
positing in or on the wafer the selected atoms, using vacuumNUMERICAL MODELING OF CIRCULATORS
chambers or furnaces.

There was no reason, in principle, why MIC methods couldCirculators are a key control component of microwave and
not be adapted for microwaves and millimeter waves, andmillimeter-wave electronic systems. They are found in com-
once the idea caught on, there was no turning back. Micro-mercial and military equipment, including receiving, trans-
wave monolithic integrated circuits (MMICs) became the nextmitting, and dual-purpose systems. Circulators are used in
technology revolution.ship, satellite, aircraft and land-based equipment. Because all

Fabrication of circulators in the hybrid format began inof this equipment has been under ever increasing pressure to
the 1960s and 1970s, and included such structures as ferritebecome lighter, smaller, and more reliable over the last three
devices prepared by dropping a ferrite puck into a hole ma-decades, coinciding with the semiconductor and integrated
chined into a substrate material, metallizing the shield andcircuit revolutions in technology, microwave and millimeter-
microstrip lines, and then placing the whole assembly in awave components have converted from hollow or partly filled
housing. This concept extended itself in the 1980s and 1990swaveguiding structures to those compatible with planar con-
into having the circulator device prepared on the same sub-figuration.
strate as other microwave and millimeter-wave components.Planar configuration enables the circuit designer to use ei-
The latter approach is almost monolithic, except for the sepa-ther hybrid or integrated circuit technology. Hybrid technol-
rate machining phase and separate ferrite puck processingogy is more flexible in that it allows the designer to combine
steps.components prepared with different procedures, and then

Then came the idea in the 1990s of developing both ad-joined in a planar format for final assembly. Thus the solid-
vanced hybrid circulator assembly and monolithic circulatorstate field effect transistors (FETs) would be attached to a
processing. Formation of the DARPA (Defense Advanced Re-substrate that already had microstrip lines etched for the cre-
search Project Agency) Ferrite Development Consortiumation of transmission lines (single or coupled). Devices such
(FDC), a group of industrial, government, and university re-as circulators also would be glued on with external biasing
search laboratories, led to progress in preparing monolithi-magnet circuits after the preparation of the substrate. This
cally compatible circulators on silicon and gallium arsenideprocess would continue until the entire system was com-
substrates. This research effort happened between 1993 andpleted, and then the assembled structure dropped into a hous-
1996, with spinoffs occurring several years after the comple-ing with the proper connectors piercing the housing at desig-
tion of the FDC’s work.

nated sites. Essential to the capability to design hybrid and monolithic
Although hybrid circuits were prepared for over two de- circulators is the ability to model the performance of the non-

cades in industrial facilities, they have several serious draw- reciprocal component so that it will not have to be redesigned
backs. One is the effort required to assemble such circuits. many times at tremendous expense. A major breakthrough in
The cost in time and labor can be high. Another is the fact the effort to provide a design-friendly tool was the develop-
that circuits prepared in the hybrid format are all different. ment of a two-dimensional (2-D) uniform Green’s function
No two completed circuits look or act electrically alike. Thus, method by Bosma (1) in the early 1960s. The method worked
to keep finished circuits within performance specifications, well because its Green’s function expression for the electric
careful technician tuning of each circuit coming off the assem- field normal to the shield depends on an expansion whose
bly line had to be done. Such tuning can be extremely labor- terms are convergent. Because it is based upon a canonical
intensive, and no amount of it can save some circuits. Finally, circular geometry, and the main physical purpose of the
circuits that have made it through the first two stages, fabri- Green’s function is to take proper account of the nonrecipro-
cation and tuning, may fail in actual use. This is because hy- cating anisotropy of the ferrite material under appropriate
brid circuits are composed of many weak bonds, whether be- boundary conditions, the expression can be evaluated very
tween a wire and a metallization on the substrate or between rapidly.
two planar substrates in a housing having many of them. Other electromagnetic techniques were examined from the

To eliminate the many problems associated with hybrid 1960s onward for planar circulators, and all of these methods,
circuit technology, an increasingly aggressive move toward including the boundary-element method, the finite-element
monolithic integrated circuits (MICs) began in the late 1970s, method, and the finite-difference method, are amenable to an-
accelerated in the 1980s, and became mature in the 1990s. alyzing devices with arbitrary or nonstandard perimeters, but
The basic idea behind this newer technology was to utilize the are extremely numerically intensive. They have their place in
advantages the semiconductor manufacturers had obtained in the suite of techniques employed to realize a final device, but
producing hundreds of thousands of miniature solid-state ac- for user-friendly device design, where rapid repetitive trials
tive and passive components of exactly the same properties. are performed to find a final acceptable design with the
They did it by using step-and-repeat fabrication techniques proper characteristics, it is most desirable to use a Green’s
on single crystal silicon and gallium arsenide wafers of pre- function method. Though the Green’s function technique
cise thickness and uniform properties. The uniformity of the works only for a circular shape and some other simple canoni-
semiconductor wafers was assured by growing single crystal cal geometries, it can be used to good approximation for other,
boules of the desired elemental or compound semiconductors. nonstandard shapes to obtain the basic design information

required before switching to the use of the costly and slowDevices were fabricated by ion implanting, diffusing, or de-

1
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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numerically intensive solvers. Also, because the circular (hard wall versus soft wall), and the properties of ports (arbi-
trary versus symmetric disposition) apply equally well forshape is very popular, oftentimes the use of the Green’s func-
two- and three-dimensional circulator models. As alreadytion method will provide the exact solution for design.
mentioned, the 2-D model approach is quite reasonable for
many if not most experimentally encountered situations.
However, where specific study of the substrate thickness ef-COMPUTER-AIDED DESIGN OF PLANAR CIRCULATORS
fect of the circulator performance is desired, the designer
must resort to using rigorously derived three-dimensionalComputer-aided design of ferrite circulators is made easy
(3-D) Green’s functions.with the use of Green’s-function-based computer codes. Since

To find the complete electromagnetic field, dyadic Green’sthe thickness of the substrate is a fraction of a wavelength,
function solutions must be sought and satisfactory forms ob-the higher-order perpendicular mode structure is limited, as
tained that will enable convenient representations for numer-is the launching of surface waves. The lack of surface waves
ical evaluation. This is because for the 2-D models, the elec-is desirable for maintaining a controllable mode structure in-
tric field component (Ez) and the magnetic field componentsside the circulator, as well as in the input and output trans-
(Hx, Hy or Hr, H� in cylindrical coordinates) must be deter-mission lines, which can be microstrip or coplanar. The thin
mined by the driving function (or source). The source may besubstrate also means that a 2-D representation of the electro-
a current vector (or its equivalent components), an electricmagnetic fields within the circulator device is a reasonable
field vector, or a magnetic field vector on a contour or surface.approximation. The device may be modeled be letting waves
The source location exciting the circulator device is on a con-enter and exit through specific ports, and assuming that no
tour if the model is 2-D, and on a surface if the model is 3-D.energy escapes through the intervening perimeter contour re-
For the 3-D model the dyadic Green’s function is much moregions between ports. This means that magnetic walls are as-
complicated because the electric and magnetic field vectorssumed at interfaces between the ferrite and the external di-
are full (Ex, Ey, Ez and Hx, Hy, Hz must be considered; equiva-electric. Such condition forms are what is referred to as the
lently, Er, E�, Ez and Hr, H�, Hz in cylindrical coordinates).hard wall condition. For such a condition, Green’s functions

are available for both a homogeneous and an inhomogeneous
FERRITE MATERIAL PARAMETERS AFFECTING MODELING2-D ferrite puck.

The inhomogeneous case is very important, since the situa-
Nonreciprocity is generated in the circulator device (Fig. 1) bytion of nonuniformly applied magnetic bias field, finite-sized
applying a bias dc magnetic field perpendicular to the planarpuck, and nonuniform ferrite material distribution through-
surface of the structure, be it hybrid or monolithic. The biasout the puck radius all lead to violation of the uniformity as-
field will create off-diagonal tensor elements in the permeabil-sumption. So although the uniform Green’s function may be
ity, and these new elements are antisymmetrically disposeda decent first approximation on the way to getting a circulator
with respect to the diagonal. The size of the off-diagonal ele-design, it can actually be only a rough estimate or even a bad
ment � compared with the diagonal element � will determineapproximation if the magnetic bias nonuniformities become
the extent of nonreciprocal action possible in a circulator de-large or if intentional variation of the ferrite material magne-
vice. The permeability tensor istization M is significant. For almost all cases then it is recog-

nized that inhomogeneous Green’s functions are required.
Thus the uniform 2-D Green’s function must be replaced in
many circumstances by an inhomogeneous 2-D Green’s
function.

↔
µ = µ0




µ − jκ 0
jκ µ 0
0 0 1


 (1)

Whether the problem being addressed is uniform or non-
uniform, the designer may be left with the need to assess the
effect of the external dielectric medium. This can be done us-
ing a specially prepared Green’s function that allows some
leakage of the electromagnetic wave into the surrounding di-
electric region, while maintaining the basic electromagnetic
function of the device, which is to exchange energy between
the multiport device terminals.

Green’s functions that can represent circulator behavior
for an arbitrary number of ports, with arbitrary angular loca-
tions along the device perimeter, exist even at present. But
great economy of computational effort results if the distribu-
tion of the ports along the perimeter is manyfold symmetric.
This is assured if the ports are chosen to be of equal angular
width and placed regularly along the circumference of the de-

; (   ,   0,   )µ µ κ

d, dµ

Inhomogeneous
ferrite

Inhomogeneous
wall (nonport)

Port–ferrite-region
interface

Isolated

Input

Direct

a

c

b

vice. Once this is done, the perimeter Green’s functions, relat-
Figure 1. Top view of a microstrip circulator, valid for either a 2-Ding a source at one point along the perimeter to a resulting
or a 3-D representation. In the 3-D case it represents a cross-section

field at another point along the perimeter, have symmetry re- cut at z � const through the device. The drawing is done for the case
lations to one another, vastly reducing the computer times for of symmetrically disposed ports (three here). Under the central shield
running simulations of the circulator. is the ferrite material. Microstrip lines provide access to the external

All the above arguments relating to the nature of the puck environment. The inhomogeneous wall between ports is either a mag-
netic wall or a ferrite–dielectric interface.(uniform versus inhomogeneous), the wall characteristic
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where �0 is the free-space value. � and � (relative values) The last term in Eqs. (10) and (11) is referred to as the de-
have both real and imaginary parts when the system is lossy, magnetization field, allowing us to rewrite these two equa-
as is any real ferrite material. Thus, in phasor form (assum- tions as
ing an ej�t time dependence) we have by Soohoo (2)

µ = µ′ − jµ′′ (2) Hi(ap) = Hap − Hde (13a)

Hde = 4πNzzM (13b)
κ = κ ′ − jκ ′′ (3)

HHHi(ap) = HHHap − HHHde (14a)

HHHde = 4πNNN · MMM (14b)

If it is desired to avoid the approximation implied by the des-

µ′ = 1 + ωmω0[ω2
0 − ω2(1 − α2

m)]
[ω2

0 − ω2(1 + α2
m)]2 + 4ω2ω2

0α
2
m

(4a)

µ′′ = ωmωαm[ω2
0 + ω2(1 + α2

m)]
[ω2

0 − ω2(1 + α2
m)]2 + 4ω2ω2

0α
2
m

(4b)

ignations in Eqs. (13b) and (14b), then the problem must be
solved fully by numerical means, self-consistently obtaining
the static field solution inside and outside the ferrite puck,
whatever its geometric shape. This holds true whether the
shape is a thin cylindrical volume, or a more irregular shape
such as a hexagonal prism.

κ ′ = − ωmω[ω2
0 − ω2(1 + α2

m)]
[ω2

0 − ω2(1 + α2
m)]2 + 4ω2ω2

0α2
m

(5a)

κ ′′ = −2
ω0ω

2αmωm

[ω2
0 − ω2(1 + α2

m)]2 + 4ω2ω2
0α

2
m

(5b)

For finite-thickness puck, Nzz will be nonuniform, and this
Controlling variables in these equations are the magnetiza- will make � and � also nonuniform, through Eqs. (4) and (5).
tion radian frequency �m, ferromagnetic resonance radian fre- Therefore we see that the circulator problem must by neces-
quency �0, phenomenological damping term �m, and operating sity become an inhomogeneous boundary value and forcing
radian frequency �. The first three frequencies can be found function problem. In those situations where a large enough
by bias field is applied to create saturation, Hap � Hde and their

cancellation in Eq. (10) leads to Hi(ap) � 0. By Eq. (9), the net
ωm = −γ M (6) internal magnetic field Hi will be either Hi � 0 (ordinary fer-

rite material) or Hi � Han (hexagonal ferrite material). In fact,ω0 = −γ Hi (7)
in a hexagonal ferrite, with Hap � 0 and its remanent magne-
tization M � 0, we have Hi(ap) � 0 and Hi � Han holds exactly.αm = −γ �H

2ω
(8)

Real hexagonal ferrites will have nonzero M, making Hi �

Han � Hde � Han. For hexagonal ferrites where no applied mag-Here � is the gyromagnetic ratio, whose value in rationalized
netic field is necessary, typical anisotropy values of 17,000 OeMKS units is �2.21265 � 105 (rad/s)/(A/m) � 2� � 2.8 MHz/
to 19,500 Oe lead to a ferromagnetic frequency range f 0 (�Oe. M is the magnetization, which may approach a saturated
�0/2�) from 47.6 GHz to 54.6 GHz. The anisotropy field isvalue Ms; �H the ferromagnetic linewidth; and Hi the internal
derived from the anisotropy energy of the ferrite. It producesmagnetic field, which may be expressed as a superposition of
a torque on the magnetization in the same manner as an ex-the net internal field due to externally applied field Hap and
ternally applied field, and lies in the same direction as thethe anisotropy field Han:
remanent magnetization.

One of the issues that must be understood is why theseHi = Hi(ap) + Han (9)
devices are not operated near or at the ferromagnetic reso-
nance frequency. Besides the intuitive idea that near-reso-The internal magnetic bias field Hi(ap) has previously been ap-
nance operation may accentuate electromagnetic field lossproximated using a demagnetization factor Nzz (for the pre-
due to absorption mechanisms, a simple rigorous way to seeferred direction z):
that this is indeed the case is to examine Eqs. (4) and (5) in
the limit of low but finite �m. Four reduced relationships areHi(ap) = Hap − 4πNzzM (10)
found for ��, ��, ��, and ��:

M is assumed to be in the z direction also. When saturation
has been attained, M is replaced by Ms. Of course, the resul-
tant field is not necessarily only in the z direction even if the
applied field is. Equation (10) represents then an approxima-
tion of further implications, other than its scalar form. In vec-

µ′ = 1 + ωmω0

ω2
0 − ω2 (15a)

µ′′ = ωmωαm(ω2
0 + ω2)

(ω2
0 − ω2)2 (15b)

tor form, we have

HHHi(ap) = HHHap − 4πNNN · MMM (11)

The demagnetization factor Nzz, which is a function of the ra-

κ ′ = − ωmω

ω2
0 − ω2 (16a)

κ ′′ = −2ω0ω
2αmωm

(ω2
0 − ω2)2 (16b)

dial location r within the circulator puck R (r 	 R), has the
property

These expressions are accurate to first order in �m. As � �
Nzz = Nzz(r, z) ≤ 1 (12) �0, making the denominators in the loss component formulas
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for �� and �� approach zero, a second-order singularity is dium, because the puck acts (excluding the effects of the
ports) as a distributed resonator; so this means that the op-reached, namely (� � �0)�2, because
erating resonance or electrical resonance must be above, but
not too far above, the ferromagnetic resonance. Equation (23)
applies to hexagonal material if the device is being operated
far below the ferromagnetic resonance, and says that no circu-

lim
ω→ω0

1
(ω2

0 − ω2)2
= lim

ω→ω0

1
(ω0 − ω)2(ω0 + ω)2

= 1
2ω(ω0 − ω)2

(17)
lation behavior will be found. Therefore, for BaM or SrM, op-

This is precisely what makes it unacceptable to operate near eration below the ferromagnetic resonance is acceptable, but
the ferromagnetic resonance frequency. The strength of the not so far below that nonreciprocity is lost. Because �0 is fi-
singularity is first order in �m. nite, on the order of 50 GHz, operation above the ferromag-

Equations (15) and (16) may be used to assess the degree netic resonance is possible too, and here the applicable lim-
of circulation possible, which depends upon the amount of iting formula will be Eq. (22). Again, operation too far above
nonreciprocal anisotropy present in the ferrite material used this resonant point is not recommended, as useful nonreci-
in the device. Nonreciprocal anisotropy is measured by the procity will quickly be lost.
ratio of the real part of the diagonal permeability to the real The wavelength 
f in the ferrite medium is calculated us-
part of the off-diagonal permeability, ��/��. Invoking Eqs. ing the effective two-dimensional permeability
(15a) and (16a),

µeff = µ

[
1 −

�
κ

µ

�2
]

(24)κ ′

µ′ = − ωmω

ω2
0 − ω2 + ωmω0

(18)

where the dependence on the ratio �/� is evident. From Eq.For �0 � 0, the formula approaches
(24), the ferrite wavelength is calculated as

lim
ω0→0

κ ′

µ′ = ωm

ω
(19)

λf = c
f

1√
εf µeff

, c = 1√
ε0µ0

(25)

This formula implies that it is necessary to have a sizable
�m in order to obtain sizable circulation behavior, and this where relative values are used in the first formula and the
means a large magnetization value. In addition, bandwidth of second defines the free space velocity of light. An X-band cir-
a well-designed circulator can be shown to be roughly equal culator is typically 4 mm to 5 mm in diameter, and millime-
to �m, so there is a second reason for wanting large values of ter-wave devices are typically 1 mm or less, depending upon
magnetization. the dielectric constant of the ferrite and the operating fre-

If � � �0, the formula becomes quency. Examination of the impedance as a function of diame-
ter shows that whereas microwave circulators will have val-
ues below 20 �, millimeter-wave devices can be designed to
have values close to 50 �.

lim
ω�ω0

κ ′

µ′ = − ωmω

ω0(ω0 + ωm)
(20)

which further reduces if �m � �0 to Static Internal Magnetic Field

In developing electromagnetic radio frequency (RF) field solu-
tions for circulators, the simplest assumption for the dc bias

lim
ω,ωm�ω0

κ ′

µ′ = −ωmω

ω2
0

(21)

magnetic field is that of a nonvarying or constant spatial field.
This may be satisfactory in many cases where the bias fieldIn the limits of extremely high operating frequency (� �
circuit has been engineered to meet this requirement—�) or extremely high ferromagnetic resonance frequency
particularly in the construction of permanent magnets for in-(�0 � �), we use, respectively, Eqs. (19) and (21) to find
dustrial applications, which is in a mature state of develop-
ment, especially for low-frequency use. But this probably is
not the case in hybrid or monolithic circuit applications forlim

ω→∞,ω0→0

κ ′

µ′ = lim
ω→∞

ωm

ω
= 0 (22)

the microwave and millimeter-wave frequencies. Where labo-
ratory measurements are conducted using large electromag-
net pole pieces, the attainment of nearly constant magnetic

lim
ω→∞,ω0�ω

κ ′

µ′ = − lim
ω0→∞

ωmω

ω2
0

= 0 (23)

field inside the pole pieces is assured. Such an arrangement
is not possible, however, for a packaged miniaturized circula-The extreme limiting cases � � � and �0 � � can be found

directly from Eq. (18). They tell us something about the actual tor with a nonideal geometrical configuration of the ferrite
puck, permanent magnet, and flux return path. Even if thecases of ferrite material made out of yttrium iron garnet

(YIG) or a hexagonal ferrite such as BaM or SrM (M stands applied magnetic field is maintained uniform, the internal
magnetic field Hi, which determines the values of the ele-for Fe12O19). For YIG, where Eq. (22) applies, it is noticed that

no circulation behavior can be utilized at very high frequen- ments in the permeability tensor, will still not be uniform (ex-
cept in the extreme limit of infinitesimal substrate thickness).cies. Therefore, for YIG, operation above the ferromagnetic

resonance is required, but not so high as to cause nonreciproc- Instead, the circulator’s aspect ratio of radius to thickness
controls the degree to which the inhomogeneous demagnetiza-ity to be lost. But the diameter of a circulator is constrained

to be approximately half the wavelength 
f in the ferrite me- tion field opposes the applied magnetic field.
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One consequence of Hi variation is that the ferromagnetic in the previous B expression, one finds the nonlinear Poisson
equation for the magnetostatic potential as in Newman andresonance frequency, where the magnetic dissipation losses

are a maximum, is spread out over a distribution of frequen- Krowne (3):
cies. For ordinary circulators designed with the ferromagnetic
resonance frequency well below the geometrical shield RF res- ∇∇∇ · [µ(|∇∇∇	|)∇∇∇	] = 0 (31)
onant frequency (which approximates the center frequency of

Expanding this formula givesthe circulator operating band), cancellation of the applied bias
field by saturated magnetization leads to nearly zero Hi. Inho-
mogeneous demagnetization, however, can create a range of µ(|∇	|) ∇2	 + ∇∇∇µ(|∇∇∇	|) · ∇∇∇	 = 0 (32)
ferromagnetic resonance frequencies that are not zero and

ormay become quite large close to the circulator perimeter,
where Hi can rise dramatically. Thus near the circulator pe-
rimeter, the ferromagnetic resonance may encroach on the
low-frequency end of the operating bandwidth, bringing many

∇2	 + 1
µ(|∇∇∇	|)∇∇∇µ(|∇∇∇	|) · ∇∇∇	 = 0 (33)

problems, including large losses to the outermost annular
Any of the forms in Eqs. (31) to (33) may be solved for 
.region.

The magnetostatic potential (and as a result, the demagne-Hi can be found by a direct self-consistent solution of Max-
tizing field) is conveniently solved in the cylindrical coordi-well’s magnetostatic (time-independent) equations, replacing
nate system, consistent with a circular ferrite puck cross sec-the approximate demagnetization approach presented earlier.
tion. Nonlinear Poisson Eq. (31) becomesThe relevant equation is the curl H relation, Ampere’s law

governing the magnetic field H in a current free, time-inde-
pendent environment:

∇∇∇ × HHH = 0 (26)

1
r

∂

∂r

�
rµ(|∇∇∇	|) ∂	

∂r

�
+ 1

r
∂

∂φ

�
µ(|∇∇∇	|) ∂	

∂φ

�

+ ∂

∂z

�
µ(|∇∇∇	|) ∂	

∂z

�
= 0 (34)

Equation (26) is solved by specifying H as the gradient of a
Because of the azimuthal (�) symmetry, the three-dimen-magnetostatic potential 
:
sional puck region problem reduces to a 2-D problem in the
coordinates r, z:HHH = −∇∇∇ψ (27)

For nonlinear ferrite material, the constitutive relation is
1
r

∂

∂r

�
rµ(|∇∇∇	|) ∂	

∂r

�
+ ∂

∂z

�
µ(|∇∇∇	|) ∂	

∂z

�
= 0 (35)

BBB = µf(HHH + MMM) = µ0(HHH + MMM) (28) Equation (35) has a singularity at the origin, which is remov-
able by multiplying through by r, giving the well-posed prob-

in MKS units, where the second equality comes about from lem equation
the near-equality of �f and �0. In CGS units this relationship
would have a factor 4� multiplying M. In either case, M is the
magnetization inside the ferrite material caused by the ap-

∂

∂r

�
rµ(|∇∇∇	|) ∂	

∂r

�
+ ∂

∂z

�
rµ(|∇∇∇	|) ∂	

∂z

�
= 0 (36)

plied field H, where we have dropped the earlier subscripts
The magnitude of the gradient of the scalar magnetostatic(Hap) for brevity. Note that the terms within parentheses are
potential 
 in Eq. (36) isthe resulting internal field [see Eqs. (10) and (11)]. For ordi-

nary ferrites, the B–H relation can be assumed to be single-
valued because the hysteresis effect is small, and where it is
most noticeable, near zero applied field, it is ignored. Such an |∇	| =

[�
∂	

∂r

�2

+
�

∂	

∂z

�2
]1/2

(37)
assumption is not permissible for hexagonal ferrites, because
they have a large anisotropy field (between 10,000 Oe and

Recalling Eq. (27), the z-directed component of the dc mag-30,000 Oe), which must be taken into account by Eq. (9), and
netic field used to provide bias for the ac RF problem is ob-have very hysteretic B–H curves.
tained from the above solution asIn any event, working with ordinary ferrite materials,

where the single-valued nature of the B–H relationship is ac-
cepted, the magnetic flux density B is a nonlinear, monotoni- Hz = −∂	

∂z
(38)

cally increasing function of H and in the same direction as
H. The magnetization M is incorporated into a nonlinear per- The puck volume is contained within the region 0 	 r 	
meability factor �(H), where H is the field magnitude, yield- a, 0 	 z 	 2h, and 0 	 � 	 2�. Using an rz cutting plane
ing reduces the 3-D problem to one of two dimensions, and sym-

metry further simplifies it to the rectangular domain 0 	 r 	
BBB = µ(H)HHH (29) Lr and 0 	 z 	 Lz. In the final reduced domain, the ferrite

material occupies the region 0 	 r 	 a and 0 	 z 	 h. The
Since the divergence of B is zero, problem is solved for the case when an external magnetic

field Hap � Hap ẑ is applied; that is, when the puck is removed,
∇∇∇ · BBB = 0 (30) only a uniform field exists in the z direction. Therefore, we
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require, far from the puck (say at z � Lz), that the gradient cannot propagate through the interfacial arcs separating the
ferrite and external dielectric regions.of the magnetostatic potential 
 normal to the boundary only

be in the z direction and have a value
Two-Dimensional Hard Wall Case

The uniform 2-D Green’s function for the hard wall situation
∂	

∂z
= −Hap, z = Lz and 0 ≤ r ≤ Lr (39)

is

At the center of the puck, due to symmetry (midline r � 0,
0 	 z 	 Lz), and on the outside circumference (r � Lr, 0 	
z 	 Lz) of the puck and far from it, the magnetostatic poten-
tial normal to the boundary has zero value (zero r-directed

Gun(φ, φq) = iζeff

2π

∞∑
n=−∞

Jn(keff r)

J′
n(keff r) − κ

µ

n
keff r

Jn(keff r)
ein(φ−φq )

(45)field), so that

where the effective impedance coefficient is given by∂	

∂r
= 0, r = 0 and 0 ≤ z ≤ Lz (40)

ζeff = ωµ0µeff

keff
(46)

∂	

∂r
= 0, r = Lr and 0 ≤ z ≤ Lz (41)

This is precisely Bosma’s (1) uniform Green’s function solu-
Finally, at the midplane (r� plane) of the puck, the gradient tion relating one angular source point located at �q to the
of the magnetostatic potential 
 parallel to the boundary response point located at � when specializing to the perimeter
(z � 0, 0 	 r 	 Lr) must be zero due to symmetry (zero r- r � R. Equation (45) on the right-hand side for Gun is given
directed field): in abbreviated notation, and hides the fact that this Green’s

function does not have to be specialized to the contour circula-
tor perimeter (where r � R) and that it only relates the driv-∂	

∂r
= 0, z = 0, 0 ≤ r ≤ Lr (42)

ing magnetic field source H to the resulting electric field E.
Furthermore, it only relates an azimuthal magnetic field

Integration of Eq. (40) yields source (� component) to a perpendicular electric field re-
sponse (z component). So in reality, Eq. (45) represents only

	 = constant, z = 0, 0 ≤ r ≤ Lr (43) one dyadic element of a complete dyadic Green’s function.
Properly stated in explicit general form, the uniform Green’sand because of superposition and the gradient nature of the
function is writtenmagnetic field, this constant is arbitrary and so may be set

to zero.
The permeability function �(H) is constructed as follows.

Outside the puck, �(H) � �0. Inside the puck, it is required
that the permeability function be single-valued, necessitating
neglect of hysteresis. A reasonable and convenient analytical

Gzφ

EH,un(r, φ; R, φq)

= iζeff

2π

∞∑
n=−∞

Jn(keff r)

J′
n(keff r) − κ

µ

n
keff r

Jn(keff r)
ein(φ−φq ) (47)

approximation developed for �(H) is given in Newman and
This may be put into a much more compact form if the prod-Krowne (3) as
uct of part of the summation prefactor and the radial part of
the summand is defined as

µ(H) = µ0

�
1 + Ms√

H2
1 + H2

�
(44)

Ms is the saturation magnetization, and H1 is the corner mag-
γ zφ

n0 = iζeff
Jn(keff r)

J′
n(keff r) − κ

µ

n
keff r

Jn(keff r)
(48)

netic field, at which the magnetization reaches 0.707 times
its saturation value. The corner field H1 is often on the order

One obtains from Eq. (47), using Eq. (48),of 1 Oe, and at that field the magnetic flux density B is on
the order of but still much less than the saturation magneti-
zation, which is often on the order of thousands of gauss. An
advantage of the ferrite model (44) over a piecewise linear

Gzφ

EH,un(r, φ; R, φq) = 1
2π

∞∑
n=−∞

γ zφ

n0ein(φ−φq ) (49)

model is that it is continuous, producing continuous Jacobian
Two-Dimensional Soft Wall Casematrix elements that can be calculated explicitly in a numeri-

cal procedure. If it is desired to find some way of determining the effect of
the external dielectric region on the circulator behavior, the
perfect magnetic walls must be replaced by penetrable walls.UNIFORM TWO-DIMENSIONAL GREEN’S FUNCTION
A dyadic Green’s function allowing for such soft wall (as op-
posed to hard wall) conditions enables us to find out the effectSimplest case to treat is that of a uniform ferrite material in

the puck (see Fig. 1), and this leads to what is referred to as of changes in the permittivity �d and permeability �d on circu-
lator performance. The three common cases of air as the ex-the uniform Green’s function solution. Uniform Green’s func-

tion solution is found assuming that perfect magnetic walls ternal medium, a dielectric as the external medium, and an
unmagnetized ferrite as the external medium are all easy tofor arcs connecting port apertures. That case may also be re-

ferred to as the hard wall case, since electromagnetic waves treat with the soft wall dyadic Green’s function.
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Applying the radiation condition as r � � leads to the se- For r � R (outside the circulator puck), the dyadic Green’s
lection of the modified Bessel function of the second kind, function elements are
Kn(kdr), for use in the external field construction, r � R. It is
assumed that the same field modes are maintained in the de-
vice for radii exceeding the circulator radius, so that a consis-
tent 2-D modeling procedure holds inside and outside the de-
vice. Additionally, the contribution of the microstrip edge
effect and fringing field provides the correct field available
from the circulator puck for coupling to the external environ-
ment when multiplied by the factor f . How to find f is dis-

Gzφ

EH (r, φ; R, φ ′) = iω f
2π

∞∑
n=−∞

Jn(keR)

Kn(kdR)
Kn(kdr)ein(φ−φ ′ )

1
µe

�
keJ′

n(keR) − nκ

µ

1
R

Jn(keR)

�
− f

kd

µd

Jn(keR)

Kn(kdR)
K ′

n(kdR)

(59)

cussed in Krowne (4). With these constraints, the internal
TMz nature of the field persists for r � R, whence

Ed
z =

∞∑
n=−∞

ad
neKn(kdr)einφ (50)

Hd
φ = 1

iωµd

∞∑
n=−∞

ad
nekdK ′

n(kdr)einφ (51)

Gφφ

HH (r, φ; R, φ ′) = µe

µd

kd

ke
f

1
2π

∞∑
n=−∞

Jn(keR)

Kn(kdR)
K ′

n(kdr)ein(φ−φ ′ )

J′
n(keR) − nκ

µ

1
keR

Jn(keR) − f
µe

µd

kd

ke

Jn(keR)

Kn(kdR)
K ′

n(kdR)

(60)

Continuity of the perpendicular electric field at r � R is re-
quired:

fEc
z (R, φ) = Ed

z (R, φ) (52)

This gives

Grφ
HH (r, φ; R, φ ′) = −n

µe

µd
ke

f
r

i
2π

∞∑
n=−∞

Jn(keR)

Kn(kdR)
Kn(kdr)ein(φ−φ ′ )

J′
n(keR) − nκ

µ

1
keR

Jn(keR) − f
µe

µd

kd

ke

Jn(keR)

Kn(kdR)
K ′

n(kdR)

(61)

ad
ne = f

Jn(keR)

Kn(kdR)
an0 (53)

The factor f is estimated as f � fwf p, where fw weights thewhere
parameter dependence expression in f p. Closed-form for-
mulas, based upon self-consistent static solutions, exist forkd = ω

√
εdµd (54)

microstrip capacitive (electric) end effects. Stretching the
f attempts in an approximate way to allow for consistent microstrip end so as to connect one corner to the other con-
fringing in the 2-D model, which has some inherent degree of structs the circulator perimeter, and allows us to roughly ob-
3-D nature. tain f p:The forcing function for the Green’s function is applied at
(r�, ��), r � R, through the equality

fp = CT − C
C

= Cf

C
= h

Aεd
Cf (62)

HPer
φ (R, φ) = Hφ ′Aδ(φ − φ ′) �φ ′ + Hd

φ (R, φ 
= φ ′) (55)

Obtaining solution of internal puck amplitude coefficient an0 Assign A � �R2 and W � 2�R, and place them in Eq. (62) and
in terms of the forcing field H��A, the elements of the dyadic in the equivalent expression for the additional radial length
Green’s function for r � R (within the circulator puck) may �lf, which relates to the fringing capacitance Cf:
be written as

�lf

h
= Cf

W
cZmW/h√

εrde
(63)

where c is the speed of light in vacuum, h the substrate thick-
ness, Zm the microstrip impedance based on dielectric �d load-
ing causing an effective dielectric constant �de, and the sub-

Gzφ

EH (r, φ; R, φ ′) = iω
2π

∞∑
n=−∞

Jn(ker)ein(φ−φ ′ )

1
µe

�
keJ′

n(keR) − nκ

µ

1
R

Jn(keR)

�
− f

kd

µd

Jn(keR)

Kn(kdR)
K ′

n(kdR)

(56)

script r denotes relative value. We replace �de by �d in the limit
W/h � 1. The left-hand side of Eq. (63) is given by

�lf

h
= 0.412

εrde + 0.300
εrde − 0.258

W/h + 0.264
W/h + 0.800

(64)

Using Eqs. (63) and (64) in Eq. (62), the final formula for f is

Gφφ

HH (r, φ; R, φ ′) = 1
2π

∞∑
n=−∞�

J′
n(ker) − nκ

µ

1
ker

Jn(ker)
�

ein(φ−φ ′ )

J′
n(keR) − nκ

µ

1
keR

Jn(keR) − f
µe

µd

kd

ke

Jn(keR)

Kn(kdR)
K ′

n(kdR)

(57)

fp = 0.824h
R

√
εrd

εrd + 0.300
εrd − 0.258

R/h + 0.042
R/h + 0.127

×
{

1 + h
R

[
0.2217 + 0.106 ln

�
2π

R
h

+ 1.444
�]} (65)

We have assumed that the cover location h� � h in deriving
Eq. (65).

Grφ
HH (r, φ; R, φ ′) = i

2π

∞∑
n=−∞� n

ker
Jn(ker) − κ

µ
J′

n(ker)
�

ein(φ−φ ′ )

J′
n(keR) − nκ

µ

1
keR

Jn(keR) − f
µe

µd

kd

ke

Jn(keR)

Kn(kdR)
K ′

n(kdR)

(58)
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One would expect the prefactor fw to contain information Working with the fields given by Eqs. (66) to (69) (replace R
on the azimuthal mode structure, and this will be displayed by r for the dependence within the puck) enables the hard
as a dependence on the azimuthal mode index n. The prefac- wall dyadic Green’s function to be found.
tor fw may be very complicated, and the best that one can do
is to obtain some reasonable degree of approximation. Three-Dimensional Uniform Soft Wall Case

With the assumption that the electric wall conditions are ap-UNIFORM THREE-DIMENSIONAL GREEN’S FUNCTION
proximately maintained for radii exceeding the circulator ra-
dius, so that the same z-indexing modal set can be used insideThe big difference between the 2-D treatment and the 3-D
and outside the device, the problem becomes tractable enoughtreatment is that inclusion of finite puck thickness creates a
so that an explicit dyadic Green’s function solution can beperpendicular propagation constant kz, and its existence
sought. Fields external to the puck in the dielectric regionmakes the radial propagation constant split into two dissimi-
look likelar values. Perfect magnetic walls are still maintained, how-

ever, on those segments of the circulator perimeter where
ports do not exist. Electromagnetic fields now have variation
in the perpendicular coordinate direction z. As a consequence, Ed

z (r, φ, z) =
∞∑

j=0

∞∑
n=−∞

ad
nej cos(kzjz) Kn(σd jr)e

inφ (70)

the field solution for the circulator is considerably compli-
cated. Figure 1 still applies to a z � const plane cut through
the height of the device. Hd

z (r, φ, z) =
∞∑

j=1

∞∑
n=−∞

iad
nhj sin(kzjz) Kn(σd jr)e

inφ (71)

Three-Dimensional Uniform Hard Wall Case
Here the characteristic equation for the radial separation con-The transverse electromagnetic field components within the
stant �dj is given in the outside region by (notice that it iscirculator can be expressed in terms of the perpendicular elec-
single-valued)tric and magnetic field components. The circulator field Ec

z at
its most extreme position r � R is expressed using Krowne
(5) as σd j =

p
k2

d − k2
zj, kd = ω

√
εdµd (72)

where the perpendicular indexing for the discrete spectrum of
allowed values is done according to

Ec
z =

∞∑
j=0

∞∑
n=−∞

cos(kzjz) [a1
n0 jJn(σ1 jR) + a2

n0 jJn(σ2 jR)]einφ (66)

The perpendicular magnetic field in the circulator, as r � R
from the inside, is given by kz j = jπ

h
, j = (0 or 1), 2, . . . (73)

with the first j index choice determined by the first nontrivial
field component.

The azimuthal magnetic field component Hd
� (only the

transverse part) may be made to retain a form congruent with

Hc
z =

∞∑
j=1

∞∑
n=−∞

i sin(kz jz)

�
a1

n0 j

c j − λ2 j

b j
Jn(σ1 jR)

+a2
n0 j

c j − λ1 j

b j
Jn(σ2 jR)

�
einφ

(67)

the puck field construction, following Krowne (6), by setting
The circulator field Ec

� at its most extreme position r � R is the coefficient factors q and t of the partial differential opera-
expressed as tors �/�r and �/�� equal to zero:

Hd
φ = p

r
∂Hd

z

∂φ
− u

∂Ed
z

∂r
(74)

with

p = ikzj

k2
d − k2

zj

, u = iωεd

k2
d − k2

zj

(75)

Similarly, the azimuthal electric field component Ed
� (only the

transverse part) may be made to retain a form congruent with

Ec
φ =

∞∑
j=1

∞∑
n=−∞

i sin(kz jz)

×
[

a1
n0 j

�−inr j

b jR
λ2 jJn(σ1 jR) + σ1 j

b j
(iωµ0 + s jλ2 j )J

′
n(σ1 jR)

�

+ a2
n0 j

�−inr j

b jR
λ1 jJn(σ2 jR)

+σ2 j

b j
(iωµ0 + s jλ1 j )J

′
n(σ2 jR)

�]
einφ

(68)
the puck field construction by setting the coefficient factors r

An azimuthal magnetic field in the circulator, as r � R from and q of the partial differential operators �/�� and �/�r equal
the inside, is given by to zero:

Ed
φ = −s

∂Hd
z

∂r
+ p

r
∂Ed

z

∂φ
(76)

with

s = − iωµd

k2
d − k2

zj

(77)

Hc
φ =

∞∑
j=0

∞∑
n=−∞

cos(kz jz)

{
a1

n0 j

[
in

b jR

�
ikz

µ0

µ
− pjλ2 j

�
Jn(σ1 jR)

+qj

b j
λ2 jσ1 jJ

′
n(σ1 jR)

]
+ a2

n0 j

[
in

b jR

�
ikz

µ0

µ
− pjλ1 j

�

× Jn(σ2 jR) + qj

b j
λ1 jσ2 jJ

′
n(σ2 jR)

]}
einφ

(69)
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The perpendicular magnetic field forcing function for the
Green’s function is applied at (r�, ��), r � R, through the
equality

HPer
z (R, φ) = HzAh(z)δ(φ − φ ′) �φ ′ + Hd

z (R, φ 
= φ ′) (78)

Here h(z) is the functional behavior of the forcing perpendicu-
lar magnetic field in the z direction. This relationship must
be added to that in Eq. (55) to completely describe the source.
Using the puck field forms given by Eqs. (66) to (69) and the
external-region fields given by Eqs. (70), (71), (74), and (76)
enables the soft wall dyadic Green’s function to be found.

; (   ,   0,   )µ µ κ

b = 2   /3φ

a = 0φ

φ

π

c = 2   /3φ π

Inhomogeneous
ferrite

Magnetic wall
(nonport)

Port–ferrite-region
interface i = N

a

c

b

0
1
2

...

INHOMOGENEOUS TWO-DIMENSIONAL Figure 2. Top view (as in Fig. 1) of an inhomogeneous circulator.
DYADIC GREEN’S FUNCTION Within the perimeter is ferrite with radially varying parameters, bro-

ken up into N annuli, each uniform. Outside the perimeter are the
ports (three here) and the external dielectric. Hard wall conditionsA new aspect of the inhomogeneous case is that the circulator
require a magnetic wall as shown. Soft wall conditions necessitate itspuck has varying properties throughout its radial extent (see
change to a penetrable inhomogeneous wall between two dissimilarFig. 2). Its magnetization, demagnetization factor, and ap-
materials.plied magnetic bias field are all capable of changing with the

radius. The Green’s functions utilize recursive relationships
between adjacent radial sections or rings to provide compact
expressions, the actual algebraic factors contained inside the If we assign a notation similar to that found in Eq. (82) to
summations being extremely complicated. the radial numerator factors in Eqs. (79) to (81),

Two-Dimensional Inhomogeneous Hard Wall Case γ ze
ni (r) = ani(recur)Cz

nhai(r) + bni(recur)Cz
nhbi(r) (83)

The dyadic Green’s function elements are now given by the γ φh
ni (r) = ani(recur)Cφ

nhai
(r) + bni(recur)Cφ

nhbi
(r) (84)

new expressions provided in Krowne (7):
γ rh

ni (r) = ani(recur)Cr
nhai(r) + bni(recur)Cr

nhbi(r) (85)

and define normalized quantitiesGzφ

EHi(r, φ; R, φq
k
) = 1

2π

∞∑
n=−∞

ani(recur)Cneai(r) + bni(recur)Cnebi(r)
γnN

e−inφq
k einφ (79)

γ pq
ni (r) =

γ pq
ni

(r)

γ φh
nN

(R)
(86)

then the dyadic Green’s function elements given in Eqs. (79)
to (81) can be streamlined. Here p � z, �, r and q � e, h.

Final compacted forms for the 2-D hard wall dyadic

Gφφ

HHi(r, φ; R, φq
k
) = 1

2π

∞∑
n=−∞

ani(recur)Cφ

nehi
(r) + bni(recur)Cφ

nhbi
(r)

γnN
e−inφq

k einφ (80)
Green’s function elements are

Gzφ

EHi(r, φ; R, φq
k
) = 1

2π

∞∑
n=−∞

γ ze
ni(r)e

in(φ−φq
k

) (87)
Grφ

HHi(r, φ; R, φq
k
) = 1

2π

∞∑
n=−∞

ani(recur)Cr
nhai(r) + bni(recur)Cr

nhbi(r)
γnN

e−inφq
k einφ (81)

Gφφ

HHi(r, φ; R, φq
k
) = 1

2π

∞∑
n=−∞

γ φh
ni (r)ein(φ−φq

k
) (88)

where
Grφ

HHi(r, φ; R, φq
k
) = 1

2π

∞∑
n=−∞

γ rh
ni (r)e

in(φ−φq
k

) (89)

γnN = γ φh
nN = anN(recur)Cφ

nhaN
(R) + bnN(recur)Cφ

nhbN
(R) (82)

The indexing of the azimuthal angle � has to do with identi-
fying the location of the port q and the discretization withinNotice that the radial variation of each dyadic Green’s func-
each port k. One can see from this discussion that the finaltion element differs based on the numerator sum character
form of the z� element is precisely the same as for the uni-inside the infinite summation changing from one element to
form case in Eq. (49). This is no coincidence. Compacting theanother. The sum in each numerator is constructed from re-
recursion process and the separable property of the partialcursion coefficients ani(recur) and bni(recur), which give the
differential equation describing electromagnetic waves withincorrect coefficient in the ith ring after successive recursion
the circulator enables the inhomogeneous problem solution toprocesses have been performed on all previous annuli within

the ferrite puck. be developed in this manner.
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Two-Dimensional Inhomogeneous Soft Wall Case INHOMOGENEOUS THREE-DIMENSIONAL
DYADIC GREEN’S FUNCTION

Like the hard wall case, inhomogeneity complicates the elec-
tromagnetic problem, but with the techniques of compacting Three dimensions tremendously changes the level of analysis
the recursion process, the dyadic Green’s function elements required and in addition gives us the full complement of elec-
are now given by the formulas tromagnetic field components. There are now three electric

field components and three magnetic field components. Be-
cause of the nature of the source vector function generating
the Green’s function, there will be twelve individual dyadic
Green’s function elements. Two infinite summations are em-
ployed in creating each element: the double-sided summation
on the azimuthal index n, which we saw before, and the added

Gzφ

EHi(r, φ; R, φ ′)

= 1
2π

∞∑
n=−∞

ani(recur)Cneai(r) + bni(recur)Cnebi(r)

γnN − f kd

iωµd

γ ze
nN

Kn(kdR)
K ′

n(kdR)

ein(φ−φ ′ )

(90) singled-sided perpendicular summation. The azimuthal sum-
mation is retained as the inner summation, and the perpen-
dicular summation added as the outer summation.

Three-Dimensional Inhomogeneous Hard Wall Case

The perpendicular summation is expected to be very small,

Gφφ

HHi(r, φ; R, φ ′)

= 1
2π

∞∑
n=−∞

ani(recur)Cφ

nhai
(r) + bni(recur)Cφ

nhbi
(r)

γnN − f kd

iωµd

γ ze
nN

Kn(kdR)
K ′

n(kdR)

ein(φ−φ ′ )

(91) requiring only a few terms for normally thin circulators. Only
those devices prepared in a more bulk, large-scale, waveguide
format will need extra terms. Clearly, circulator substrate
thicknesses small compared to the wavelength in ferrite will
use only one term, because only the lowest-order perpendicu-
lar mode will satisfy the bottom ground plane and upper mi-

Grφ
HHi(r, φ; R, φ ′)

= 1
2π

∞∑
n=−∞

ani(recur)Cr
nhai(r) + bni(recur)Cr

nhbi(r)

γnN − f kd

iωµd

γ ze
nN

Kn(kdR)
K ′

n(kdR)

ein(φ−φ ′ )

(92) crostrip shield boundary conditions. Referring to Krowne (8),

It is evident comparing Eqs. (90) to (92) with Eqs. (79) to (81)
that the new dyadic Green’s function elements are those of a
circulator device with hard walls (namely magnetic walls),

Gzφ

EHi = 1
2π

∞∑
j=0

∞∑
n=−∞

Kzj+ cos(kzij+z)
1

DABj

× [B2
njT

z1
neji(r) − B1

njT
z2
neji(r)]e

−inφq
k einφ

(96)

but with a modification to the form of the denominator. This
modification is in the form of a subtraction from the original
circulator divisor �nN, and depends on the properties of the
external medium, on the internal circulator field behavior
through �ze

nN, and on the factor f .

Gzz
EHi = 1

2π

∞∑
j=0

∞∑
n=−∞

Kzj+ cos(kzij+z)
1

DABj

× [A1
njT

z2
neji(r) − A2

njT
z1
neji(r)]e

−inφq
k einφ

(97)

The elements of the dyadic Green’s function external to the
circulator, in the nonport regions, are Gφφ

EHi = 1
2π

∞∑
j=0

∞∑
n=−∞

iKzj+ sin(kzij+z)
1

DABj

× [B2
njT

φ1
neji(r) − B1

njT
φ2
neji(r)]e

−inφq
k einφ

(98)

Gφz
EHi = 1

2π

∞∑
j=0

∞∑
n=−∞

iKzj+ sin(kzij+z)
1

DABj

× [A1
njT

φ2
neji(r) − A2

njT
φ1
neji(r)]e

−inφq
k einφ

(99)

Gzφ

EHd
(r, φ; R, φ ′)

= 1
2π

∞∑
n=−∞

fγ ze
nN

Kn(kdR)

Kn(kdr)

γnN − f kd

iωµd

γ ze
nN

Kn(kdR)
K ′

n(kdR)

ein(φ−φ ′ )

(93)

Grφ
EHi = 1

2π

∞∑
j=0

∞∑
n=−∞

iKzj+ sin(kzij+z)
1

DABj

× [B2
njT

r1
neji(r) − B1

njT
r2
neji(r)]e

−inφq
k einφ

(100)
Gφφ

HHd
(r, φ; R, φ ′)

= 1
2π

∞∑
n=−∞

f kd

iωµd

γ ze
nN

Kn(kdR)

K ′
n(kdr)

γnN − f kd

iωµd

γ ze
nN

Kn(kdR)
K ′

n(kdR)

ein(φ−φ ′ )

(94) Grz
EHi = 1

2π

∞∑
j=0

∞∑
n=−∞

iKzj+ sin(kzij+z)
1

DABj

× [A1
njT

r2
neji(r) − A2

njT
r1
neji(r)]e

−inφq
k einφ

(101)
Grφ

HHd
(r, φ; R, φ ′)

= 1
2π

∞∑
n=−∞

−n f
ωµd

γ ze
nN

Kn(kdR)

Kn(kdr)

γnN − f kd

iωµd

γ ze
nN

Kn(kdR)
K ′

n(kdR)

ein(φ−φ ′ )

(95)

Gzφ

HHi = 1
2π

∞∑
j=0

∞∑
n=−∞

iKzj+ sin(kzij+z)
1

DABj

× [B2
njT

z1
nhji(r) − B1

njT
z2
nhji(r)]e

−inφq
k einφ

(102)

These r � R dyadic Green’s function elements are completely
new and not only contain the denominator correction term
but also functional forms that assure that any fields con-
structed from them will decay properly outside the device.

Gzz
HHi = 1

2π

∞∑
j=0

∞∑
n=−∞

iKzj+ sin(kzij+z)
1

DABj

× [A1
njT

z2
nhji(r) − A2

njT
z1
nhji(r)]e

−inφq
k einφ

(103)
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Gφφ

HHi = 1
2π

∞∑
j=0

∞∑
n=−∞

Kzj+ cos(kzij+z)
1

DABj

× [B2
njT

φ1
nhji(r) − B1

njT
φ2
nhji(r)]e

−inφq
k einφ

(104)

Gφz
HHi = 1

2π

∞∑
j=0

∞∑
n=−∞

Kzj+ cos(kzij+z)
1

DABj

× [A1
njT

φ2
nhji(r) − A2

njT
φ1
nhji(r)]e

−inφq
k einφ

(105)

Gφφ

EHd
= 1

2π

∞∑
j=1

∞∑
n=−∞

if Kφ

zj sin(kzjz)

�
−s j

D
A B j

(hd
z A1

nj B
2
nj

− hd
z A2

nj B
1
nj)

K ′
n(σd jr)

Kn(σd jR)

+ inpjσd j

rD
A B j

(e
z A1

nj B
2
nj − e

zA
2
nj B

1
nj)

Kn(σd jr)

Kn(σd jR)

�
ein(φ−φ ′ )

(112)

Grφ
HHi = 1

2π

∞∑
j=0

∞∑
n=−∞

Kzj+ cos(kzij+z)
1

DABj

× [B2
njT

r1
nhji(r) − B1

njT
r2
nhji(r)]e

−inφq
k einφ

(106)

Grz
HHi = 1

2π

∞∑
j=0

∞∑
n=−∞

Kzj+ cos(kzij+z)
1

DABj

× [A1
njT

r2
nhji(r) − A2

njT
r1
nhji(r)]e

−inφq
k einφ

(107)

Gφz
EHd

= 1
2π

∞∑
j=1

∞∑
n=−∞

if Kz
zj sin(kzjz)

�
−s jσdj

D
A B j

(hd
z A2

nj A
1
nj

− hd
z A1

nj A
2
nj)

K ′
n(σdjr)

Kn(σdjR)

+ inpj

rD
A B j

(e
z A2

nj A
1
nj − e

z A1
nj A

2
nj)

Kn(σdjr)

Kn(σdjR)

�
ein(φ−φ ′ )

(113)

These expressions are quite a bit more involved than the 2-D
dyadic Green’s function formulas in Eqs. (56) to (58), with
which the 3-D expressions in Eqs. (96), (104), and (106) are
directly associated.

Gzφ

HHd = 1
2π

∞∑
j=1

∞∑
n=−∞

if Kφ

zj sin(kzjz)
1

D
A B j

(hd
z A1

nj B
2
nj

− hd
z A2

nj B
1
nj)

Kn(σd jr)

Kn(σd jR)
ein(φ−φ ′ )

(114)

Three-Dimensional Inhomogeneous Soft Wall Case

The form of the dyadic Green’s function elements for r � R
inside the ferrite puck is very similar to Eqs. (96) to (107) of
the hard wall case, so they will not be provided here, but the

Gzz
HHd = 1

2π

∞∑
j=1

∞∑
n=−∞

if Kz
zj sin(kzjz)

1
D

A B j

(hd
z A2

nj A
1
nj

− hd
z A1

nj A
2
nj)

Kn(σd jr)

Kn(σd jR)
ein(φ−φ ′ )

(115)

elements for r � R outside of the ferrite puck region will be
given. Further information on the construction of these ele-
ments can be found in Krowne (9):

Gφφ

HHd = 1
2π

∞∑
j=0

∞∑
n=−∞

f Kφ

zj cos(kzjz)
1

D
A B j

(hd
φ A1

nj(r)B
2
nj

− hd
φ A2

nj(r)B1
nj)e

in(φ−φ ′ )
(116)

Gφz
HHd = 1

2π

∞∑
j=0

∞∑
n=−∞

f Kz
zj cos(kzjz)

1
D

A B j

(hd
φ A1

nj(r)A
2
nj

− hd
φ A2

nj(r)A1
nj)e

in(φ−φ ′ )
(117)

Gzφ

EHd = 1
2π

∞∑
j=0

∞∑
n=−∞

fKφ

zj cos(kzjz)
1

D
A B j

(e
z A1

nj B
2
nj

− e
z A2

nj B
1
nj)

Kn(σd jr)

Kn(σd jR)
ein(φ−φ ′ )

(108)

Gzz
EHd = 1

2π

∞∑
j=0

∞∑
n=−∞

fKz
zj cos(kzjz)

1
D

A B j

(e
z A2

nj A
1
nj

− e
z A1

nj A
2
nj)

Kn(σd jr)

Kn(σd jR)
ein(φ−φ ′ )

(109)

Grφ
HHd

= 1
2π

∞∑
j=1

∞∑
n=−∞

if Kφ

zj sin(kzjz)

�
pjσd j

D
A B j

(hd
z A1

nj B
2
nj

− hd
z A2

nj B
1
nj)

K ′
n(σd jr)

Kn(σd jR)

+ inuj

rD
A B j

(e
z A1

nj B
2
nj − e

z A2
nj B

1
nj)

Kn(σd jr)

Kn(σd jR)

�
ein(φ−φ ′ )

(118)

Grφ
EHd

= 1
2π

∞∑
j=1

∞∑
n=−∞

if Kφ

zj sin(kzjz)

�
insj

rD
A B j

(hd
z A1

nj B
2
nj

− hd
z A2

njB
1
nj)

K ′
n(σd jr)

Kn(σd jR)

+ inpj

rD
A B j

(e
zA

1
njB

2
nj − e

z A2
njB

1
nj)

Kn(σdjr)

Kn(σdjR)

�
ein(φ−φ ′ )

(110)
Grz

HHd = 1
2π

∞∑
j=1

∞∑
n=−∞

if Kz
zj sin(kzjz)

�
pjσd j

D
A B j

(hd
z A2

nj A
1
nj

− hd
z A1

nj A
2
nj)

K ′
n(σd jr)

Kn(σd jR)

+ inuj

rD
A B j

(e
z A2

nj A
1
nj − e

z A1
nj A

2
nj)

Kn(σd jr)

Kn(σd jR)

�
ein(φ−φ ′ )

(119)

The 3-D dyadic Green’s function formulas in Eqs. (108), (116),
and (118) are directly associated with the 2-D expressions in
Eqs. (59) to (61), which are much simpler.

Grz
EHd = 1

2π

∞∑
j=1

∞∑
n=−∞

if Kz
zj sin(kzjz)

�
ins j

rD
A B j

(hd
z A2

nj A
1
nj

− hd
z A1

nj A
2
nj)

K ′
n(σd jr)

Kn(σd jR)

+ pjσd j

D
A B j

(e
z A2

nj A
1
nj − e

z A1
nj A

2
nj)

Kn(σd jr)

Kn(σd jR)

�
ein(φ−φ ′ )

(111)
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MULTIPLE LAYERS UNDER THE to be unity times the free space value), is upgraded to an iden-
tity tensor,CIRCULATOR METALLIZATION

Circulator structures realized in the laboratory and in indus- ↔
µd = µ0

↔
III (123)

trial applications are made either with a single substrate or
with several layers. The single substrate case obviously oc- Inserting Eqs. (1) and (122) into Eq. (121) gives the new
curs when the substrate and the ferrite material are one and equivalent single-medium permeability tensor:
the same. But due to complications of mechanical and mate-
rial processing steps, several layers may exist. The designer
can expect layers that do not exhibit nonreciprocal action to
reduce the effectiveness of the finished circulator device when
this layered effect shows up in the region under the shield.
Structures that use pucks dropped into an existing substrate,

↔
µeq = µ0




dd

d
+ µ

dd

d
− jκ

df

d
0

jκ
df

d
dd

d
+ µ

dd

d
0

0 0 1


 (124)

whether of dielectric or of other ferrite material, will not suf-
fer degradation in the main spatial operating region of the
device. Film processes, which rely on deposition on top of an LOSS CONTRIBUTIONS
existing semiconductor semiinsulating substrate, or on top of
an insulator, will produce the layered effect under the shield. Metallic, dielectric, and magnetic losses are the basic loss
It is possible to avoid this effect if the metal ground plane for mechanisms to be dealt with in circulator devices. When fer-
the device can be deposited on top of the substrate, thereby rite materials are utilized with low intrinsic losses, then me-
bringing up the ground plane from below, and then depositing tallic losses of the conductors constituting the circulator
the ferrite film. structure will dominate, this being especially true for thin

Assuming that we have a layered situation and would like substrates. A uniform Green’s function solver by Neidert and
to amend the 2-D Green’s function solver to model the device, Philips (11) has been utilized to calculate dissipation losses
a first-order method, originally proposed by Neidert (10), is versus substrate thickness for a C-band (6 GHz) YIG circula-
available to estimate the new tensor permeability and per- tor. The insertion loss versus substrate thickness for a YIG
mittivity. [Discussion about how to develop a self-consistent film on silicon substrate higher frequency X-band (10 GHz)
rigorous approach based on three dimensions is found in device has been calculated by Adam et al. (12) using the uni-
Krowne (8).] For a two-layered medium consisting of the fer- form Green’s function method due to Neidert and Philips (11).
rite and a dielectric, for example, an equivalent medium is The lossless Green’s function code was modified by an ad hoc,
found that is uniform, and this then is consistent with the heuristic approach to allow for losses, and to its credit, it can
2-D nature of the problem, which is collapsed in the third be said to predict circulator losses reasonably well, having
dimension. Equivalent distributed capacitance or inductance been verified by numerous experimental s-parameter mea-
of a mixed insulator transmission line and equivalent series surements. Green’s function code for inhomogeneous circula-
inductance of a transmission line with lossy magnetic conduc- tors has also been modified along the same lines by Neidert
tors are employed. Electric equivalence is established by us- (10), keeping intact the basic inhomogeneous recursive
ing an equivalent permittivity that makes the shunt capaci- Green’s function construction developed by Krowne (6).
tance of the equivalent material equal to that of the real A rigorous first-order method has been derived recently by
layered medium. Magnetic equivalence is established by us- Krowne (13) for treating metallic loss of the circulator. It as-
ing an equivalent permeability that makes the series induc- sumes that the film thickness is small compared to a wave-
tance of the equivalent material equal to that of the real lay- length, the electromagnetic problem is basically 2-D, and a
ered medium. small patch under the shield with a circulating curved azi-

Applying Gauss’s and Ampere’s laws, the derived relation- muthal wave can be used to characterize the whole patch by
ships for the equivalent RF permittivity �eq and equivalent RF a scaling procedure based on total area. The theory becomes
permeability tensor �}eq are essentially that of a parallel plate waveguiding situation.

The effective permeability within the ferrite region, assum-
ing an ej�t time dependence, from this theory isεeq = εdεf

εd
df

d
+ εf

dd

d

(120)

↔
µeq = ↔

µd
dd

d
+ ↔

µf
df

d
(121)

In Eq. (120), �d and �f are respectively the dielectric and fer-
rite permittivities. The total substrate thickness d is merely

µeq = µf�
1 − (1 − j)

δ

d
µm

µf

�2

≈ µf

�
1 + 2(1 − j)

δ

d
µm

µf

� (125)

Equation (125) provides an equivalent permeability for thed = dd + df (122)
ferrite region, which accounts for the whole circulator struc-
ture under the shield, the imperfect metal regions and theEquation (121) arises from Eq. (1) on using the Polder tensor

expressions for complex � and �, and adding the subscript f main ferrite puck region. The second approximation in the
equation is true for small corrections, implicit in the wholeto the tensor permeability to be absolutely unambiguous. The

dielectric permeability, a scalar (and assumed for simplicity derivation. What is placed in the formulas in Eq. (125) for �f
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is the 2-D effective permeability for the ferrite. The ratio of
skin depth to substrate thickness is �/d, and �m/�f is the
metal-to-ferrite permeability ratio.

The last thing to do is to obtain an effective propagation
constant in the ferrite medium. It is found by invoking the
first equality in Eq. (125):

keq,p = keq,f = ω
√

εfµeq,f = ω
√

εfµf
1

1 − (1 − j)(δ/d)/(µm/µf)

= kf
1

1 − (1 − j)(δ/d)/(µm/µf)
≈ kf

�
1 + (1 − j)

δ

d
µm

µf

�

(126)

MATCHING SECTIONS

Self-consistent electromagnetic solvers work on the premise
that specific driving conditions exist at each circulator port, Port 1

 TM 50

 TM 50

 S2 50

 S1Z0

 S

Puck

Port 2 Port 3

 TM 50

thereby exciting the internal fields of the device, sometimes Figure 3. Intrinsic circulator (shown as a puck) and its matching
referred to as the intrinsic device. This is true whether the circuit network consisting of transformer sections.
solver is a Green’s function method relying upon Dirac delta
function sources at the port locations, or a finite-element
method relying upon imposed fields at the port locations. In
either case, the tangential E and H fields at the port locations structure are found by mapping or transforming S2 through
on the circulator device perimeter r � R must obey continuity TM, yielding S.
with the tangential E and H fields in the exiting port trans-
mission lines. These microstrip transmission lines have im-
pedance Zk for the kth port location, and their impedances are NUMERICAL STUDIES AND COMPARISON
found by using the width determined from the extent of each WITH EXPERIMENT
particular port and the common substrate thickness. For
ports of identical angular extent, all Zk will be the same (mak- Circulator performance requires that the s parameters of the
ing Zk � Z0, k � 1, 2, . . ., N). The s parameters of the intrin- device be found. These parameters, which relate to voltage
sic circulator are referenced to these impedances, or imped- wave ratios, can be determined once the Green’s function so-
ance if they are all the same. lutions have be secured. The Green’s functions are used to

To facilitate the incorporation of the circulator device into find the s parameters under source and boundary condition
a CAD program generating s parameters, the N-port device constraints, besides using the definitions of the s parameters.
should be rereferenced to the system impedances Z�k in use. The field distribution within the circulator puck can also be
Z�k, k � 1, 2, . . ., N, will usually be 50 � for microstrip circu- examined once the Green’s function solutions become avail-
lators. Figure 3 shows a circuit sketch of a symmetrically dis- able. Very informative contour diagrams of electric and mag-
posed three-port device, where at progressively increasing ra- netic fields may be found, which provide insight on how the
dial distance from the central circulator puck, the s- circulator performs its nonreciprocal operation.
parameter matrix goes from its intrinsic N � N value Sin �
S1 to its rereferenced N � N value Sre � S2 to its final N � N

Electromagnetic Fields and S Parametersvalue Sm � S after encountering a matching section with a
2 � 2 transfer matrix TM. This last matrix will generally be Consider characterizing each individual port by a single seg-
referenced to the system matrix impedance Z0. ment, and choose three ports to interface with the outside

Matching circuits for microstrip circulators are most com- circuit for a 2-D Green’s function model. Then the expression
monly cascaded sections of transformers, usually quarter-

for the electric field within the circulator puck, approximatingwavelength sections, placed in the same configuration at each
the contour integral along the perimeter at each port by aport. Computer codes have been developed by Krowne and
discrete sum (of one element here), isNeidert (14,15) that incorporate such cascaded transformers

directly into the s-parameter calculation. Each microstrip
transformer section is permitted to have a user-chosen length
and width. Dissipation losses are included in each microstrip Ez(r, φ) =

Nd
T∑

q=1

Gzφ

EH (r, φ; R, φq)Hφc(R, φq) �φq (127)
transformer section, so that the final s parameters calculated
include all intrinsic as well as extrinsic device losses. This is

where Nd
T � 3, and H�c(R, �) are the magnetic field sourcesimportant for wide-bandwidth circulators having many quar-

driving the device. Equation (127) gives the electric field any-ter-wavelength matching sections, because the matching sec-
where within the puck. Sources H�c(R, �) at the perimeter oftion losses frequently are greater than the intrinsic device

losses. The final matched s parameters for the circulator the device may be found self-consistently with the internal



14 NUMERICAL MODELING OF CIRCULATORS

electromagnetic behavior of the puck and the external circuit
network by using the loading conditions

Ea
z(in)

Ha(in)

= ζa (128)

Eb
z(out)

Hb(out)
= −ζb (129)

Ec
z(out)

Hc(out)
= −ζc (130)

The internal electromagnetic behavior within the puck is
evaluated at the circulator perimeter by setting r � R in Eq.

W2

W1 L

R

(127). Next we absorb the azimuthal spread of each port into
the Green’s function by defining a streamlined dyadic Green’s Figure 4. Top view of the a circulator metallization pattern used in
function element actual calculations for a nominal 8 GHz X-band device. Outside the

puck shield are three identical quarter-wave transformers, which
transition to narrower microstrip lines. The substrate is Trans-Tech

G(φ, φq) = Gzφ

EH (R, φ; R, φq)�φq (131) G113, 4�Ms � 1780 G, �H � 45 Oe, �r � 15.0, tan � � 0.0002, sub-
strate thickness � 0.051 cm, and conductor thickness � 0.0005 cm.
R � 0.279 w1 � 0.096 cm, w2 � 0.030 cm (50 � transmission line),where the understood indices and arguments have been
and L � 0.241 cm.dropped. The convenient form in Eq. (131) is now used to ex-

pand Eq. (127) at the perimeter:

and the final circuit to be matched. Figure 4 and the previousEz(R, φ) = G(φ, φa)Hφa + G(φ, φb)Hφb + G(φ, φc)Hφc (132)
discussion indicate how this matching process is accom-
plished. Figure 4 shows a top view of what the metallization

Now evaluate Eq. (132) at each of the ports, q � a, b, c, la- should look like. Calculations reported here use the one-stage
beled counterclockwise, and simplify the notation for Ez(R, �) transformer section shown in the figure. Figure 5 gives a real-
to Eq

z by setting � � �q: istic variation of the demagnetizing factor Nzz expected in an
actual device. It is fairly constant (80% to 90%) until the edge
of the puck is approached (within 70% of the edge in terms ofEa

z = G(φa, φa)Hφa + G(φa, φb)Hφb + G(φa, φc)Hφc (133)
the total radius); then the value dives to 45%. It is this very
nonlinear change in Nzz that makes the partitioning of theEb

z = G(φb, φa)Hφa + G(φb, φb)Hφb + G(φb, φc)Hφc (134)
puck necessary and the recursive dyadic Green’s function in-
valuable for correct modeling of the circulator. The appliedEc

z = G(φc, φa)Hφa + G(φc, φb)Hφb + G(φc, φc)Hφc (135)
magnetic bias field, a static field, is not always constant. In-
stead, the field seen by the circulator is dependent upon the

Once the H�i fields (i � a, b, c) have been found from Eqs.
(128) to (130) and (133) to (135), the s parameters can be ob-
tained from

s11 = 1 − ζaHa (136)

s21 = Eb
z = −ζbHb (137)

s31 = Ec
z = −ζcHc (138)

Equation (127) provides the recipe for computing the elec-
tric field distribution within the circulator puck. The two
magnetic field components Hr, H� may also be sought from
dyadic Green’s function expansions similar to Eq. (127).

Circulator Performance and Field Contour Plots

The circulator port impedances (looking into the device) are
generally quite a bit lower than the standard 50 � reference

1
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impedance system. Because of this problem, actual circulator
devices prepared in industry for insertion into circuits need Figure 5. Example of the variation of the demagnetization factor

Nzz with radial distance from the puck center for an X-band device.transition networks between the circulator puck perimeter



NUMERICAL MODELING OF CIRCULATORS 15

1.05

1

0.95

0.9
0 0.2 0.4 0.6

r/R
0.8 1

H
a

p
 (

r/
R

)/
H

a
p
(0

)

Figure 6. Example of the variation of the applied external bias field
Happ with radial distance from the puck center for an X-band device.
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Figure 8. Convergence behavior of isolation versus nmax at two fre-
quencies, 7 GHz and 9 GHz, selected from a diagram such as in Fig.
7, but for a uniform case. A single quarter-wavelength transformer isprecise magnet location and the attendant magnetic circuitry.
utilized in the matching network at each port. Results are given in aThe shape of Hap might look like that seen in Fig. 6.
50 � reference system.Numerical robustness depends upon the convergence be-

havior of the solution and the computation time to determine
the solution. Figure 7 provides a plot, for an inhomogeneous
circulator, of the isolation s31 against frequency for six trun- of nmax. This is given for a uniform device in Figs. 8 and 9,

which show the results at two selected microwave frequenciescated cases of the doubled-sided infinite azimuthal summa-
tions used in the dyadic Green’s function evaluations. The for, respectively, a matched circulator and an intrinsic (or

bare) circulator. The two frequencies straddle the 8 GHz cen-maximum azimuthal index used is denoted by nmax, and we
show nmax � 3, 6, 9, 18, 36, 72 for the X-band device. nmax must ter frequency. Clearly, in comparing Figs. 8 and 9, we see that

the introduction of matching transformers causes significantbe at least 18 before the solution is within �0.25 dB of the
final value. For a uniform device nmax may be chosen smaller numerical oscillation to occur. This is not entirely unexpected,

considering the manner in which a transformer operates.to obtain similar accuracy. For example, nmax � 9 yields con-
vergence to within �0.40 dB of the final value for the uni- Convergence behavior with respect to the number of computa-

tional regions, NR, which is equal to the number of annuli,form device.
Figure 7 gives an overall idea of what happens over the N, plus one (NR � N + 1), is shown in Fig. 10 for NR � 1, 6,

16, 50. For NR � 6 or greater, the numerically determinedentire circulator bandwidth, but fails to provide detailed in-
formation on convergence under unity incremental variation answer is accurate to within �0.1 dB of the final value.

Figure 7. Isolation s31 versus frequency, with the
curves parametrized in terms of nmax, the maximum
azimuthal index number. A single ferrite material is
used for the circulator puck, with a five-region model
(one central disk plus four annuli) employed to repre-
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Figure 9. Convergence behavior of isolation versus nmax at two fre- Figure 11. Computation time for a recursive Green’s function calcu-
lation on a nominal 8 GHz circulator versus the number of regions,quencies, 7 GHz and 9 GHz, selected from a diagram such as in Fig.

7, but for a uniform case. No transformer is utilized (only a central NR. The inner disk is counted as the first region, with outlying annuli
added afterward.ferrite disk is present). Results are given in a 50 � reference system.

The particular dyadic Green’s function types covered in culator are in excellent agreement. Good agreement also ex-
ists for calculated and measured return loss, with a slightthis presentation can be evaluated extremely efficiently using

FORTRAN computer codes. That this is so becomes apparent discrepancy between the minimum points. Acceptable
agreement is found for calculated and measured isolation re-when studying Fig. 11, which plots computation time in sec-

onds per frequency point against the number of regions, NR. sults, with the calculated results somewhat more favorable
than actually seen in the lab. At the minimum point, the cal-Run times are for execution on a Macintosh Quadra 650. The

cost in time of using more regions increases nearly linearly at culated value is 9 dB better. Imperfections in the fabricated
device may account for much of the deviation seen betweenand beyond NR � 2. The algorithmic difference for NR � 1 has

caused the initial decrease before the general trend becomes numerical calculation and experiment in Fig. 12. The onset of
the next puck resonance causes the obvious glitches in theevident.

Use of the 2-D recursive Green’s function computer code experimental curves between 12 GHz and 13 GHz at the high
end of the operating band. Careful examination of the calcu-for the inhomogeneous situation allows comparison in Fig. 12

of measured and calculated (a) insertion loss s21 and return lated curves shows evidence of this next resonance (small in-
flections, rises, and dips). The significant difference seen hereloss s11 and (b) isolation s31 versus frequency. It is seen that

the calculated and measured insertion loss for the X-band cir- between theory and experiment is most likely due to the large
measured ferromagnetic linewidth �H � 320 Oe assigned to
the ferrite material used to fabricate the circulator. Reduction
of �H makes the calculated and experimental results very
similar. Direct visual evidence of this next resonance is pro-
vided in field patterns to be discussed shortly in Fig. 14.

Figures 13(a–c) show electric field patterns for the intrin-
sic inhomogeneous circulator (without any matching struc-
tures), calculated by the 2-D recursive Green’s function com-
puter code using an incident signal at each of the three ports
with no incoming signal at the remaining two ports. When
embedding the intrinsic device in a matching network, the
actual electric field pattern obtained is shown in Fig. 13(d).
Port loads attached to the circulator at each port are shown
in Fig. 13(e). Each load consists of a quarter-wave matching
network section and the system impedance. A null in the elec-
tric field pattern (lightest oval region) occurs in the first three
panels of Fig. 13(a–c), but these nulls are not at the perime-
ter. They appear inside the puck for each port excitation case.
Only in the matched device, which is excited essentially like
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(a), do we see a movement of the null to the perimeter, where
it creates the very low desired isolation seen in the labora-Figure 10. Isolation s31 versus frequency with the curves parame-
tory. The null gets partially absorbed, and widened on thetrized in terms of the number of regions NR (� N + 1) used to model

the demagnetizing factor Nzz. perimeter of the circulator.
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Figure 12. Measured and calculated (a) insertion loss s21 and return loss s11 and (b) isolation
s31 versus frequency, using recursive Green’s function computer code. 4�Ms � 2300 G, Hap � 2300
Oe, �H � 320 Oe, h � 0.635 mm, R � 2.7026 mm, w � 1.6561 mm, wc � 1.4w, �f � 13.3, �d �

9.5, tan � � 0.0003, and center frequency f � 9.5 GHz. (Device fabricated at EMS Technologies,
Inc. by David Popelka and Gordon Harrison.)

A comment about the way the plots were constructed in The electric field pattern variation with frequency from 5
GHz to 13 GHz was calculated by using the 2-D recursiveFig. 13 (and the following Fig. 14) is appropriate here. The

interface between neighboring uniformly shaded regions rep- Green’s function computer code and is shown in Fig. 14.
Clockwise movement of the null, getting closer to the deviceresents a contour line of constant electric field magnitude.

The first such line, encircling the lightest region, corresponds perimeter, is seen before the center frequency (about 9 GHz)
is attained. Once the center frequency is passed, the nullto 5% of the maximum value attained within the puck. We

have referred to the lightest region as the ‘‘null’’ because it pulls away from the perimeter, shrinks in size, and spawns a
second null, both located within the puck.has field magnitudes below this tiny value, and inside its con-

tour toward its center the values approach zero. Successive
contours encircling ever larger regions or moving further
away from the null correspond to 15%, 25%, 35%, 45%, 55%, FUTURE DEVELOPMENTS
65%, 75%, 85%, and 95% of the maximum electric field value.
Increasing darkness denotes increasing magnitude of the There are other important and interesting subjects we have

not been able to touch upon in this short summary. For exam-electric field. For example, the uniformly shaded region be-
tween the 35% and 45% contours must have 0.35�Ez,max� 	 �Ez� ple, symmetry considerations shown in Krowne (16) enable

various Green’s functions to be related to one another, reduc-	 0.45�Ez,max�.

Figure 13. Electric field patterns for the intrinsic
circulator (without any matching structures) as cal-
culated by the 2-D recursive Green’s function com-
puter code using an incident signal at (a) port 1, (b)
port 2, and (c) port 3, with no incoming signal at
the remaining two ports for each case. (d) Electric
field pattern obtained by immersing the intrinsic
device in a matching network, consisting of individ-
ual port loads shown in (e). Shading indicates elec-
tric field magnitude, with the darkest region having

λ /4
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Figure 14. Electric field patterns for the intrinsic
circulator embedded in a matching network are cal-
culated by the 2-D recursive Green’s function com-
puter code, and displayed at nine individual fre-
quencies. Shading indicates electric field magnitude,
with the darkest region being the highest magni-
tude.
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