
family as traveling-wave amplifiers and backward-wave oscil-Cylindrical Sector Cross Section. In this case the transverse
lators, as microwave and video filters, and as linear particlecross section has a given aperture, limited by vertical metallic
accelerators. Most of the mathematics and point of view inplanes. Such devices have been used for quite some time as
studying such structures is the same as that used in analyz-specific radar antennas. They have a wall formed by one con-
ing the vibrations of a periodically weighted string or inductor only, hence no TEM mode can propagate. Further-
studying the propagation of light or electrons through a crys-more, there is no periodic symmetry in the horizontal plane,
tal lattice (27). The basic theorem is from Floquet (28). Thewhich alters the solutions with respect to the cylindrical situ-
theorem applies to a second-order linear differential equationation. TE and TM modes are calculated according to the gen-
with periodic coefficients and is quite general (5). It says thateral theory (10).
a solution of the equation differs from the solution one period
away by only a complex factor. Applied to a periodicallySpherical Waveguide. Free space can be considered as a
loaded transmission line it may be translated as follows (26):nonuniform transmission region or spherical waveguide. The
for a given mode of propagation at a given steady-state fre-cross sections transverse to the radial transmission direction
quency the fields at one cross section differ from those oneare complete spherical surfaces. In practice many spherical
period away only by a complex constant. The theorem is truecavities may be conveniently regarded as terminated spheri-
whether the structure contains loss or not so long as it is pe-cal guides. The dominant mode is spherical TEM. TE and TM
riodic.modes are based on the eigenfunctions in the spherical coordi-

The study reveals that periodic transmission lines havenate system, that is, the associated Legendre functions, or
the following characteristics:Legendre polynomials (15). The corresponding fields are cal-

culated for both types of modes (10). The r dependence of the
1. There are pass bands and stop bands, which is to saymode fields is determined by the spherical transmission-line

certain frequencies can propagate down the structurebehavior of the mode voltage and current. As for the modes
with little or no attenuation, whereas other frequenciesin radial waveguide, the concepts of cut-off wavelength and
are attenuated at a rapid rate. These frequencies occurguide wavelength lose their customary significance in a
in bands.spherical waveguide because of the lack of spatial periodicity

along the transmission direction. The cut-off wavelength of 2. There is no unique phase velocity. At any frequency for
a given mode of propagation there is found to be an in-both TE and TM modes is, however, indicative of the regions
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finite number of discrete velocities characterizing the Oversize Waveguides
mode.

As has already been mentioned, the TE0n and in particular
3. The fields may be analyzed in a Fourier series, often the TE01 modes in circular waveguides have received a good

called space harmonics or Hartree harmonics, each com- deal of attention for possible long-distance propagation of en-
ponent of the series having a different phase velocity ergy, especially at millimeter waves. The reason is that the
but all having the same group velocity. Typically, there amplitude of the fields at the wall decrease when frequency
will be many components with phase velocities less increases, and current and conductor losses approach zero at
than the velocity of light, yielding slow waves. very high frequency. Attenuations as low as 1.3 dB/km have

been attained. Since electric field lines are circular, modes of4. Structures can be treated from both the field and the
this class are often described as circular electric modes (18).circuit standpoint, each approach being useful in cer-
A major problem arises because the mode is not the dominanttain problems.
one. Such guides are known as oversize guides. For the TE01
mode, there are four other propagating modes, with cut-offTo understand what causes pass bands and stop bands, as-
frequency below the TE01 cut-off. Furthermore, since the fre-sume that circular infinitely thin irises are placed periodically
quency is well above cut-off, many other modes are in thein a circular waveguide propagating the TM10 mode. This is
propagating range. This raises several practical problems.the structure used in the linear electron accelerator. At each
First, the desired mode must be excited with reasonable pu-obstacle there will be transmission and reflection. If an ob-
rity. Secondly, coupling from the desired mode to undesiredserver stations herself in the plane of an iris, she will see that
modes must be avoided. A general solution is to devise mode

there are certain frequencies for which the reflections from
filters which discriminate against the undesired modes, but

the successive obstacles returning to her add in phase. These
cause negligible attenuation to the desired one (18).

frequencies will be nearly equal to the frequencies for which
Suggestions have been advanced also for using a large-size

the one-way phase shift between obstacles in the unperturbed rectangular waveguide, whose transverse dimensions are just
guide is any multiple of �. These frequencies are the centers less than � � 2�, to increase the CW power-handling capabil-
of the stop bands. At other frequencies the accumulated re- ity. Trapped-mode resonance effects in such a system have
flections from an infinite length of guide add up to zero, and been investigated experimentally, and it has been shown how
transmission occurs. Those frequencies make up the pass to suppress them (29).
bands. Figure 6 shows an �–� diagram for this structure. The
dashed line represents the �–� line for the waveguide with-
out obstacles. Electric field representations illustrate the situ- Mode Excitation
ation in more detail.

The general theory shows that an infinity of TE and TMTwo important theorems on lossless periodic transmission
modes may exist in a hollow waveguide. Furthermore, in alines have been derived (26). One is that the time-average
more-than-one conductor waveguide a TEM mode may alsoelectrical stored energy per period is equal to the time-aver-
exist. This possible TEM mode has a zero cut-off frequencyage magnetic stored energy per period in the pass bands. The
while the TE and TM modes each have a specific cut-off fre-other is that the time-average power flow in the pass bands
quency. Each of those modes will attenuate below cut-off,is equal to the group velocity times the time-average electrical
storing energy as has been seen, and propagate above cut-and magnetic stored energy per period divided by the period.
off. The modes however are only the possible solutions of the
equations, submitted to the boundary conditions. As men-
tioned earlier modes will actually exist in the waveguide only
if they are properly excited, which requires an adequate
transducer at the generator end of the waveguide. To ade-
quately detect the power transmitted by those modes such a
transducer is also necessary at the detector end of the wave-
guide. For the sake of completeness, it should be mentioned
that irregularities or nonuniformities in the waveguide may
also excite other modes, causing what is called mode conver-
sion. This may be an advantage or a disadvantage, depending
upon the application. This subject is however outside of the
scope of this article (see WAVEGUIDE DISCONTINUITIES).

Equation (12) and the associated boundary conditions may
yield the amplitudes of the fields, under specific excitation
conditions. As already stated a linear combination of all the
modes, with adequate coefficients, is the general solution of
Maxwell’s equations for the waveguide (2). If for a given exci-
tation specific mode coefficients are found to be zero because
the corresponding modes do not satisfy the boundary condi-

ω

π–2 π2π
β

π– 0
L tions of the excitation, those modes will not be excited and

will not actually exist in the guide. Using Eq. (12) and addingFigure 6. Dispersion diagram (�–�) for iris-loaded waveguide, with
dashed line for unloaded waveguide. the expressions of the longitudinal components Eqs. (18) and
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