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TOMOGRAPHY

The term tomography refers to the general class of devices
and procedures for producing two-dimensional (2D) cross-sec-
tional images of a three-dimensional (3D) object. Tomographic
systems allow one to view the internal structure of objects in
a noninvasive and nondestructive manner. By far the best
known application is the computer-assisted tomography (CAT
or simply CT) scanner for X-ray imaging of the human body.
Other medical devices, including nuclear medicine scanners
and magnetic resonance imaging systems, also make use of
tomographic principles. Outside the medical realm, tomogra-
phy is used in applications ranging from microscopy through
nondestructive testing and radar imaging to geophysical im-
aging and radio astronomy. In this article a brief survey of
the applications of tomography is presented. We also review
the underlying theory of image reconstruction from line inte-
grals and highlight applications that explicitly make use of
line-integral measurements. We conclude with a brief discus-
sion of recent and possible future developments.

X-ray Imaging and Motion Tomography

In conventional X-ray radiography, a stationary source and
planar detector are used to produce a 2D projection image of
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the patient (1). This image has an intensity proportional to
the amount by which the X rays are attenuated as they pass
through the body, that is, the 3D spatial distribution of X-
ray attenuation coefficients is projected into a 2D image. The
resulting image provides important diagnostic information
due to differences in the attenuation coefficients of bone, mus-
cle, fat, and other tissues in the 40 keV to 120 keV range used
in clinical radiography. The utility of conventional radiogra-
phy is limited by the fact that the 3D anatomy is projected
into a 2D image, causing certain structures to be obscured.
For example, tumors in the lung may be obscured by a more
dense rib that projects into the same area in the radiograph.

The earliest examples of tomographic systems were de-
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Figure 1. Illustration of the data collection arrangement for parallelsource and planar detector to produce an image of a single 2D
and fan-beam tomography. (a) Parallel acquisition requires transla-

section through the patient (2). Motion tomographs work by tion of the source and detector to collect each projection; the process
controlling the source and detector motion so that only points is repeated after rotation to collect additional views. (b) The fan-beam
in a single plane of the patient project onto a fixed location in geometry; in this case no translation of the source or detectors is re-
the imaging plane (1). Points that are not in this plane will quired.
project onto time-varying locations in the imaging plane. Con-
sequently, the image of out-of-plane structures becomes very
blurred due to the motion, and any high-resolution detail in One major limitation of the first generation of CT systems
the resulting image must be due to the stationary plane. was that the translation and rotation of the detectors were
While improving on conventional radiographs, these systems slow and a single scan would take several minutes. X-ray pro-
are limited by the loss in contrast resulting from the superpo- jection data can be collected far more quickly using the fan-
sition, onto the plane of interest, of the blurred images from beam X-ray source geometry employed in the current genera-
adjacent planes. Clinical systems of this type, using linear tion of CT scanners and illustrated in Fig. 1(b). In this case,
and circular motion, were in use from the 1940s. The develop- an array of detectors is used so that the system can simulta-

neously collect data for all projection paths that pass throughment of CT scanners in the 1970s has made these systems
the current location of the X-ray source. In this way, the X-virtually obsolete.
ray source need not be translated, and a complete set of data
is obtained through a single rotation of the source around theX-ray Computerized Tomography
patient. Using this configuration, modern scanners can scan

Computerized tomography systems do not form the image di- a single plane in less than 1 s.
rectly as in the case of motion tomography. Instead, sampled

Other Applicationsdata are processed by an image-reconstruction algorithm to
produce a digital representation of the desired image. A com- Tomographic principles have also been applied in a number
puted tomography system collects measurements of 1D line of other diagnostic medical imaging instruments. One major
integrals, or projections, along parallel paths through a 2D application, for which the early developments actually pre-
slice of a 3D object. By collecting these projections at different date X-ray CT, is nuclear medicine imaging (6). Measure-
angles relative to a fixed coordinate system, we build up the ments of physiological processes are obtained by tomographic
2D Radon transform from which the image is reconstructed. imaging of the spatial distribution of a biochemical tracer or
This function is named after the mathematician J. Radon, probe that has been tagged with a radioactive isotope. Using
who was the first to investigate the properties of the integrals these systems with various probes, it is possible to produce
of N-D functions over (N � 1)-D hyperplanes (3). 3D images of metabolic activity throughout the body, varia-

Consider the first clinical X-ray CT system (4) for which tions in neurotransmitter and receptor densities in the brain,
the inventor, G. Hounsfield, received the 1979 Nobel prize in and the functioning of the heart and blood vessels. In single-
medicine (the prize was shared with the mathematician A. photon emission computed tomography (SPECT), �-ray emit-
Cormack) (5). A collimated X-ray source and detector are ting isotopes are used to tag the probes. A � camera collects
translated on either side of the patient as illustrated in Fig. a sequence of planar parallel projections of the 3D tracer dis-
1(a). The detected X-ray measurements provide a projection tribution as the camera is rotated around the patient. In posi-
through the patient of the 2D distribution of X-ray attenua- tron-emission tomography (PET), positron-emitting isotopes
tion coefficients within the plane illuminated by the X-ray are used. Pair of photons produced by the annihilation of a
source. By rotating the source and detector around the pa- positron, emitted from the tracer, with a nearby electron are
tient other projections are measured. The resulting samples detected using scintillation detectors. Using a ring of these
of the Radon transform are then processed using an image- detectors it is possible to collect a set of parallel projections of
reconstruction algorithm to produce a 2D image of the attenu- the tracer distribution. Image-reconstruction algorithms simi-
ation coefficients. Since the X-ray beam is confined to the lar to those used in X-ray CT are then applied to reconstruct
plane of interest, the image does not suffer from the superpo- the 3D tracer distribution.
sition of additional blurred structures as was the case with Magnetic resonance (MR) imaging differs from X-ray and

emission CT in the sense that the image Fourier transformmotion tomographs.
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or ‘‘k-space’’ is measured directly. This is achieved by using a the object. The intensity of a collimated beam of monoener-
magnetic field gradient to produce a spatial frequency-encod- getic x radiation exiting a uniform block of material with lin-
ing of the magnetic resonance signal from hydrogen nuclei in ear attenuation coefficient � and depth d is given by I �
the body (7). Using combinations of time-varying magnetic I0e��d, where I0 is the intensity of the incident beam. For ob-
field gradients and radio-frequency pulses, it is possible to ob- jects with spatially variant attenuation �(z) along the path
tain k-space measurements with a wide range of sampling length z, this relationship generalizes to (1)
patterns. The early MR systems were designed to sample k-
space along a set of radial lines (8). One-dimensional Fourier I = I0 exp(− ∫

µ(z) dz) (1)
transforms of these samples produce a set of parallel projec-

For the case where X rays of different energies are present,tions. Images can then be reconstructed using the same meth-
an energy dependence should be included in Eq. (1). The theo-ods as employed in X-ray CT. Modern MR systems usually
retical development of CT methods, included that presentedcollect data on rectangular sample patterns in k-space, and
here, usually assumes a nonenergetic source. For broadbandthe images are reconstructed directly using discrete Fourier
X-ray sources, the beam becomes ‘‘hardened’’ as it passestransforms. Fast acquisition can be achieved using more com-
through the object, that is, the lower energies are attenuatedplex k-space sampling patterns such as the spiral scan. In
faster than the higher energies. This effect causes a beam-addition to varying the manner in which the Fourier space is
hardening artifact in CT images that is reduced in practicesampled, different pulse sequences can be used to alter con-
using a data calibration procedure.trast in the images through varying the impact of spin–spin

Let �(x, y, z) represent the 3D distribution of attenuationand spin–lattice relaxation constants on the resonance signal.
coefficients within the human body. Consider the simplifiedMR imaging remains a highly active research field with par-
model of a conventional radiography system that has a wideticular interest in the development of methods for dynamic
parallel beam of X rays traveling through the patient in the zimaging of the beating heart and functional techniques for
direction. Assume that a 2D detector array or film in the (x,studying brain activity, blood flow, and other physiological
y) plane has a negative-logarithmic response. The followingprocesses. Since the modern MR techniques do not make di-
image would then be formed at an ideal detector:rect use of line-integral methods we will not consider them

further in this article.
Tomographic methods have also proven very powerful in r(x, y) = ∫

µ(x, y, z) dz (2)

applications other than medical imaging. X-ray CT systems
Since the attenuation coefficients of the body are different forhave been widely used for nondestructive testing of manufac-
different tissues, the projection image formed according to Eq.tured components and materials (9). Tomography has also
(2) can provide useful diagnostic information throughhad an enormous impact in exploring the natural world. Ap-
exposing internal variations in attenuation coefficients. Theplications range from microscopic imaging using electron mi-
limitation of this process is that the image formed projects acrographs (10) and confocal microscopes (11) to imaging of ce-
3D distribution �(x, y, z) into a 2D image r(x, y), and hencelestial bodies using radio telescopes (12). Electromagnetic
subtle variations in attenuation may be masked in the projec-(EM) techniques have been used for resistivity imaging be-
tion image.tween bore holes in geophysical exploration (13), synthetic ap-

The motion tomography systems described previously at-erture radar mapping of the earth and other planets (14), and
tempt to produce an image of a single z plane in the patientimaging of ionospherical electron density (15). Similarly,
through motion of the source and detector. For linear motionacoustical signals have been used for imaging over a wide
restricted to the x direction, the resulting image can be ex-range of scales from acoustic microscopy (16) to large-scale
pressed as an integral over time t:mapping of oceanographic temperatures and 3D mapping of

the earth’s interior using natural seismic data (17).
The following theoretical development is presented from

the point of view of X-ray CT and assumes that the radiation
f (x, y) =

∫∫ T

−T
µ(x − tcz0

(z − z0), y, z) dt dz (3)

follows a straight-line path between the source and detector.
where cz0

is a constant that depends on the distance of theFor some of the EM and acoustic applications mentioned be-
desired plane z0 from the detector and the rate of translation.fore, diffractive and other effects are significant so that the
Note that only the plane z � z0 projects onto the same positionradiation is no longer confined to a straight line. Accurate
in the imaging plane for the entire imaging period t � �[T,solutions require that these effects be modeled, which can
T]. However, structures from other planes are still superim-substantially complicate the inverse problem. However, a
posed, albeit in a blurred form. In contrast, computed tomog-large number of tomographic problems can be formulated as
raphy forms a sequence of 2D images that represent a recon-locally linear inverse problems that admit to iterative solu-
struction of a single slice f (x, y) � �(x, y, z0). Images of thetions of the type described later, if not the closed-form solu-
patient are formed at different depths z0 as the patient istions applied in X-ray CT. After presenting the theoretical

background to computed tomography, we return briefly to translated axially through the CT scanner.
some of these other applications.

Parallel-Beam Tomography

THEORY Consider a 2D image f (x, y). The Radon transform is defined
as

Conventional Radiography and Motion Tomography

X rays passing through an object experience exponential at-
tenuation proportional to the linear attenuation coefficient of

g(u, θ ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(u − x cos θ + y sin θ ) dx dy (4)
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the samples of each 1D projection can be used to compute
approximate values of the image Fourier transform. If the an-
gular projection spacing is �
, then the DFTs of all projections
will produce samples of the 2D image Fourier transform on a
polar sampling grid with loci at the intersections of radial
lines, spaced by �
, with circles with radii equal to integer
multiples of the DFT frequency sampling interval. Once these
samples are computed, the image can be reconstructed by
first interpolating these values onto a regular Cartesian grid
and then applying an inverse 2D DFT. Design of these Fou-
rier reconstruction methods involves a trade-off between com-

u

x

u

yv

U

X

U

YG(U,  )f(x, y) F(X, Y)

θ

θ

θ

G(U,  )θg(u,  )θ

θ

1D FT in u

2D FT in x and y

putational complexity and accuracy of the interpolating func-Figure 2. Illustration of the projection slice theorem. The 2D image
tion (19).at left is projected at angle 
 to produce the 1D projection g(u, 
). The

A more elegant solution can be found by reworking Eq. (6)1D Fourier transform, G(U, 
), of this projection is equal to the 2D
into a spatial domain representation. It is then straightfor-image Fourier transform, F(X, Y) along the radial line at angle 
.
ward to show that the image can be recovered using the fol-
lowing equations (20):

where �(u) is the Dirac delta function. For any particular
value of 
, the Radon transform represents the line integrals
of the function along parallel paths � at angle 
 to the y coor- f (r, φ) =

∫ π

0
g̃(r cos(θ − φ), θ ) dθ (8)

dinate of the fixed (x, y) coordinate system as illustrated in
Fig. 2. The function g(u, 
) is often referred to as a sinogram where
since an image consisting of a single point produces a sinusoi-
dal pattern in Radon transform space.

In X-ray CT scanners, these measurements are collected g̃(u, θ ) = 1
2π

∫ ∞

−∞
G(U, θ )|U |e juU du (9)

as the logarithm of the ratio of incident to exiting x-ray inten-
sity. By translating the x-ray source and detector along a lin-

These two equations form the basis of the widely used filteredear path at angle 
 to the x coordinate, we collect the Radon
backprojection algorithm. Equation (9) is a linear shift-invari-transform measurements at that angle. By rotating the
ant filtering of the projection data with a filter with frequencysource and detector relative to the patient, parallel projec-
response h(U) � �U�. The gain of this filter increases monoton-tions for different values of 
 can be collected.
ically with frequency and is therefore unstable. However, byThe inversion formula for reconstructing a function from
assuming that the data g(u, 
) and hence the correspondingits projections was originally derived by Radon in 1917 (3) in
image are band-limited to a maximum frequency U � Umax,the following form:
we need only consider the finite bandwidth filter with impulse
response:

f (r, φ) = 1
2π2

∫ π

0

∫ ∞

−∞

1
r cos(θ − φ) − u

∂

∂u
g(u, θ ) du dθ (5)

where f (r, �) is the image represented in polar coordinates.
h(u) =

∫ Umax

−Umax

|U |e juU dU (10)

Direct numerical approximations of this inversion formula
are rarely implemented. Instead, the convolution in the vari- The filtered projections g̃(u, 
) are found by convolving g(u, 
)
able u and the derivative operation can be combined into a with h(u). The integrand in Eq. (8) can be viewed as an image
single step, resulting in an inversion formula that is equiva- with constant values along lines at angle 
 to the y coordinate
lent to the filtered backprojection algorithm described below. that is formed by ‘‘backprojecting’’ the filtered projection at

Practical inversion methods can be developed through the angle 
. Summing (or in the limit, integrating) these backpro-
relationship between the Radon and Fourier transforms. The jected images for all 
 produces the reconstructed image.
basic result that is used in developing these methods is the This method, or the modification described later for the
projection slice theorem (18). This theorem states that the 1D fan-beam geometry, is the basis for image reconstruction in
Fourier transform of the parallel projection at angle 
 is equal almost all commercially available computed tomography sys-
to the 2D image Fourier transform evaluated along the radial tems. Many practical issues in X-ray CT including sampling
line at angle 
 with the X axis, that is, requirements, calibration procedures, beam-hardening correc-

tion, and the treatment of noise are of great importance in
achieving high-quality reconstructions but are beyond the
scope of this article; see Ref. 21 for an excellent tutorial that

G(U, θ ) =
∫ ∞

−∞
g(u, θ )e− juU du = F(X ,Y )|X =U cos θ ,Y=U sin θ (6)

discusses these issues.
where F(X, Y) is the 2D image Fourier transform

Fan-Beam Tomography

X-ray CT data can be collected more rapidly using an array
F(X ,Y ) =

∫ ∞

−∞

∫ ∞

−∞
f (x, y)e− jxX e− jyY dx dy (7)

of detectors and a fan-beam X-ray source so that all elements
in the array are simultaneously exposed to the X rays. ThisThis result, which is illustrated in Fig. 2, can be employed in

a number of ways. The discrete Fourier transform (DFT) of arrangement gives rise to a natural fan-beam data collection
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� � 2�. An example of an X-ray CT image reconstructed from
fan beam data collected using a modern CT scanner is shown
in Fig. 4.

Iterative Approaches

A limitation to the direct or analytic reconstruction ap-
proaches is the implicit assumption that the data are exact
line integrals of the image. Furthermore, the presence of
noise is typically handled by simply modifying the frequency
response of the projection filters. In the case of clinical X-ray
CT, the spatial sampling rates are very high, as are signal-to-
noise ratios, so that the direct methods produce high-quality
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reconstructions. Performance degrades, however, in applica-
tions where sampling is more restricted, where the data doFigure 3. Illustration of the fan-beam geometry. The projection
not conform well to the line-integral model, or where noiseg(�, �) corresponds to the line integral along the path from the source

to the detector ray at angle � to the line to the center of rotation; the levels are significant. An entirely different approach to recon-
source is rotated by angle � from the x axis. The angle � represents struction from projections that can be used to good effect in
the largest angular displacement required to collect all line integrals these cases is to model the image using a finite-basis-function
that pass through the object, illustrated here by the inner circle. expansion with unknown coefficients and formulate the in-

verse problem as one of solving the large set of simultaneous
equations relating these coefficients to the sampled data (23,geometry as illustrated in Fig. 3. The source and detector
24).array are rotated around the patient and a set of fan beam

Let us assume that the image can be represented with suf-projections, g(�, �), are collected, where � represents the rota-
ficient accuracy as a weighted sum of a set of orthogonal basistion angle of the source and � the angular displacement of
functions �j(x, y), j � 1, . . ., N, that is,the detector in the array relative to the radial line from the

source to the center of rotation.
The projection data could be resorted into equivalent par-

allel projections and the preceding reconstruction methods f (x, y) =
N∑

j=1

f jφ j (x, y) (13)

applied. Fortuitously, this re-sorting is unnecessary. It can be
shown (22) that reconstruction of the image can be performed

In the following, as in most cases, the basis functions �j(x, y)using a fan-beam version of the filtered backprojection
are chosen as the set of indicator functions on an array ofmethod. Development of this inverse method involves substi-
square pixels that collectively tile the region of support � oftution of the fan-beam data in the Radon inversion formula,
the image. A single index is used to represent each basis func-Eq. (5), and applying a change of variables with the appro-
tion for notational convenience. For a 256 � 256 pixel image,priate Jacobian. After some manipulation, the equations can
N will be 2562; a similar convention is used to index the sam-be reduced to the form
pled projections.

The sampled projection data can then be written as
f (r, φ) =

∫ 2π

0

g̃(α, β)

r′2 dβ (11)

where r� is the distance from the point (r, �) to the fan beam yi =
∫∫

�

hi(x, y) f (x, y) dx dy =
N∑

j=1

H(i, j) f j (14)
source,

g̃(α, β) = −1
4π2

∫ γ

−γ

g(α′, β) cos α′

sin2
(α − α′)

dα′ (12)

and � is the maximum value of � required to ensure that data
are collected for all line-integral paths that pass through the
object. As in the parallel-beam case, this reconstruction
method involves a two-step procedure: filtering (in this case a
weighted filtering) and backprojection. The backprojection for
fan-beam data is performed along the paths converging at the
location of the X-ray source and includes an inverse square-
distance weighting factor.

Numerous variations on these fan-beam formulas exist
Figure 4. X-ray CT images collected using a GE HiLight spiral scan-

that deal with issues such as nonuniform angular sampling ner (courtesy of Michael McNitt-Gray, M.D., Assistant Professor, Ra-
of the projection data and modifications to deal with noise diology, UCLA). The image on the left shows a cross sectional brain
(18). It is also interesting to note that there is redundancy scan of a patient with an aneurism; a contrast agent is used to in-
resulting from 2� angular coverage in �: The image can be crease the brightness of the blood vessels in the brain. The image on

the right shows a chest scan with a single lesion in the right lung.reconstructed from data collected over an angular range of
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where hT
i represent the ith row of H. Then the ART method has the

following form:

H(i, j) =
∫∫

�

hi(x, y)φ j (x, y) dx dy (15)

fff n+1 = fff n +
�

yi − hhhT
i fff n

hhhT
i hhhi

�
hhhi (16)

Here hi(x, y) represents the line integral kernel from Eq. (4)
for the ith sample point. The elements H(i, j) of the projection

ART can also be viewed in terms of the backprojection opera-matrix H contain the integrals of this kernel over the basis
tor used in the filtered backprojection method: each iterationfunctions �j(x, y), which are equal to the length of the inter-
of Eq. (16) is equivalent to adding to the current image esti-section of the line along which the integration is performed
mate, fn, the weighted backprojection of the error betweenwith the nonzero region of each pixel.
the ith measured projection sample and that correspondingOne of the attractions of this formulation is that we are
to fn.not restricted to the line-integral model in the projection ma-

ART will converge to a solution of Eq. (14) provided thetrix. Most algorithms that are based on the model in Eq. (14)
system of equations is consistent. If the data are inconsistentare readily modified to allow the inclusion of physical factors
or the system is ill-conditioned, then problems with conver-in the projection matrix. Thus, for example, the finite beam
gence or numerical instability may arise. In these cases, addi-width and detector resolution in X-ray CT systems can be
tional information should be introduced. The need for addi-modeled by replacing the line-integral model in Eq. (14) with
tional information is particularly important in ‘‘limited data’’a strip integral in which the image is integrated over the
problems in which, for example, complete projection views arewidth of the X-ray beam; this case is illustrated in Fig. 5.
missing, or the presence of an X-ray opaque object in the fieldFurther modifications can be included for other applications,
of view obscures parts of each projection.such as seismic tomography, where the ray paths are curved

Other constraints can be introduced by extending the idea(17).
of projection onto hyperplanes to the more general methodEquation (14) is a huge set of simultaneous linear equa-
of projection onto convex sets (POCS) (25). In this approach,tions and can, in principle, be solved using standard methods.
constraints are introduced in the form of a collection of convexHowever, the size of these systems, coupled with the special
constraints sets, Ck, which represent the set of images thatstructure of H, has motivated a number of researchers to in-
satisfy the kth constraint. A solution to the problem is thenvestigate more efficient specialized numerical procedures. The
found by computing the orthogonal projection of the currentkey property that these methods exploit is that H is highly
image estimate onto each constraint set in turn. Under cer-sparse, that is, most elements in the matrix are zero since the
tain restrictions, including the existence of a non empty inter-paths along which each integration is performed intersect
section of all constraint sets, this method will converge to aonly a small fraction of the pixels in the image.
point in this intersection.One algorithm that makes good use of the sparseness prop-

Inconsistency in the data due to noise or modeling errorserty is the algebraic reconstruction technique (ART) (21). This
can be allowed for by relaxing the constraint that the equa-method finds the solution to the set of equations in an itera-
tions are solved exactly. In some versions of ART, this istive fashion through the successive orthogonal projection of
achieved using the constraint that the forward projection ofthe current image estimate onto the hyperplanes defined by
the solution differs from the measured data by a maximum ofeach row of the system of equations. If this procedure con-
��, where � is a small constant (24). For the case where noiseverges, the solution will be a point where all of the hyper-
is Gaussian, it is more appropriate to constrain the averageplanes intersect, that is, a solution to Eq. (14). Let fn repre-

sent the vector of image pixel values at the nth iteration, and squared error rather than the error in each measurement. In

Figure 5. Illustration of the pixel-based finite-dimen-
sional formulation used in the iterative reconstruction
methods. The ith measurement is proportional to the
areas of intersection of each pixel with the strip that joins

J – 1 J + 1

N + 1

J

N2

N1 2 3

Integration
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H(i, j)

the source and detector.
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either case, appropriate convex constraints sets are readily An alternative way to avoid the instability of the ML
method is to reformulate the problem in a Bayesian frame-defined. Certain properties of the solution are often known

independently of the data, for instance, the images are typi- work. Spatial random field priors p(f ) can be used to charac-
terize the statistical properties of the images. The posteriorcally non-negative and of finite spatial extent. Again these

properties are readily expressed in terms of convex con- probability for the image conditioned on the data is then
given by Bayes theorem:straints. The general form of the POCS approach makes it

attractive for developing general inverse methods for tomo-
graphic problems in which the effect of a variety of different p( fff |yyy) = p(yyy| fff )p( fff )

p(yyy)
(18)

constraints can be evaluated.
A limitation of the POCS methods is that if there is more The most widely used class of priors in Bayesian tomography

than one solution that satisfies all constraints, then the con- are the Markov random field (MRF) models (28). Their densi-
vergence point is dependent on the initialization of the ties are conveniently expressed in terms of a Gibbs energy
search. A second problem in both ART and POCS methods is function, which is a sum over a set of potential functions, each
that they can both be sensitive to ill-conditioning in H, re- of which is usually taken to be a function of only a few pixels.
sulting in unstable solutions that are very sensitive to small These potential functions can be chosen to reflect the locally
changes in the data. Regularization methods can be used to smooth property of many images. The existence of sharp in-
overcome the ill-conditioning problems. The regularizing tensity changes, corresponding to the edges of objects in the
function resolves ambiguities resulting from ill-conditioning image, can also be modeled using more complex MRF models.
by choosing the solution that minimizes the regularizing func- The Bayesian formulation also offers the potential for combin-
tion among those that give essentially the same fit to the ing data from multiple modalities. For example, high-resolu-
data. Typically this function is some measure of smoothness tion anatomical X-ray CT or MR images can be used to im-
or energy in the solution (26). prove the reconstructions of functional images from low-

Consider the case where the regularizing function is cho- resolution PET or SPECT data (29).
sen as a weighted quadratic norm or semi-norm � f �2

W � fTWf Bayesian estimators in tomography are usually of the max-
on the solution, and the presence of noise in the data is al- imum a posteriori (MAP) type (30). The MAP solution is given
lowed for by minimizing the squared error in the fit to the by maximizing the posterior probability p(f �y) with respect to
data. Then the regularized solution is found by solving the f . For each data set, the denominator of the right-hand side
optimization problem: of Eq. (18) is a constant, so that the MAP solution can be

equivalently found by maximizing the log of the numerator,
that is,

min
fff

‖yyy − H fH fH f‖2 + λ‖ fff‖2
W (17)

This problem can be solved using general numerical optimiza- max
fff

ln p(yyy| fff ) + ln p( fff ) (19)
tion techniques such as steepest descent or the method of con-
jugate gradients. The method can also be modified to intro- An example of the improvement that can be achieved in the
duce additional constraints, such as non-negativity, using quality of a reconstructed PET image using a Bayesian ap-
constrained optimization approaches. Among the common proach, rather than direct reconstruction, is shown in Fig. 6.
choices of regularizing function are energy (W is the identity Comparing Eq. (19) to Eq. (17), we see a strong parallel
matrix) and spatial smoothness functions such as the Lapla- between regularized methods and MAP estimators. The con-
cian of the image (W � LTL where L is a finite-difference rep- ditional probability term, ln p(y�f ), plays the role of the (first)
resentation of the spatial Laplacian operator). The most com- data matching term in Eq. (17); the prior fulfills the role of
monly studied nonquadratic regularizing function is probably
the entropy measure Ef � ��jf jlog f j (26).

Statistical Methods

Tomographic inverse problems can also be formulated in terms
of classical estimation techniques using statistical models of
the data. We can compute a maximum likelihood (ML) estimate
using the finite-dimensional formulation in Eq. (14) where the
coefficients f are the unknown parameters. The ML solution is
found as the maximum of p(y�f ), the conditional probability for
the data given the image coefficients. A well-known example of
an ML method in computed tomography is the EM algorithm
for Poisson data developed by Shepp and Vardi (27). This
method uses the Poisson distribution to model the photon-lim-
ited nature of data acquisition in SPECT and PET instruments
for nuclear medicine imaging. The improved modeling of the

Figure 6. Comparison of coronal PET images of glucose metabolism inspatially variant noise process leads to superior performance
a rat brain reconstructed using filtered backprojection with maximum

for the ML method in comparison with direct methods or itera- resolution (left) and Bayesian estimation (right). Data were collected
tive linear methods such as ART. However, the ML solution in using the microPET small animal scanner (courtesy of S. Cherry, Ph.D.,
PET and SPECT is usually ill-conditioned resulting in high- Associate Professor, Pharmacology, UCLA). These images demonstrate
variance solutions. In practice this problem can be controlled, the ability of the Bayesian estimation process to produce higher resolu-

tion images than FBP at similar signal to noise ratios.to some extent, by early termination of the iterative process.
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the (second) regularizing term. For the case where the noise can be realized in comparison to direct reconstruction meth-
ods. A second factor that limits performance in both modal-and image are mutually independent Gaussian processes, the

two methods become identical (26). However, in quantum lim- ities is that the line-integral model does not account well for
the finite and spatially variant resolution of the detector andited imaging systems such as X-ray CT, PET and SPECT the

noise is not Gaussian so that the Bayesian approach will lead other physical factors. Using iterative or statistical ap-
proaches, these factors can also be readily included in theto different algorithms and solutions than the regularization

methods described above. model (33).

Radio Astronomy
OTHER APPLICATIONS

Radio telescopes are used to study the natural radio emission
from celestial objects. The resolution of a single radial tele-Nuclear Medicine
scope is related to the size of its reflector. To achieve high

As mentioned in the introduction, PET and SPECT are medi-
resolution would require reflectors with diameters of hun-

cal imaging modalities that produce 3D images of the spatial
dreds of meters or more, depending on the wavelength of in-

distribution of biochemical tracers within the human body. To
terest. Tomographic techniques provide a means of effectively

enable imaging of these tracers, they are tagged with �-ray
improving the resolution of radio telescopes.

emitting (SPECT) or positron-emitting (PET) isotopes.
One technique for producing tomographic images is the

SPECT images are reconstructed from data formed
method of lunar occultation (12). A radio telescope is trained

through the detection of � rays by a collimated planar Anger
on a limb of the moon. As the moon moves relative to the sky

camera that produces an image of the number of photons de-
background, the portion of the background that is occluded by

tected at each pixel element (1). The collimator allows detec-
the moon will change. The change in received power as the

tion of only those photons that are traveling normally to the
moon moves, revealing an additional strip of background, is

plane of the camera. The total number of photons collected at
proportional to the energy produced from that strip. In this

a single pixel element in the camera is proportional to the
way a set of parallel strip integrals of the region occluded by

total number of radioactive nuclei, and hence tracer density,
the moon can be collected. To allow reconstruction, several

integrated along the straight path through the object and nor-
views are needed, and hence data should be collected simulta-

mal to the camera (this is a simplified model, an accurate
neously from several sites. Even in this case, irregular sam-

model must account for attenuation and scatter of the � rays
pling and incomplete data present serious reconstruction

as they pass through the body). By rotating the camera
challenges.

around the patient and collecting images at multiple angles
Arrays of radio telescopes are more commonly used for to-

of view, a set of parallel projections of the tracer distribution
mographic imaging. A linear array of receivers can be config-

are collected for multiple 2D slices (1).
ured to emulate a single telescope with very high resolution

PET systems also collect parallel projections of the tracer
along the length of the array, but poor resolution in the or-

distribution. The physical basis for PET imaging lies in the
thogonal direction. Thus the array will produce measure-

fact that a positron produced by a radioactive nucleus annihi-
ments of the emission from a thin strip, or approximate line

lates with an electron to form a pair of high-energy (511 keV)
integral, of the sky. Motion of the earth allows acquisition of

photons after traveling a very short distance (31). The pair of
multiple views of the sky. These views can be combined in a

photons travel in opposite directions along a straight-line
tomographic manner to produce high-resolution images.

path. Detection of the positions at which the photon pair in-
These techniques were pioneered by Bracewell (12) in the

tersects a ring of detectors allows these systems to approxi-
1950s using very similar reconstruction approaches to those

mately determine the straight line path of the photons along
developed in 1970s for X-ray CT.

which the position was initially emitted. The total number of
More recent developments in radio astronomy employ in-

such events measured by a pair of detectors will be propor-
terferometry in which an array of antennas, distributed over

tional to the total number of such emissions along the line
a large area, are pointed at the same region in the sky. Corre-

joining the detectors. By surrounding the patient with a ring
lating the signals between pairs of antennas produces mea-

of 511 keV photon detectors and associated photon-coinci-
surements of the 2D Fourier transforms of the brightness of

dence electronics, a PET system can simultaneously measure
the sky. As the earth rotates, these sample points trace out

line integrals of the tracer distribution along the many paths
elliptical paths through Fourier space and Fourier interpola-

between all pairs of detectors. Using multiple detector rings
tion methods can be used to recover the brightness distri-

allows simultaneous acquisition of multiple 2D slices (32).
bution.

Since PET and SPECT data are approximate line integrals
of the image, they can be reconstructed using analytical in-

Geophysical Tomography
version formulas (32). These direct methods, however, do not
allow accurate modeling either of the detector system or of Tomographic methods have been widely used in geophysical

exploration. The electromagnetic properties of a region be-the inherent statistical fluctuations in the data. These instru-
ments detect relatively small numbers of individual photons, tween pairs of bore holes can be mapped by measuring the

changes in EM signals as they propagate between the borein some cases averaging less than 10 photons per projection
sample. Consequently, the photon-limited statistical varia- holes. Methods for producing images of resistivity and propa-

gation delay are described by Dines and Lytle (13) using thetions, which are well modeled using Poisson processes, play
an important role in limiting reconstructed image quality. By simplifying assumption that propagation occurs along

straight-line paths from transmitters, located at severalusing the maximum likelihood (27) or Bayesian (28) methods
for Poisson data, substantial improvements in image quality depths within one bore hole, to receivers located at several
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depths within the second bore hole. A linear algebraic formu- of 2D data. These 3D data sets present both mathematical
and computational challenges in developing fast and accuratelation was developed and the problem solved using an ART-

like algorithm. Extensions to this approach, which include im- reconstruction methods and are currently a rich area of re-
search (36).provements on the straight-line path assumption, have since

been developed, as reviewed by Spies (34). In addition to the modalities of X-ray CT, PET, SPECT,
and MR discussed here, there are an increasing number ofFor mapping the earth on a global scale, scientists have

made use of records of natural seismic events. The Bulletin of experimental medical imaging modalities that use measure-
ments of line integrals, or other mappings between image andthe International Seismological Center records the arrival

time at over 1000 seismic stations of different body wave data, together with computed inverses, to form images. Ultra-
sonic tomography of soft tissue presents a challenging inversephases, including the P-wave that passes through the mantle

and other waves that reflect from, or travel through, the core. problem in which refraction and diffraction effects produce
data that are no longer simple integrals along straight linesGiven the epicenter of each event, these arrival times can

then be used to produce 3D maps of anomalies in wave travel (16). Electromagnetic methods in the near-DC range are used
for dynamic imaging of electrophysiological sources in heart,times. These maps, in turn, provide important insight into

geodynamic questions such as the driving mechanisms of muscle, and brain. Mapping the electromagnetic properties of
transmission through the body using a wide range of the EMplate motion (17).

A simplified model for the anomalies in arrival times of the spectrum is also of great interest in the search for methods
that will provide new diagnostic capabilities (6). These newbody waves is given by assuming propagation of the wave

along a known curved ray path. By also assuming that the modalities present special challenges in signal processing be-
cause the data are not simple line integrals, and the inversechanges in the delay times are locally linear with respect to

changes in the wave speed, the problem reduces to a linear problems are often highly ill-posed due to combinations of
limited data, poor signal-to-noise ratios, and ambiguities in-tomographic problem of the form of Eq. (14). The data are

the deviations in the arrival time from that expected for a herent in the underlying EM equations.
The emphasis in the article has been primarily in medicalspherically symmetric earth model and the unknown image

represents the deviations in wave speed. The kernel matrix imaging, which is the main field of interest of the author.
However, the brief discussion of other applications is providedH is zero except in those pixels through which the ray is ex-

pected to pass and the problem can be solved iteratively using as a starting point for exploring the exciting and growing
range of applications of tomography.an ART-like method.

While a standard pixel-based decomposition of the earth
can be used in these studies, the near-spherical shape of the
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